
Appeared in: Physics Letters A, 215 (1996), 40-44.

KOLMOGOROV CONDITION FOR INTEGRABLE SYSTEMS
WITH FOCUS-FOCUS SINGULARITIES

NGUYEN TIEN ZUNG

Abstract. We construct a method of proving the Kolmogorov’s nondegener-

acy condition, which guaranties the validity of KAM theorem, for two degree
of freedom integrable Hamiltonian systems possessing focus-focus singularities.

This method is then applied to various classical integrable systems.

1. Introduction

The celebrated KAM theorem says that under a small Hamiltonian perturbation,
most of the invariant tori of an integrable system will not be destroyed but only
perturbed (e.g., [8]). This theorem is stated under the following nondegeneracy
condition, also called the Kolmogorov condition:

det(∂2H/∂pi∂pj) 6= 0 almost everywhere

Here H is the integrable Hamiltonian, (pi) is a local system of action coordinates.
Kolmogorov condition, though clearly a general position condition, is not easy

to verify, and a rigorous proof of this condition exists for very few systems (cf.
[6, 5, 11]). Moreover, this condition fails for some classical integrable systems (e.g.,
the 3-vortex equation in ideal incompressible fluid is resonant and hence does not
satisfy the Kolmogorov condition). In [6], Knörrer developed a method for checking
the Kolmogorov condition which uses codimension 2 hyperbolic singularities. This
is the first general method available, and it was applied successfully in [6] to the
Neumann equation and the geodesic flow on multi-dimensional ellipsoids.

In this Letter, we will use another type of singularities, namely the so called
focus-focus singularities, for checking the Kolmogorov condition. Our main result
is in Section 2. It says that, for integrable systems with two degrees of freedom,
under a small additional assumption which can be verified easily in practice, focus-
focus singularities imply the Kolmogorov condition.

Section 3 contains several applications of our main result. The first application
is the spherical pendulum under a quadratic potential field. This application is
inspired by two earlier papers by Horozov [5] and Zou [11]. The second application
is the Lagrange top, and the third application is the “champagne bottle” (a special
case of the Garnier system with two degrees of freedom, cf. [1]). There are some
other systems possessing focus-focus singularities, e.g. the Clebsch case of motion of
a rigid body in ideal fluid. The reader is invited to check our additional assumption
for these other systems.
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Using our recent results about the topological structure of singularities of in-
tegrable systems [13], one can generalize Knörrer’s and our methods and consider
other types of singularities. This will be done in a subsequent paper.

2. The main result

Let H : (M4, ω)→ R be an integrable Hamiltonian with two degrees of freedom,
and with an additional first integral F : M4 → R. We will assume everything to be
real analytic, and the moment map (H,F ) : M4 → R

2 a proper map. Recall that a
fixed point x ∈ M4 (i.e. dH(x) = dF (x) = 0) is called a focus-focus point if there
are symplectic coordinates (xi, yi) near x (i.e. ω = dx1 ∧dy1 +dx2 ∧dy2) such that

H = a(x1y1 + x2y2) + b(x1y2 − x2y1) + higher order terms
F = c(x1y1 + x2y2) + d(x1y2 − x2y1) + higher order terms

where a, b, c, d are constants with ad − bc 6= 0. It is well-known that if a 6= 0 then
the Hamiltonian vector field XH has two local invariant (2-dimensional Lagrangian)
submanifolds at x, the stable and unstable ones with respect to XH (e.g. [4, 7]).
On each of these submanifolds the system behaves like a focus, and this property
explains the term “focus-focus”.

According to Arnold-Liouville theorem, the moment map (H,F ) : M4 → R
2

gives rise to a singular Lagrangian torus foliation of (M4, ω), with leaves being
connected components of the level sets of this map. A regular leaf of this foliation
is nothing but a Liouville torus. A singular leaf is called a focus-focus leaf if it
contains a focus-focus fixed point. A focus-focus singular leaf will be called topo-
logically stable if any singular point y (i.e. dH(y)∧dF (y) = 0) in it is a focus-focus
fixed point. That is, we do not allow other types of singular points in focus-focus
leaves. (Of course, by a small perturbation which leaves the system integrable,
one can achieve that on each focus-focus leaf there is only one singular point, cf.
[12]. However, since the systems may have some discrete symmetries which will be
destroyed by such a perturbation, we want to keep here the possibility of several
focus-focus singular points in the same leaf). Our topological stability is not a
stability in the sense of Lyapunov, but rather a structural stability. It can be easily
verified for systems in practice, and is satisfied for most systems. From now on
we will assume all focus-focus singularities under consideration to be topologically
stable.

Recall that a homoclinic or heteroclinic orbit is an orbit going from one fixed
point to the same point or another fixed point. (In more general contexts, fixed
points may be replaced by other invariant sets). We have the following theorem.

Theorem 2.1. Let the integrable Hamiltonian system with the moment map (H,F ) :
M4 → R

2 contain a focus-focus singular leaf. Then if the Hamiltonian vector field
XH has a homoclinic or heteroclinic orbit connecting focus-focus points, H will
satisfy the Kolmogorov condition (at least near the focus-focus singular leaf).

Remark. Since everything is real analytic, if det(∂2H/∂pi∂pj) 6= 0 somewhere it
will be different from zero on a semi-algebraic open subset of the orbit space, which
in many cases will be dense in the orbit space.

Proof. Denote the singular focus-focus leaf by N , the singular Lagrangian foli-
ation associated to the system by L, the number of focus-focus points in N by n
(n ≥ 1), a small tubular saturated neighborhood of N by U(N). Restrict our atten-
tion to U(N). It is known that (U(N),L) has the following remarkable properties
(see [12, 13] for details):
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1. N is a finite union of orbits of the R2-Poisson action (of the moment map).
In fact, it is an easy exercise to see that N consists of n zero-dimensional orbits
(i.e. points) and n orbits of of the type R2/Z (i.e. cylinders). N is homeomorphic
to a cyclic chain of n 2-spheres, with one point of intersection for each pair of
consecutive spheres. When n = 1, N is simply an immersed sphere with one point
of self-intersection.

2. The focus-focus points of N are the only singular points in U(N). The
base space of the singular Lagrangian foliation L (restricted to U(N)) is a 2-disk
D2 3 z0, z0 being the image of N . D2 has a real analytic structure with (H,F )
being a system of coordinates. D2 \ {z0} corresponds to the regular part of the
Lagrangian foliation. Homeomorphically, this foliation is determined uniquely by
the number n. (The situation here is a little bit similar to that of elliptic fibrations
in algebraic geometry, except for the fact that here we have Lagrangian instead of
holomorphic fibers).

3. Recall (e.g., [3]) that the regular part of the base space of the associated
Lagrangian foliation of an integrable Hamiltonian system is an integral affine man-
ifold (where the affine chart is given by small open sets with local systems of action
coordinates). This integral affine structure gives rise to a natural flat connection
on the (co)tangent bundle of the base space, and the holonomy of this connection
is called the monodromy. In particular, the punctured disk D2 \{z0} above has the
structure of an integral affine manifold (different from the usual Euclidean struc-
ture). The monodromy of this affine manifold is nontrivial, and is generated by the

matrix
(

1 n
0 1

)
.

4. In U(N) there is a unique (up to the orientation) natural Hamiltonian S1-
action which preserves the moment map. In fact, using arguments similar to that
used in the proof of the Arnold-Liouville theorem, one can extend the natural S1-
action from an orbit of the type R2/Z in N to the whole U(N). We will denote by
p1 the Hamiltonian function which generates this S1-action.

Now we will use the above properties (mainly 3 and 4) to prove our theorem.
We will not use the existence of homo/heteroclinic orbits in the assumptions of the
theorem directly, but only the following consequence of it:
H and p1 are functionally independent. (Indeed, if dH ∧ dp1 = 0, all orbits of

H would be periodic, and there would be no homo/heteroclinic orbit). p1 may
be considered as a single-valued analytic function on D2. Near a point in D2

different from z0, p1 can be completed to a system of action coordinates (p1, p2).
When one extends p2 to D2 \ {z0}, it becomes a multi-valued function, due to the
nontriviality of the monodromy. More explicitly, when one goes around z0 once
(in an appropriate direction), p2 will change to p2 + np1, where n is the number of
focus-focus fixed points in the singular leaf. Correspondingly, the vector field ∂/∂p2

is single-valued, but ∂/∂p1 will change to ∂/∂p1 − n∂/∂p2 after going around z0

once. The homotopy type of the (periodic) orbits of the Hamiltonian vector field
Xp1 (of the Hamiltonian p1) is trivial. On the other hand, the homotopy type of
the orbits of Xp2 is nontrivial and is the generator of π1(U(N)) = Z.

Consider H as a function on D2 and put f1 = ∂H/∂p1, f2 = ∂H/∂p2 (in some
local system of action coordinates). Then f2 is a single-valued analytic function on
D2 \{z0}, and f1 changes to f1−nf2 after going around z0 once. We notice that f2

can be extended continuously to z0 with f2(z0) = 0. Indeed, let x0 be a focus-focus
point of N , and U(x0) a small ball in U(N) containing x0. Then if an orbit of the
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Hamiltonian vector field XH passes nearby x0, it will take a long time to get out of
U(x0) (the time is of order at least O(− ln ε) where ε is the distance from the orbit
to x0). Thus it will take a long time for a point near x0 to go away by XH and
return to another point near x0, making a nontrivial homotopy element of U(N).
The time it takes for a point to go by the vector field Xp2 and make a nontrivial
cycle (generator of π1(U(N))) is always 1. Since XH = f1Xp1 + f2Xp2 , we get that
the solution of XH modulo Xp1 projects to a cycle in time equal to 1/f2. It follows
that 1/f2 is big, and f2 is small near z0 (of order 1/(− ln ε) or smaller). In the limit
we have f2(z0) = 0. On the other hand, by the assumption of the theorem, H and
p1 are functionally independent. Hence f2 6= 0 (almost everywhere). It follows that
f2 is not a constant function on D2, and df2 6= 0 almost everywhere.

Suppose now by contradiction that det(∂2H/∂pi∂pj) ≡ 0. It means that df1 ∧
df2 = 0. We will show that the local level sets of f2 are straight lines in D2 (with
respect to the affine structure), which do not intersect, and f1 is constant on these
lines. Indeed, if z ∈ D2 \ {z0} such that df2(z) 6= 0, then df1 ∧ df2 = 0 implies that
near z, f1 is constant on the level sets of f2, the quotient df1/df2 makes sense, and
df1/df2.∂f2/∂p2 = ∂f1/∂p2 = ∂2H/∂p1∂p2 = ∂f2/∂p1. Hence the ratio between
∂f2/∂p2 and ∂f2/∂p1 is constant on the level sets of f2 near z, and therefore
the local level sets of f2 near z are straight lines. By the uniqueness of analytic
continuation, it follows that the level sets of f2 in D2 are (pieces of) straight lines,
except maybe for singular points. One notices that no two lines can intersect,
otherwise it can be shown easily that f2 is constant. The density of regular points
implies that singular level sets of f2 are also straight lines. It follows easily that
D2 (including the point z0) has a regular topological foliation by the connected
components of the level sets of f2. All leaves of this foliation are straight lines,
except for one leaf which goes through z0. This special leaf is a curve consisting of
z0 and two straight lines, because we don’t have the affine structure at z0. Denote
this leaf by l, and choose any two points z1, z2 of l lying on different sides with
respect to z0. Let l1 and l2 be two (pieces of) straight lines going through z1 and
z2 respectively, and transversal to l. Each point of l1 is mapped to a unique point
of l2 via the above foliation on D2. Denote this map by φ. We will show that φ is a
local analytic isomorphism, with respect to the natural analytic structure on l1 and
l2 induced from D2. Indeed, using the fact that no two lines (level sets of f2) can
intersect, one can see easily that the degree of degeneracy of f2 at z1 and z2 must be
the same. That is, if the Taylor series of f2 on l1 at z1 with respect to some analytic
coordinate starts with the power of order k (k ≥ 1 because f2(z1) = f2(z0) = 0),
then the same number k will play the same role for f2 on l2 at z2. The function
f

1/k
2 will be well-defined to be an analytic coordinate on both l1 and l2 (if these

lines are short enough). Since the map φ preserves this function, it is an analytic
isomorphism. What we have proved in fact is that the base space of the foliation
by connected components of the level sets of f2 is an interval with a well-defined
analytic structure induced from D2 \ z0. Recall that f1 is functionally dependent
on f2 and is hence constant on each leaf of the above foliation. In other words,
f1 can be factored (at least locally) to an analytic function on the base space of
this foliation. Since this base space is just an interval, it follows easily from the
uniqueness of analytic continuation that f1 must be a single-valued function on
D2 \ {z0}. But we know that after going around z0 once, f1 changes to f1 − nf2,
and remember that n is a positive integer, and f2 is a non-zero function. Thus we
came to contradiction. �
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Remark. Another proof, which is also valid for the C∞ case, goes as follows:
Proceed as in the above proof until we obtain the curve l 3 z0, on which f2 = 0
and f1 = c (some non-zero constant). It follows that on the preimage of l in U(N)
all the orbits of XH are periodic of period 1/c. In particular, all orbits of XH in N
are periodic, so there is no homo/heteroclinic orbit. Notice that this second proof
uses the existence of homo/heteroclinic orbits in an essential way, but not only the
fact that H and p1 are functionally independent.

3. Examples

3.1. Spherical pendulum under a quadratic potential. Consider a spherical
pendulum, that is motion of a particle on the sphere S2 = {q = (q1, q2, q3) ∈
R

3, |q|2 =
∑
q2
i = 1}, under a potential field V = V (q), which depends only

on q3 and is a quadratic function of q3: V = aq2
3 + bq3 + c. It is a constrained

Hamiltonian system on T ∗R3 = {(p,q)} = {(pi, qi)}, and can be written as a
faithful Hamiltonian system on a symplectic manifold diffeomorphic to TS2. This
Hamiltonian system is integrable: it has the additional first integral F = p1q2−p2q1,
corresponding to the obvious axial symmetry.

When a > 0 or a = 0, b 6= 0 (where a, b are coefficients of the potential), the
system has a focus-focus point. Indeed, in these cases, the north pole, or the south
pole, or both of them (but none other), will be the position of maximal potential
on the sphere, and it follows that the point (p = 0,q = (0, 0, 1)), or the point
(p = 0,q = (0, 0,−1)), or both of them, will be focus-focus in the phase space.
It can also be checked easily that these points, when they are focus-focus, lie in
topologically stable focus-focus leaves. Moreover, the regular part of the orbit space
is connected (it is a disk with one hole in case there is only one focus-focus point
and in case b = 0 where 2 focus-focus points have the same value of the moment
map, and a disk with two holes otherwise).

The additional integral F = p1q2 − p2q1 is also the function which generates
S1-symmetry near focus-focus singularities, and the Hamiltonian is obviously func-
tionally independent of this function. Thus, (the proof of) our main result implies
that Kolmogorov condition is satisfied for the spherical pendulum under the qua-
dratic potential field V = aq2

3 + bq3 + c (with a > 0 or a = 0, b 6= 0). (It is also easy
to show that there are homo/heteroclinic orbits in the focus-focus leaf).

We remark that Kolmogorov condition for the case a = 0, b 6= 0 and the case
a > 0, b = 0 were proved by Horozov [5] and Zou [11], by the use of Abelian
integrals. The advantage of their method is that it allows them not only to prove
the Kolmogorov condition, but also to compute the set where the determinant in
question vanishes. (To compute this set, perhaps one cannot avoid dealing with
explicit formulae). The disadvantage of their method is that the computations
involved may be very complicated, and that is why they could not handle the
general quadratic case (cf. [11]).

3.2. Lagrange top. Lagrange top is the motion of a heavy axially symmetric rigid
body with a fixed point (which lies on the symmetry axis), under a constant gravi-
tational force. It can be written as a Hamiltonian system on the coadjoint orbits of
the Lie algebra e(3) = so(3)nR3 of rigid motions in R3 (e.g., [9]). General coadjoint
orbits of e(3) are symplectic manifolds isomorphic to TS2. The system is integrable:
it has an additional integral, which is the angular momentum corresponding to the
symmetry axis. It is known that this system (for some coadjoint orbits) has a topo-
logically stable focus-focus singularity (e.g., [2, 9]). The energy function and the
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angular momentum are functionally independent, and hence again we can apply
our main result. Notice that, by analytic continuation, Kolmogorov condition on
coadjoint orbits which contain focus-focus fixed points imply Kolmogorov condition
on most regular coadjoint orbits which do not contain focus-focus points.

3.3. Champagne bottle. The Garnier system with two degrees of freedom is the
Hamiltonian system in (R4, ω = dp1∧dq1+dp2∧dq2) with the following Hamiltonian:

H = 1/2(p2
1 + p2

2)− (a1q
2
1 + a2q

2
2) + b(q2

1 + q2
2)2

This system is integrable by the method of separation of variables (e.g., [10]).
Assume that a1, a2, b > 0. Then the energy level sets are compact, and the point
(q1, q2) = (0, 0) is the local maximal point of the potential V = −(a1q

2
1 + a2q

2
2) +

b(q2
1 + q2

2)2.
If a1 = a2 then there is an obvious S1-symmetry, the origin of R4 is a focus-focus

singular point (cf. [1]), and we can proceed just like in the previous examples.
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