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Abstract

The aim of this Letter is to show that singularities of inte-
grable Hamiltonian systems, besides being important for such
systems themselves, also have many applications in the study of
near integrable systems. In particular, we will show how they are
related to Kolmogorov’s nondegeneracy condition (in the famous
KAM theorem), the Poincaré-Melnikov function and its general-
izations, topological entropy, and nonintegrability criteria.
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1 Introduction

Integrable Hamiltonian systems form a rather special, but very important
class of dynamical systems. Over the last decades, they have attracted a
great number of mathematicians, because of their appearance in many prob-
lems of classical dynamics, physics, control theory, etc., and because of the
discovery of new methods (inverse scattering, Lie group-theoretic, algebro-
geometric,etc.) for finding and dealing with them. It is also of great interest
to study their topological, qualitative properties. As a first step, one would
like to study the bifurcations and singularities (of their moment maps). This
study was influenced in part by a paper of Smale [18] on topology of dynam-
ical systems with symmetries. Notice that singularities also play a central
role in [18].

Recently, it became clear to us that singularities of integrable classical
Hamiltonian systems also have many applications in symplectic geometry
(e.g. construction of nonstandard symplectic spaces R2n), quantum dynam-
ical systems, and especially near integrable systems.

In this Letter, we will concentrate on near integrable systems. Poincaré
[16] considered such systems as the basic problem of mechanics. Following
Poincaré, let us write a Hamiltonian function H as the perturbation of an
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integrable Hamiltonian function H0:

H = H0 + εH1 + ...

Here ε is a small perturbation parameter. It is natural to expect that the
knowledge about the properties of the integrable Hamiltonian H0 (and its
singularities in particular) will give us also some information about the dy-
namical properties of the perturbed Hamiltonian H. As one will see, it is
really the case.

There are various approaches to Poincaré’s basic problem, the most fa-
mous one being the KAM (Kolmogorov-Arnold-Moser) theory (e.g., [1, 10,
14]). The classical KAM theorem says that when the perturbation is small,
most of the invariant tori of the unperturbed integrable system will not be
destroyed but only slightly deformed. This theorem is stated under the
following nondegeneracy condition, also known as Kolmogorov’s condition:
det(∂2H0/∂Ii∂Ij) 6= 0, where (Ii) is a local system of action coordinates. In
practice, this condition is not easy at all to verify directly, because the compu-
tation of the determinant often involves transcendental functions. However,
inspired by an earlier work of Knörrer [8], we will show that one can most
often verify this condition easily using singularities.

While KAM theory shows the “almost stability” of near integrable sys-
tems, Poincaré-Melnikov function (or method) is an effective tool to show
their chaotic behavior, things like stochastic webs, Smale horseshoes, Arnold
diffusions, and phase space transport. This method was developed by many
authors (see e.g. [1, 9, 11, 12, 13, 17, 20] and references therein). While the
classical Poincaré-Melnikov function makes use of simplest hyperbolic sin-
gularities in its definition, its generalizations ask for higher dimension and
codimension singularities (e.g., [9, 17, 20]). The importance of a topologi-
cal study of singularities of integrable systems for this purpose was already
noticed by Koiller [9] and others.

Topological entropy is another measure of chaotic behavior. Since inte-
grability is the opposite of chaoticity, it is natural that integrable systems,
under some mild assumptions on their singularities, must have zero topolog-
ical entropy. Surprisingly enough, this fact was proved only quite recently
by G. Paternain [15] (under some strong nondegeneracy conditions of sin-
gularities) and I. Taimanov [19]. As a consequence, one obtains that near
integrable systems have small entropy (if the perturbation is small). Thus
near integrable systems are also not very chaotic in the sense of topological
entropy.

The Poincaré-Melnikov function, the topological entropy, and the topo-
logical structure of singularities of integrable systems give rise to various
criteria for nonintegrability of near integrable systems, some of which we will
consider in this Letter.

We also suspect that higher-codimension singularities have a lot to do
with overlapping resonances, and hence with the regions where Arnold dif-
fusion is relatively fast, but so far we don’t have any result about that.

This Letter is organized as follows: In §2 we present two basic results
about the structure of singularities of integrable systems. In §3 a method
for checking Kolmogorov’s nondegeneracy condition, based on singularities,
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is derived. In §4 various nonintegrability criteria, based on the Poincaré-
Melnikov function and the structure of singularities, are presented.

We would like to thank the organizers and participants of the “Workshop
on Dynamical Systems”, which was held in ICTP in May-June 1995, for their
interest in this work. In particular, we would like to thank Serge Bolotin,
Robert MacKay, Jacob Palis and Alberto Verjovsky. We also thank the
referees for their valuable critical remarks

2 Singularities of integrable systems

In this section let (M2n, ω) be a symplectic manifold and H : (M2n, ω)→ R

an integrable Hamiltonian with a moment map F = (F1, ..., Fn) : M2n → R
n.

That is, {Fi, Fj} = {Fi, H} = 0 and rankdF = n almost everywhere. We
will assume everything to be sufficiently smooth, and sometimes even real
analytic. The moment map F will always be assumed to be a proper map.

For each x ∈ Rn in the image of F, let Nx denotes a connected component
of the level set F−1(x) of the moment map. We define the rank of Nx to be
rankNx = minz∈Nx rankdF(z). Nx is called singular if its rank is less than
n. In this case n − rankNx is called the codimension of Nx. When Nx is
nonsingular, it consists of an n-dimensional torus orbit of the Poisson action
of F, by Liouville theorem. When Nx is singular it may contain many orbits
of the Poisson action.

Theorem 2.1 If all data are real analytic, or if Nx is not too degenerate,
then there is a locally free Hamiltonian T

rankNx-action in a neighborhood
U(Nx) ⊂ M2n of Nx which preserves the moment map (and the Hamilto-
nian). This action is analytic in the real analytic case.

In the above theorem, not too degenerate means that Nx has a good
topological stratification similar to Whitney stratification for analytic spaces.
Of course, one can cook up other sufficient conditions for being not too
degenerate as well. The proof of the above theorem is absolutely analogous
to the proof of theorems about torus actions in [21].

When rankNx = n, the above theorem is nothing but the classical Arnold-
Liouville theorem. Thus we have an extension of Arnold-Liouville theorem
to the singular case. We notice that an analogous but weaker result (near
a singular torus orbit, under a nondegeneracy condition...) was obtained
earlier by H. Ito [7].

For nondegenerate singularities, a much stronger result was obtained in
[21]. Here a singularity Nx is called nondegenerate if each of its points is
nonsingular or nondegenerate singular, and an additional mild condition of
topological stability is satisfied (see [21] for details). It is an experimental
fact that most singularities of known integrable Hamiltonian systems are
nondegenerate. Denote by L the singular Lagrangian foliation given by the
connected components of the moment map (generally L does not depend on
the choice of the moment map but only on the original integrable Hamiltonian
function). A nondegenerate singularity is called simplest (or irreducible) if it
is an elliptic or hyperbolic singularity of a system with 1 degree of freedom
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(on a 2-surface), or a focus-focus singularity of a system with 2 degrees of
freedom on a symplectic 4-manifold (cf. [21] for details). We have:

Theorem 2.2 ([21]) Under the nondegeneracy condition, an appropriate
neighborhood U(Nx) of Nx can be decomposed topologically together with the
singular foliation into a direct product of simplest singularities, up to a finite
covering:

(U(Nx),L)
diff' Tr ×Dr × (U1,L1)× ...× (Uk,Lk) / Γ

Here r = rankNx, Tr a torus like in the previous theorem, Dr is a ball,
(Ui,Li) are singular foliations of some simplest (irreducible) singularities,∑

dimUi = 2n − 2r. Γ is a finite group acting freely on the product, and
component-wise (i.e. this action commutes with the projection to each com-
ponent). It acts trivially on Dn and on elliptic components. The above
decomposition is unique if r = 0 and Γ is required to be minimal.

For example, in case of the Kovalevskaya’s top there is a codimension 2
hyperbolic singularity, which can be described by the following picture:

This picture means the quotient by Z2 of the product of two simplest
hyperbolic singularities, with the singular sets as given in the picture. The
group Z2 acts on these singularities by rotation by 180o. The Kovalevskaya’s
top also contains some degenerate singularities (for which Theorem 2.1 holds
- that is, there is an S1-action). For more details and other examples see
[21].

The above theorem is a kind of topological classification of nondegenerate
singularities of integrable systems. Notice that it says nothing about the
symplectic structure. Indeed, the symplectic form cannot be decomposed in
general. This theorem has a long story. It grew out from the attempts to
do surgery with integrable systems, from local results by Rüssmann, J. Vey,
Eliasson, and from some partial results and ideas by J.-P. Dufour, P. Molino,
L. Lerman, Ya. Umanskii, A. Bolsinov, A. Fomenko and others (cf. [21]).

We should notice here some dynamical consequences of the above the-
orem. First, if rankNx = 0 (i.e. Nx contains a fixed point) and all the
irreducible components are hyperbolic, then there are transversal homoclinic
or heteroclinic orbits. The existence of such orbits was first observed by R.
Devaney [4] in a concrete example. Now we know that it is rather a rule than
an exception. Second, if there is no elliptic component, then there are stable
and unstable manifolds of dimension n which nearly coincide. This fact was
already used by several authors (without proof) in dealing with generaliza-
tions of the Poincaré-Melnikov function (e.g., [9, 11]). More generally, Nx has
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a natural stratification, and a Poincaré-Melnikov function can be defined for
each stratum (of dimension > r) of this stratification. (Such strata consist
of homoclinic or heteroclinic orbits, and the Poincaré-Melnikov function is
R
s-valued on each s-dimensional stratum).

3 Kolmogorov’s nondegeneracy condition

As we said in the introduction, the Kolmogorov’s condition det(∂2H/∂Ii∂Ij) 6=
0 a.e. is not easy to verify directly in general. Indeed, direct computations
(using Abelian integrals), as done by Arnold himself, E. Horozov [6], and
other people, are usually very long and complicated. A method to check this
condition was found in 1985 by H. Knörrer [8], who used codimension 2 singu-
larities. (S. Bolotin told us that before Knörrer a similar method was applied
to the Kovalevskaya top by some student of Stëpin, but he didn’t remem-
ber the reference). Knörrer applied his method successfully to the geodesic
flow on multi-dimensional ellipsoids and to the Newmann problem. Using
Theorem 2.2, we will construct a generalization of Knörrer result to include
focus-focus components and any codimension singularities. First results in
this direction were obtained in [22].

Theorem 3.1 If the following conditions are satisfied:
a) Nx is a nondegenerate singularity with only hyperbolic and focus-focus ir-
reducible components (i.e. no elliptic components),
b) H on a center manifold in U(Nx) of the Poisson action (which is sym-
plectomorphic to Tr × Dr, r = rankNx) satisfies Kolmogorov’s condition if
considered as an integrable Hamiltonian on that manifold,
c) the linear part of the Hamiltonian vector field XH on the transversal sub-
space to the above center manifold have all eigenvalues different from pure
imaginary or 0,
then H satisfies Kolmogorov’s condition, at least near Nx.

The proof of the above theorem is by induction on the number of ir-
reducible components, using Knörrer arguments for hyperbolic components,
and an additional argument about monodromy as in [22] for focus-focus com-
ponents.

Conditions a) and c) in the above theorem are relatively easy to check
in practice because they usually involve only polynomials. Condition b) is
empty or almost empty if we consider rank 0 or rank 1 singularities. We
notice also that if all data are real analytic then if H satisfies Kolmogorov
condition near some Liouville torus, it will satisfy this condition near any
other Liouville torus which can be connected to the former torus by a path
of Liouville tori. Thus it is enough to prove Kolmogorov’s condition near
singularities.

The above theorem is applicable to all well-known integrable tops, spher-
ical pendulum, Garnier systems, ... and perhaps to many other systems.

A similar result holds for the isoenergetic nondegeneracy condition.
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4 Poincaré-Melnikov function and nonintegra-

bility

Consider a perturbation of an integrable Hamiltonian: H(z) = H0(z) +
εH1(z, t, ε). In this section everything is assumed to be real analytic, and H1

periodic in time t.
Suppose that z1, z2 are two nondegenerate fixed points of the Hamiltonian

flow of H0 (which may coincide), such that the unstable manifold W u
z1

of z1

and the stable manifold W s
z2

of z2 have dimension n and contain a common
domain of dimension n. Let φ(z, t) be a heteroclinic orbit of the Hamiltonian
vector field of H0, z belonging to the above domain. Fixing φ(z, t), one can
define the Poincaré-Melnikov function:

PM(t) =

∫ +∞

−∞
{H0, H1}(φ(z, t+ s), s, 0)ds

Using Theorem 2.1 and some arguments of Bolotin [2] (which in turn may
go back to Poincaré, Kozlov,...), one can prove the following theorem:

Theorem 4.1 If PM(t) is not a constant function in t (or equivalently,∫ +∞
−∞ {H0, {H0, H1}}(φ(z, t + s), s, 0)ds 6= 0), then H is not integrable for
ε 6= 0 small (i.e. it does not have a complete set of analytic first integrals).

The above theorem improves in a significant way an earlier result by
Bolotin (see e.g. [2, 11]). Bolotin proved the same statement under an
additional condition that some Birkhoff transformation converges. Unfor-
tunately, this additional condition is both difficult to verify and restrictive.
(For most non-integrable systems the formal Birkhoff transformation does
not converge). Another sufficient condition of Bolotin, namely the existence
of a heteroclinic orbit, is also restrictive and difficult to verify.

The above theorem also generalizes some earlier results by Poincaré,
Cushman, Ziglin and others on nonintegrability. Another generalization of
the results by Poincaré and Cushman from the 2-degree-of-freedom case to
the many-degree-of-freedom case is the following:

Theorem 4.2 If a periodically perturbed system in Poincaré’s basic problem
of mechanics has a topologically transversal homoclinic or heteroclinic orbit
connecting fixed points, then it is nonintegrable.

Proof. Time-periodic Hamiltonians with n degrees of freedom may be con-
sidered as systems with n+1 degrees of freedom. Under this transformation,
fixed points go to periodic orbits. If the perturbed system were integrable,
it would follow from Theorem 2.1 that there is locally free S1-action on the
singular level set containing the homo/hetero-clinic orbit in question. But it
is impossible because of the transversality.

One can use Theorem 4.1 and Theorem 4.2 to show, for example, that
most perturbations of the metrics on the multi-dimensional ellipsoids give
rise to nonintegrable geodesic flows.

We also suspect that the group Γ in Theorem 2.2 enjoys some rigidity
under integrable perturbations, and therefore it may give rise to some (topo-
logical) obstructions to integrability. For example, we have:
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Theorem 4.3 Let an integrable system with 2 degrees of freedom have a
hyperbolic codimension 2 singularity, which contains exactly two fixed points
z1, z2 and whose decomposition as in Theorem 2.2 has Γ = Z2. Under a small
autonomous perturbation the system still has 2 hyperbolic fixed points z′1 and
z′2 near to z1 and z2. Then if the perturbed Hamiltonian function has different
values at z′1 and z′2, it will not admit an additional nondegenerate first integral
(which would make it integrable with nondegenerate singularities).

References

[1] V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag
1978.

[2] S.V. Bolotin, Condition for Liouville nonintegrability of Hamilton systems ,
Vestnik Moscow Univ., 1986, No. 3, 58-64.

[3] A.V. Bolsinov and Nguyen Tien Zung, Degenerate codimension 1 singularities
of integrable Hamiltonian systems, in preparation.

[4] R. Devaney, Transversal homoclinic orbit in an integrable system, Amer. J.
Math., 100 (1978), 631-642.

[5] A.T. Fomenko, Integrability and nonintegrability in geometry and mechanics,
Kluwer Acad. Publ., 1988.

[6] E. Horozov, Perturbations of the spherical pendulum and Abelian integrals, J.
reine angew. Math., 408 (1990), 114-135.

[7] H. Ito, Action-angles coordinates at singularities for analytic integrable sys-
tems, Math. Z., 206 (1991), 363-407.

[8] H. Knörrer, Singular fibres of the momentum mapping for integrable Hamil-
tonian systems, J. Reine Angew. Math., 355 (1985), 67-107.

[9] J. Koiller, Melnikov formulas for nearly integrable Hamiltonian systems,
MSRI Publ., V. 20 (1990), 183-188.

[10] A.N. Kolmogorov, Selected works, Vol. 1 (V.M. Tikhomirov ed.), Cluwer
Acad. Publ., 1991.

[11] V.V. Kozlov, Integrability and nonintegrability in Hamiltonian dynamics,
Russ. Math. Surv., 38 (1983), No. 1, 1-76; and Integrable and non-integrable
Hamiltonian systems, Soviet Sci. Rev. C: Math. Phys., Vol. 8 (1989), 1-81.

[12] J. Marsden, Lectures on mechanics, London Math. Soc., 1992.

[13] V.K. Melnikov, On the stability of the center for time-periodic perturbations,
Trans. Mosc. Math. Soc., 12 (1963), 1-57.

[14] J. Moser, Stable and Random Motions in Dynamical Systems, Ann. Math.
Studies 77, Princeton 1973.

[15] G. Paternain, On the topology of manifolds with completely integrable geodesic
flows, Ergodic Th. Dyn. Sys., 12 (1992), 109-121; and J. Geometry and
Physics, 13 (1994), N. 3, 289-298.

[16] H. Poincaré, Les méthodes nouvelles de la Mécanique céleste, Paris, Gautier-
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