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Abstract: This paper is an introduction to a new theory of topological classification

of finite-dimensional integrable Hamiltonian systems.

1 Introduction

This paper arises from 2 talks that I gave in Montpellier in February 1995 (one in the

seminar Gaston Darboux and the other one in the conference “Nonlinearity and Integra-

bility: From Mathematics to Physics”). It is intended to serve as an introduction to a

new theory of topological classification of integrable Hamiltonian systems. The material

presented here is based on two more technical papers [19, 20].

The topological (qualitative) study of integrable Hamiltonian systems has attracted

many mathematicians around the world. It is an interesting problem in its own right, and

it also has direct applications in symplectic geometry, KAM and Poincaré-Melnikov theo-

ries, celestial mechanics, etc. (We know that our solar system is more or less integrable).

Integrable systems are also a special case of systems with symmetries, whose topological

study was initiated by Smale [17], using the moment map. Since then, may authors have

computed the bifurcation diagram of the moment map, for a large number of classical

integrable systems.

The first and most fundamental result about the qualitative behavior is the celebrated

Arnold-Liouville theorem, which classifies integrable systems locally near nonsingular

tori. The globalization of this theorem for systems without singularities was achieved

by Nekhoroshev [16], Duistermaat [9] and Dazord and Delzant [7]. However, realistic sys-

tems always have singularities. Fomenko and his collaborators (e.g., [4, 10, 11]) developed

a Morse-type topological theory for integrable systems, to take into account singularities.

However, he studied only codimension 1 singularities, and hence his theory works best

only for systems with two degrees of freedom restricted to isoenergy 3-manifolds. Re-

cently, we have obtained a topological classification of nondegenerate singularities of any
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codimension, which makes possible a generalization of Fomenko’s theory to higher dimen-

sions.

Our theory of topological classification of nondegenerate integrable systems, which

may be regarded as a nontrivial generalization of Fomenko’s theory, is based on the

following 3 kinds of topological invariants: structure of nondegenerate singularities (in

terms of normal forms), global monodromy, and singular Chern classes. Each integrable

Hamiltonian system, under some mild assumptions, has an associated singular Lagrangian

torus foliation, and the orbit (base) space is a stratified integral affine manifold. Our main

result is the following (cf. [20]):

Theorem 1.1 Two nondegenerate integrable Hamiltonian systems are topologically equiv-

alent (as singular torus foliations) if and only if there is a homeomorphism between the

orbit spaces, which also maps singularities to singularities, global monodromy to global

monodromy and singular Chern classes to singular Chern classes isomorphically.

The notion of global monodromy is a nontrivial generalization of monodromy as defined

by Duistermaat [9] to the general case. The notion of singular Chern class is also a

generalization of Duistermaat’s Chern class to the case with singularities. In case there

are only elliptic singularities, our definition of singular Chern classes coincides with that

given earlier by Boucetta and Molino [5].

The organization of this paper is as follows. In the first half of the paper we re-

call the well-known classification of integrable Hamiltonian systems without singulari-

ties (§3), which is based on Arnold-Liouville theorem (§2), affine monodromy (§4), and

Duistermaat-Chern class (§5). In §6 we discuss the structure of nondegenerate singular-

ities. In §7 and §8 we give the notions of global monodromy and singular Chern classes,

respectively. As a conclusion, in §9 we give some remarks on some related results and

problems.

Acknowledgments. This work is done mainly during the author’s visit to Mont-

pelllier in February 1995. He would like to thank Jean-Paul Dufour and Pierre Molino

for the warm hospitality and for many stimulating discussions.

2 Arnold-Liouville theorem

Let (M2n, ω) be a smooth symplectic manifold, and H : M2n → R a smooth Hamiltonian

function. The Hamiltonian system ẋ = XH(x) on M2n (defined by iXHω = −dH) is called

integrable in the sense of Liouville if there are n commuting first integrals F1, ..., Fn which
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are functionally independent almost everywhere: {Fi, H} = {Fi, Fj} = 0; dF1∧· · ·∧dFn 6=
0 a.e.. One can put F1 = H. The map F = (F1, ..., Fn) : M2n → R

2n is called the moment

map. Of course, for a given integrable Hamiltonian H, this moment map is not unique.

However, under the nonresonance condition (see below), the regular level sets of this

moment map are uniquely determined by the system, so we can also fix a moment map.

We will always assume that the level sets of the moment map are compact (with-

out this assumption the Arnold-Liouville theorem may fail). Let Σ = {y ∈ Rn| ∃x ∈
F−1(y), rank dF(x) < n} be the bifurcation diagram. Put M0 = M \ F−1(Σ), and denote

by O0 the space of connected components of the regular level sets (i.e. each component is

considered as one point). Then we have a natural projection π : M0 → O0, and the map

F : M0 → R
n can be factored through this projection to a map F̃ : O0 → R

n.

The following Arnold-Liouville theorem is an analog of Darboux’s theorem in symplec-

tic geometry, and it gives the normal form for an integrable system near a regular level

set of the moment map.

Theorem 2.1 π : M0 → O0 is a regular Lagrangian T n-torus fibration. Moreover, for

each y ∈ O0 there is a small neighborhood Dn = D(y) of y in O0 such that (π−1(Dn), ω)

can be written as (Dn × T n,∑n
1 dpi ∧ dqi) via a fibration preserving symplectomorphism,

where (pi) is a system of coordinates in Dn, (qi mod 1) is a system of periodic coordinates

in T n, and the fibration of (Dn × T n,∑n
1 dpi ∧ dqi) into Lagrangian tori is the projection

Dn × T n → Dn.

pi and qi are called action and angle coordinates. Each torus of the fibration π : M0 →
O0 is called a Liouville torus.

Consequently, in π−1(Dn), H (and Fi) is a function of the action coordinates pi only,

H = H(pi), and the Hamiltonian system has the form{
ṗi = 0
q̇i = ∂H/∂pi

In particular, the motion of the system is quasi-periodic in each Liouville torus.

The fact that M0 → O0 is a torus fibration and the system is quasi-periodic in each

torus was known to Liouville. Action-angle coordinates were found by Arnold (e.g., [1]),

under some additional assumptions. The theorem was then reproved by several people,

including Jost, Markus, Meyer, Nekhoroshev. For a modern treatment see e.g. Dazord-

Delzant [7].

It follows from Arnold-Liouville theorem that each Liouville torus has a natural flat

structure. But a more important consequence of Arnold-Liouville theorem is that the

(regular part of the) orbit space O0 is an integral affine manifold. That is, it admits an
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atlas whose transformation maps are affine with the integral linear part. In our case, the

charts are given by small open sets with local action coordinates (pi).

If for some point y ∈ O0 the numbers ∂H/∂pi(y) are non-commensurable (i.e. their Z-

span is a subgroup in R which is isomorphic to Zn), then each orbit of the Hamiltonian flow

in the torus T ny = π−1(y) is dense. Thus this torus is uniquely determined by XH (and a

point on it), regardless of the moment map F. The Hamiltonian system XH is called non-

resonant if for almost every point y ∈ O0 the numbers ∂H/∂pi(y) are non-commensurable.

For example, if H satisfies the Kolmogorov condition: det(∂2H/∂pi∂pj) 6= 0 a.e., then H

is nonresonant. Clearly, nonresonant condition is a kind of general position condition.

However, its verification for concrete systems may be not so simple (see e.g. [12]), and it

may even fail for some integrable systems (e.g. the so called non-commutatively integrable

systems (cf. [15]) are resonant).

From now on we will assume all integrable systems under consideration to be nonres-

onant, so that the singular foliation given by the connected components of the level sets

of the moment map does not depend on the moment map itself, but only on the initial

Hamiltonian.

3 Global action-angle coordinates

Suppose now that we have a regular Lagrangian torus fibration π : (M2n
0 , ω) → On

0 . It

is a natural geometrical setting of integrable systems without singularities, because any

two functions f1, f2 : On
0 → R Poisson-commute if considered as function on M2n (i.e.

{f1 ◦ π, f2 ◦ π} = 0), and any Hamiltonian function H = h ◦ π, h : On
0 → R, is integrable.

We can ask if there are global action-angle coordinates. That is, can (M0, ω) → On
0

be written in the form

(On
0 × T n,

n∑
1

dpi ∧ dqi)→ On
0

where (pi) : On
0 → R

n is an immersion, qi mod 1 are periodic coordinates on T n.

More generally, we can ask for a classification of such fibrations π : (M2n
0 , ω) → On

0 ,

assuming that On
0 is known.

A natural way to solve the above problem is via obstruction theory. If (M0, ω)→ On
0

admits a global action-angle coordinate system, then it has the following properties:

a) M0 → O0 is a principal Tn-bundle (where Tn is considered as an Abelian Lie group).

b) M0 → O0 has a global section.

c) Moreover, it has a Lagrangian global section.

Conversely, if the above conditions are satisfied then one can show easily that π :

(M2n
0 , ω)→ On

0 admits global action-angle coordinates.

4



The obstruction for condition a) to be fulfilled is called the (affine) monodromy and

is considered in §4. It will be shown that the monodromy, besides of being a topological

invariant, can also be determined from the affine structure of the base space On
0 alone.

Hence the adjective affine. The obstruction to b) is called the Duistermaat-Chern class.

The obstruction to c) is called the Lagrangian Duistermaat-Chern class. They will be

considered in §5
Even without knowing explicitly what are the affine monodromy and Duistermaat-

Chern class, we can write down the following natural theorems (due to Duistermaat [9]

and Dazord and Delzant [7]):

Theorem 3.1 If the topological structure of On
0 is known, then π : (M2n

0 , ω) → On
0

is classified topologically (as a topological fibration) by the affine monodromy and the

Duistermaat-Chern class.

Theorem 3.2 If the affine structure of On
0 is known, then π : (M2n

0 , ω)→ On
0 is classified

geometrically (with the symplectic form) by the Lagrangian Duistermaat-Chern class.

If On
0 is 2-connected, then there is no room for the monodromy and Lagrangian

Duistermaat-Chern class, and one obtains the following result due to Nekhoroshev [16]:

Corollary 3.3 If π1(On
0 ) = π2(On

0 ) = 0, then there is a unique Lagrangian torus fibration

over On
0 , and it admits global action-angle coordinates.

4 Affine monodromy

Affine monodromy was first defined by Duistermaat [9]. As in §3, consider a Lagrangian

torus fibration π : (M0, ω)
Tn→ On

0 . One has an associated vector bundle

E
H1(Tn,k)−→ O0

where k can be Z or R (or something else). On this vector bundle there is a unique

natural locally flat connection, called the Gauss-Manin connection (e.g., [2]). Indeed,

each (first) homology class in a fiber of π : M0
Tn→ On

0 can be moved in a unique way

homologically to a homology class in any nearby fiber, and that moving defines the flat

connection. The monodromy is defined as the holonomy of this connection, and is an

element of Hom(π1(O0), GL(n,Z)).

From the definition it is clear that the monodromy is a topological invariant. We will

now show that it is also an invariant of O0 as an integral affine manifold. Hence the

adjective affine.
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Indeed, the vector bundle ER
H1(Tn,R)−→ O0 can be identified with the bundle of constant

vector fields on the fibers of M0
Tn→ On

0 . If X is a constant vector field on T ny , y ∈ O0, then

α(X) = −ω(X, .) can be identified with an element of T ∗yO0, and the map X 7→ α(X)

is an isomorphism. Hence ER
H1(Tn,R)−→ O0 is isomorphic to the cotangent bundle T ∗O0 of

O0, and we have a natural flat connection on it. On the other hand, since O0 is an affine

manifold, the tangent bundle TO0 has a natural flat connection (defined by the local

trivializations given by the local affine charts). The dual connection on the cotangent

bundle T ∗O0 is therefore also flat. This connection should coincide with the connection

defined before, because of naturality. (The proof is left to the reader).

Let us notice also that EZ
H1(Tn,Z)−→ O0 is a discrete subbundle of ER

H1(Tn,R)−→ O0.

Under the natural isomorphism between ER and T ∗O0, EZ maps to a subbundle of T ∗O0

(consisting of “integral” covectors). We will denote this subbundle, or the discrete sheaf

associated to it, by R. It will be used in §5.

It is an interesting problem to find integrable systems with nontrivial affine mon-

odromy. First examples, namely the spherical pendulum and the Lagrange top, were

found by Cushman and others, cf. [9, 6]. It is now known that the existence of nontrivial

affine monodromy in integrable systems is mainly due to the existence of focus-focus sin-

gularities [18, 19, 20]. Using this result, one can add to the above list of examples many

other systems: Garnier systems, Euler equations in so(4), Clebsch case of the motion of

a rigid body in ideal incompressible fluid, etc.

5 Duistermaat-Chern class

The Duistermaat-Chern class is defined as the obstruction for the torus fibration M2n
0 →

On
0 to admit a global section. This fibration is locally trivial. Let (Ui) be a trivializing

open covering of On
0 . Over each Ui there is a section, denoted by si. The difference

between two local sections, si and sj, over Ui ∩ Uj, can be written as

µij = sj − si ∈ C∞(ER/EZ)(Ui ∩ Uj) = C∞(T ∗O0/R)(Ui ∩ Uj)

Here C∞(.) denotes the sheaf of smooth sections. It is immediate that (µij) is a 1-cocycle,

and it defines a first cohomology class, not depending on the choice of local sections:

µDC ∈ H1(O0, C
∞(T ∗O0/R))

µDC is called the Duistermaat-Chern class.

One notices the short exact sequence R → C∞(T ∗O0) → C∞(T ∗O0/R) → 0, with

C∞(T ∗O0) being a fine sheaf. It follows from the associated long exact sequence that
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H1(O0, C
∞(T ∗O0/R)) is isomorphic to H2(O0,R). Thus the Duistermaat-Chern class

may be considered as a second cohomology element. In case the monodromy is trivial, i.e.

M2n
0 → On

0 is a principal bundle, the Duistermaat-Chern class coincides with the usual

Chern class (cf. [7]).

If one requires local sections si to be Lagrangian, then one has that

µij ∈ Z(T ∗O0/R)(Ui ∩ Uj)

(Z means closed 1-forms), and it will define the Lagrangian Duistermaat-Chern class:

µLDC ∈ H1(O0, Z(T ∗O0/R))

From the short exact sequence R → Z(T ∗O0) → Z(T ∗O0/R) → 0 follows the long

exact sequence

· · · → H1(O0, Z(T ∗O0/R))
i→ H2(O0,R)

d̂→ H2(O0, Z(T ∗O0)) = H3(O0,R)→ · · ·

Under the maps i and d̂ we have

µLDC
i7→ µDC

d̂7→ 0

Thus, if the integral affine manifold O0 is given, then any element of H1(O0, Z(T ∗O0/R))

will be the Lagrangian Duistermaat-Chern class of some torus Lagrangian fibration over

O0, and the necessary and sufficient condition for an element µ in H2(O0,R) to be the

Duistermaat-Chern class of some Lagrangian torus fibration is that d̂µ = 0 (cf. [7]).

There is no known example of a physically meaningful integrable system with nontrivial

Duistermaat-Chern class. However, it is not difficult to construct artificial examples: Take

O0 to be the standard flat torus T2 = R
2/Z2. Then H1(O0, Z(T ∗O0/R)) = H2(O0,R) =

Z
2, and we have a discrete 2-dimensional family of different integrable systems with the

orbit space T2. The corresponding symplectic manifolds are closed 4-dimensional, and

many of these manifolds have dimH1 = 3, hence are non-Kähler.

6 Nondegenerate singularities

A point x ∈ (M2n, ω) is called singular with respect to the moment map F : (M2n, ω)→
R
n if rank dF(x) < n. x is a fixed point of the Poisson Rn-action generated by F iff

dF(x) = 0. A fixed point x is called nondegenerate if the linear parts of the Hamiltonian

vector fields XF1 , ..., XFn of the components of the moment map span a Cartan subalgebra

of the algebra of all Hamiltonian linear vector fields (which is isomorphic to sp(2n,R)).
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In general, a singular point of the moment map is called nondegenerate, if it becomes a

nondegenerate fixed point after a local Marsden-Weinstein reduction.

Let y ∈ Σ be a singular value of the moment map F : (M2n, ω) → R
n, and denote

by N = F−1(y) a connected component of the singular level set corresponding to y. We

will assume that N is a nondegenerate singular leaf, that is each of its points is either

nonsingular or nondegenerate singular. The number k = maxx∈N(n−rank dF(x)) is called

the codimension of N . Put r = n− k. Under an additional mild condition of topological

stability, which is satisfied for all known systems and is conjectured to be satisfied for all

systems with analytic coefficients, we have the following classification theorem (see [19]

for details).

Theorem 6.1 There is a neighborhood (U(N), ω,L) of N , which is saturated with respect

to the singular Lagrangian foliation (denoted by L) given by the moment map, and a

natural (unique minimal) normal finite covering (U(N), ω,L) of (U(N), ω,L) such that:

a) There is a free foliation-preserving Hamiltonian Tr-action in (U(N), ω,L).

b) (U(N), ω,L) = (Dn×T n×P 2k,
∑r

1 dpi∧dqi+ω0, T
n
(pi)
×L0,(pi)), where pi are coordinates

on Dr, qi mod 1 are periodic coordinates on T r, T r(pi) denotes the trivial Lagrangian

foliation Dn × T n → Dr, ω0 a symplectic form on P 2k, and L0,(pi) a singular Lagrangian

foliation on (P 2k, ω0) corresponding to a moment map which depends smoothly on the

parameter (pi).

c) (P 2k,L0,(pi)) as a topological singular foliation does not depend on the parameter (pi),

and it is decomposed diffeomorphically into a direct product

(P 2k,L0,(pi))
diff
= (P1,L1)× · · · × (Ps,Ls)

where (Pi,Li) are primitive nondegenerate singular Lagrangian foliations (dimPi = 2 if

it is an elliptic or hyperbolic singularity, dimPi = 4 if it is a focus-focus singularity)

In a sense, the above result completes the work done over a long period by several

authors, including A.V. Bolsinov, J.-P. Dufour, L.H. Eliasson, A.T. Fomenko, L. Lerman,

P. Molino, H. Rüssmann, Ya. Umanskii, J. Vey, about the structure of nondegenerate

singularities of integrable systems. See [19] for a history of the question. Using spectral

theory, N. Ercolani, M.G. Forest, D.W. McLaughlin and others proved some similar but

weaker statements about singularities of infinite-dimensional integrable (soliton) systems

(see e.g. [14] and references therein).

An integrable Hamiltonian system is called strongly nondegenerate if all singular leaves

of the associated Lagrangian foliation are nondegenerate and topologically stable. In the

rest of this paper we will consider only strongly nondegenerate integrable systems, and

for brevity we will omit the word “strong”.
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It follows from Theorem 6.1 that for a nondegenerate integrable Hamiltonian system

on a symplectic manifold (M2n, ω), the orbit space, that is the space of leaves of the

associated singular Lagrangian foliation (given by the connected components of the level

set of a moment map), with the induced topology, is a Hausdorff space. Moreover, it has

the structure of a stratified integral affine manifold, each stratum being an integral affine

manifold (cf. [19, 20]).

7 Global monodromy

Let O denotes the orbit space of a nondegenerate integrable Hamiltonian system on a

symplectic manifold (M2n, ω), and π : M2n → O the natural projection. For each open

subset U ⊂ O, we associate to it an Abelian group, namely H1(π−1(U),Z). Such an

assignment gives a presheaf of Abelian groups over O. Consider the associated sheaf and

call it the monodromy sheaf of the system. The stalk of this sheaf at each point y ∈ O is

H1(π−1(y),Z).

For example, if O = O0 does not contain singular points, then the monodromy sheaf

is nothing but the dual of the sheaf R defined in §3. In this case, the structure of this

sheaf is determined by the affine monodromy.

By analogy, we will call the structure of the monodromy sheaf the global monodromy

of the system. Thus, two integrable systems with the same orbit space O have the same

global monodromy iff their monodromy sheaves are isomorphic.

The above definition of global monodromy is rather abstract. However, in principle,

using Abelian group theory (things like amalgrams), one can characterize the global mon-

odromy in terms of invariants of combinatorial type. For example, if O is diffeomorphic

to a graph times an interval, then the global monodromy is equivalent to the set of ra-

tional and integral marks in the so called Fomenko-Zieschang invariant, which (according

to a theorem by Bolsinov-Fomenko-Matveev [4]) classifies topologically nondegenerate in-

tegrable Hamiltonian systems with two degrees of freedom restricted to a nondegenerate

isoenergy 3-manifold.

It is still an open problem how to give a good characterization of global monodromy,

even for the case O is an arbitrary 2-dimensional stratified integral affine manifold.

8 Singular Chern class

Recall that the Duistermaat-Chern class is defined as the obstruction for a regular La-

grangian torus fibration M0 → O0 to admit a global section. Since in general we have a
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singular Lagrangian foliation M → O, our idea is to define the singular Chern class as

the obstruction for this singular foliation to admit a singular global section.

First we have to describe what is a local singular section. The formal definition (cf.

[20]) is rather long. Here we will only outline some main points.

a) A singular local section of π : M2n → On over a conected open subset U ⊂ O is a

multivalued map φ from U to M such that π ◦ φ = id.

b) The image of φ is a stratified space of dimension n.

c) If the rank of y ∈ U is r (r = n if y is a regular point), then φ(y) is a (n − r)-

dimensional submanifold of Ny = π−1(y), which is transversal to a Tr torus action given

by Theorem 6.1.

d) To each y ∈ U there is associated a finite group Gy ⊂ Tr such that φ(y) is invariant

under the action of Gy.

Then we say that φ is a G-equivariant singular section over U of the singular La-

grangian foliation M → O, where G = {Gx} is a family of finite groups satisfying some

compatibility condition. The reason we need G is that the Hamiltonian torus actions in

singular leaves are generally not free but only locally free.

For example, incase of one degree of freedom, there always exists a global singular

section, with G being trivial.

Analogously, one can define local Lagrangian G-equivariant singular sections, by re-

quiring the image of φ to be (singular) Lagrangian.

Like in §5, we can form the difference between two local singular sections (assuming

that G is fixed). It will be an element

µij = φj − φi ∈ FG(Ui ∩ Uj)

of some Abelian group FG(Ui ∩ Uj) which acts freely and transitively on the set of all

G-equivariant singular sections over Ui ∩ Uj.
In this way, we define a sheaf FG and a cohomology element

µGsC ∈ H1(O,FG)

We can replace O by any open subset O′ ⊂ O and get

µGsC(O′) ∈ H1(O′,FG)

For each O′ there is a unique canonical choice of G with some minimality property. If we

take this minimal G, then we can omit it and write

µsC(O′) ∈ H1(O′,FO′)
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This element is called the singular Chern class over O′ of the singular Lagrangian torus

foliation M → O.

Analogously, we can define the Lagrangian singuar Chern class over O′:

µLsC ∈ H1(O′,ZO′)

(with some appropriate sheaf ZO′).
In case O is regular, the singular Chern class coincides with the Duistermaat-Chern

class. In case O contains only elliptic singularities, it coincides with a generalization by

Boucetta and Molino [5] of the Duistermaat-Chern class.

One should notice that, in general, unlike the case of Duistermaat-Chern class, there

are no short exact sequences as presented in §5. (There are longer exact sequences).This

circumstance makes the study of singular Chern classes much more difficult than the

Duistermaat-Chern class.

It is easy to construct artificial integrbale systems with singularities and non-trivial

singular Chern class. A possible way to do it is via integrable surgery (cf. [20]). For

example, one can “twist” the ruled symplectic 4-manifolds (cf. [13]) to obtain non-Kähler

closed symplectic 4-manifolds admitting nondegenerate integrable Hamiltonian systems.

9 Concluding remarks

Above we have outlined a classification theory of nondegenerate integrable hamiltonian

systems. There are 3 main ingredients in the theory: singularities, global monodromy

and singular Chern classes. Much work is still required to get a better feeling of global

monodromy and singular Chern class, and to explore their relations with the ambient

symplectic manifolds. On the other hand, it is interesting to develope methods to compute

our new toplogical invariants for well-known integrable systems. It is also desirable to

extend our theory to infinite-dimensional case.

One may wish to classify integrable systems ont only topologically, but also geometri-

cally, or up to orbital equivalence. Recently, an orbital classification for systems with two

degrees of freedom was obtained by Bolsinov and Fomenko [3]. Some geometric invariants

(which allow to classify also the symplectic form) in the simplest cases were obtained by

Dufour, Molino, Toulet [8] and the author.
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