ON COMMUTATOR SUBGROUPS OF ARTIN GROUPS

S.Yu. Orevkov

E. A. Gorin and V. Ya. Lin $[1 ; \S 2]$ found a finite presentation for the commutator subgroups of braid groups. Using partially computations from [1], V. M. Zinde [2] found presentations (not all of them are finite) for the commutator subgroups of other Artin groups (Artin-Tits groups of spherical type according to the modern terminology). Following [2], we denote Artin groups of types A_{n}, B_{n}, \ldots just by A_{n}, B_{n}, \ldots and we denote the commutator subgroup of G by G^{\prime}. In Sect. 1, we give a finite presentation for H_{3}^{\prime} which is missing in [2]. It is obtained as a partial case of a finite presentation (see Proposition 1) for $\operatorname{ker}(e: G \rightarrow \mathbb{Z})$ where G is a homogeneous Garside group (see [3, 4]) and e is the homomorphism that takes each atom to 1. In Sect. 2, we correct two mistakes in [2] for groups of series B and we give sketches of proofs missing in [2].

After corrections and completions to [2] done in this article, the groups in question that are (are not) finitely generated/presented are as follows. The groups $I_{2}(2 k)^{\prime}, k \geq 2$ (including B_{2}^{\prime} and G_{2}^{\prime}) are free groups on a countable set of generators; the groups B_{3}^{\prime} and F_{4}^{\prime} are finitely generated but the question of their finite presentedness is still open; the commutator subgroups of other irreducible Artin groups $\left(B_{n}^{\prime}\right.$ for $\left.n \geq 4, I_{2}(2 k+1)^{\prime}, A_{n}^{\prime}, D_{n}^{\prime}, E_{n}^{\prime}, H_{n}^{\prime}\right)$ are finitely presented.

In Sect. 3, we discuss when epimorphisms of commutator subgroups of Artin groups onto nontrivial free groups exist. The groups $I_{2}(p)^{\prime}$ for $p \geq 3$ (including A_{2}^{\prime}, $B_{2}^{\prime}, H_{2}^{\prime}$, and G_{2}^{\prime}) are free themselves. Each of the groups $A_{3}^{\prime}, B_{3}^{\prime}, B_{4}^{\prime}, D_{4}^{\prime}$ can be mapped onto a free group with two generators; for other irreducible Artin groups G, we have $G^{\prime \prime}=G^{\prime}$, i. e., G^{\prime} cannot be mapped onto any non-trivial abelian group, and hence onto any non-trivial free group.

1. Let G be a Garside group of finite type, i. e., the group of fractions of a Garside monoid P with a Garside element Δ and a (finite) set of atoms A (see the definitions in [3]). Then $\tau(P)=P$ and $\tau(A)=A$ where $\tau(x)=\Delta^{-1} x \Delta$. We suppose that there exists a homomorphism $e: G \rightarrow \mathbb{Z}$ such that $e(A)=\{1\}-$ in this case G is called a homogeneous Garside group (e. g., Artin groups have this property). For $p \in P$, we denote $e(p)$ by $|p|$. Let $K=\operatorname{ker} e$. If G is an Artin group such that $G / G^{\prime}=\mathbb{Z}$ (i.e. $A_{n}, D_{n}, E_{n}, H_{n}$, or $I_{2}(2 k+1)$), then $K=G^{\prime}$.

The fact that K is finitely presented is obvious. Indeed, let $m=|\Delta|$. Then K is generated by $s_{p}=\Delta^{-1} p$ where $p \in P,|p|=m$, subject to relations $s_{\Delta}=1$ and $s_{p} s_{q}=s_{p^{\prime}} s_{q^{\prime}}$ for $p \tau(q)=p^{\prime} \tau\left(q^{\prime}\right)$. This presentation is huge. For example, for $G=H_{3}$ it has more than a thousand generators and more than a million relations. However, combining Garside approach with Reidemeister-Schreier method, one can obtain a more compact presentation. Let $\left\langle a, b, \ldots \mid R=R^{\prime}, S=S^{\prime}, \ldots\right\rangle$ be a presentation for P such that $\{a, b, \ldots\}=A$ (then, the homogeneity implies
$|R|=\left|R^{\prime}\right|,|S|=\left|S^{\prime}\right|, \ldots$). We choose $\left\{a^{n}\right\}_{n \in \mathbb{Z}}$ as Schreier representatives (everything below can be easily adapted for any other choice). Then K is generated by $\left\{a_{k}, b_{k}, \ldots\right\}_{k \in \mathbb{Z}}$ subject to relations $a_{k}=1, R_{k}=R_{k}^{\prime}, S_{k}=S_{k}^{\prime}, \ldots, k \in \mathbb{Z}$, where, for a word $T=u v w \ldots$, we denote the word $u_{k} v_{k+1} w_{k+2} \ldots$ by T_{k} (this is the Reidemeister-Schreier presentation).

Preposition 1. The group K is generated by $\left\{a_{k}, b_{k}, \ldots\right\}_{0 \leq k \leq m+l-2}$ where $l=$ $\max (|R|,|S|, \ldots)$ subject to relations $a_{k}=1(0 \leq k \leq m+l-2), U_{k}=U_{k}^{\prime}$ $(0 \leq k \leq m+l-|U|-1, U=R, S, \ldots)$.

Proof. We fix a positive word representing Δ (we shall denote it also by Δ). Since Δ is a Garside element, we may assume that the chosen word is of the form Γa. We add new relations $\Re_{k}: \Delta_{k} \tau(x)_{k+m}=x_{k} \Delta_{k+1}(x=a, b, \ldots ; k \in \mathbb{Z})$ to the ReidemeisterSchreier relations. Using them, we can reduce any relation $U_{k+m}=U_{k+m}^{\prime}, U \in$ $\{R, S, \ldots\}$, to relations $W_{j}=W_{j}^{\prime}$ where $W \in\{R, S, \ldots\}$ and $k \leq j \leq k+|U|-|W|$. Indeed, by replacing each letter x_{j+m} in U_{k+m} and in U_{k+m}^{\prime} by $\left(\Delta_{j}\right)^{-1} \tau^{-1}(x)_{j} \Delta_{j+1}$ using \mathfrak{R}_{j}, we obtain $\left(\Delta_{k}\right)^{-1} V_{k} \Delta_{k+|U|}=\left(\Delta_{k}\right)^{-1} V_{k}^{\prime} \Delta_{k+|U|}$, with $\tau(V)=U$ and $\tau\left(V^{\prime}\right)=U^{\prime}$. Since the identity $V=V^{\prime}$ holds in P, the word V^{\prime} is obtained from V by subword replacements $W \leftrightarrow W^{\prime}, W \in\{R, S, \ldots\}$, hence V_{k}^{\prime} is obtained from V_{k} by the replacements $W_{j} \leftrightarrow W_{j}^{\prime}$ with $k \leq j \leq k+|U|-|W|$. Proceeding in this manner, we exclude all the relations $U_{k}=U_{k}^{\prime}$ with indices exceeding the required limits. Using the relation $a_{k+m}=1$, we replace all \mathfrak{R}_{k} by the relation $\Delta_{k} \tau(x)_{k+m}=x_{k} \Gamma_{k+1}$ which express $\tau(x)_{k+m}$ via generators with smaller indices.

Similarly, if we choose a word for Δ of the form $a \Gamma$, then we exclude all the generators and relations with negative indices.

In particular, H_{3}^{\prime} is generated by $a=\sigma_{1} \sigma_{3}^{-1}, p_{k}=\sigma_{3}^{k} \sigma_{2} \sigma_{3}^{-(k+1)}(0 \leq k \leq 18)$ subject to relations $p_{k} p_{k+2} p_{k+4}=p_{k+1} p_{k+3}(0 \leq k \leq 14), p_{k} a p_{k+2}=a p_{k+1} a$ ($0 \leq k \leq 16$).
2. The group B_{3}^{\prime} (it is erroneously claimed in [2] that this group is free). Choosing $\left\{\sigma_{1}^{k} \sigma_{3}^{j}\right\}_{j, k \in \mathbb{Z}}$ as Schreier representatives, the method of Reidemeister-Schreier yields the generators $p_{j, k}=\sigma_{3}^{j} \sigma_{1}^{k} \sigma_{2} \sigma_{1}^{-(k+1)} \sigma_{3}^{-j}$ and the relations (1) $p_{j, k} p_{j, k+2}=p_{j, k+1}$ and (2) $p_{j, k} p_{j+1, k+1}=p_{j+1, k} p_{j+2, k+1}(j, k \in \mathbb{Z})$. We introduce new relations (3) $\left[p_{j, k}, p_{j+1, k}^{-1}\right]=\left[p_{j, k+1}, p_{j+1, k+1}^{-1}\right]$. Assuming that $(1)_{j, k-2},(1)_{j, k-1},(1)_{j+1, k}$, $(1)_{j+1, k+1}$, and (2) hold true, it is easy to derive the equivalencies $(1)_{j-1, k-2} \Leftrightarrow$ $(3)_{j, k} \Leftrightarrow(1)_{j+2, k+1}$. Hence B_{3}^{\prime} is generated by $p_{j, k}$ subject to relations $(1)_{j=0,1}$, (2) and (3). Using (1) $)_{j=0,1}$ and (2), we can express all generators via $p_{k}=p_{0, k}$, $q_{k}=p_{1, k}(k=0,1)$ and then only the generators $p_{0}, p_{1}, q_{0}, q_{1}$ and the relations obtained from (3) for all $j, k \in \mathbb{Z}$ remain.

The groups $B_{n}^{\prime}, n \geq 5$. It seems that the following relations are forgotten in [2] by misprint: $(*) p_{0} x=x p_{1}, p_{1} x=x p_{0}^{-1} p_{1}$ for $x=q_{4}, \ldots, q_{n-2}, t_{0}, t_{1}$. If we add them, then the fact that the obtained presentation defines B_{n}^{\prime} can be proved as follows. By Tietze transformations we replace d and the relations containing it by t_{2} and the relations $t_{0} t_{1}=t_{1} t_{2}, t_{2} q_{n-2} t_{2}=q_{n-2} t_{2} q_{n-2}$. Applying [4; Lemma 2.9], we may add generators $t_{i}(i \in \mathbb{Z} \backslash\{0,1,2\})$ and relations $t_{t-1} t_{i}=t_{i} t_{i+1}, t_{i} q_{n-2} t_{i}=q_{n-2} t_{i} q_{n-2}$, $t_{i} q_{j}=q_{j} t_{i}$, and $(*)$ for $x=t_{i}(i \in \mathbb{Z}, 3 \leq j \leq n-2)$. The obtained presentation can be also obtained from the Reidemeister-Schreier presentation for B_{n}^{\prime} (with respect to the Schreier representative system $\left\{\sigma_{1}^{k} \sigma_{n}^{j}\right\}$) by the method described in $[1 ; \S 2]$.

The group B_{4}^{\prime}. The proof of the fact that B_{4}^{\prime} is presented as written in [2] is almost the same as for $B_{n}^{\prime}, n \geq 5$. The only difference is that first we apply Lemma 2.9 from [4] (modified in a suitable way), and then we apply the transformation from [1].

The group D_{4}^{\prime}. Under the choice of $\left\{\sigma_{3}^{k}\right\}$ as the system of Schreier representatives (we assume that σ_{2} corresponds to the central vertex of the Coxeter graph), the method of Gorin-Lin [1; §2] yields a presentation with generators $p_{0}=\sigma_{2} \sigma_{3}^{-1}$, $p_{1}=\sigma_{3} \sigma_{2} \sigma_{3}^{-2}, q_{i}=\sigma_{i} \sigma_{3}^{-1}, d_{i}=\sigma_{2} \sigma_{i} \sigma_{3}^{-1} \sigma_{2}^{-1}(i=1,4)$ and relations $q_{1} q_{4}=q_{4} q_{1}$ and
$p_{0} q_{i} p_{0}^{-1}=d_{i}, p_{0} d_{i} p_{0}^{-1}=d_{i}^{2} q_{i}^{-1} d_{i}, p_{1} q_{i} p_{1}^{-1}=q_{i}^{-1} d_{i}, p_{1} d_{i} p_{1}^{-1}=\left(q_{i}^{-1} d_{i}\right)^{3} q_{i}^{-2} d_{i} \quad(i=1,4)$.
These generators and those from [2] are expressed in terms of each other as follows: $a_{0}=q_{1}, a_{1}=d_{1}, b_{0}=q_{4}, b_{1}=d_{4}, c_{0}=p_{0}^{-1}, c_{1}=p_{0} p_{1}^{-1} p_{0}^{-1}, p_{0}=c_{0}^{-1}, p_{1}=$ $c_{0} c_{1}^{-1} c_{0}^{-1}$. Using these formulas, it is easy to check the equivalence of the two presentations.

Other presentations in [2] are obtained either directly by Reidemeister-Schreier method, or by an easy modification of the presentation for A_{n}^{\prime} from [1].
Remark. After the identification $a_{0}=b_{0}, a_{1}=b_{1}$ (which corresponds to the standard epimorphism $D_{4} \rightarrow A_{3}$), the presentation for D_{4}^{\prime} found in [2] yields the following presentation for A_{3}^{\prime}. Generators: $a_{0}=\sigma_{3} \sigma_{1}^{-1}, a_{1}=\sigma_{2} \sigma_{3} \sigma_{1}^{-1} \sigma_{2}, c_{0}=\sigma_{1} \sigma_{2}^{-1}$, $c_{1}=\sigma_{2} \sigma_{1} \sigma_{2}^{-2}$. Relations: $c_{0}^{-1} a_{0} c_{0}=a_{1}, \quad c_{0}^{-1} a_{1} c_{0}=a_{1}^{2} a_{0}^{-1} a_{1}, \quad c_{1}^{-1} a_{0} c_{1}=a_{0} a_{1}^{-1}$, $c_{1}^{-1} a_{1} c_{1}=a_{1} a_{0}^{-1} a_{1}$. Perhaps, for certain problems, this presentation would be better than Gorin-Lin's one (anyway, it is shorter).
3. According to [1], the group A_{3}^{\prime} has a normal series with free quotients. Namely, let T be the subgroup of A_{3}^{\prime} generated by $\sigma_{3} \sigma_{1}^{-1}$ and $\sigma_{2} \sigma_{3} \sigma_{1}^{-1} \sigma_{2}^{-1}$. Then T is freely generated by these two elements and the quotient group A_{3}^{\prime} / T is a free group with two generators $\sigma_{2} \sigma_{1}^{-1} T$ and $\sigma_{1} \sigma_{2} \sigma_{1}^{-2} T$.

It is claimed in [2; Theorem 2] that the groups B_{4}^{\prime} and D_{4}^{\prime} have normal series with free quotients. V. A. Zinde communicated to me that it is a mistake. She meant only that there exist epimorphisms onto a non-trivial free group. An epimorphism of B_{4}^{\prime} and D_{4}^{\prime} onto a free group with two generators can be obtained by adding the relations $a_{0}=a_{1}=b_{0}=b_{1}=1$ to the presentation from [2].

The group B_{3}^{\prime} also admits an epimorphism onto a free group with two generators. Indeed, by adding the relations $p_{j, k}=p_{j+1, k}$ to the presentation from Sect. 2, we obtain the group freely generated by $p_{0}=q_{0}$ and $p_{1}=q_{1}$.

It can be easily seen that the kernels of the above epimorphisms of $B_{3}^{\prime}, B_{4}^{\prime}$, and D_{4}^{\prime} onto the free group are not free.

References

1. E. A. Gorin, V. Ya. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR-Sbornik 7 (1969), 569-596.
2. V. M. Zinde, Commutants of Artin groups, Uspekhi Mat. Nauk 30 (1975), no. 5, 207-208. (Russian)
3. P. Dehornoy, Groupes de Garside, Ann. Sci. Ec. Norm. Sup. 35 (2002), 267-306.
4. R. Corran, M. Picantin, A new Garside structure for braid groups of type (e,e,r), J. London Math. Soc. (to appear); arxiv:0901.0645v2.

Steklov Mathematical Institute, Gubkina 8, 119991 Moscow, Russia
IMT, Université Paul Sabatier, 119 route de Narbonne, 31062 Toulouse, France

