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E. A. Gorin and V. Ya. Lin [1; §2] found a finite presentation for the commutator
subgroups of braid groups. Using partially computations from [1], V. M. Zinde [2]
found presentations (not all of them are finite) for the commutator subgroups of
other Artin groups (Artin-Tits groups of spherical type according to the modern
terminology). Following [2], we denote Artin groups of types An, Bn, . . . just by
An, Bn, . . . and we denote the commutator subgroup of G by G′. In Sect. 1, we
give a finite presentation for H ′

3 which is missing in [2]. It is obtained as a partial
case of a finite presentation (see Proposition 1) for ker(e : G → Z) where G is a
homogeneous Garside group (see [3, 4]) and e is the homomorphism that takes each
atom to 1. In Sect. 2, we correct two mistakes in [2] for groups of series B and we
give sketches of proofs missing in [2].

After corrections and completions to [2] done in this article, the groups in ques-
tion that are (are not) finitely generated/presented are as follows. The groups
I2(2k)′, k ≥ 2 (including B′

2 and G′
2) are free groups on a countable set of gener-

ators; the groups B′
3 and F ′

4 are finitely generated but the question of their finite
presentedness is still open; the commutator subgroups of other irreducible Artin
groups (B′

n for n ≥ 4, I2(2k + 1)′, A′
n, D′

n, E′
n, H ′

n) are finitely presented.
In Sect. 3, we discuss when epimorphisms of commutator subgroups of Artin

groups onto nontrivial free groups exist. The groups I2(p)′ for p ≥ 3 (including A′
2,

B′
2, H ′

2, and G′
2) are free themselves. Each of the groups A′

3, B′
3, B′

4, D′
4 can be

mapped onto a free group with two generators; for other irreducible Artin groups
G, we have G′′ = G′, i. e., G′ cannot be mapped onto any non-trivial abelian group,
and hence onto any non-trivial free group.

1. Let G be a Garside group of finite type, i. e., the group of fractions of a
Garside monoid P with a Garside element ∆ and a (finite) set of atoms A (see
the definitions in [3]). Then τ(P ) = P and τ(A) = A where τ(x) = ∆−1x∆. We
suppose that there exists a homomorphism e : G → Z such that e(A) = {1} — in
this case G is called a homogeneous Garside group (e. g., Artin groups have this
property). For p ∈ P , we denote e(p) by |p|. Let K = ker e. If G is an Artin group
such that G/G′ = Z (i.e. An, Dn, En, Hn, or I2(2k + 1)), then K = G′.

The fact that K is finitely presented is obvious. Indeed, let m = |∆|. Then
K is generated by sp = ∆−1p where p ∈ P , |p| = m, subject to relations s∆ = 1
and spsq = sp′sq′ for pτ(q) = p′τ(q′). This presentation is huge. For example,
for G = H3 it has more than a thousand generators and more than a million rela-
tions. However, combining Garside approach with Reidemeister-Schreier method,
one can obtain a more compact presentation. Let 〈a, b, . . . |R = R′, S = S′, . . . 〉
be a presentation for P such that {a, b, . . .} = A (then, the homogeneity implies
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|R| = |R′|, |S| = |S′|, . . . ). We choose {an}n∈Z as Schreier representatives (every-
thing below can be easily adapted for any other choice). Then K is generated by
{ak, bk, . . .}k∈Z subject to relations ak = 1, Rk = R′

k, Sk = S′
k, . . . , k ∈ Z, where,

for a word T = uvw . . . , we denote the word ukvk+1wk+2 . . . by Tk (this is the
Reidemeister-Schreier presentation).

Preposition 1. The group K is generated by {ak, bk, . . .}0≤k≤m+l−2 where l =
max(|R|, |S|, . . .) subject to relations ak = 1 (0 ≤ k ≤ m + l − 2), Uk = U ′

k

(0 ≤ k ≤ m + l − |U | − 1, U = R, S, . . . ).

Proof. We fix a positive word representing ∆ (we shall denote it also by ∆). Since ∆
is a Garside element, we may assume that the chosen word is of the form Γa. We add
new relations Rk : ∆kτ(x)k+m = xk∆k+1 (x = a, b, . . . ; k ∈ Z) to the Reidemeister-
Schreier relations. Using them, we can reduce any relation Uk+m = U ′

k+m, U ∈
{R, S, . . .}, to relations Wj = W ′

j where W ∈ {R, S, . . .} and k ≤ j ≤ k+ |U |−|W |.

Indeed, by replacing each letter xj+m in Uk+m and in U ′
k+m by (∆j)

−1τ−1(x)j∆j+1

using Rj , we obtain (∆k)−1Vk∆k+|U| = (∆k)−1V ′
k∆k+|U|, with τ(V ) = U and

τ(V ′) = U ′. Since the identity V = V ′ holds in P , the word V ′ is obtained from
V by subword replacements W ↔ W ′, W ∈ {R, S, . . .}, hence V ′

k is obtained
from Vk by the replacements Wj ↔ W ′

j with k ≤ j ≤ k + |U | − |W |. Proceeding
in this manner, we exclude all the relations Uk = U ′

k with indices exceeding the
required limits. Using the relation ak+m = 1, we replace all Rk by the relation
∆kτ(x)k+m = xkΓk+1 which express τ(x)k+m via generators with smaller indices.

Similarly, if we choose a word for ∆ of the form aΓ, then we exclude all the
generators and relations with negative indices. �

In particular, H ′
3 is generated by a = σ1σ

−1
3 , pk = σk

3σ2σ
−(k+1)
3 (0 ≤ k ≤ 18)

subject to relations pkpk+2pk+4 = pk+1pk+3 (0 ≤ k ≤ 14), pkapk+2 = apk+1a
(0 ≤ k ≤ 16).

2. The group B′
3 (it is erroneously claimed in [2] that this group is free). Choosing

{σk
1σj

3}j,k∈Z as Schreier representatives, the method of Reidemeister-Schreier yields

the generators pj,k = σj
3σ

k
1σ2σ

−(k+1)
1 σ−j

3 and the relations (1) pj,kpj,k+2 = pj,k+1

and (2) pj,kpj+1,k+1 = pj+1,kpj+2,k+1 (j, k ∈ Z). We introduce new relations

(3) [pj,k, p−1
j+1,k] = [pj,k+1, p

−1
j+1,k+1]. Assuming that (1)j,k−2, (1)j,k−1, (1)j+1,k,

(1)j+1,k+1, and (2) hold true, it is easy to derive the equivalencies (1)j−1,k−2 ⇔
(3)j,k ⇔ (1)j+2,k+1. Hence B′

3 is generated by pj,k subject to relations (1)j=0,1,
(2) and (3). Using (1)j=0,1 and (2), we can express all generators via pk = p0,k,
qk = p1,k (k = 0, 1) and then only the generators p0, p1, q0, q1 and the relations
obtained from (3) for all j, k ∈ Z remain.

The groups B′
n, n ≥ 5. It seems that the following relations are forgotten in [2] by

misprint: (∗) p0x = xp1, p1x = xp−1
0 p1 for x = q4, . . . , qn−2, t0, t1. If we add them,

then the fact that the obtained presentation defines B′
n can be proved as follows.

By Tietze transformations we replace d and the relations containing it by t2 and the
relations t0t1 = t1t2, t2qn−2t2 = qn−2t2qn−2. Applying [4; Lemma 2.9], we may add
generators ti (i ∈ Z \ {0, 1, 2}) and relations tt−1ti = titi+1, tiqn−2ti = qn−2tiqn−2,
tiqj = qjti, and (∗) for x = ti (i ∈ Z, 3 ≤ j ≤ n−2). The obtained presentation can
be also obtained from the Reidemeister-Schreier presentation for B′

n (with respect
to the Schreier representative system {σk

1σj
n}) by the method described in [1; §2].
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The group B′
4. The proof of the fact that B′

4 is presented as written in [2] is
almost the same as for B′

n, n ≥ 5. The only difference is that first we apply Lemma
2.9 from [4] (modified in a suitable way), and then we apply the transformation
from [1].

The group D′
4. Under the choice of {σk

3} as the system of Schreier representatives
(we assume that σ2 corresponds to the central vertex of the Coxeter graph), the
method of Gorin-Lin [1; §2] yields a presentation with generators p0 = σ2σ

−1
3 ,

p1 = σ3σ2σ
−2
3 , qi = σiσ

−1
3 , di = σ2σiσ

−1
3 σ−1

2 (i = 1, 4) and relations q1q4 = q4q1

and

p0qip
−1
0 = di, p0dip

−1
0 = d2

i q
−1
i di, p1qip

−1
1 = q−1

i di, p1dip
−1
1 = (q−1

i di)
3q−2

i di (i = 1, 4).

These generators and those from [2] are expressed in terms of each other as follows:
a0 = q1, a1 = d1, b0 = q4, b1 = d4, c0 = p−1

0 , c1 = p0p
−1
1 p−1

0 , p0 = c−1
0 , p1 =

c0c
−1
1 c−1

0 . Using these formulas, it is easy to check the equivalence of the two
presentations.

Other presentations in [2] are obtained either directly by Reidemeister-Schreier
method, or by an easy modification of the presentation for A′

n from [1].

Remark. After the identification a0 = b0, a1 = b1 (which corresponds to the stan-
dard epimorphism D4 → A3), the presentation for D′

4 found in [2] yields the fol-
lowing presentation for A′

3. Generators: a0 = σ3σ
−1
1 , a1 = σ2σ3σ

−1
1 σ2, c0 = σ1σ

−1
2 ,

c1 = σ2σ1σ
−2
2 . Relations: c−1

0 a0c0 = a1, c−1
0 a1c0 = a2

1a
−1
0 a1, c−1

1 a0c1 = a0a
−1
1 ,

c−1
1 a1c1 = a1a

−1
0 a1. Perhaps, for certain problems, this presentation would be

better than Gorin-Lin’s one (anyway, it is shorter).

3. According to [1], the group A′
3 has a normal series with free quotients.

Namely, let T be the subgroup of A′
3 generated by σ3σ

−1
1 and σ2σ3σ

−1
1 σ−1

2 . Then
T is freely generated by these two elements and the quotient group A′

3/T is a free
group with two generators σ2σ

−1
1 T and σ1σ2σ

−2
1 T .

It is claimed in [2; Theorem 2] that the groups B′
4 and D′

4 have normal series with
free quotients. V. A. Zinde communicated to me that it is a mistake. She meant
only that there exist epimorphisms onto a non-trivial free group. An epimorphism
of B′

4 and D′
4 onto a free group with two generators can be obtained by adding the

relations a0 = a1 = b0 = b1 = 1 to the presentation from [2].
The group B′

3 also admits an epimorphism onto a free group with two generators.
Indeed, by adding the relations pj,k = pj+1,k to the presentation from Sect. 2, we
obtain the group freely generated by p0 = q0 and p1 = q1.

It can be easily seen that the kernels of the above epimorphisms of B′
3, B′

4, and
D′

4 onto the free group are not free.
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