ON COMMUTATOR SUBGROUPS OF ARTIN GROUPS

S.Yu. Orevkov

E. A. Gorin and V. Ya. Lin [1; §2] found a finite presentation for the commutator subgroups of braid groups. Using partially computations from [1], V. M. Zinde [2] found presentations (not all of them are finite) for the commutator subgroups of other Artin groups (Artin-Tits groups of spherical type according to the modern terminology). Following [2], we denote Artin groups of types A_n, B_n, \ldots just by A_n, B_n, \ldots and we denote the commutator subgroup of G by G'. In Sect. 1, we give a finite presentation for H'_3 which is missing in [2]. It is obtained as a partial case of a finite presentation (see Proposition 1) for ker($e: G \to \mathbb{Z}$) where G is a homogeneous Garside group (see [3, 4]) and e is the homomorphism that takes each atom to 1. In Sect. 2, we correct two mistakes in [2] for groups of series B and we give sketches of proofs missing in [2].

After corrections and completions to [2] done in this article, the groups in question that are (are not) finitely generated/presented are as follows. The groups $I_2(2k)', k \ge 2$ (including B'_2 and G'_2) are free groups on a countable set of generators; the groups B'_3 and F'_4 are finitely generated but the question of their finite presentedness is still open; the commutator subgroups of other irreducible Artin groups $(B'_n \text{ for } n \ge 4, I_2(2k+1)', A'_n, D'_n, E'_n, H'_n)$ are finitely presented.

In Sect. 3, we discuss when epimorphisms of commutator subgroups of Artin groups onto nontrivial free groups exist. The groups $I_2(p)'$ for $p \ge 3$ (including A'_2 , B'_2 , H'_2 , and G'_2) are free themselves. Each of the groups A'_3 , B'_3 , B'_4 , D'_4 can be mapped onto a free group with two generators; for other irreducible Artin groups G, we have G'' = G', i. e., G' cannot be mapped onto any non-trivial abelian group, and hence onto any non-trivial free group.

1. Let G be a Garside group of finite type, i. e., the group of fractions of a Garside monoid P with a Garside element Δ and a (finite) set of atoms A (see the definitions in [3]). Then $\tau(P) = P$ and $\tau(A) = A$ where $\tau(x) = \Delta^{-1}x\Delta$. We suppose that there exists a homomorphism $e: G \to \mathbb{Z}$ such that $e(A) = \{1\}$ — in this case G is called a *homogeneous* Garside group (e. g., Artin groups have this property). For $p \in P$, we denote e(p) by |p|. Let $K = \ker e$. If G is an Artin group such that $G/G' = \mathbb{Z}$ (i.e. A_n, D_n, E_n, H_n , or $I_2(2k+1)$), then K = G'.

The fact that K is finitely presented is obvious. Indeed, let $m = |\Delta|$. Then K is generated by $s_p = \Delta^{-1}p$ where $p \in P$, |p| = m, subject to relations $s_{\Delta} = 1$ and $s_p s_q = s_{p'} s_{q'}$ for $p\tau(q) = p'\tau(q')$. This presentation is huge. For example, for $G = H_3$ it has more than a thousand generators and more than a million relations. However, combining Garside approach with Reidemeister-Schreier method, one can obtain a more compact presentation. Let $\langle a, b, \ldots | R = R', S = S', \ldots \rangle$ be a presentation for P such that $\{a, b, \ldots\} = A$ (then, the homogeneity implies

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

|R| = |R'|, |S| = |S'|, ...). We choose $\{a^n\}_{n \in \mathbb{Z}}$ as Schreier representatives (everything below can be easily adapted for any other choice). Then K is generated by $\{a_k, b_k, ...\}_{k \in \mathbb{Z}}$ subject to relations $a_k = 1, R_k = R'_k, S_k = S'_k, ..., k \in \mathbb{Z}$, where, for a word T = uvw..., we denote the word $u_k v_{k+1} w_{k+2} ...$ by T_k (this is the Reidemeister-Schreier presentation).

Preposition 1. The group K is generated by $\{a_k, b_k, \ldots\}_{0 \le k \le m+l-2}$ where $l = \max(|R|, |S|, \ldots)$ subject to relations $a_k = 1$ $(0 \le k \le m+l-2)$, $U_k = U'_k$ $(0 \le k \le m+l-|U|-1, U=R, S, \ldots)$.

Proof. We fix a positive word representing Δ (we shall denote it also by Δ). Since Δ is a Garside element, we may assume that the chosen word is of the form Γa . We add new relations $\Re_k : \Delta_k \tau(x)_{k+m} = x_k \Delta_{k+1} \ (x = a, b, \ldots; k \in \mathbb{Z})$ to the Reidemeister-Schreier relations. Using them, we can reduce any relation $U_{k+m} = U'_{k+m}, U \in \{R, S, \ldots\}$, to relations $W_j = W'_j$ where $W \in \{R, S, \ldots\}$ and $k \leq j \leq k + |U| - |W|$. Indeed, by replacing each letter x_{j+m} in U_{k+m} and in U'_{k+m} by $(\Delta_j)^{-1}\tau^{-1}(x)_j\Delta_{j+1}$ using \Re_j , we obtain $(\Delta_k)^{-1}V_k\Delta_{k+|U|} = (\Delta_k)^{-1}V'_k\Delta_{k+|U|}$, with $\tau(V) = U$ and $\tau(V') = U'$. Since the identity V = V' holds in P, the word V' is obtained from V by subword replacements $W \leftrightarrow W', W \in \{R, S, \ldots\}$, hence V'_k is obtained from V_k by the replacements $W_j \leftrightarrow W'_j$ with $k \leq j \leq k + |U| - |W|$. Proceeding in this manner, we exclude all the relations $U_k = U'_k$ with indices exceeding the required limits. Using the relation $a_{k+m} = 1$, we replace all \Re_k by the relation $\Delta_k \tau(x)_{k+m} = x_k \Gamma_{k+1}$ which express $\tau(x)_{k+m}$ via generators with smaller indices.

Similarly, if we choose a word for Δ of the form $a\Gamma$, then we exclude all the generators and relations with negative indices. \Box

In particular, H'_3 is generated by $a = \sigma_1 \sigma_3^{-1}$, $p_k = \sigma_3^k \sigma_2 \sigma_3^{-(k+1)}$ $(0 \le k \le 18)$ subject to relations $p_k p_{k+2} p_{k+4} = p_{k+1} p_{k+3}$ $(0 \le k \le 14)$, $p_k a p_{k+2} = a p_{k+1} a$ $(0 \le k \le 16)$.

2. The group B'_3 (it is erroneously claimed in [2] that this group is free). Choosing $\{\sigma_1^k \sigma_3^j\}_{j,k \in \mathbb{Z}}$ as Schreier representatives, the method of Reidemeister-Schreier yields the generators $p_{j,k} = \sigma_3^j \sigma_1^k \sigma_2 \sigma_1^{-(k+1)} \sigma_3^{-j}$ and the relations (1) $p_{j,k} p_{j,k+2} = p_{j,k+1}$ and (2) $p_{j,k} p_{j+1,k+1} = p_{j+1,k} p_{j+2,k+1}$ ($j,k \in \mathbb{Z}$). We introduce new relations (3) $[p_{j,k}, p_{j+1,k}^{-1}] = [p_{j,k+1}, p_{j+1,k+1}^{-1}]$. Assuming that $(1)_{j,k-2}$, $(1)_{j,k-1}$, $(1)_{j+1,k,k-1}$, $(1)_{j+1,k+1}$, and (2) hold true, it is easy to derive the equivalencies $(1)_{j-1,k-2} \Leftrightarrow (3)_{j,k} \Leftrightarrow (1)_{j+2,k+1}$. Hence B'_3 is generated by $p_{j,k}$ subject to relations $(1)_{j=0,1}$, (2) and (3). Using $(1)_{j=0,1}$ and (2), we can express all generators via $p_k = p_{0,k}$, $q_k = p_{1,k}$ (k = 0, 1) and then only the generators p_0, p_1, q_0, q_1 and the relations obtained from (3) for all $j, k \in \mathbb{Z}$ remain.

The groups B'_n , $n \ge 5$. It seems that the following relations are forgotten in [2] by misprint: (*) $p_0x = xp_1$, $p_1x = xp_0^{-1}p_1$ for $x = q_4, \ldots, q_{n-2}, t_0, t_1$. If we add them, then the fact that the obtained presentation defines B'_n can be proved as follows. By Tietze transformations we replace d and the relations containing it by t_2 and the relations $t_0t_1 = t_1t_2$, $t_2q_{n-2}t_2 = q_{n-2}t_2q_{n-2}$. Applying [4; Lemma 2.9], we may add generators t_i $(i \in \mathbb{Z} \setminus \{0, 1, 2\})$ and relations $t_{t-1}t_i = t_it_{i+1}$, $t_iq_{n-2}t_i = q_{n-2}t_iq_{n-2}$, $t_iq_j = q_jt_i$, and (*) for $x = t_i$ $(i \in \mathbb{Z}, 3 \le j \le n-2)$. The obtained presentation can be also obtained from the Reidemeister-Schreier presentation for B'_n (with respect to the Schreier representative system $\{\sigma_1^k \sigma_n^j\}$) by the method described in [1; §2]. The group B'_4 . The proof of the fact that B'_4 is presented as written in [2] is almost the same as for B'_n , $n \ge 5$. The only difference is that first we apply Lemma 2.9 from [4] (modified in a suitable way), and then we apply the transformation from [1].

The group D'_4 . Under the choice of $\{\sigma_3^k\}$ as the system of Schreier representatives (we assume that σ_2 corresponds to the central vertex of the Coxeter graph), the method of Gorin-Lin [1; §2] yields a presentation with generators $p_0 = \sigma_2 \sigma_3^{-1}$, $p_1 = \sigma_3 \sigma_2 \sigma_3^{-2}$, $q_i = \sigma_i \sigma_3^{-1}$, $d_i = \sigma_2 \sigma_i \sigma_3^{-1} \sigma_2^{-1}$ (i = 1, 4) and relations $q_1 q_4 = q_4 q_1$ and

$$p_0q_ip_0^{-1} = d_i, \ p_0d_ip_0^{-1} = d_i^2q_i^{-1}d_i, \ p_1q_ip_1^{-1} = q_i^{-1}d_i, \ p_1d_ip_1^{-1} = (q_i^{-1}d_i)^3q_i^{-2}d_i \quad (i = 1, 4).$$

These generators and those from [2] are expressed in terms of each other as follows:
 $a_0 = q_1, \ a_1 = d_1, \ b_0 = q_4, \ b_1 = d_4, \ c_0 = p_0^{-1}, \ c_1 = p_0p_1^{-1}p_0^{-1}, \ p_0 = c_0^{-1}, \ p_1 = c_0c_1^{-1}c_0^{-1}.$ Using these formulas, it is easy to check the equivalence of the two presentations.

Other presentations in [2] are obtained either directly by Reidemeister-Schreier method, or by an easy modification of the presentation for A'_n from [1].

Remark. After the identification $a_0 = b_0$, $a_1 = b_1$ (which corresponds to the standard epimorphism $D_4 \to A_3$), the presentation for D'_4 found in [2] yields the following presentation for A'_3 . Generators: $a_0 = \sigma_3 \sigma_1^{-1}$, $a_1 = \sigma_2 \sigma_3 \sigma_1^{-1} \sigma_2$, $c_0 = \sigma_1 \sigma_2^{-1}$, $c_1 = \sigma_2 \sigma_1 \sigma_2^{-2}$. Relations: $c_0^{-1} a_0 c_0 = a_1$, $c_0^{-1} a_1 c_0 = a_1^2 a_0^{-1} a_1$, $c_1^{-1} a_0 c_1 = a_0 a_1^{-1}$, $c_1^{-1} a_1 c_1 = a_1 a_0^{-1} a_1$. Perhaps, for certain problems, this presentation would be better than Gorin-Lin's one (anyway, it is shorter).

3. According to [1], the group A'_3 has a normal series with free quotients. Namely, let T be the subgroup of A'_3 generated by $\sigma_3 \sigma_1^{-1}$ and $\sigma_2 \sigma_3 \sigma_1^{-1} \sigma_2^{-1}$. Then T is freely generated by these two elements and the quotient group A'_3/T is a free group with two generators $\sigma_2 \sigma_1^{-1} T$ and $\sigma_1 \sigma_2 \sigma_1^{-2} T$.

It is claimed in [2; Theorem 2] that the groups B'_4 and D'_4 have normal series with free quotients. V. A. Zinde communicated to me that it is a mistake. She meant only that there exist epimorphisms onto a non-trivial free group. An epimorphism of B'_4 and D'_4 onto a free group with two generators can be obtained by adding the relations $a_0 = a_1 = b_0 = b_1 = 1$ to the presentation from [2].

The group B'_3 also admits an epimorphism onto a free group with two generators. Indeed, by adding the relations $p_{j,k} = p_{j+1,k}$ to the presentation from Sect. 2, we obtain the group freely generated by $p_0 = q_0$ and $p_1 = q_1$.

It can be easily seen that the kernels of the above epimorphisms of B'_3 , B'_4 , and D'_4 onto the free group are not free.

References

- E. A. Gorin, V. Ya. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR-Sbornik 7 (1969), 569–596.
- V. M. Zinde, Commutants of Artin groups, Uspekhi Mat. Nauk 30 (1975), no. 5, 207–208. (Russian)
- 3. P. Dehornoy, Groupes de Garside, Ann. Sci. Ec. Norm. Sup. 35 (2002), 267-306.
- R. Corran, M. Picantin, A new Garside structure for braid groups of type (e, e, r), J. London Math. Soc. (to appear); arxiv:0901.0645v2.

STEKLOV MATHEMATICAL INSTITUTE, GUBKINA 8, 119991 MOSCOW, RUSSIA

IMT, Université Paul Sabatier, 119 route de Narbonne, 31062 Toulouse, France