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1. Statement of the result. Let Dn = Dn(x0, ..., xn) be the discriminant, i.e. the polyno-
mial in x0, . . . , xn, vanishing if and only if the polynomial

∑n

k=0 xktk has a multiple root.
Example: D2(a, b, c) = b2 − 4ac.

The Newton polytope ∆(f) of a polynomial f =
∑

auxu1

1 . . . xuN

N , where u = (u1, . . . , un),
is the convex hull in RN of the set {u ∈ ZN | au 6= 0}. If V ∈ RN is the affine k-plane
such that the rank of the lattice V ∩ ZN equals k, then the k-dimensional volume volk on
the plane V will be normalized so that the volume of the fundamental parallelepiped of the
lattice is equal to one.

Denote ∆(Dn) by Qn. Because of the evident homogenity and quasihomogenity of the
discriminant, Qn lies in the (n − 1)-plane

u0 + · · ·+ un = 2(n − 1), u1 + 2u2 + · · ·+ nun = n(n − 1). (1)

Theorem 1. voln−1 Qn = 2n−1nn−2/n!.

2. voln−2 ∆(D̄n) = (n + 6) 2n−3nn−5/(n − 2)! for n ≥ 3, where D̄n(y0, . . . , yn−2) is the
discriminant of tn + yn−2t

n−2 + · · · + y0.

Let A ⊂ Zd be an n-point set, PA its convex hull, dim PA = d. Following [1], denote
by CA the space of Laurent polynomials of the form

∑

a∈A xata, where t = (t1, . . . , td),
a = (a1, . . . , ad), ta = ta1

1 . . . tad

d , and let us define the discriminant DA as the polynomial in
n variables (xa)a∈A, such that the equation DA = 0 defines a hyperplane in CA, which is the
closure of the set of all polynomials f , for which the hypersurface {f = 0} has a singularity
in the torus (C \ 0)d. Respectively, the discriminant EA defines the closure of the set of
polynomials which have a degenerate restriction at least to one face of PA (see details in [1]).
Let N = n − d − 1 = dim ∆(DA) = dim ∆(EA).

Theorem 3. volN ∆(EA) >
(
∏d

k=1(k + 1)ik

)

(N − c)!/N !, where c = i0 − d − 1, and ik is
the number of points in A, which are the interior points of k-planes of PA.

Corollary. For any d there exist C0(d), C1(d) > 0, such that log volQd,m ≥ C0(d) +
C1(d)md, where Qd,m = ∆(DA) for A = {a ∈ Zd | ai ≥ 0,

∑

ai ≤ m}.

This gives a negative answer to a question of E.I. Shustin about existence of constants
B0(d), B1(d), such that log(N ! volQd,m) ≤ B0(d) + B1(d)md, where N = Cd

n+d − d − 1 =
dim Qd,m. An affirmative answer would provide an expected asymptotical upper bound for
the number of rigid isotopy types of projective real hypersurfaces of degree m as m → ∞ (of
the same order as the lower bound following from the constructions by Viro’s method).
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2. Notation. For k ∈ Z set k̄ = {1, . . . , k} (0̄ = ∅). By Sn we denote the symmetric
group: Sn = {σ : n̄ → n̄ | σ(n̄) = n̄}; by πn : Rn+1 → Rn−1 we denote the projection
(u0, . . . , un) 7→ (u1, . . . , un−1). For a finite set α, we denote its cardinality by #α, and we
set Ck

α = {β ⊂ α |#β = k} (then #Ck
α = Ck

#α is the binomial coeficient). For α ⊂ Z, let us

denote by µα : {1, . . . , #α} → α, the bijection such that µα(1) < µα(2) < . . . . The letter m
will always denote n − 1.

3. Qn as the secondary polytope. According to a result due to Gelfand-Kapranov-Zelevinski
[1], Qn is combinatorially equivalent to the m-cube (recall that m = n − 1), and its vertices
are the points {qα}α⊂m̄, where the coordinates (qα

0 , . . . , qα
n ) of qα are defined as follows. If

α = {k1, . . . , ka}, 0 = k0 < k1 < · · · < ka < ka+1 = n, k−1 = 1, ka+2 = n − 1, then

qα
k =

{

ki+1 − ki−1, k = ki ∈ α ∪ {0, n}

0, k 6∈ α ∪ {0, n}

4. Triangulation of a skew cube. Let pα = (pα
1 , . . . , pα

N ) be sets in RN , indexed by subsets
α ⊂ N̄ , such that pα

i > 0 for i ∈ α and pα
i = 0 for i 6∈ α. For a σ ∈ SN , we denote by sσ the

simplex spanned on the points pσ(k̄), k = 0, . . . , N .

Lemma 1. a). {sσ}σ∈SN
is a triangulation of some (not necessarily convex) polyhedron P ,

homeomorphic to a cube (hence, volP =
∑

vol sσ).
b). If the convex hull P ′ of the points pα is combinatorially equivalent to a cube (i.e. for

any i, all the points{pα}i∈α lye on the same (N − 1)-face of P ′), then P ′ = P .

Proof. Projecting from pN̄ , let us define P inductively as the union of the cones over the
intersections with the coordinate hyperplanes. �

Example: if P is a cube then sσ = {(x1, . . . , xN ) ∈ P | xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(N)}.

5. Recurrent relation. Let {sσ}σ∈Sm
be a triangulation of Qn from Sect. 4.

Lemma 2. volπn(sσ) =
(
∏n−1

k=1 q
σ(k̄)
σ(k)

)

/(n − 1)!.

Proof. πn(qσ(0̄)) = πn(q∅) = 0. Hence, m! volπn(sσ) = | detAσ| where Aσ is the matrix

composed of the vectors {qσ(k̄)}k∈m̄ written as columns. It remains to note that q
σ(k̄)
σ(k) is the

k-th entry in the σ(k)-th row and all the entries to the left of it vanish. �

Lemma 3. vn = n
∑n−1

k=1 Ck−1
n−2vkvn−k, where v1 = 1, vn = (n − 1)! volπn(Qn).

Proof. This follows from Lemmas 1 and 2, if we presents
∑

σ∈Sm
as

∑

k∈m̄

∑

σ∈Sk
m

, where

Sk
m = {σ | σ(1) = k}, and then replace the innermost sum with the triple sum corresponding

to the bijection Ck−1
m̄\{1}×Sk−1×Sm−k → Sk

m, (α, σ1, σ2) 7→ σ where σ(1) = k, σ(i) = µα(σ(i))

for i < k, σ(i) = µm̄\(α∪{k})(σ2(i − k)) for i > k. �

6. Identity. The Abel binomial identity can be written in the form [2; Sect.1.2.7] αβ
∑n

k=0 Ck
n(α+

k)k−1(β + n − k)n−k−1 = (α + β)(α + β + n)n−1. Substituting β = −α, dividing by α2 and
taking the limit as α → 0, we get

n−1
∑

k=1

Ck
nkk−1(n − k)n−k−1 = 2(n − 1)nn−2. (2)
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7. Proof of the theorems. From (2) and Lemma 3, we get by induction vn = 2n−1nn−2.
Let V be the plane defined by (1). Solving (1) with respect to u0, u1, we get a bijection
jn : Zn−1 → V ∩ Zn+1, moreover, | det(jnπn)| = n. Hence, n volQn = volπn(Qn) =
vn/(n − 1)!. Theorem 1 is proved. Theorem 2 is proved similarly: using the recurrent

relation v̄n = n
∑n−1

k=2 Ck−2
n−3 v̄kvn−k, we find v̄n = (n + 6) 2n−3 nn−4 where v̄n/(n − 2)! is the

volume of the projection of ∆(D̄n) onto the plane yn = 0.
Theorem 3 follows from Lemma 1(a). According to [1], ∆(EA) is the convex hull of the

points in RA, corresponding to all triangulations of PA. Let V be the set of the vertices of
PA (i0 = #V ). For each α ⊂ A \V , let us consider any triangulation whose set of vertices is
α∪V . The corresponding points {qα} ⊂ RA lye on an M -plane (M = N − c = #A \V ) and
satisfy the hypothesis of Lemma 1(a). Hence, one can span M ! simplices on them so that
the volume of each one is ≥

∏

(k + 1)ik/M ! (this follows from Lemma 2 and the description
of QA, given in [1]). The points {qα} lye on an M -dimensional section of QA (dimQA = N),
and this gives M !/N !.
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minants, Birkhäuser, Boston, 1994.

2. I.P. Goulden, D.M. Jackson, Combinatirial enumeration, John Wiley and Sons, N.Y., 1983.

Steklov Math. Inst. of Russ. Acad. Sci. ul. Gubkina 8, Moscow, Russia


