THE VOLUME OF THE NEWTON POLYTOPE OF A DISCRIMINANT

S.Yu. Orevkov

1. Statement of the result. Let $D_{n}=D_{n}\left(x_{0}, \ldots, x_{n}\right)$ be the discriminant, i.e. the polynomial in x_{0}, \ldots, x_{n}, vanishing if and only if the polynomial $\sum_{k=0}^{n} x_{k} t^{k}$ has a multiple root. Example: $D_{2}(a, b, c)=b^{2}-4 a c$.

The Newton polytope $\Delta(f)$ of a polynomial $f=\sum a_{u} x_{1}^{u_{1}} \ldots x_{N}^{u_{N}}$, where $u=\left(u_{1}, \ldots, u_{n}\right)$, is the convex hull in \mathbf{R}^{N} of the set $\left\{u \in \mathbf{Z}^{N} \mid a_{u} \neq 0\right\}$. If $V \in \mathbf{R}^{N}$ is the affine k-plane such that the rank of the lattice $V \cap \mathbf{Z}^{N}$ equals k, then the k-dimensional volume vol_{k} on the plane V will be normalized so that the volume of the fundamental parallelepiped of the lattice is equal to one.

Denote $\Delta\left(D_{n}\right)$ by Q_{n}. Because of the evident homogenity and quasihomogenity of the discriminant, Q_{n} lies in the $(n-1)$-plane

$$
\begin{equation*}
u_{0}+\cdots+u_{n}=2(n-1), \quad u_{1}+2 u_{2}+\cdots+n u_{n}=n(n-1) . \tag{1}
\end{equation*}
$$

Theorem 1. $\operatorname{vol}_{n-1} Q_{n}=2^{n-1} n^{n-2} / n!$.
2. $\operatorname{vol}_{n-2} \Delta\left(\bar{D}_{n}\right)=(n+6) 2^{n-3} n^{n-5} /(n-2)$! for $n \geq 3$, where $\bar{D}_{n}\left(y_{0}, \ldots, y_{n-2}\right)$ is the discriminant of $t^{n}+y_{n-2} t^{n-2}+\cdots+y_{0}$.

Let $A \subset \mathbf{Z}^{d}$ be an n-point set, P_{A} its convex hull, $\operatorname{dim} P_{A}=d$. Following [1], denote by \mathbf{C}^{A} the space of Laurent polynomials of the form $\sum_{a \in A} x_{a} t^{a}$, where $t=\left(t_{1}, \ldots, t_{d}\right)$, $a=\left(a_{1}, \ldots, a_{d}\right), t^{a}=t_{1}^{a_{1}} \ldots t_{d}^{a_{d}}$, and let us define the discriminant D_{A} as the polynomial in n variables $\left(x_{a}\right)_{a \in A}$, such that the equation $D_{A}=0$ defines a hyperplane in \mathbf{C}^{A}, which is the closure of the set of all polynomials f, for which the hypersurface $\{f=0\}$ has a singularity in the torus $(\mathbf{C} \backslash 0)^{d}$. Respectively, the discriminant E_{A} defines the closure of the set of polynomials which have a degenerate restriction at least to one face of P_{A} (see details in [1]). Let $N=n-d-1=\operatorname{dim} \Delta\left(D_{A}\right)=\operatorname{dim} \Delta\left(E_{A}\right)$.

Theorem 3. $\operatorname{vol}_{N} \Delta\left(E_{A}\right)>\left(\prod_{k=1}^{d}(k+1)^{i_{k}}\right)(N-c)!/ N!$, where $c=i_{0}-d-1$, and i_{k} is the number of points in A, which are the interior points of k-planes of P_{A}.

Corollary. For any d there exist $C_{0}(d), C_{1}(d)>0$, such that $\log \operatorname{vol} Q_{d, m} \geq C_{0}(d)+$ $C_{1}(d) m^{d}$, where $Q_{d, m}=\Delta\left(D_{A}\right)$ for $A=\left\{a \in \mathbf{Z}^{d} \mid a_{i} \geq 0, \sum a_{i} \leq m\right\}$.

This gives a negative answer to a question of E.I. Shustin about existence of constants $B_{0}(d), B_{1}(d)$, such that $\log \left(N!\operatorname{vol} Q_{d, m}\right) \leq B_{0}(d)+B_{1}(d) m^{d}$, where $N=C_{n+d}^{d}-d-1=$ $\operatorname{dim} Q_{d, m}$. An affirmative answer would provide an expected asymptotical upper bound for the number of rigid isotopy types of projective real hypersurfaces of degree m as $m \rightarrow \infty$ (of the same order as the lower bound following from the constructions by Viro's method).
2. Notation. For $k \in \mathbf{Z}$ set $\bar{k}=\{1, \ldots, k\}(\overline{0}=\varnothing)$. By S_{n} we denote the symmetric group: $S_{n}=\{\sigma: \bar{n} \rightarrow \bar{n} \mid \sigma(\bar{n})=\bar{n}\}$; by $\pi_{n}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n-1}$ we denote the projection $\left(u_{0}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, u_{n-1}\right)$. For a finite set α, we denote its cardinality by $\# \alpha$, and we set $C_{\alpha}^{k}=\{\beta \subset \alpha \mid \# \beta=k\}$ (then $\# C_{\alpha}^{k}=C_{\# \alpha}^{k}$ is the binomial coeficient). For $\alpha \subset \mathbf{Z}$, let us denote by $\mu_{\alpha}:\{1, \ldots, \# \alpha\} \rightarrow \alpha$, the bijection such that $\mu_{\alpha}(1)<\mu_{\alpha}(2)<\ldots$. The letter m will always denote $n-1$.
3. Q_{n} as the secondary polytope. According to a result due to Gelfand-Kapranov-Zelevinski [1], Q_{n} is combinatorially equivalent to the m-cube (recall that $m=n-1$), and its vertices are the points $\left\{q_{\alpha}\right\}_{\alpha \subset \bar{m}}$, where the coordinates $\left(q_{0}^{\alpha}, \ldots, q_{n}^{\alpha}\right)$ of q_{α} are defined as follows. If $\alpha=\left\{k_{1}, \ldots, k_{a}\right\}, 0=k_{0}<k_{1}<\cdots<k_{a}<k_{a+1}=n, k_{-1}=1, k_{a+2}=n-1$, then

$$
q_{k}^{\alpha}= \begin{cases}k_{i+1}-k_{i-1}, & k=k_{i} \in \alpha \cup\{0, n\} \\ 0, & k \notin \alpha \cup\{0, n\}\end{cases}
$$

4. Triangulation of a skew cube. Let $p_{\alpha}=\left(p_{1}^{\alpha}, \ldots, p_{N}^{\alpha}\right)$ be sets in \mathbf{R}^{N}, indexed by subsets $\alpha \subset \bar{N}$, such that $p_{i}^{\alpha}>0$ for $i \in \alpha$ and $p_{i}^{\alpha}=0$ for $i \notin \alpha$. For a $\sigma \in S_{N}$, we denote by s_{σ} the simplex spanned on the points $p_{\sigma(\bar{k})}, k=0, \ldots, N$.

Lemma 1. a). $\left\{s_{\sigma}\right\}_{\sigma \in S_{N}}$ is a triangulation of some (not necessarily convex) polyhedron P, homeomorphic to a cube (hence, $\operatorname{vol} P=\sum \operatorname{vol} s_{\sigma}$).
b). If the convex hull P^{\prime} of the points p_{α} is combinatorially equivalent to a cube (i.e. for any i, all the points $\left\{p_{\alpha}\right\}_{i \in \alpha}$ lye on the same $(N-1)$-face of $\left.P^{\prime}\right)$, then $P^{\prime}=P$.
Proof. Projecting from $p_{\bar{N}}$, let us define P inductively as the union of the cones over the intersections with the coordinate hyperplanes.

Example: if P is a cube then $s_{\sigma}=\left\{\left(x_{1}, \ldots, x_{N}\right) \in P \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(N)}\right\}$.
5. Recurrent relation. Let $\left\{s_{\sigma}\right\}_{\sigma \in S_{m}}$ be a triangulation of Q_{n} from Sect. 4 .

Lemma 2. $\operatorname{vol} \pi_{n}\left(s_{\sigma}\right)=\left(\prod_{k=1}^{n-1} q_{\sigma(k)}^{\sigma(\bar{k})}\right) /(n-1)!$.
Proof. $\pi_{n}\left(q_{\sigma(\overline{0})}\right)=\pi_{n}\left(q_{\varnothing}\right)=0$. Hence, $m!\operatorname{vol} \pi_{n}\left(s_{\sigma}\right)=\left|\operatorname{det} A_{\sigma}\right|$ where A_{σ} is the matrix composed of the vectors $\left\{q_{\sigma(\bar{k})}\right\}_{k \in \bar{m}}$ written as columns. It remains to note that $q_{\sigma(k)}^{\sigma(\bar{k})}$ is the k-th entry in the $\sigma(k)$-th row and all the entries to the left of it vanish.
Lemma 3. $v_{n}=n \sum_{k=1}^{n-1} C_{n-2}^{k-1} v_{k} v_{n-k}$, where $v_{1}=1$, $v_{n}=(n-1)!\operatorname{vol} \pi_{n}\left(Q_{n}\right)$.
Proof. This follows from Lemmas 1 and 2, if we presents $\sum_{\sigma \in S_{m}}$ as $\sum_{k \in \bar{m}} \sum_{\sigma \in S_{m}^{k}}$, where $S_{m}^{k}=\{\sigma \mid \sigma(1)=k\}$, and then replace the innermost sum with the triple sum corresponding to the bijection $C_{\bar{m} \backslash\{1\}}^{k-1} \times S_{k-1} \times S_{m-k} \rightarrow S_{m}^{k},\left(\alpha, \sigma_{1}, \sigma_{2}\right) \mapsto \sigma$ where $\sigma(1)=k, \sigma(i)=\mu_{\alpha}(\sigma(i))$ for $i<k, \sigma(i)=\mu_{\bar{m} \backslash(\alpha \cup\{k\})}\left(\sigma_{2}(i-k)\right)$ for $i>k$.
6. Identity. The Abel binomial identity can be written in the form [2; Sect.1.2.7] $\alpha \beta \sum_{k=0}^{n} C_{n}^{k}(\alpha+$ $k)^{k-1}(\beta+n-k)^{n-k-1}=(\alpha+\beta)(\alpha+\beta+n)^{n-1}$. Substituting $\beta=-\alpha$, dividing by α^{2} and taking the limit as $\alpha \rightarrow 0$, we get

$$
\begin{equation*}
\sum_{k=1}^{n-1} C_{n}^{k} k^{k-1}(n-k)^{n-k-1}=2(n-1) n^{n-2} \tag{2}
\end{equation*}
$$

7. Proof of the theorems. From (2) and Lemma 3, we get by induction $v_{n}=2^{n-1} n^{n-2}$. Let V be the plane defined by (1). Solving (1) with respect to u_{0}, u_{1}, we get a bijection $j_{n}: \mathbf{Z}^{n-1} \rightarrow V \cap \mathbf{Z}^{n+1}$, moreover, $\left|\operatorname{det}\left(j_{n} \pi_{n}\right)\right|=n$. Hence, $n \operatorname{vol} Q_{n}=\operatorname{vol} \pi_{n}\left(Q_{n}\right)=$ $v_{n} /(n-1)$!. Theorem 1 is proved. Theorem 2 is proved similarly: using the recurrent relation $\bar{v}_{n}=n \sum_{k=2}^{n-1} C_{n-3}^{k-2} \bar{v}_{k} v_{n-k}$, we find $\bar{v}_{n}=(n+6) 2^{n-3} n^{n-4}$ where $\bar{v}_{n} /(n-2)$! is the volume of the projection of $\Delta\left(\bar{D}_{n}\right)$ onto the plane $y_{n}=0$.

Theorem 3 follows from Lemma 1(a). According to [1], $\Delta\left(E_{A}\right)$ is the convex hull of the points in \mathbf{R}^{A}, corresponding to all triangulations of P_{A}. Let V be the set of the vertices of $P_{A}\left(i_{0}=\# V\right)$. For each $\alpha \subset A \backslash V$, let us consider any triangulation whose set of vertices is $\alpha \cup V$. The corresponding points $\left\{q_{\alpha}\right\} \subset \mathbf{R}^{A}$ lye on an M-plane $(M=N-c=\# A \backslash V)$ and satisfy the hypothesis of Lemma 1(a). Hence, one can span M ! simplices on them so that the volume of each one is $\geq \Pi(k+1)^{i_{k}} / M$! (this follows from Lemma 2 and the description of Q_{A}, given in [1]). The points $\left\{q_{\alpha}\right\}$ lye on an M-dimensional section of $Q_{A}\left(\operatorname{dim} Q_{A}=N\right)$, and this gives $M!/ N!$.

References

1. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinskii, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994.
2. I.P. Goulden, D.M. Jackson, Combinatirial enumeration, John Wiley and Sons, N.Y., 1983.
