THE VOLUME OF THE NEWTON POLYTOPE OF A DISCRIMINANT

S.YU. OREVKOV

1. Statement of the result. Let $D_n = D_n(x_0, ..., x_n)$ be the discriminant, i.e. the polynomial in $x_0, ..., x_n$, vanishing if and only if the polynomial $\sum_{k=0}^n x_k t^k$ has a multiple root. Example: $D_2(a, b, c) = b^2 - 4ac$.

The Newton polytope $\Delta(f)$ of a polynomial $f = \sum a_u x_1^{u_1} \dots x_N^{u_N}$, where $u = (u_1, \dots, u_n)$, is the convex hull in \mathbf{R}^N of the set $\{u \in \mathbf{Z}^N | a_u \neq 0\}$. If $V \in \mathbf{R}^N$ is the affine k-plane such that the rank of the lattice $V \cap \mathbf{Z}^N$ equals k, then the k-dimensional volume vol_k on the plane V will be normalized so that the volume of the fundamental parallelepiped of the lattice is equal to one.

Denote $\Delta(D_n)$ by Q_n . Because of the evident homogenity and quasihomogenity of the discriminant, Q_n lies in the (n-1)-plane

$$u_0 + \dots + u_n = 2(n-1), \qquad u_1 + 2u_2 + \dots + nu_n = n(n-1).$$
 (1)

Theorem 1. $\operatorname{vol}_{n-1} Q_n = 2^{n-1} n^{n-2} / n!.$

2. $\operatorname{vol}_{n-2} \Delta(\bar{D}_n) = (n+6) 2^{n-3} n^{n-5} / (n-2)!$ for $n \geq 3$, where $\bar{D}_n(y_0, \ldots, y_{n-2})$ is the discriminant of $t^n + y_{n-2} t^{n-2} + \cdots + y_0$.

Let $A \subset \mathbf{Z}^d$ be an *n*-point set, P_A its convex hull, dim $P_A = d$. Following [1], denote by \mathbf{C}^A the space of Laurent polynomials of the form $\sum_{a \in A} x_a t^a$, where $t = (t_1, \ldots, t_d)$, $a = (a_1, \ldots, a_d)$, $t^a = t_1^{a_1} \ldots t_d^{a_d}$, and let us define the discriminant D_A as the polynomial in *n* variables $(x_a)_{a \in A}$, such that the equation $D_A = 0$ defines a hyperplane in \mathbf{C}^A , which is the closure of the set of all polynomials f, for which the hypersurface $\{f = 0\}$ has a singularity in the torus $(\mathbf{C} \setminus 0)^d$. Respectively, the discriminant E_A defines the closure of the set of polynomials which have a degenerate restriction at least to one face of P_A (see details in [1]). Let $N = n - d - 1 = \dim \Delta(D_A) = \dim \Delta(E_A)$.

Theorem 3. $\operatorname{vol}_N \Delta(E_A) > \left(\prod_{k=1}^d (k+1)^{i_k}\right)(N-c)!/N!$, where $c = i_0 - d - 1$, and i_k is the number of points in A, which are the interior points of k-planes of P_A .

Corollary. For any d there exist $C_0(d), C_1(d) > 0$, such that $\log \operatorname{vol} Q_{d,m} \geq C_0(d) + C_1(d)m^d$, where $Q_{d,m} = \Delta(D_A)$ for $A = \{a \in \mathbb{Z}^d \mid a_i \geq 0, \sum a_i \leq m\}$.

This gives a negative answer to a question of E.I. Shustin about existence of constants $B_0(d)$, $B_1(d)$, such that $\log(N! \operatorname{vol} Q_{d,m}) \leq B_0(d) + B_1(d)m^d$, where $N = C_{n+d}^d - d - 1 = \dim Q_{d,m}$. An affirmative answer would provide an expected asymptotical upper bound for the number of rigid isotopy types of projective real hypersurfaces of degree m as $m \to \infty$ (of the same order as the lower bound following from the constructions by Viro's method).

S.YU. OREVKOV

2. Notation. For $k \in \mathbf{Z}$ set $\bar{k} = \{1, \ldots, k\}$ $(\bar{0} = \emptyset)$. By S_n we denote the symmetric group: $S_n = \{\sigma : \bar{n} \to \bar{n} \mid \sigma(\bar{n}) = \bar{n}\}$; by $\pi_n : \mathbf{R}^{n+1} \to \mathbf{R}^{n-1}$ we denote the projection $(u_0, \ldots, u_n) \mapsto (u_1, \ldots, u_{n-1})$. For a finite set α , we denote its cardinality by $\#\alpha$, and we set $C_{\alpha}^k = \{\beta \subset \alpha \mid \#\beta = k\}$ (then $\#C_{\alpha}^k = C_{\#\alpha}^k$ is the binomial coefficient). For $\alpha \subset \mathbf{Z}$, let us denote by $\mu_{\alpha} : \{1, \ldots, \#\alpha\} \to \alpha$, the bijection such that $\mu_{\alpha}(1) < \mu_{\alpha}(2) < \ldots$. The letter m will always denote n-1.

3. Q_n as the secondary polytope. According to a result due to Gelfand-Kapranov-Zelevinski [1], Q_n is combinatorially equivalent to the *m*-cube (recall that m = n - 1), and its vertices are the points $\{q_\alpha\}_{\alpha \subset \overline{m}}$, where the coordinates $(q_0^{\alpha}, \ldots, q_n^{\alpha})$ of q_α are defined as follows. If $\alpha = \{k_1, \ldots, k_a\}, 0 = k_0 < k_1 < \cdots < k_a < k_{a+1} = n, k_{-1} = 1, k_{a+2} = n - 1$, then

$$q_k^{\alpha} = \begin{cases} k_{i+1} - k_{i-1}, & k = k_i \in \alpha \cup \{0, n\} \\ 0, & k \notin \alpha \cup \{0, n\} \end{cases}$$

4. Triangulation of a skew cube. Let $p_{\alpha} = (p_1^{\alpha}, \ldots, p_N^{\alpha})$ be sets in \mathbb{R}^N , indexed by subsets $\alpha \subset \overline{N}$, such that $p_i^{\alpha} > 0$ for $i \in \alpha$ and $p_i^{\alpha} = 0$ for $i \notin \alpha$. For a $\sigma \in S_N$, we denote by s_{σ} the simplex spanned on the points $p_{\sigma(\overline{k})}, k = 0, \ldots, N$.

Lemma 1. a). $\{s_{\sigma}\}_{\sigma \in S_N}$ is a triangulation of some (not necessarily convex) polyhedron P, homeomorphic to a cube (hence, vol $P = \sum \text{vol } s_{\sigma}$).

b). If the convex hull P' of the points p_{α} is combinatorially equivalent to a cube (i.e. for any i, all the points $\{p_{\alpha}\}_{i \in \alpha}$ lye on the same (N-1)-face of P'), then P' = P.

Proof. Projecting from $p_{\bar{N}}$, let us define P inductively as the union of the cones over the intersections with the coordinate hyperplanes. \Box

Example: if P is a cube then $s_{\sigma} = \{(x_1, \ldots, x_N) \in P \mid x_{\sigma(1)} \ge x_{\sigma(2)} \ge \cdots \ge x_{\sigma(N)}\}.$

5. Recurrent relation. Let $\{s_{\sigma}\}_{\sigma \in S_m}$ be a triangulation of Q_n from Sect. 4.

Lemma 2. vol $\pi_n(s_{\sigma}) = \left(\prod_{k=1}^{n-1} q_{\sigma(k)}^{\sigma(\bar{k})}\right)/(n-1)!.$

Proof. $\pi_n(q_{\sigma(\bar{0})}) = \pi_n(q_{\varnothing}) = 0$. Hence, $m! \operatorname{vol} \pi_n(s_{\sigma}) = |\det A_{\sigma}|$ where A_{σ} is the matrix composed of the vectors $\{q_{\sigma(\bar{k})}\}_{k\in\bar{m}}$ written as columns. It remains to note that $q_{\sigma(k)}^{\sigma(\bar{k})}$ is the k-th entry in the $\sigma(k)$ -th row and all the entries to the left of it vanish. \Box

Lemma 3. $v_n = n \sum_{k=1}^{n-1} C_{n-2}^{k-1} v_k v_{n-k}$, where $v_1 = 1$, $v_n = (n-1)! \operatorname{vol} \pi_n(Q_n)$.

Proof. This follows from Lemmas 1 and 2, if we presents $\sum_{\sigma \in S_m} \text{ as } \sum_{k \in \bar{m}} \sum_{\sigma \in S_m^k}$, where $S_m^k = \{\sigma \mid \sigma(1) = k\}$, and then replace the innermost sum with the triple sum corresponding to the bijection $C_{\bar{m}\setminus\{1\}}^{k-1} \times S_{k-1} \times S_{m-k} \to S_m^k$, $(\alpha, \sigma_1, \sigma_2) \mapsto \sigma$ where $\sigma(1) = k, \sigma(i) = \mu_{\alpha}(\sigma(i))$ for $i < k, \sigma(i) = \mu_{\bar{m}\setminus(\alpha \cup \{k\})}(\sigma_2(i-k))$ for i > k. \Box

6. Identity. The Abel binomial identity can be written in the form [2; Sect.1.2.7] $\alpha\beta\sum_{k=0}^{n}C_{n}^{k}(\alpha+k)^{k-1}(\beta+n-k)^{n-k-1} = (\alpha+\beta)(\alpha+\beta+n)^{n-1}$. Substituting $\beta = -\alpha$, dividing by α^{2} and taking the limit as $\alpha \to 0$, we get

$$\sum_{k=1}^{n-1} C_n^k k^{k-1} (n-k)^{n-k-1} = 2(n-1)n^{n-2}.$$
 (2)

7. Proof of the theorems. From (2) and Lemma 3, we get by induction $v_n = 2^{n-1}n^{n-2}$. Let V be the plane defined by (1). Solving (1) with respect to u_0 , u_1 , we get a bijection $j_n : \mathbb{Z}^{n-1} \to V \cap \mathbb{Z}^{n+1}$, moreover, $|\det(j_n\pi_n)| = n$. Hence, $n \operatorname{vol} Q_n = \operatorname{vol} \pi_n(Q_n) = v_n/(n-1)!$. Theorem 1 is proved. Theorem 2 is proved similarly: using the recurrent relation $\bar{v}_n = n \sum_{k=2}^{n-1} C_{n-3}^{k-2} \bar{v}_k v_{n-k}$, we find $\bar{v}_n = (n+6) 2^{n-3} n^{n-4}$ where $\bar{v}_n/(n-2)!$ is the volume of the projection of $\Delta(\bar{D}_n)$ onto the plane $y_n = 0$.

Theorem 3 follows from Lemma 1(a). According to [1], $\Delta(E_A)$ is the convex hull of the points in \mathbf{R}^A , corresponding to all triangulations of P_A . Let V be the set of the vertices of P_A ($i_0 = \#V$). For each $\alpha \subset A \setminus V$, let us consider any triangulation whose set of vertices is $\alpha \cup V$. The corresponding points $\{q_\alpha\} \subset \mathbf{R}^A$ lye on an M-plane ($M = N - c = \#A \setminus V$) and satisfy the hypothesis of Lemma 1(a). Hence, one can span M! simplices on them so that the volume of each one is $\geq \prod (k+1)^{i_k}/M$! (this follows from Lemma 2 and the description of Q_A , given in [1]). The points $\{q_\alpha\}$ lye on an M-dimensional section of Q_A (dim $Q_A = N$), and this gives M!/N!.

References

- I.M. Gelfand, M.M. Kapranov, A.V. Zelevinskii, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994.
- 2. I.P. Goulden, D.M. Jackson, Combinatirial enumeration, John Wiley and Sons, N.Y., 1983.

STEKLOV MATH. INST. OF RUSS. ACAD. SCI. UL. GUBKINA 8, MOSCOW, RUSSIA