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Introduction

In his paper [1] (see also [2]) A.G.Vitushkin has constructed an example of a real
4-manifold X with its two-dimensional submanifold M and a branching covering f :
X → R4 branched only along M , such that X − M is homeomorphic to R4, M is
homeomorphic to R2 and f |M is an embedding. This example is very important for un-
derstanding the topological nature of the well-known Jacobian Conjecture (see [2,3]), and
A.G.Vitushkin asked if there exist analytic mappings with similar topological properties.

In this paper we give in some sense an affirmative answer to this question. We show
that it is possible to realize the Vitushkin’s covering as an analytic mapping of a Stein
manifold onto a ball in C2. Thus, one has

Theorem 1. There exists a complex analytic 2-manifold X with the boundary ∂X, a
smooth analytic disk M ⊂ X, transversal to ∂X, with ∂M ⊂ ∂X, and a holomorphic
three-sheeted branching covering f : X → B4, where B4 is the unit ball in C2, such that
Int X − M is homeomorphic to R4, the restriction of f onto M is an embedding, and
f has branching of order two along M , being an immersion (i.e. local homeomorphism)
everywhere on X − M .

This implies immediately that ∂X is strictly pseudoconvex outside ∂M . It is not
difficult to deduce also that the both Int X and Int X−M are Stein spaces, in particular,
there exists an exhaustion of Int X − M by strictly pseudoconvex domains with smooth
boundaries, which are homeomorphic to the 4-ball. According to Eliashberg’s result [10,
Theorem 5.1] there exists a proper plurisubharmonic function on Int X−M with a single
isolated minimum and without other critical points.

Essentially, the proof of Theorem 1 is nothing more than an interpretation of the
Vitushkin’s construction in terms of Rudolph diagrams of multi-valued complex functions
(see below the definition) and direct applying a Rudolph’s construction from [4]. As
A.G.Vitushkin informed me, while constructing the example, he used pictures similar
to (and maybe even the same as!) Rudolph diagrams. However, writing the paper [1]
he reformulated everything in terms of explicit cuttings and gluings. According to my
opinion, this made the paper more difficult to read. One of the purposes of this paper is
to give an exposition of the Vitushkin’s example which seems to be more clear than the
original one given in [1]. (Note, that topologically the example is not modified here.)

It is easy to write down necessary and sufficient conditions for a given Rudolph diagram
in general position to be the diagram of a multi-valued continuous function (for example,
all smooth diagrams satisfy them). Moreover, the graph of the function is uniquely deter-
mined by the diagram up to an ambient isotopy. Of course, the Vitushkin’s construction
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2 S.YU.OREVKOV

of f(M) is the same as the application of this general construction in a particular case,
as well as his gluing the covering is the same as a defining of the covering by a homo-
morphism of the fundamental group into a symmetric group Sn.

I did not succeed to find a more easy than in [1] proof of the fact that Int X − M is
homeomorphic to R4 (in [1] it is proved by explicit writing down successive deformation
retractions which are simple in the sense of Whitehead). Nevertheless, the contractedness
of Int X −M and its simple-connectedness at infinity can be easily obtained by standard
topological arguments using the presentation of the fundamental group of the comple-
ment to the graph of a multi-valued function via its Rudolph diagram, presented in [5].
This presentation is just an interpretation of the classical Zariski—van Kampen presen-
tation and it is a word-by-word generalization for a higher dimension of the Wirtinger
presentation for a knot group.1 Thus, we prove here the homeomorphism Int X−M ≃ R4

only modulo Poincaré Conjecture. However, with this single (but essential!) exception,
we give a self-contained alternative exposition of all the results (with proofs) of [1].

The fact that IntX − M is diffeomorphic to an open ball, can be reduced, also by
standard topological methods, to the Eliashberg’s theorem [10, Theorem 5.1] which states
that if the boundary of a complex manifold is strictly pseudoconvex and diffeomorphic to
S3 then the manifold is diffeomorphic either to B4 or to B4 blown up at several points.
(Clearly, the latter is not the case, since a covering over a ball can not contain a compact
curve). To prove this reduction, it is enough to write down a Heegaard splitting for
∂(X−(tubular neighbourhood of M)) and to show its equivalence to S3 (see Remark 4.3
below). Since this manifold is obtained by a covering of S3 branched along an explicitly
defined knot, followed by a one-step surgery along a handle, the required equivalence of
Heegaard splittings can be obtained by a standard technique (described, for instance, in
[11]). However, these computations do not seam to be much easier than those, given in
[1] and we do not present them.

In §1 we give the definition of the Rudolph diagram of a multi-valued complex function.
§2 is devoted to the theorem on realizability of a smooth Rudolph diagram by an algebraic
function. In fact, this theorem was proved in [4] though it was not explicitly formulated
there. In §3 we construct the covering f : X → B4 as a realization of some Rudolph
diagram. In §4 the simple-connectedness of Int X − M and its simple-connectedness at
infinity are proved. In §5 we prove that X − M is contractible. In §6 we show that the
Rudolph diagram of the covering from [1], is equivalent to the one constructed in §3.
The §§1–5 are independent of [1] and contain a proof of Theorem 1 modulo Poincaré
Conjecture; §6 is independent of §§3–4 and contains the reduction of Theorem 1 to [1]
and [4].

In Appendix we summarize the results from [5,6] on existence of non-degenerate
Rudolph diagrams for algebraic functions. These results are not used in the other sections
of the paper.

I am grateful to A.G.Vitushkin for setting the problem and a lot of useful discussions.
I am grateful to Lee Rudolph for a useful discussion which caused the appearance of this
paper, and to I.A. Taimanov for pointing out to the paper [11]. The work was partially
supported by Grant 93-011-225 of Russian Foundation for Fundamental Researches. This
paper was written when I was invited at the “Université Bordeaux I” in the framework
of the program “PAST”, and I am grateful to these institutions for the hospitality and
financial support.

1However, it is shown in [5] that this presentation gives a direct proof of Fulton—Deligne theorem

(Zariski’s Conjecture) that the group of the complement to a nodal curve in P2 is abelian.
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§1. Rudolph diagrams

By words multi-valued complex function we shall mean in this paper a multi-valued
function with values in C, not necessary analytic, but which looks like an algebraic
function in the sense, that it has isolated branching points and outside them can be
uniquely continued along any path in the domain of its definition. Now, we give the
formal definition.

Let C be some category of manifolds (smooth, piecewise smooth, real or complex
analytic etc.). Let D ∈ C and prD : D × C → D be the projection onto the first factor
(further D will be usually a domain in C). An n-valued complex C-function on D is
said to be an equivalence class F = [K, j] of pairs (K, j) where K ∈ C has the same
dimension as D and j : K → D × C is a C-mapping such that prD ◦j : K → D is a
branched covering of degree n. Pairs (K, j) and (K1, j1) are equivalent if there exists a C-
isomorphism ϕ : K → K1 such that j = j1 ◦ϕ. The image j(K) is called the graph of the
function F and the set of values of F at z0 ∈ D is defined as F (z0) = graph(F )∩(z0×C).
In any simply connected subset of D which does not intersect the image of branching
locus, F splits into n single-valued branches.

Clearly, that if D is a circle then the notion of multi-valued complex function is the
same as the notion of braid. So, maybe it would be reasonable to call a multi-valued
function on D a (multi-dimensional) braid over D.

Denote by B(F ) the set of all z ∈ D such that F (z) contains less than n elements.
It consists of the branching points of F and the points where two single-valued branches
coincide. Let

B+ = B+(F ) := B(Re F ) = B(F ) ∪ {z ∈ D | ∃w1 6= w2 ∈ F (z), with Re w1 = Re w2}.

It is defined by one real equation, so, generically it is a real hypersurface in D, maybe
with boundary.

Let us assume now that D is orientable and F is piecewise smooth. Then we define the
Rudolph diagram of the function F as the set B+ equipped with the following additional
structure (see [4]). A point z ∈ B+ − B is said to be regular if Re F (z) contains exactly
n−1 elements and the intersection of the graphs of Re f1, and Re f2 is transversal where
f1 and f2 are those single-valued branches of F in some neighborhood of z for which
Re f1(z) = Re f2(z). Otherwise z is called singular . We denote the set of singular points
of B+ by Sing(B+). With each component L of B+ − Sing(B+) we associate an integer
k such that Re w1 < ... < Re wk = Re wk+1 < ... < Re wn for {w1, ..., wn} = F (z),
z ∈ L. In other words, we define a locally constant function N : B+ − Sing(B+) → Z+,
N(z) = k. Define the orientation O on B+ − Sing(B+) as follows. If we cross a segment
L of B+ − Sing(B+) marked by k by some transversal path α(t) then we obtain a braid
which is equivalent either to σk or to σ−1

k . We say that α has positive intersection with
L in the former case, and negative in the latter case.

A stratification B ⊂ Sing(B+) ⊂ B+ ⊂ D of D together with the data (O, N, n) is
called a Rudolph diagram on D, the number n being called its degree. If a Rudolph
diagram was constructed as above starting with a multi-valued function F , it is called
the Rudolph diagram of F . We shall denote it also just by B+(F ) when this does not
abuse the notation.

Picturing Rudolph diagrams for two-dimensional D, we use the following convention
for orientations. On B+(

√
z) the arrow points from ∞ to 0, and on B+(

√
z̄) from 0 to

∞ (in the both cases B+ is the half-line of non-positive real numbers).
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Now let us restrict ourselves by the case when dimR D = 2. Say that B(F ) is non-
degenerate if it is discrete and for any z ∈ B in some its neighborhood U all the connected
components of graph(F |U ) but one are graphs of single-valued functions. Say that B+(F )
is non-degenerate if Sing(B+) is discrete, B(F ) is non-degenerate and for any z ∈ B the
real parts of all the values of F at z are distinct. Say that B+ is strictly non-degenerate
if it is non-degenerate and at any point of Sing(B+)−B it is either a transversal crossing
of two curves marked by integers k, j with |k − j| ≥ 2 (see Fig. 1a) or a transversal
crossing of three curves oriented and marked as in Fig. 1b with |k − j| = 1.

j

j

k

k

k

k

k

j

j
j

ba

Fig.1

(Such points correspond to standard relations of the braid group σkσj = σjσk, |k−j| ≥
2 and σjσkσj = σkσjσk, |j − k| = 1 respectively.)

A Rudolph diagram is said to be smooth if B+ is a smooth manifold with boundary,
∂B+ = B ∪ (∂D ∩B+) and Sing(B+) = B. Smooth diagrams are evidently strictly non-
degenerate. A Rudolph diagram is called quasipositive if near z ∈ B all its segments are
oriented to the direction of z (like for

√
z − z0). It is positive if near ∂D all its segments

are oriented inwards D.
We give without proof the following evident statement (neither this statement, nor

the notion of strict non-degeneracity will be used in the rest of this paper)

Proposition 1.1. Let D be a (real) two-dimensional piecewise smooth manifold and F
a piecewise smooth complex multi-valued function on D. By an arbitrary small smooth
perturbation of the graph of F one can make B+(F ) to became strictly non-degenerate.
Any strictly non-degenerate Rudolph diagram on D can be realized as B+(F ) for some
piecewise smooth function F which is then uniquely defined up to an isotopy of D × C

preserving the projection onto D.

Remarks. 1. Rudolph diagrams were introduced in [4] for studying braids arising as
multi-valued functions of the form F ◦ γ, where F is an algebraic function without poles
on D ⊂ C and γ : S1 → D is a path. If D = S1 then a non-degenerate B+ of a braid
is the same as a decomposition of the braid into a product of standard generators of the
braid group.

2. Non-degenerate Rudolph diagrams of complex analytic functions are always quasi-
positive (see [4]) and the distance between those two values of F whose real parts coincide,
decreases while moving in the positive direction along the regular part of B+(F ) (see [5]).
In particular, B+ can not contain closed components. Lee Rudolph informed me that
B. Moishezon has proved some less evident restrictions when the graph of F is a cuspidal
curve.

3. In Appendix we discuss the existence of non-degenerate Rudolph diagrams for
algebraic and analytic functions.
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§2. Realizability of smooth Rudolph diagrams by algebraic functions

Let D be a disk and B+ a smooth Rudolph diagram in D. We shall say that B+

is reduced if it does not contain cycles and the points of B+ ∩ ∂D can be divided into
successive (with respect to circuit along ∂D) groups with odd number of points in each
one, so that the central point of a group is incident to a segment of B+ whose the other
end is inside D, and the k-th point from the right is connected by a segment of B+ with
the k-th point from the left. (Example: the diagram in Fig.2 below is reduced.)

In fact, in [4] it was proven (though it was not explicitly formulated) that any quasi-
positive reduced Rudolph diagram is diffeomorphic to a diagram of an algebraic function
without poles on the unit disk. One just have to replace the “universal function” defined
by (w − z)P (w) + ε (see [4, Example 3.3]), with the function defined by

(2.1) (w − z)(1 − w)(2 − w)...(n − w) + εp(z) = 0,

where ε > 0 is a sufficiently small real number and p(z) is a polynomial of degree n whose
values at odd integers belonging to [1, n] are positive, and the values at the even ones
are negative.

Actually, all we need for the further purposes of this paper, is the realizability of the
diagram in Fig.2 below, which is reduced. Nevertheless, we present here a slightly more
general statement whose proof is almost a reproduction of the proof of the main theorem
in [4] adopted to this case.

Proposition 2.1. Any smooth quasipositive Rudolph diagram B+ on the unit disk D ⊂
C without cycles (components, diffeomorphic to S1) is diffeomorphic to B+(F ) for some
algebraic function F on D without poles, whose graph is a smooth analytic subvariety of
D × C.

Proof. Let U1, ..., Uk be the connected components of D − B+. Chose a point ai in
each Ui, and let B = {b1, ..., bm}. Join every ai with all points of B ∩ Ui by distinct
paths pi1, ..., piki

inside Ui, and then connect every couple of points ai, aj for which
Lij = ∂Ui ∩ ∂Uj 6= ∅, by a path qij meeting Lij transversally in a single point. It
is possible to do this in such a way that all the qij ’s intersect neither each other, nor
the pij ’s. Chose sufficiently small disks Ai and Bi around all the ai and bi respectively.
Chose also thin ribbons Pij , Qij along the paths pij , qij (the widths of the ribbons being
much smaller then the radii of the disks). Let D0 be the union of all Ai, Bi, Pij and Qij .
Clearly, that the pairs (D, B+) and (D0, B+ ∩ D0) are diffeomorphic.

Denote by n the degree of the given Rudolph diagram B+. Let w = Fε(z) be the multi-
valued algebraic function defined as the implicit function from the equation (2.1), and
let Du be a disk containing the points {0, ..., n}. Then for the non-perturbed function F0

(which is just F0(z) = {z, 1, 2, ..., n}) we have B(F0) = {1, ..., n} and B+(F0) is the union
of vertical lines Lk = {z | Re z = k}, k = 1, ..., n, where Lk being marked by k. Hence,
for the perturbed function, due to the properly chosen signs of the perturbation near B,
for a sufficiently small ε > 0, we have that B+(Fε|Du

), up to an ambient diffeomorphism,
can be obtained from the B+(F0) by removing from every line a segment of length O(ε1/2)
around the intersection with the real axis. Denote the ends of the upper half-lines of
B+(Fε) by z1, ..., zn respectively.

Now construct an immersion of the D0 into Du, I quote [4], “handle by handle” (where
handles are, of course, the above disks and ribbons). First, we map every Bi onto a small
disk around zk, where k is the mark on B+ near bi, so that B+∩Bi is mapped into B+(Fε).
Next, we map all the Ai’s onto a disk outside of B+(Fε), and immerse the ribbons Pij ,
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also avoiding B+(Fε). And finally, immerse each ribbon Qij as follows. Let k be the
integer which marks Lij . Immerse qij so that it makes one turn around zk (clockwise
or counterclockwise depending on the orientation of Lij) and has no other intersections
with B+(Fε), and continue this immersion onto Qij . Denote the obtained immersion of
D0 by q. It “transports” the analytic structure to D0. In this structure Fε ◦ q is an
analytic multi-valued function on D0 with the given Rudolph diagram. According to
the Riemann uniformization theorem D0 is isomorphic to the unit disk. To obtain an
algebraic function with the given B+, we approximate q ◦ ϕ where ϕ is the isomorphism
of the unit disk onto D0, by a polynomial. The graph of the constructed function is
smooth because the curve (2.1) is smooth.

§3. Construction of the covering

Let w = F (z) be a complex continuous n-valued function on a simply connected
domain D ⊂ C with non-degenerate Rudolph diagram B+, and let K be the graph of
F . Then one can write down a presentation for π1(D×C−K) with the positive infinite
point of the axis Im w as the base point (see [5]).

Namely, let us introduce the generators a1(U),..., an(U) for each connected component
U of D − B+ as follows. Chose any z0 ∈ U and let {w1, ..., wn} = F (z0) being Re w1 <
... < Re wn. Then aj(U) is represented by a path in the fiber z = z0 which arrives from
the infinity along the real half-line Rew = Re wj , Im w > Im wj , then turns around wj

in the positive direction, and returns back to the infinity.
With each connected component L of B+ − Sing(B+) we associate the following n

relations. Let U and V be the connected components of D − B+, to the left and to the
right of L respectively (recall that B+ is oriented). Let i be the integer marking L on
B+, i.e. wi and wi+1 are those values of F whose real parts coincide on L. Then the
relations are:

aj(U) = aj(V ), j 6= i, i + 1,(3.1)

ai+1(U) = ai(V ), (denote this element by b)(3.2)

ai(U) = b ai+1(V ) b−1.(3.3)

Proposition 3.1. If K is a graph of a piesewise smooth multi-valued function with
a non-degenerate (not necessarily strictly) Rudolph diagram B+, then the generators
ai(U), i = 1, ..., n, U ∈ π0(D − B+) and the relations (3.1)–(3.3) written for all L ∈
π0(B+ − Sing(B+)) form a presentation of the group π1(D × C − K).

We omit the proof, because it repeates word by word the proof of the Wirtinger
presentation of a knot group (see, for example, [9]). Our presentation is also evidentely
equivalent to the classical Zariski—van Kampen presentation for the fundamental group
of the complement to a plane algebraic curve.

Now, let w = F (z) be a 4-valued analytic function in the unit disk D with the Rudolph
diagram, homeomorphic to the diagram in Fig.2 (existence of such a function was proved
in §2). Let K be the graph of F .

Proposition 3.2. The manifold K obtained from the diagram shown in Fig.2, is home-
omorphic to the disk.

Proof. The restriction onto K of the projection D × C → D is a branched 4-covering
over D with three branch points of the order two. The boundary of K is the link defined
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by the braid

(3.4) (σ1σ
−1
2 σ1σ2σ

−1
1 )(σ−1

2 σ3σ2σ
−1
3 σ2)(σ3σ

−1
2 σ1σ2σ

−1
3 ).

Easy to see that it is a knot which covers ∂D with degree 4. Collapsing ∂K and ∂D,
we obtain one more branching point of order 4. The required statement follows from
Riemann—Hurwitz formula. Q.E.D.

Denote by U0 the central component of D − B+, and let

a = a1(U0), b = a2(U0), c = a3(U0), d = a4(U0).

The relations (3.1)–(3.3) corresponding to the 6 arcs with the both ends on ∂D, allows us
to express all the ai(U) via a, b, c, d. Substituting them into the relations corresponding
to the rest 3 arcs, we get: b = b−1abcb−1a−1b, a = bdb−1, d = bcb−1. Thus,

(3.5) π1(D × C − K) = 〈a, b, c, d : abc = bab, ab = bd, bc = db〉

As known, equivalence classes of unbranched m-coverings p : Ỹ → Y for a given
space Y , are in one-to-one correspondence with homomorphisms of π1(Y, y0) into the
symmetric group Sm in the following way: if an element g is presented by a path α and
p−1(y0) = {y1, ..., ym} then ϕ(g) takes i to j where yj is the end of that lifting of α which
starts at yi. We use here a convention that Sm acts on {1, ..., m} from the right, i.e. to
apply a product of permutations s1s2, we first apply s1 and then s2.

Consider the homomorphism ϕ : π1(D×C−K) → Sm (for the K constructed above),
given by

(3.6) ϕ(a) = (12), ϕ(b) = (23), ϕ(c) = (12), ϕ(d) = (13).

This definition obeys the relations in (3.5), hence, ϕ is well-defined. It defines an un-
branched covering over D × C − K which can be uniquely extended to a branched
covering over the cylinder D × C. To obtain an equivalent covering over the unit ball
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B4 = {(z, w) | |z|2 + |w|2 = 1}, it is enough to note that for a sufficiently small ε > 0 the
pair (B4, graph(εF )) is diffeomorphic to (D ×C, K).

Denote this covering by f : X → B4.
Since the permutation corresponding to a small loop around K consists of two cycles

of lengths one and two, the preimage of K decomposes into a disjoint union of two
components f−1(K) = M ∪ M1 where f is a local homeomorphism along M1 and is
branched with order two along M .

Proposition 3.3. The restrictions of f onto M and M1 are diffeomorphisms.

Proof. Otherwise K would be singular.

§4. Simple-connectedness of X − M and

its simple-connectedness at infinity

The content of this section is just a direct application of Reidemeister—Schreier the-
orem on the fundamental group of a finite covering (see [8, Theorem 2.9], [9]).

Given an unbranched m-covering p : Ỹ → Y defined by a homomorphism ϕ : G → Sm,

G = π1(Y, y0) (see above), p∗ isomorphically maps π1(Ỹ , y1) onto the subgroup H ⊂ G
of all h ∈ G such that the permutation ϕ(h) does not move 1. The homomorphism ϕ
can be interpreted as the action of G by shifts on the right cosets of G modulo H. The
right cosets are H1 = H, H2, ..., Hm where Hj = {g ∈ G | ϕ(g) sends 1 to j}.

Let 〈a1, ..., an | R1 = 1, ..., Rr = 1〉 be any finite presentation of G and let 1 =
K1, ..., Km be a system of words in aν which define representatives of all right cosets.
Suppose that any initial segment of any Kµ is again some Kµ′ (such systems are called
Schreier systems). Then the Reidemeister—Schreier theorem provides us a finite presen-
tation of H with generators sνµ, ν = 1, ..., n, µ = 1, ..., m and relations

sνµ = 1 if Kµaν = Kµ′ for some µ′,(4.1)

τ(KµRρK
−1
µ ) = 1, µ = 1, ..., m; ρ = 1, ..., r.(4.2)

where τ is the Reidemeister rewriting process which rewrites any word W in generators aν

into a word in generators sνµ as follows. If W =
∏

i aεi

νi
, εi = ±1 then τ(W ) =

∏
i sεi

νiµi

where Kµi
is the Schreier representative of the coset of the initial segment of W up to

aεi

νi
excluding aεi

νi
if εi = 1 and including it if εi = −1. The inclusion H → G is then

defined by sνµ 7→ KµaνK−1
µ′ where Kµ′ is the Schreier representative for the right coset

HKµaν .
Now, let f : X → B4 ⊂ C2 be the covering constructed in §3. Denote: G = π1(B

4 −
K), G∂ = π1(S

3 − ∂K) where S3 = ∂B4, ∂K = K ∩ S3. Then G is defined by (3.5)
and f is defined by (3.6) and by the homomorphism ϕ : G → S3. Chose 1, a, d as a
Schreier system of representatives. Then Reidemeister—Schreier theorem provides us a
presentation of π1(X − f−1(K)) with generators

(4.3) aµ, bµ, cµ, dµ, µ = 1, 2, 3

and relations

(4.4) a1 = d1 = 1,

(4.5)
a1b2c3b

−1
2 a−1

1 b−1
1 , a1b2d

−1
1 b−1

1 , b1c1b
−1
3 d−1

1 ,
a2b1c1b

−1
3 a−1

3 b−1
2 , a2b1d

−1
3 b−1

2 , b2c3b
−1
2 d−1

2 ,
a3b3c2b

−1
1 a−1

2 b−1
3 , a3b3d

−1
2 b−1

3 , b3c2b
−1
1 d−1

3 ,
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where (4.4) corresponds to (4.1) and (4.5) to (4.2), the rows of (4.5) corresponding to
the Schreier representatives 1, a, d respectively, and the columns of (4.5) corresponding
to the three relations in (3.5) respectively.

To obtain a presentation for π1(X − M), one has to equate to 1 a word, representing
a small loop around M1. Such a word is just b1. Indeed, by definition b1 is the lifting
of b onto the covering, starting from the base point y1, followed by the lifting of the
Schreier representative K−1

ϕ(b)(1) = K−1
1 = 1. Hence, b1 is conjugated to a small loop

around f−1(K) whose image b is a simple (not doubled) small loop around K. It means
that b1 is a loop around that component of f−1(K), on which f is not ramified.

Thus, π1(X −M) is generated by (4.3) with relations (4.4), (4.5) and b1 = 1. Substi-
tuting (4.4) and b1 = 1 into (4.5), we get π1(X − M) = 〈c1, a2, ..., d2, a3, ..., d3 | c3 = 1,
b2 = 1, c1 = b3, a2c1 = b2a3b3, a2 = b2d3, b2c3 = d2b2, a3b3c2 = b3a2, a3b3 = b3d2,
b3c2 = d3〉 = ... (eliminate c3, b2, c1 by rels. 1,2,3) ... = 〈a2, c2, d2, a3, b3, d3 | a2 = a3,
a2 = d3, 1 = d2, a3b3c2 = b3a2, a3b3 = b3d2, b3c2 = d3〉 = ... (eliminate a3, d3, d2 by
rels. 1,2,3) ... = 〈a2, c2, b3 | a2b3c2 = b3a2, a2 = 1, b3c2 = a2〉 = 〈1〉.

Thus, we have proven

Proposition 4.1. π1(X − M) = 1.

To prove that X−M is simply connected at infinity, we use similar calculations for the
group of the knot ∂K ⊂ S3 which is presented by “the boundary braid of the Rudolph
diagram” (3.4).

Proposition 4.2. π1(∂(X − N)) = 1 where N is a tubular neighbourhood of M in X.

Proof. Clearly, that Wirtinger presentation for ∂K is equivalent to the presentation
(3.1)—(3.3) written for a thin annulus A along the border of D. Denote the components
of A − B+ successively by U1, ..., U15 moving counterclockwise starting with the lower
(according to Fig.2) component of A∩U0 where U0 is the central component of D −B+

(the order, used in the braid (3.4)). Let us denote by a, b, c, d the standard generators
ai(U1) and keep the rest of notation without changing.

Till the end of this section for group elements a, b we shall denote a−1 by ā and b−1ab
by ab. Let us express all the rest ai(Uj)’s via a, b, c, d, using 7 crossings through B+

clockwise and 7 ones counterclockwise:

j : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1(Uj) : a b b cb̄āb cb̄āb aW1 aW1 aW1 db̄ā db̄ā db̄ā db̄ā db̄ā a a

a2(Uj) : b ab cb̄āb babcāb

ab cb̄āb bW2 bW2 cdb̄ā cdb̄ā b b a db̄ b

a3(Uj) : c c ab ab babc babc cb̄āb d ab b cdb̄āb ab b b d

a4(Uj) : d d d d d d d cb̄ābd bab ab ab cd cd cd cd

where W1 = bc̄b̄āb, W2 = abcb̄abc̄b̄āb. The last crossing (between U8 and U9) gives us

the relations: db̄āāW1 = cdb̄ād̄ = abb̄W2 = babc̄b̄ābd = 1.
Since the old a, b, c, d are the images of the new ones, ϕ : G∂ → S3 is still defined by

(3.6). Adding, like above, the relation b1 = 1 to the Reidemeister—Schreier presentation
for π1(f

−1(S3 − ∂K)) (with the same Schreier system 1, a, d), we obtain a presentation
for G1 = π1(∂X − (∂X ∩ N)) whose generators are a1, a2, a3, b1, ..., d3. Eliminating
successively a1 = 1, b1 = 1, d1 = 1, then a3 = 1, c3 = 1, and then d2 = 1, we obtain G1 =
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〈c1, a2, b2, c2, b3, d3 | d3ā2c2ā2b2, a2b̄2c̄2, b2c1b̄3, b3c2b̄2d̄3, b̄2a2d̄3b̄2c2, ā2b2b3c̄1ā2b2d3,
a2d̄3b̄2a2c̄2〉 (denote these relations R1, ..., R7 respectively). Successively eliminating c1 =
b̄2b3 from R3, c2 = a2b̄2 from R2, d3 = b̄2a2b2 from R1, a2 = b3

2 from R5 and b3 = b2
2

from R4, we obtain that G1 is an infinite cyclic group generated by b2 and the other
generators are expressed via b2:

(4.6) a1 = b1 = d1 = d2 = a3 = c3 = 1, c1 = b2, c2 = b3 = b2
2, a2 = d3 = b3

2.

By definition of a tubular neighborhood there exists a diffeomorphism t : M×D2 → N .
The required manifold ∂(X −N) is obtained from ∂X − (∂X ∩N) by attaching a handle
M × S1 along the torus ∂M × S1 which is identified by t with ∂(∂X ∩ N). Due to
Propositions 3.2 and 3.3 M is isomorphic to a disk, so, to prove that π1(X −N) = 1, we
have to show that the image in G1 of the homotopy class of ∂M × p for p ∈ S1 coincides
with b2.

Denote by Kε the graph of F +εi (i.e. K, moved a little higher). Then for sufficiently
small ε the intersection index K ·Kε is equal to 3, because there are exactly 3 intersection
points, one near each branching point of F (these points evidently are over B+). It is
known that the intersection index of two surfaces in a 4-ball is equal to the linking number
of their boundaries. Thus, link(∂K, ∂Kε) = 3.

Denote by α a closed path parameterizing ∂Kε and by β a small positive loop around
K. Suppose that they begin at the same point. Then link(αβ−3, ∂K) = 0 = link(f(∂M×
p), ∂K), hence these paths are homotopic. Put β = a and connect the base point of the
fundamental group with the start point of α by the same path, which connects the base
point with a (vertical imaginary half-line).

Let us express α via the generators ai(Uj). To do it, one has to start with the empty
word, to chose a single-valued branch of F and to continue it along ∂D till it takes
again the initial value. Every time when some other value of F passes over the value,
which we are continuing (any such event corresponds to a crossing through B+, but not
conversely), we write to the end of our word the generator ai(Uj) corresponding to the
upper value of F if the intersection with B+ is positive, and ai(Uj)

−1 if it is negative.
Clearly, that there is no difference (and this was the reason for (3.2)), either we take Uj

before or after the intersection with B+.
Due to our choice of β, we must start from a point over U1 near the first (i.e. with

minimal real part) single-valued branch of F . Execute this procedure. We obtain

α =
(
a2(U1) a1(U5)

−1 a1(U14) a2(U15)
)
·
(
a2(U11) a3(U12) a4(U1)

)
·

·
(
a2(U2)

−1 a4(U7) a4(U10)
−1

)
·
(
a2(U3) a3(U4) a2(U6)

−1 a3(U8) a3(U13)
−1

)
,

and in terms of a, b, c, d, this is α = abc̄b̄ābababd̄b̄ābdcb̄abc̄b̄ābdb̄ (we used here the above
table of ai(Uj)). Since the path αβ−3 is trivial in π1(D × C − K), all its liftings are
closed, one of them going along M1, and the two others along M . As we explained above,
∂M × p is homotopic to any of those two, which go along M . Since αβ−3 is connected
with the base point by the same path as a, and since ϕ(a) = (12) involves the symbol
“1”, the two liftings which go along M can be defined by τ(αβ−3) and τ(aαβ−3a−1)
where τ is the Reidemeister rewriting process described above. Computing τ(αβ−3) and
applying (4.6), we see that this element is equal to b2. Q.E.D.

Remark 4.3. As we mentioned in Introduction, by standard technique described, for
instance, in [11], one can write down a Heegaard splitting for ∂(X−N) and to show that
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it is diffeomorphic to S3. In our case this can be done even in a more easy way, because
the branching has order two. Indeed, presenting the knot ∂K by a knot diagram with
over- and underpasses, one can cut the R3 by a plane H, so that all the overpasses are
higher than H and all the underpasses are lower than H. This gives a Heegaard splitting
of the covering manifold where the disks cutting the upper (resp. lower) handlebody, are
the coverings of the half-disks spanned between the over- (resp. under-) -passes and H.

§5. Contractibility of X − M

Now, contractibility of the X − M immediately follows from the fact that the Euler
characteristic χ(X − M) is equal to 1 (Lemma 5.3 below), using the following simple
lemma.

Lemma 5.1. Let Y be a simply connected oriented 4-manifold with connected boundary
∂Y 6= ∅, such that χ(Y ) = 1. Then Y is contractible.

Proof. According to Hurewitcz theorem, it suffices to prove that Hq(Y ;Z) = 0 for q > 0
what, by universal coefficients formula, follows from the fact that Hq(Y ; k) = 0 , q > 0 for
any coefficient field k of arbitrary characteristic. By hypothesis, we already have this for
q = 1 and for q ≥ 4. By Poincaré—Lefschetz duality we have H3(Y ; k) = H1(Y, ∂Y ; k),
and from the exact sequence of the pair

... → H0(Y ; k)
epi−→H0(∂Y ; k) → H1(Y, ∂Y ; k) → H1(Y ; k) = 0 → ...

we see that H1(Y, ∂Y ; k) = 0. It remains to prove that H2(Y, k) = 0. This follows from
1 = χ(Y ) =

∑
q(−1)q dimk Hq(Y ; k). Q.E.D.

A standard method of calculating Euler characteristic of a branched covering is con-
venient to be formulated in the form of the following lemma, which we reproduce (in a
little modified form) together with the proof from [7]. For Riemann surfaces this lemma
turns out to be Riemann—Hurwitz formula.

Given a continuous mapping of topological spaces g : A → B, call the local multiplicity
of g at a ∈ A (notation: µag) the maximal number k such that in any neighborhood of
a there exist distinct points a1, ..., ak for which g(a1) = ... = g(ak). The mapping g is
said to be of constant degree if there exists a number (denoted by deg g) such that for
any b ∈ B one has

(5.1)
∑

a∈g−1(b)

µag = deg g

It is clear that all branched coverings are mappings of constant degree.

Lemma 5.2. (cf. [7, lemma 4.1]) Let g : A → B be a simplicial mapping of constant
degree of finite simplicial complexes. Let Ak = {a ∈ A | µag ≥ k} (Clearly, each Ak is a
closed subcomplex of A). Then

χ(A) = χ(B) deg g −
∑

k>1

χ(Ak).

Proof. The word “simplex” will mean here “open simplex”. For a simplex τ in B denote
by N(τ) the number of the simplices in g−1(τ). If C is a union of open simplices σ, denote
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χ0(C) =
∑

σ⊂C(−1)dim σ. Clearly, that if C is closed a subcomplex then χ0(C) = χ(C).
Let A′

k = {a ∈ A | µag = k}. From (5.1) we have

N(τ) = deg g −
∑

σ⊂g−1(τ)

(µσg − 1).

Hence,

χ(A) =
∑

τ⊂B

(−1)dim τN(τ) =
∑

τ⊂B

(−1)dim τ
[
deg g −

∑

σ⊂g−1(τ)

(µσg − 1)
]

=
∑

τ⊂B

(−1)dim τ deg g −
∑

σ⊂A

(−1)dim σ(µσg − 1) = χ(B) deg g −
∑

k

(k − 1)χ0(A
′

k)

= χ(B) deg g −
∑

k

(k − 1)(χ(Ak) − χ(Ak+1)) = χ(B) deg g −
∑

k>1

χ(Ak).

Q.E.D.

Lemma 5.3. χ(X) = 2; χ(X − M) = 1.

Proof. By Propositions 3.2 and 3.3, M is a disk. Hence, applying Lemma 5.2 to the
covering f : X → B4, we have χ(X) = χ(B4) deg f − χ(M) = 3 − 1 = 2. Let N be
an open tubular neighbourhood of M . Since M ≃ D2, N is homeomorphic to a 4-cell,
and one can chose a cell complex subdivision of X which contains N as an open cell.
Therefore, χ(X − N) = χ(X) − 1 = 1, but X − N is homeomorphic to X − M . Q.E.D.

§6. Rudolph diagram of the Vitushkin’s covering

In this section we use the notation from [1, §1] and refere to the pictures [1, Fig.1 —
Fig.4].

First, note that if F is a complex multi-valued function in a disk D, D0 ⊂ D is a
domain bounded by a Jordan (i.e. simple closed) curve ∂D0 ⊂ D, and F has neither
branching points nor intersections of different single-valued branches in D − D0, (i.e.
B(F )∩ (D−D0) = ∅) then the pairs (D×C, graph(F )) and (D0 ×C, graph(F |D0

)) are
homeomorphic.

Therefore, it is enough to calculate the Rudolph diagram for f |D0
where f is the 4-

valued function constructed in [1,§1], and D0 is an ε1-neighborhood of K1 ∪ K2 ∪ K3 ∪
I1 ∪ I2 ∪ I3 (see [1, Fig.1] and Fig.3 below). Unfortunately, the diagram for the f is
degenerate. However, if we perturb f , replacing it by eiε2f and replacing the terms
“2i” and “−2i” respectively with the terms “2i + ε3” and “−2i + ε3” everywhere in the
definition of f in [1,§1], then for 0 < ε1 ≪ ε2 ≪ ε3 ≪ 1 we obtain the diagram shown in
Fig.3. Evidently, the diagrams in Fig.2 and Fig.3 are diffeomorphic.

To show that the Rudolph diagram B+ really looks like in Fig.3, we just write down
explicit formulas for real polynomial parameterizations of all the segments of B+. We
display them only for B+ ∩ K3 (other computations are either the same or easier).

Denote: α = eiε2 , a1 = 2i+ε3, a2 = −2i+ε3. By definition we have B+∩K3 = L0∪L1∪
L2 ∪ L3 where L0 = {x | Re(α

√
x + 2) = −Re(α

√
x + 2)}, Lj = {x | Re(α

√
x + 2) =

Re(αaj)}, j = 1, 2, and L3 = {x | Re(αa1) = Re(αa2)} = ∅. Clearly,

L0 = {x ∈ K3 | Arg(α
√

x + 2) = π/2} = {x ∈ K3 | Arg(x + 2) = π − 2 Arg α}
= {−2 + tei(π−2ε2) | t ∈ R+} ∩ K3,

Lj = {x ∈ K3|∃t ∈ R; α(
√

x + 2 − aj) = it} = {−2 + (it/α + aj)
2 | t ∈ R} ∩ K3.
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To find the integer numbers marking on the segments of B+, it is enough to trace, in
what order the values of f pass one over another (see [1,Fig.4] for the considered case of
K3, and see [1, Fig.2,3] for the cases K1 and K2).

Appendix. Existence of non-degenerate

Rudolph diagrams for algebraic curves

In this appendix we summarize the results from [5,6] on possibility to present a plane
algebraic curve by a multi-valued function with non-degenerate Rudolph diagram. Com-
bining together lemmas 2.3, 2.4 of [5] and lemmas 1, 2 of [6], one obtains

Proposition. Let K be a reduced (i.e. without multiple components) algebraic curve in
C2 which contains no pair of components of form

(A.1) (Q(z, w) − a)(Q(z, w)− b) = 0, Q ∈ C[z, w], degQ = 2, a 6= b ∈ C,

other than a union of 4 parallel lines. Then there exist coordinates (z, w) obtained by an
arbitrary small linear transformation of C2, such that the multi-valued function F (z) =
{w | (z, w) ∈ K} has a non-degenerate Rudolph diagram B+(F ) which satisfies the
following additional condition. B+(F ) − B(F ) is a union of immersed real lines with
only transversal intersections and self-intersections, and if j : R → C is one of these
immersions then for any t ∈ R there exists a unique pair f1, f2 of germs of single-valued
branches of F at j(t), such that Re f1 −Re f2 locally defines j([t− ε, t + ε]) as a smooth
real-analytic curve. All such pairs of germs corresponding to the same immersion j, are
obtained one from another by a simultaneous analytic continuation along j.

Clearly, that the Rudolph diagram of a curve containing components of the form
(A.1) (different from 4 lines) is degenerate for any choise of coordinates. Indeed, the
multi-valued function always has two pairs of branches f1, f2 and f3, f4 whose differences
f2 − f1 and f4 − f3 identically coincide, and hence, vanishing of Re f2 − Re f1 implies
vanishing of Re f4 − Re f3. There are two ways to avoid this problem. On one hand,
such pairs disappear after changing the infinite line (if we are interested in the projective
case), or after an affine but non-linear change of variables (if we are interested in the
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affine case). On the other hand, one can consider Rudolph diagrams with more than one
integer marking the segments of the curves. If the difference between any two marks on
the same segment is grater than 2, what means that real parts of no three values of F
coincide (and the lemmas in [5,6] provide existence of such a projection for any curve)
then such diagrams possess all the essential properties of Rudolph diagrams, including
the unique reconstruction of the graph and the existence of the presentation for the
fundamental group of the complement given by Proposition 3.1.
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