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1. Introduction and statement of main results

1.1. Introduction. We study here the following problem (the Class Product
Problem). Let c1, . . . , cm be conjugacy classes in a given group. Does the unity of
the group belong to their product? For the usual unitary group SU(n), this problem
is completely solved in [2] and [3]. Various partial cases of the class product problem
(in particular, estimates for the covering number) for many groups were studied by
many authors see, e. g., [1, 9, 11, 12] and numerous references therein.

In this paper we give a complete solution to the class product problem for the
finite unitary groups GU(3, q2) and SU(3, q2), see §1.7 for precise statements. Due
to Ennola duality (see §1.3), as a by-product, we obtain a solution for the groups
GL(3, q), SL(3, q). For the sake of completeness, we also give in §5 a solution for the
groups GL(2, q), GU(2, q2) and SU(2, q2)∼=SL(2, q). A solution for corresponding
projective groups PGL, PSL, PGU and PSU easily follows.

Our interest to the class product problem in all kinds of unitary groups is moti-
vated by the study of braid monodromy of plane algebraic curves (see [14]).

As in [1, 12], the main tool used here for solving the class product problem is
Burnside’s formula for the structure constants via the character table. Namely,
for a finite group Γ and its elements x1, . . . , xm, we denote the number of m-
tuples (y1, . . . , ym) such that yi is a conjugate of xi in Γ and y1 . . . ym = e by
NΓ(x1, . . . , xm). Then Burnside’s formula (see, e. g., [13; Th. I-5.8] or [1; Ch. 1,
10.1]) reads as

NΓ(x1, . . . , xm) =
|xΓ

1 | · . . . · |x
Γ
m|

|Γ|

∑

χ∈Irr(Γ)

χ(x1) . . . χ(xm)

χ(1)m−2
(1)

where Irr(Γ) is the set of irreducible characters of Γ and xΓ denotes the conjugacy
class of x in Γ. We denote the sum in the right hand side of (1) by N̄Γ(x1, . . . , xm).

We use the character tables from [6] (GU/GL) and [15, 7] (SU/SL).

Acknowledgment. I am grateful to M. Geck, A. A. Klyachko, N. A. Vavilov and
I. A. Vedenova for useful advises and discussions.

1.2. Determinant Relation and Rank Condition. If Γ is a subgroup of
GL(n,K) over any commutative field K and A1, . . . , Am ∈ Γ are such that I ∈
AΓ

1 . . .AΓ
m, then an evident restriction is the determinant relation

det(A1) · . . . · det(Am) = 1 (2)
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Another evident restriction which takes place for any field, is the rank condition: if
λ1 . . . λm = 1, then

rk(Aj − λjI) ≤
∑

i6=j

rk(Ai − λiI) for any j = 1, . . . , m (3)

(I is the identity matrix). Indeed, if we denote the λi-eigenspace of Ai by Vi, then
⋂

i6=j Vi ⊂ Vj , thus codimVj ≤ codim
⋂

i6=j Vi ≤
∑

i6=j codimVi. When m > n, this
condition is always satisfied for any m-tuple of non-scalar matrices.

One more general restriction (see Case (viii) in Theorem 1.3(a)) is

Proposition 1.1. Let K be a perfect field and A ∼ B ∈ GL(3, K). If A does not

have eigenvalues in K, then A−1B 6=

(

1 0 0

1 1 0

0 0 1

)

.

Proof. Suppose the contrary. Let V be the eigenspace of A−1B. Then A|V = B|V .
Since A has no eigenvalues in K, we have A(V ) 6= V . Let e2 ∈ V ∩ A(V ), e1 =
A−1(e2), and e3 = A(e2). Then B(e1) = A(e1) = e2 and B(e2) = A(e2) = e3.
Thus, A and B take the canonical form in the same basis (e1, e2, e3). Since A ∼ B,
this implies A = B. Contradiction. �

It happens (see Theorem 1.3 in §1.7) that in the case of GL(3, q), q 6= 2, there are
no other restrictions on A1, . . . , Am. In the case of GU(3, q2), there are much more
restrictions (see the lines in Table 2 not marked by the asterisk). An interesting
question is to generalize them for any field and for any dimension.

1.3. Ennola duality and the sign convention. Throughout the paper, q is a
prime power and GU (resp. SU , GL, SL) is an abbreviation of GU(3, q2) (resp.
SU(3, q2), GL(3, q), SL(3, q)) except §5 where the same convention is used with 3
replaced by 2.

Ennola [6] observed that the character tables of groups GU(n, q2) and GL(n, q)
are obtained from each other by changing the sign of q. The same is true for
SU(n, q2) and SL(n, q). Since the character table is our main tool, it is not sur-
prising that all computations are almost the same for GU/SU and GL/SL. So,
throughout the paper (except §4 and §5.3), we use the following sign convention: if
a symbol ± or ∓ occurs in a formula, then the upper sign corresponds to the case of
GU (resp. SU , PSU) and the lower sign corresponds to the case of GL (resp. SL,
PSL). Throughout the paper (except §4 and §5.3), G (resp. S; PG; PS) stands
for GU or GL (resp SU or SL; PGU or PGL; PSU or PSL) and we set

δL =
1∓ 1

2
=

{

1, G = GL,

0, G = GU.
(4)

1.4. Conjugacy classes in GU(3, q2) and GL(3, q). Recall that GU(3, q2) is the
group of 3× 3 matrices A with coefficients in the finite field Fq2 such that A∗A = I

where A∗ = At and z 7→ z̄ is the Frobenius automorphism of Fq2 defined by z 7→ zq .
We set Ω = {z ∈ Fq2 | zq±1 = 1}, i. e., Ω is the multiplicative group F∗

q when
G = GL and Ω is “the unit circle” Ω = { z ∈ Fq2 | zz̄ = 1} when G = GU .

We fix a multiplicative generator τ of F∗
q6 and we set ρ = τ q

4+q2+1 (a generator

of F∗
q2), ω = ρq∓1 (a generator of Ω), and θ = τ q

3∓1.
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The conjugacy classes in GL(n, q) are determined by the Jordan normal form
(JNF). The conjugacy classes in GU(n, q2) have been computed in [5] and [16].
Each conjugacy class of GU(n, q2) is the intersection of GU(n, q2) with a conjugacy
class of GL(n, q2), so, it is determined by JNF. The classes of GL and those of
GU (represented by JNF in GL(3, q6)) are listed in Table 1 which, for the reader’s
convenience, we reproduce from [6]. For an integer k, we denote the set {1, . . . , k}
by [k]. We set Rq2−1 = {k ∈ [q2 − 1] | k 6≡ 0 mod q ∓ 1} and Rq3±1 = {k ∈
[q3 ± 1] | k 6≡ 0 mod q2 ∓ q + 1}.

Table 1. Conjugacy classes in G

Class JNF over Fq6 det class size
range of the

parameters

C
(k)
1

(

ωk 0 0
0 ωk 0
0 0 ωk

)

ω3k 1 k ∈ [q ± 1]

C
(k)
2

(

ωk 0 0
1 ωk 0
0 0 ωk

)

ω3k (q ∓ 1)(q3 ± 1) k ∈ [q ± 1]

C
(k)
3

(

ωk 0 0
1 ωk 0
0 1 ωk

)

ω3k q(q2 − 1)(q3 ± 1) k ∈ [q ± 1]

C
(k,l)
4

(

ωk 0 0
0 ωk 0
0 0 ωl

)

ω2k+l q2(q2 ∓ q + 1) (k, l) ∈ [q ± 1]2, k 6= l

C
(k,l)
5

(

ωk 0 0
1 ωk 0
0 0 ωl

)

ω2k+l q2(q ∓ 1)(q3 ± 1) (k, l) ∈ [q ± 1]2, k 6= l

C
(k,l,m)
6

(

ωk 0 0
0 ωl 0
0 0 ωm

)

ωk+l+m q3(q ∓ 1)(q2 ∓ q + 1) 1 ≤ k < l < m ≤ q ± 1

C
(k,l)
7

(

ωk 0 0
0 ρl 0

0 0 ρ∓ql

)

ωk∓l q3(q3 ± 1)
(k, l) ∈ [q ± 1]×Rq2−1

C
(k,l)
7 = C

(k,∓ql)
7

C
(k)
8

(

θk 0 0

0 θq2k 0

0 0 θq4k

)

ωk q3(q ± 1)2(q ∓ 1)
k ∈ Rq3±1

C
(k)
8 = C

(q2k)
8 = C

(q4k)
8

1.5. Conjugacy classes in SU(3, q2) and SL(3, q). If 3 does not divide q ± 1,
then G = S×Z(G) where Z(G) = C1

∼= Ω is the center of G, and hence, the classes
of S are just those classes of G which are contained in S.

Let q = 3r∓ 1. In this case, the splitting of conjugacy classes in SL is described
in [4; Ch. 11, §224] (see also [17]). As stated in [15], “it can be shown that the

same splitting takes place in the unitary case”. Each of C
(k)
3 , k = 0, r, 2r, splits into

three classes which we denote by C
(k,l)
3 , l = 0, 1, 2. The class C

(k,l)
3 in SU(3, q2)

(resp. in SL(3, q)) consists of matrices which are conjugate in SL(3, q2) (resp. in
SL(3, q)) to1





ωk 0 0
zl ωk 0
0 1 ωk



 , z =

{

ρ, S = SU(3, q2),

ω, S = SL(3, q).

Other conjugacy classes of G contained in S are conjugacy classes of S.

1there is a misprint here in [15].
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Proposition 1.2. If A ∈ C
(k,l)
3 , then A−1 ∈ C

(−k,l)
3 and ωk′

A ∈ C
(k+k′,l)
3 .

Remark. Each conjugacy class of SU is the intersection of SU with a conjugacy
class of SL(3, q2). The situation is quite different for SU(2, q2), see §5.3.

1.6. Notation for eigenvalues. We denote the union of the conjugacy classes

C
(... )
i by Ci, i = 1, . . . , 8. We denote the number of distinct eigenvalues of matrices

from Ci by ni and the number of distinct eigenvalues belonging to Ω by n′
i. So, we

have

n1 = n2 = n3 = 1, n4 = n5 = 2, n6 = n7 = n8 = 3;

n′
i = ni (i = 1, . . . , 6); n′

7 = 1, n′
8 = 0.

We denote the multiplicity of an eigenvalue λ of a matrix A by mA(λ). Let
A ∈ Ci. We denote the eigenvalues of A by λ1 = λ1(A), . . . , λni

= λni
(A). We

number them so that

mA(λ1) ≥ · · · ≥ mA(λni
) and λ1, . . . , λn′

i
∈ Ω. (5)

For an m-tuple of matrices ~A = (A1, . . . , Am), Aν ∈ Ciν , ν = 1, . . . , m, we use
the multi-index notation:

~a = (a1, . . . , am), [~n] = [ni1 ]× · · · × [nim ], [~n′] = [n′
i1 ]× · · · × [n′

im ],

(recall that [k] stands for {1, . . . , k}) and for ~a ∈ [~n] we set

λ~a = λa1
(A1) . . . λam

(Am), δ~a = δ~a( ~A) =

{

1, λ~a = 1,

0, λ~a 6= 1.

In this notation, the rank condition (3) for ~A = (A1, A2, A3) takes the form

n′
i3
∑

a=1

δ1,1,a > 0 if {i1, i2} ⊂ {2, 4} (3′)

1.7. Statement of main results. In Theorems 1.3 and 1.6, we restrict ourselves
by the case when A1, . . . , Am are non-scalar and m ≥ 3. To reduce the general case
to this one, it is enough to know the class of the inverse of a given matrix and the
class of its multiple by a scalar. For G, this is clear from JNF; for S, the answer is
given in Proposition 1.2 in §1.5.

Theorem 1.3. Let A1, . . . , Am ∈ G\C1, m ≥ 3, satisfy (2) and (3). Let Aν ∈ Ciν ,
ν = 1, . . . , m.

(a). If G = GU , we suppose that one of the following conditions (i)–(vii) holds:

(i) m = 3, i1 ∈ {6, 7}, i2 ∈ {3, 5}, i3 ∈ {2, 4}, and δ111 = 1;
(ii) m = 3, i1 = 5, i2 ∈ {3, 5}, i3 ∈ {2, 4}, and δ211 = 1;
(iii) m = 3, i1 = i2 ∈ {6, 8}, i3 = 2, and δ111δ221δ331 = 1 (when i1 = i2 = 8, the

last condition is equivalent to δ111 = 1);
(iv) m = 3, (i1, i2, i3) = (3, 2, 2) or (4, 4, 2);
(v) m = 3, (i1, i2, i3) = (5, 4, 4), and δ112δ121δ211 = 1 (see Remark 1.5);
(vi) m = 4, (i1, i2, i3, i4) = (3, 2, 2, 2), and δ1111 = 1;
(vii) m = 4, (i1, i2, i3, i4) = (4, 4, 4, 2), and δ1121δ1211δ2111 = 1 (see Remark 1.5).
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If G = GL, we suppose that one of the following conditions (viii)–(ix) holds:

(viii) m = 3, (i1, i2, i3) = (8, 8, 2) and δ111 = 1;
(ix) q = 2, m = 3, (i1, i2, i3) = (8, 8, 3) and AG

1 = AG
2 .

Then I 6∈ AG
1 . . . AG

m.

(b) Suppose that none of the conditions of Part (a) holds for any permutation
of A1, . . . , Am and for any renumbering of the eigenvalues of the matrices under
the restrictions (5). In the case G = GU , we suppose also that q 6= 2. Then
I ∈ AG

1 . . . AG
m.

Remark 1.4. In Table 2 we present the list of all the cases when (2) can be satisfied
for non-constant matrices A1, . . . , Am ∈ G, m ≥ 3, Ai ∈ Ciν , iν ≥ 2, but I 6∈
AG

1 . . . AG
m for q > 2. The cases marked by asterisk concern the both groups GU

and GL; as stated in §1.2, in all of them except (8, 8, 2) the rank condition (3) is
not satisfied. The cases not marked by asterisk concern only GU .

Remark 1.5. Conditions (v) and (vii) in Theorem 1.3 mean that (µ1A
G
1 , . . . , µmAG

m)

is
(

C
(−k,0)
5 , C

(0,k)
4 , C

(0,k)
4

)

or
(

C
(0,k)
4 , C

(0,k)
4 , C

(0,k)
4 , C

(−k)
2

)

for some k ∈ {1, . . . , q}
and for some µi ∈ Ω with µ1 . . . µm = 1.

Table 2. Cases when detA1 . . . Am = 1, I 6∈ AG
1 . . . AG

m for q > 2 (see Remark 1.4)

(i1, . . . , im) (i1, . . . , im)

(2, 2, 2)* δ111 = 0 (6, 4, 2)* δ111 + δ211 + δ311 = 0
(3, 2, 2)* δ111 = 0 (6, 4, 3) δ111 + δ211 + δ311 = 1
(3, 2, 2) δ111 = 1 (6, 4, 4)* δ111 + δ211 + δ311 = 0
(4, 2, 2)* (6, 5, 2) δ111 + δ211 + δ311 = 1
(4, 3, 2)* (6, 5, 4) δ111 + δ211 + δ311 = 1
(4, 4, 2)* δ111 = 0 (6, 6, 2)

∑

α∈S3
δ11α1δ22α1δ33α1 = 1

(4, 4, 2) δ111 = 1 (7, 2, 2)* δ111 = 0
(4, 4, 3)* δ111 = 0 (7, 3, 2) δ111 = 1
(4, 4, 4)* δ111 + δ112δ121δ211 = 0 (7, 4, 2)* δ111 = 0
(5, 2, 2)* δ211 = 0 (7, 4, 3) δ111 = 1
(5, 3, 2) δ211 = 1 (7, 4, 4)* δ111 = 0
(5, 4, 2)* δ111 + δ211 = 0 (7, 5, 2) δ111 = 1
(5, 4, 3) δ211 = 1 (7, 5, 4) δ111 = 1
(5, 4, 4)* δ111 + δ211 = 0 (8, 2, 2)*
(5, 4, 4) δ211δ121δ112 = 1 (8, 4, 2)*
(5, 5, 2) δ211 = 1 (8, 4, 4)*
(5, 5, 4) δ211 = 1 (8, 8, 2)* δ111 + δ121 + δ131 = 1
(6, 2, 2)* δ111 + δ211 + δ311 = 0 (3, 2, 2, 2) δ1111 = 1
(6, 3, 2) δ111 + δ211 + δ311 = 1 (4, 4, 4, 2) δ1121δ1211δ2111 = 1

The case of q = 2 also is treated completely in Propositions 4.2 and 4.3 (for GU)
and in Corollary 4.5 (for SU).

If 3 does not divide q ± 1, then G ∼= S ×Ω, thus the class product problem in S
reduces to that in G. Otherwise (when 3|q ± 1) the solution is as follows.

Theorem 1.6. Let A1, . . . , Am, m ≥ 3, be as in Theorem 1.3. We suppose in
addition that q = 3r∓1 and A1, . . . , Am ∈ S, recall that S is SU(3, q2) or SL(3, q).
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(a). Suppose that m = 3.
If S = SU , we suppose that

(i) i1 = i2 = 3, i3 ∈ {2, 4}, A1 ∈ C
(k1,l1)
3 , A2 ∈ C

(k2,l2)
3 , l1 6= l2.

If S = SL, we suppose that one of the following conditions (ii)–(v) holds:

(ii) (i1, i2, i3) = (3, 3, 2), A1 ∈ C
(k1,l1)
3 , A2 ∈ C

(k2,l2)
3 , l1 6= l2, and δ111 = 0;

(iii) (i1, i2, i3) = (3, 3, 4), A1 ∈ C
(k1,l1)
3 , A2 ∈ C

(k2,l2)
3 , l1 6= l2;

(iv) q = 4, (i1, i2, i3) = (3, 3, 3), Aν ∈ C
(kν ,lν)
3 , ν = 1, 2, 3, l1 = l2 6= l3, and

δ111 = 1;

(v) q = 4, (i1, i2, i3) = (3, 3, 3), Aν ∈ C
(kν ,lν)
3 , ν = 1, 2, 3, l1 = l2 = l3, and

δ111 = 0.

Then I 6∈ AS
1A

S
2A

S
3 .

(b). Suppose that q > 2 and I ∈ AG
1 . . . AG

m. Suppose that for any permutation
of A1, . . . , Am, the hypothesis of Part (a) is not satisfied. Then I ∈ AS

1 . . .AS
m.

If 3 does not divide q± 1, then PG = PS = S. If 3 divides q± 1, the solution of

the class product problem for PG and PS is as follows. Let C̃
(... )
i be the conjugacy

class of PG or PS corresponding to C
(... )
i .

Corollary 1.7. Let q = 3r ∓ 1, q 6= 2. If m ≥ 4 (resp. m ≥ 3), then the product
of any m-tuple of nontrivial conjugacy classes of PGU (resp. PGL) contains the
identity matrix. All triples of nontrivial conjugacy classes of PGU which have
representatives in GU satisfying (2) and (3), but whose product does not contain
the identity matrix, are

(i) C̃
(0)
3 C̃

(0)
2 C̃

(0)
2

(ii) C̃
(0)
2 C̃

(0,k)
4 C̃

(0,−k)
4 k = 1, . . . q;

(iii) C̃
(0,k)
5 C̃

(0,k)
4 C̃

(0,k)
4 k = 1, . . . , q, k 6∈ {r, 2r};

(iv) C̃
(0,r,2r)
6 C̃

(0)
3 C̃

(0)
2

(v) C̃
(0,r,2r)
6 C̃

(0,k)
5 C̃

(0,−k)
4 k = 1, . . . , q;

(vi) C̃
(0,r,2r)
6 C̃

(0,r,2r)
6 C̃

(0)
2

Corollary 1.8. Let q = 3r ∓ 1, q 6= 2. If m ≥ 4, then the product of any m-
tuple of nontrivial conjugacy classes of PS contains the identity matrix. All triples
of nontrivial conjugacy classes which have representatives in S satisfying (3), but
whose product does not contain the identity matrix, are

(i) C̃
(0,l)
3 C̃

(0)
2 C̃

(0)
2 l = 0, 1, 2;

(ii) C̃
(0)
2 C̃

(k,−2k)
4 C̃

(−k,2k)
4 k = 1, . . . r − 1;

(iii) C̃
(k,−2k)
5 C̃

(k,−2k)
4 C̃

(k,−2k)
4 k = 1, . . . , r − 1, 3k 6∈ {r, 2r};

(iv) C̃
(0,r,2r)
6 C̃

(0,l)
3 C̃

(0)
2 l = 0, 1, 2;

(v) C̃
(0,r,2r)
6 C̃

(k,−2k)
5 C̃

(k,−2k)
4 k = 1, . . . , r − 1;

(vi) C̃
(0,r,2r)
6 C̃

(0,r,2r)
6 C̃

(0)
2
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(vii) C̃
(0,l1)
3 C̃

(0,l2)
3 C̃

(0)
2 0 ≤ l1 < l2 ≤ 2;

(viii) C̃
(0,l1)
3 C̃

(0,l2)
3 C̃

(k,−2k)
4 0 ≤ l1 < l2 ≤ 2, k = 1, . . . , r − 1.

in the case PS = PSU , and only the triples (viii) in the case PS = PSL.

1.8. Covering number and extended covering number. Let Γ be a group.
The covering number of Γ is the minimal integer m such that for any nontrivial
conjugacy class c, we have cm = Γ. It is denoted by cn(Γ). The extended covering
number of Γ is the minimal integer m such that for any nontrivial conjugacy classes
c1, . . . , cm we have c1 . . . cm = Γ. Covering numbers were studied in [1, 12].

Corollary 1.9.
cn(PSL) = 3 and ecn(PSL) = 4;
cn(PSU) = 3 and ecn(PSU) = 4 if gcd(q + 1, 3) = 3 and q 6= 2;
cn(PSU) = 4 and ecn(PSU) = 5 if gcd(q + 1, 3) = 1.

Remark 1.10. Karni [10] computed the numbers cn(PS) and ecn(PS) for q = 3, 4, 5;
Lev [11] proved that cn(PSL(n,K)) = n for any n ≥ 3 and for any field K which
has more than 3 elements.

2. Class products in GU(3, q2) and GL(3, q). Proof of Theorem 1.3

2.1. The character tables of GU(3, q2) and GL(3, q). In this section we rep-
resent the character table of G (see [6]) in a form convenient to apply (1). The
irreducible characters of G divide into 8 series parametrized by the same sets of
parameters as the conjugacy classes. We denote the dimension of the irreducible
representations corresponding to the j-th series by dj . So,

d1 = 1 d3 = q3 d5 = q(q2 ∓ q + 1) d7 = q3 ± 1

d2 = q2 ∓ q d4 = q2 ∓ q + 1 d6 = (q ∓ 1)(q2 ∓ q + 1) d8 = (q ± 1)(q2 − 1)

The characters χ
(t,... )
di

, i = 1, . . . , 8, are irreducible and pairwise distinct only for
some values of the parameters t, u, v, but we define them by the same formulas
for any values of the parameters. Recall that for an integer n, we denote the set
{1, . . . , n} by [n]. Let

Xj = {χ
(t)
dj

| t ∈ [q ± 1]}, j = 1, 2, 3, X ′
j = {χ

(t,t)
dj

| t ∈ [q ± 1]}, j = 4, 5,

Xj = {χ
(t,u)
dj

| (t, u) ∈ [q ± 1]2}, j = 4, 5, X ′
6 = {χ

(t,u,u)
d6

| (t, u) ∈ [q ± 1]2},

X6 = {χ
(t,u,v)
d6

| (t, u, v) ∈ [q ± 1]3}. X ′
7 = {χ

(t,(1∓q)u)
d7

| (t, u) ∈ [q ± 1]},

X7 = {χ
(t,u)
d7

| (t, u) ∈ [q ± 1]× [q2 − 1]}, X ′
8 = {χ

((q2∓q+1)t)
d8

| t ∈ [q ± 1]},

X8 = {χ
(t)
d8

| t ∈ [q3 ± 1]}, X ′′
6 = {χ

(t,t,t)
d6

| t ∈ [q ± 1]}

and Ξ1 = {X1, X2, X3, X
′
4, X

′
5, X

′′
6 , X

′
8}, Ξ2 = {X4, X5, X

′
6, X

′
7}, Ξ3 = {X6}, Ξ4 =

{X7}, Ξ5 = {X8}, Ξ = Ξ1∪· · ·∪Ξ5. It is clear that if E is any expression depending
on a character of G, then

∑

χ∈Irr(G)

E(χ) =
∑

X∈Ξ

s(X)
∑

χ∈X

E(χ) (6)
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where the symmetry factors s(X) are given in Tables 3.1 and 3.2.
We fix a homomorphism of multiplicative groups f : F∗

q6 → C∗ which takes τ to

exp(2πi/(q6 − 1)), thus,

f(ω) = e2πi/(q±1), f(ρ) = e2πi/(q
2−1), f(θ) = e2πi/(q

3±1).

Let A ∈ Ci and let λ1, . . . , λni
be its eigenvalues numbered as in (5). Then

χ(t)(A) = cXi f(detA)t, χ(t) ∈ X ∈ Ξ1

χ(t,u)(A) =

n′
i

∑

a=1

cXi,af(λa)
tf(λ−1

a detA)u, χ(t,u) ∈ X ∈ Ξ2,

χ
(t,u,v)
d6

(A) =
∑

α∈A6,i

cX6
i f(λt

α(1)λ
u
α(2)λ

v
α(3)),

χ
(t,u)
d7

(A) =
∑

α∈A7,i

cX7
i f(λt

α(1)λ
u
α(2)), χ

(t)
d8
(A) =

ni
∑

a=1

cX8
i f(λt

a).

where A6,i and A7,i are sets of triples α = (α(1), α(2), α(3)) and pairs (α(1), α(2))
respectively defined by

A6,i = {(1, 1, 1)}, A7,i = {(1, 1)}, i = 1, 2, 3,

A6,i = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}, A7,i = {(2, 1)}, i = 4, 5,

A6,6 = S3, A7,7 = {(1, 2), (1, 3)},

A6,7 = A6,8 = ∅, A7,6 = A7,8 = ∅.

The coefficients cXi and cXi,a (the latter denoted just by cXi in the cases when n′
i = 1)

are given in the Tables 3.1 and 3.2.

Table 3.1

X cX1 cX2 cX3 cX4 cX5 cX6 cX7 cX8 s(X)

X1 1 1 1 1 1 1 1 1 1
X2 d2 ∓q 0 1∓ q 1 2 0 −1 1
X3 d3 0 0 q 0 ∓1 ±1 ∓1 1
X ′

4 d4 1∓ q 1 2∓ q 2 3 1 0 −1
X ′

5 d5 q 0 2q ∓ 1 −1 ∓3 ±1 0 −1
X ′′

6 d6 2q ∓ 1 ∓1 3q ∓ 3 ∓3 ∓6 0 0 1/3
X ′

8 d8 −q ∓ 1 ∓1 0 0 0 0 ∓3 −1/3

X6 d6 2q ∓ 1 ∓1 q ∓ 1 ∓1 ∓1 0 0 1/6
X7 d7 ±1 ±1 q ± 1 ±1 0 ±1 0 1/2
X8 d8 −q ∓ 1 ∓1 0 0 0 0 ∓1 1/3

Table 3.2

X cX2 cX2 cX3 cX4,1 cX4,2 cX5,1 cX5,2 cX6,a cX7 s(X)

X4 d4 1∓ q 1 1∓ q 1 1 1 1 1 1
X5 d5 q 0 q ∓ 1 q ∓1 0 ∓1 ±1 1
X ′

6 d6 2q ∓ 1 ∓1 2(q ∓ 1) q ∓ 1 ∓2 ∓1 ∓2 0 −1/2
X ′

7 d7 ±1 ±1 0 q ± 1 0 ±1 0 ±2 −1/2
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2.2. Structure constant formula for GU(3, q2) and GL(3, q). LetA1, . . . , Am ∈
G, Aν ∈ Ciν , detA1 . . . Am = 1. We use the multi-index notation as explained in
§1.6 and we set also

~Aj = Aj,i1 × · · · × Aj,im , j = 6, 7.

Substituting the formulas from §2.1 into (1) and using (6), we obtain

N̄G(A1, . . . , Am) = Σ1 + · · ·+Σ5

where Σi is the sum over Ξi:

Σ1 =
∑

X∈Ξ1

s(X)

q±1
∑

t=1

cXi1 . . . c
X
im
f
(

detA1 . . . Am

)t

(cX1 )m−2
= (q ± 1)

∑

X∈Ξ1

s(X)cXi1 . . . c
X
im

(cX1 )m−2

Σ2 =
∑

X∈Ξ2

s(X)
∑

~a∈[~n′]

cXi1,a1
. . . cXim,am

(cX1 )m−2

q±1
∑

t=1

f
(

λ~a
)t

q±1
∑

u=1

f
(

λ−1
~a detA1 . . . Am

)u

= (q ± 1)2
∑

X∈Ξ2

s(X)
∑

~a∈[~n′]

cXi1,a1
. . . cXim,am

δ~a

(cX1 )m−2

Σ3 =
1

6

∑

~α∈ ~A6

cX6
i1

. . . cX6
im

dm−2
6

q±1
∑

t=1

f(λ~α(1))
t

q±1
∑

u=1

f(λ~α(2))
u

q±1
∑

v=1

f(λ~α(3))
v

=
(q ± 1)3

6

∑

~α∈ ~A6

cX6
i1

. . . cX6
im

dm−2
6

δ~α(1)δ~α(2)δ~α(3)

Σ4 =
1

2

∑

~α∈ ~A7

cX7
i1

. . . cX7
im

dm−2
7

q±1
∑

t=1

f(λ~α(1))
t

q2−1
∑

u=1

f(λ~α(2))
u

=
(q ± 1)(q2 − 1)

2

∑

~α∈ ~A7

cX7
i1

. . . cX7
im

dm−2
7

δ~α(1)δ~α(2)

Σ5 =
1

3

∑

~a∈[~n]

cX8
i1

. . . cX8
im

dm−2
8

q3±1
∑

t=1

f(λ~a)
t =

(q3 ± 1)

3

∑

~a∈[~n]

cX8
i1

. . . cX8
im

dm−2
8

δ~a

2.3. Structure constants for triple products in GU(3, q2) and GL(3, q). Using
the formulas from §2.2, we computed the structure constants for all triples (i1, i2, i3).
To write down the result in a compact form, we introduce the following notation.

We define ~A∗
6 as the quotient of ~A6 by the action of the symmetric group S3 defined

by ~απ = (απ
1 , . . . , α

π
m) where απ

ν = (αν(1
π), αν(2

π), αν(3
π)). Similarly, we define
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~A∗
7 as the quotient of ~A7 by the action of Z2 which exchanges the elements of A7,7.

Given ~a ∈ [~n′], let |~a| be the number of ν such that aν = 1 and iν ∈ {4, 5}. We set

∆ =
∑

~α∈ ~A∗
6

δ~α(1)δ~α(2)δ~α(3) +
∑

~α∈ ~A∗
7

δ~α(1)δ~α(2), ∆a =
∑

~a∈[~n′],|~a|=a

δ~a.

We set also
∆′ =

∑

~a∈[~n]

δ~a.

We do the following substitutions (we may do them because of the determinant
relation):

(i) δ2~a = δ~a;

(ii) δ~aδ~b = 0 if ~a and ~b differ at exactly one position, i. e., if there exists ν0 such
that aν = bν if and only if ν = ν0, for example, δ122δ132 = 0;

(iii) δ~a = 0 if there exists ν0 such that aν ≤ n′
ν if and only if ν = ν0, for example,

we set δ321 = 0 if (i1, i2, i3) = (7, 5, 4);
(iv) δ111δni1

,ni2
,ni3

= δ111 if i1, i2, i3 ≤ 5;

(v) δ111 = 0 if i1 ∈ {4, 5} and {i2, i3} ⊂ {2, 3}.

The result of computation is presented in Table 4. Recall that δL is defined by (4).
In the third column, which is entitled “length of ∆”, we give the number of mono-
mials in ∆ or in ∆′ survived after the substitutions (i)–(v). If there are restrictions
on δ~a imposed by the rank condition, then we write them in the brackets in the
second column (if the rank condition is never satisfied, then we write “[false]”).

It is clear from Table 4 that NG(A1, A2, A3) = 0 in the cases (i)–(ix) of Theorem
1.3(a).

Also, when G = GL, it is clear from Table 4 that NG(A1, A2, A3) 6= 0 unless the
cases (viii) and (ix) of Theorem 1.3; maybe, it worth to note only that ∆ ≤ δ1,1,ni3

for i1 = i2 = 7, i3 ∈ {2, 3, 4, 5} and that for (i1, i2, i3) = (8, 8, 2) the proof is the
same as in the case G = GU .

In the last column we give a reference to a proof of Theorem 1.3(b) for G = GU
and q ≥ 5 in the corresponding case (“ev.” means “evident”). The case of G = GU ,
q = 2, 3, 4, is done in §4 and §2.4.

Table 5 serves to prove Theorem 1.3(b) for the triples (i1, i2, i3) appearing in
cases (i), (ii), (iii), (v) of Theorem 1.3(a). In the second column we write condition
(∗) on δ~a. It is a condition which is equivalent to the fact that the hypothesis of
Theorem 1.3(b) is satisfied, i. e., the conditions (i)–(v) are not satisfied for any
permutation of (i1, i2, i3) and for any renumbering of the eigenvalues under (5). As
in Table 4, the rank condition is written in the brackets. In the third column we
write the structure constant for G = GU under condition (∗). In each case it is
obviously nonzero for q ≥ 5.

2.4. The cases of GL(3, 2) and GU(3, q2) for q = 3, 4.
These cases are treated in [10]: p. 64 for GL(3, 2), pp. 69–71 for GU(3, 32) and

pp. 89–93 for GU(3, 42). The correspondence between the notation of conjugacy
classes in [6] (used in this paper) and the notation in [10] is given in Tables 6.1, 6.2
and 6.3. Note that in all these cases 3 does not divide q ± 1, hence it is enough to
consider the case of SU instead of GU .

2.5. Proof of Theorem 1.3 for m = 3. Here we complete the proof for triples
(i1, i2, i3) not covered by Table 5. In this section G = GU .
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Table 4. Structure constants for GU(3, q2)
(

δL=0

±=+

)

and GL(3, q)
(

δL=1

±=−

)

(i1, i2, i3) NG(A1, A2, A3)/|A
G
1 |

length proof of

of ∆ Th. 1.3

(2, 2, 2) (2q2δL ± q − 2)δ111 [δ111 = 1] ev.
(3, 2, 2) 2δLδ111 [δ111 = 1] ev.
(3, 3, 2) q2(1∓ δ111) + (q − 1)δ111 − 4qδLδ111 ev.
(3, 3, 3) q2(q2 − 2) + q(q2 ± 2q − 2)δ111 ev.
(4, 2, 2) 0 [false] ev.
(4, 3, 2) 0 [false] ev.
(4, 3, 3) q(q ± 1)2(q ∓ 1) ev.
(4, 4, 2) 2(q2 − 1)δLδ111 [δ111 = 1] ev.
(4, 4, 3) (q ± 1)2(q ∓ 1)δ111 [δ111 = 1] ev.

(4, 4, 4) (2q2δL ± 1)δ111 + q(q ∓ 1)δ112δ121δ211
[δ111 + δ112δ121δ211 = 1] ev.

(5, 2, 2) qδ211 [δ211 = 1] ev.
(5, 3, 2) q(q ± 1)(1∓ δ211) tbl. 5
(5, 3, 3) q(q ∓ 1)2

(

(q ∓ 2) + δ211
)

ev.
(5, 4, 2) (q ∓ q ± 1)δ111 + qδ211 [δ111 + δ211 = 1] ev.
(5, 4, 3) (q ± 1)

(

q + (2qδL − 1)δ111 ∓ qδ211
)

tbl. 5
(5, 4, 4) (q ± 1)δ111 + qδ211(1∓ δ112δ121) [δ111 + δ211 = 1] tbl. 5
(5, 5, 2) q2± q + 2

(

(q−1)2δL− 1
)

δ111 ∓ (q2± q)∆1 ∓ q2δ221 tbl. 5

(5, 5, 3) (q ± 1)
(

q(q2 ∓ 2q − 2) + (q2 − 4qδL + 1)δ111
+q(q ± 1)∆1 + q2δ221

)

ev.

(5, 5, 4) q(q ± 1)
(

δ112δ121δ211 ∓ δ121 ∓ δ211 + 1
)

∓q2δ221 + (2q2δL − 2q ∓ 1)δ111 tbl. 5

(5, 5, 5) q(q ± 1)(q2 ∓ 3q − 2 + q∆1) + (q3 ± 3q2 − 2q2 + 3q
±1)δ111 + q(q ± 1)2

(

∆2 ∓ δ112δ121δ211
)

+ q3δ222 ev.

(6, 2, 2) (q ± 1)∆0 [∆0 = 1] ev.
(6, 3, 2) (q ± 1)2(1∓∆0) tbl. 5
(6, 3, 3) (q ± 1)2

(

q2 ∓ 2q − 1 + (q ± 1)∆0

)

ev.
(6, 4, 2) (q ± 1)∆1 [∆1 = 1] ev.
(6, 4, 3) (q ± 1)2(1∓∆1) tbl. 5
(6, 4, 4) (q ± 1)∆2 ∓ q∆ [∆2 = 1] 6 ev.
(6, 5, 2) (q ± 1)

(

(q ± 1)(1∓∆1)∓ q∆0

)

tbl. 5
(6, 5, 3) (q ± 1)2

(

(q2 ∓ 3q − 1) + (q ± 1)∆1 + q∆0

)

ev.
(6, 5, 4) (q ±1)

(

(q ±1)(1∓∆2)∓ q(δ121+δ221+δ321) + q∆
)

6 tbl. 5

(6, 5, 5) (q ± 1)
(

(q ± 1)(q2 ∓ 4q − 1) + (q ± 1)2∆2

+q(q ± 1)(∆1 ∓∆) + q2∆0

)

6 §2.5

(6, 6, 2) (q ± 1)
(

(q ± 1)∓ q∆0 + (2q ∓ 1)∆
)

6 tbl. 5
(6, 6, 3) q(q ± 1)2

(

q ∓ 4 + ∆0 ∓∆
)

6 §2.5
(6, 6, 4) (q ± 1)

(

1 + q(1∓∆1)
)

+ q2∆ 18 §2.5
(6, 6, 5) q(q ± 1)

(

(q ± 1)(q ∓ 5) + (q ± 1)∆1 + q∆0 ∓ q∆
)

18 §2.5
(6, 6, 6) (q ± 1)2(q2 ∓ 6q + 1) + q2(q ± 1)∆0 ∓ q3∆ 36 §2.5
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Table 4 (continued-1)

(i1, i2, i3) NG(A1, A2, A3)/|A
G
1 |

length proof of

of ∆ Th. 1.3

(7, 2, 2) (q ∓ 1)δ111 [δ111 = 1] ev.
(7, 3, 2) (q2 − 1)(1∓ δ111) tbl. 5
(7, 3, 3) (q ± 1)(q2 − 1)

(

q ∓ 1 + δ111
)

ev.
(7, 4, 2) (q ∓ 1)δ111 [δ111 = 1] ev.
(7, 4, 3) (q2 − 1)(1∓ δ111) tbl. 5
(7, 4, 4) (q ∓ 1)δ111 [δ111 = 1] ev.
(7, 5, 2) (q ∓ 1)

(

(q ± 1)(1∓ δ111)∓ qδ121
)

tbl. 5
(7, 5, 3) (q2 − 1)

(

q2 ∓ q + 1 + (q ± 1)δ111 + qδ121
)

ev.
(7, 5, 4) (q ∓ 1)

(

(q ± 1)(1∓ δ111)∓ qδ121
)

tbl. 5
(7, 5, 5) (q ∓ 1)

(

(q ± 1)(q2 ∓ 2q − 1) + (q ± 1)2δ111
+q(q ± 1)∆1 + q2δ122

)

ev.
(7, 6, 2) (q ∓ 1)

(

q ± 1∓ q∆0

)

ev.
(7, 6, 3) q(q2 − 1)

(

q ∓ 2 +∆0

)

ev.
(7, 6, 4) (q ∓ 1)

(

q ± 1∓ q∆1

)

ev.
(7, 6, 5) q(q ∓ 1)

(

(q ± 1)(q ∓ 3) + (q ± 1)∆1 + q∆0

)

ev.
(7, 6, 6) (q ∓ 1)

(

(q ± 1)(q2 ∓ 4q + 1) + q2∆0

)

ev.
(7, 7, 2) (q ∓ 1)

(

1 + q(1∓ δ111)±∆
)

2 ev.
(7, 7, 3) q(q2 − 1)

(

q + δ111 ±∆
)

2 ev.
(7, 7, 4) (q ∓ 1)

(

q ± 1∓ qδ111
)

+ q2∆ 2 ev.
(7, 7, 5) q(q ∓ 1)

(

q2 − 1 + (q ± 1)δ111 + qδ112 ± q∆
)

2 ev.
(7, 7, 6) (q ∓ 1)

(

(q2 − 1)(q ∓ 1) + q2∆0

)

ev.
(7, 7, 7) (q4 − 1) + q2(q ∓ 1)δ111 ± q3∆ 4 ev.
(8, 2, 2) 0 [false] ev.
(8, 3, 2) q2 ∓ q + 1 ev.
(8, 3, 3) (q2 ∓ q + 1)(q2 ± q − 1) ev.
(8, 4, 2) 0 [false] ev.
(8, 4, 3) q2 ∓ q + 1 ev.
(8, 4, 4) 0 [false] ev.
(8, 5, 2) q2 ∓ q + 1 ev.
(8, 5, 3) (q2 − 1)(q2 ∓ q + 1) ev.
(8, 5, 4) q2 ∓ q + 1 ev.
(8, 5, 5) (q2 ∓ q + 1)(q2 ± q − 1) ev.
(8, 6, 2) q2 ± q + 1 ev.
(8, 6, 3) q(q ∓ 1)(q2 ∓ q + 1) ev.
(8, 6, 4) q2 ∓ q + 1 ev.
(8, 6, 5) q(q ∓ 2)(q2 ∓ q + 1) ev.
(8, 6, 6) (q2 ∓ q + 1)(q2 ∓ 3q + 1) ev.
(8, 7, 2) q2 ∓ q + 1 ev.
(8, 7, 3) q(q3 ± 1) ev.
(8, 7, 4) q2 ∓ q + 1 ev.
(8, 7, 5) q2(q2 ∓ q + 1) ev.
(8, 7, 6) (q2 ∓ q + 1)2 ev.
(8, 7, 7) q4 + q2 + 1 ev.
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Table 4 (continued-2)

(i1, i2, i3) NG(A1, A2, A3)/|A
G
1 |

length proof of

of ∆ Th. 1.3

(8, 8, 2) (q2 ∓ q + 1)(1−∆′/3) 9 tbl. 5
(8, 8, 3) q(q2 ∓ q + 1)

(

q ± 2∓∆′/3) 9 ev.
(8, 8, 4) q2 ∓ q + 1 ev.
(8, 8, 5) q(q3 ± 1) ev.
(8, 8, 6) (q2 + 1)(q2 ∓ q + 1) ev.
(8, 8, 7) (q ± 1)(q3 ± 1) ev.
(8, 8, 8) (q2 ∓ q + 1)(q2 ± 3q + 1)∓ q3∆′/3 27 §2.5

Table 5.

(i1, i2, i3) condition (∗) NG(A1, A2, A3)/|A
G
1 | under (∗) for G = GU(3, q2)

(5, 3, 2) δ211 = 0 q(q + 1)
(5, 4, 3) δ211 = 0 (q + 1)(q − δ111)
(5, 4, 4) δ112δ121δ211 = 0 (q + 1)δ111 + qδ211 [δ111 + δ211 = 1]
(5, 5, 2) ∆1 = 0 q(q + 1)− 2δ111 − q2δ221
(5, 5, 4) δ211 = δ121 = 0 q(q + 1)− q2δ221 − (2q + 1)δ111
(6, 3, 2) ∆ = 0 (q + 1)2

(6, 4, 3) ∆1 = 0 (q + 1)2

(6, 5, 2) ∆1 = 0 (q + 1)
(

1 + q(1−∆0)
)

(6, 5, 4) ∆2 = 0 (q + 1)
(

1 + q(1 + ∆− δ121 − δ221 − δ321)
)

(6, 6, 2) ∆ = 0 (q + 1)
(

1 + q(1−∆0)
)

(7, 3, 2) δ111 = 0 q2 − 1
(7, 4, 3) δ111 = 0 q2 − 1
(7, 5, 2) δ111 = 0 (q − 1)

(

1 + q(1− δ121)
)

(7, 5, 4) δ111 = 0 (q − 1)
(

1 + q(1− δ121)
)

(8, 8, 2) ∆′ = 0 q2 − q + 1

Table 6.1. Notation correspondence for conjugacy classes in SL(3, 2) = GL(3, 2)

in [10] in §1.4 in [10] in §1.4 in [10] in §1.4

1A C
(0)
1 3B C

(1)
7 = C

(2)
7 7A C

(1)
8 = C

(2)
8 = C

(4)
8

2A C
(0)
2 4B C

(0
3 7A C

(3)
8 = C

(5)
8 = C

(6)
8

Table 6.2. Notation correspondence for conjugacy classes in SU(3, 32)

in [10] in [6] in [10] in [6] in [10] in [6]

1A C
(0)
1 4B C

(3,2)
4 8A C

(1,1)
7 = C

(1,5)
7

2A C
(2,0)
4 4C C

(0,1,3)
6 8B C

(3,3)
7 = C

(3,7)
7

3A C
(0)
2 6A C

(2,0)
5 12A C

(1,2)
5

3B C
(0)
3 7A C

(4)
8 = C

(8)
8 = C

(16)
8 12B C

(3,2)
5

4A C
(1,2)
4 7B C

(12)
8 = C

(20)
8 = C

(24)
8
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Table 6.3. Notation correspondence for conjugacy classes in SU(3, 42)

in [10] in [6] in [10] in [6] in [10] in [6]

1A C
(0)
1 5E C

(0,1,4)
6 13C C

(20)
8 = C

(50)
8 = C

(60)
8

2A C
(0)
2 5F C

(0,2,3)
6 13D C

(35)
8 = C

(40)
8 = C

(55)
8

3A C
(0,5)
7 = C

(0,10)
7 10A C

(1,3)
5 13A C

(5)
8 = C

(15)
8 = C

(45)
8

4A C
(0)
3 10B C

(2,1)
5 13B C

(10)
8 = C

(25)
8 = C

(30)
8

5A C
(1,3)
4 10C C

(4,2)
5 15A C

(3,8)
7 = C

(3,13)
7

5B C
(2,1)
4 10D C

(3,4)
5 15B C

(1,1)
7 = C

(1,11)
7

5C C
(4,2)
4 15C C

(2,2)
7 = C

(2,7)
7

5D C
(3,4)
4 15D C

(4,4)
7 = C

(4,14)
7

The case (i1, i2, i3) = (6, 5, 5). We have

∆1 −∆ = δ112(1− δ211δ321) + δ212(1− δ311δ121) + δ312(1− δ111δ221)

+ δ121(1− δ211δ312) + δ221(1− δ311δ112) + δ321(1− δ111δ212) ≥ 0.

The case (i1, i2, i3) = (6, 6, 3). We have

∆0 −∆ = δ111(1− δ221δ331 − δ231δ321) + δ121(1− δ211δ331 − δ231δ311)

+ δ131(1− δ211δ321 − δ221δ311) +
∑

~a∈~n;a1>1

δ~a ≥ 0

The case (i1, i2, i3) = (6, 6, 4). If ∆ > 0, then there exist permutations of the
eigenvalues such that the product of corresponding diagonal matrices is the identity
matrix. So, we consider only the case when ∆ = 0. In this caseNG(A1, A2, A3)/|A

G
1 | =

(q + 1)
(

1 + q(1−∆1)
)

which cannot be zero for any integers q > 1 and ∆1.

The case (i1, i2, i3) = (6, 6, 5). Here we write for shortness να instead of α(ν).
We have ∆ =

∑

α∈S3

∑

β∈A6,5
δ1,1α,1βδ2,2α,2βδ3,3α,3β =

∑

α∈S3
E(α) where

E(α) = δ1,1α,1δ2,2α,1δ3,3α,2 + δ1,1α,1δ2,2α,2δ3,3α,1 + δ1,1α,2δ2,2α,1δ3,3α,1.

Summating E(α) separately over odd and even permutations α and estimating each
triple product of the deltas by one of its factors, we obtain

∑

odd α

E(α) ≤
∑

odd α

(

δ3,3α,2 + δ2,2α,2 + δ1,1α,2

)

= ∆0,

∑

even α

E(α) ≤
∑

even α

(

δ1,1α,1 + δ3,3α,1 + δ2,2α,1

)

= ∆1

which implies ∆1 +∆0 −∆ ≥ 0 and the result follows for q > 5.
Let q = 5. The above considerations show that the structure constant is positive

when ∆1 > 0. So, we suppose that ∆1 = 0. Then ∆ = 0 because each triple
product in ∆ includes some δ~a involved in ∆1. If we have two triples of distinct

residues mod 6 (the parameters (k, l,m) of C
(k,l,m)
6 ) not of the same parity, then

their pairwise sums attain all values mod 6 except, maybe one, thus ∆0 or ∆1 is

nonzero. So, it remains to consider the case A1, A2 ∈ C
(0,2,4)
6 . In this case, (2)

implies A3 ∈ C
(k,l)
5 with l even, hence ∆0 > 0 and the result follows.
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The case (i1, i2, i3) = (6, 6, 6). If ∆ > 0, then there exist permutations of the
eigenvalues such that the product of corresponding diagonal matrices is the identity
matrix. So, we consider only the case when ∆ = 0. In this case, the structure
constant is positive for q > 5 and it is equal to 150∆0 − 144 6= 0 for q = 5.

The case (i1, i2, i3) = (8, 8, 8).

Let the eigenvalues of Aν be (λν , λ
q2

ν , λq4

ν ), ν = 1, 2, 3. Then we have

∆′ =
∑

0≤a,b,c≤2

δa,b,c, δa,b,c =

{

1, λq2a

1 λq2b

2 λq2c

3 = 1,

0, otherwise

It is clear that δa,b,c = δa′,b′,c′ if a− a′ ≡ b− b′ ≡ c− c′ mod 3.
We are going to show that there is at most 9 triples (a, b, c) such that δa,b,c = 1.

Suppose that one of δa,b,c is nonzero. Without loss of generality we may assume
that it is δ000 (otherwise we permute cyclically the eigenvalues of each matrix). So,
we have λ1λ2λ3 = 1.

Let us show that if δa,b,c = 1, then either a = b = c or a, b, c are pairwise distinct
(there are only nine such triples). Suppose that this is not so, say, a 6= b = c. Then
δ001δ112δ220 = 1 or δ001δ112δ220 = 1 (we consider only the first case). This means

that λ1λ2λ
q2

3 = 1. Combined with λ1λ2λ3 = 1 this yields λq2

3 = 1, i.e λ3 ∈ Fq2 .
Contradiction.

Thus, we proved that ∆′ ≤ 9, hence

NG(A1, A2, A3)/|A
G
1 | ≥ (q2 − q+1)(q2 + 3q+ 1)− 3q3 = q4 − q3 − q2 +2q+1 > 0.

2.6. End of proof of Theorem 1.3 (the case m ≥ 4). Let us prove Theorem
1.3 for m = 4. So, let m = 4 and let A1, . . . , A4 be as in Theorem 1.3.

If G = GL and q ≥ 3, then for any d, λ1, λ2 ∈ Ω there exists B ∈ C3 ∪ C5 ∪ C6

such that d = detB and λ1, λ2 are eigenvalues. Hence, we can choose B in C3 ∪
C5 ∪ C6 such that the rank condition is satisfied for both triples (A1, A2, B) and
(B−1, A3, A4). As we have already shown, there are no other restrictions for triple
products in GL. This completes the proof of Theorem 1.3 for G = GL.

Lemma 2.1. Let G = GU and q ≥ 4. Then for any d, µ ∈ Ω there exists B ∈ C7

such that detB = d and λ1(B) = µ.

Proof. Obvious. �

Lemma 2.2. Let G = GU and q ≥ 5. Suppose that one of the following conditions
holds

(i) {i1, i3} 6⊂ {2, 4};
(ii) {i1, i2, i3} ⊂ {2, 4} and i4 ∈ {6, 7, 8};
(iii) i1 = 4, {i2, i3} ⊂ {2, 4}, i4 ∈ {3, 5};
(iv) i1 = i2 = i3 = 2, i4 ∈ {3, 5}, and δ1111 = 0;
(v) {i1, i2, i3, i4} ⊂ {2, 4} and δ1111 = 1;
(vi) i1 = i3 = 2, {i2, i4} ⊂ {2, 4} and δ1111 = 0;
(vii) i1 = i2 = i3 = i4 = 4 and δ1111 = 0.

Then I ∈ AG
1 . . . AG

4 .

Proof. We set d = det(A1A2) = det(A−1
3 A−1

4 ), µ1 = λ1(A1)λ1(A2), and µ2 =
λ1(A

−1
3 )λ1(A

−1
4 ). We consider the cases (i)–(vii) one by one and in each case we
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find B such that B ∈ AG
1 A

G
2 and B−1 ∈ AG

3 A
G
4 . When we choose B in C7, we use

Lemma 2.1.

(i). We choose B ∈ C7 such that detB = d and λ1(B) 6∈ {µ1, µ2}.

(ii). We choose B ∈ C7 such that detB = d and λ1(B) = µ1.

(iii). We consider two cases.

Case 1. δ1111 = 1, i. e., µ1 = µ2. We choose B ∈ C3 ∪ C5 such that detB = d
and λ1(B) = µ1 = µ2.

Case 2. δ1111 = 0, i. e., µ1 6= µ2. Then we choose B ∈ C7 such that detB = d
and λ1(B) = µ1.

(iv). The choice of B is the same as for (iii), Case 2.

(v). Since δ1111 = 1, we have µ1 = µ2. So, we choose B ∈ C7 such that detB = d
and λ1(B) = µ1 = µ2.

(vi). Since δ1111 = 0, we have µ1 6= µ2. We choose B ∈ C5 ∪ C6 such that
detB = d and µ1, µ2 are eigenvalues of B.

(vii). Since δ1111 = 0, we have µ1 6= µ2. We choose B ∈ C4 ∪ C6 such that
detB = d and µ1, µ2 are eigenvalues of B. �

For the cases not covered by Lemma 2.2 we compute the structure constant in
G = GU :

(i1, i2, i3, i4) δ1111 NG(A1, A2, A3, A4)/|A
G
1 |

(3, 2, 2, 2) 1 0

(5, 2, 2, 2) 1 (q + 3)(q2 − 1)

(4, 4, 4, 2) 0 q(q2 − 1)
(

q + 1− q(δ1121 + δ1211 + δ2111)

+ (2q − 1)δ1121δ1211δ2111
)

This completes the proof of Theorem 1.3 for m = 4.

Let m = 5, q ≥ 5. Easy to see that there exists B ∈ (AG
1 A

G
2 ) ∩ (C3 ∪ C5 ∪ C6 ∪

C7 ∪ C8). Then I ∈ BGAG
3 A

G
4 A

G
5 . Theorem 1.3 is proven.

3. Products of conjugacy classes in

SU(3, q2) and SL(3, q). Proof of Theorem 1.6

3.1. The character table of SU(3, q2) and SL(3, q). Let G be GU(3, q2) or
GL(3, q) and let S = {A ∈ G | detA = 1}. So, S is SU(3, q2) or SL(3, q). The
character table of S is computed in [15]. It has some mistakes which are corrected
in [7] (it is written in the comments in [7] that the character table for SU(3, q2) is
taken from [8]). Since G = S × Ω when 3 does not divide q ± 1, we consider only
the case when q = 3r ∓ 1.

The conjugacy classes of S are as follows. Each of C
(k)
3 , k = 0, r, 2r, splits into

three classes C
(k,l)
3 , l = 0, 1, 2. The class C

(k,l)
3 in SU(3, q2) (resp. in SL(3, q))

consists of matrices which are conjugate in SL(3, q2) (resp. in SL(3, q)) to2




ωk 0 0
zl ωk 0
0 1 ωk



 , z =

{

ρ, S = SU(3, q2),

ω, S = SL(3, q).

2there is a misprint here in [15].
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Other conjugacy classes of G contained in S are conjugacy classes of S.
The irreducible characters of S can be described as follows. We consider the

action of the cyclic group of order q ± 1 on Irr(G) such that the action of the
generator is

χ
(t)
dj

7→ χ
(t+1)
dj

(j = 1, 2, 3); χ
(t,u)
dj

7→ χ
(t+1,u+1)
dj

(j = 4, 5);

χ
(t,u,v)
d6

7→ χ
(t+1,u+1,v+1)
d6

; χ
(t,u)
d7

7→ χ
(t+1,u∓q+1)
d7

; χ
(t)
d8

7→ χ
(t+q2∓q+1)
d8

.

Then the restriction of all characters to S are constant on each orbit of this action.
All orbits but three are of length q ± 1 and their representatives restricted to S

are irreducible. There are three orbits of length r, namely the orbits of χ
(0,r,2r)
d6

and χ
(u(q2∓q+1)/3)
d8

, u = 1, 2. Being restricted to S, each of these three characters

splits into three irreducible characters. This yields irreducible characters χ
(t)
d6/3

,

χ
(t,u)
d8/3

, t = 0, 1, 2, u = 1, 2, such that χ
(t)
d6/3

(A) = 1
3χ

(0,r,2r)
d6

(A) and χ
(t,u)
d8/3

(A) =

1
3χ

(u(q2∓q+1)/3)
d8

(A) when A 6∈ C3. For A ∈ C
(k,l)
3 , k, lr ∈ {0, r, 2r}, we have

χ
(t)
d6/3

(A) =

{

q − r, l = t,

−r, l 6= t,
χ
(t,u)
d8/3

(A) = εukχ
(t)
d6/3

(A).

where ε = f(ω) = exp(2πi/(q ± 1)).
Thus, for any function E on Irr(S), we have

∑

χ∈Irr(S)

E(χ) =
1

q ± 1

(

∑

χ∈Irr(G)

E(χ|S)
)

−
1

3

(

E
(

χ
(0,r,2r)
d6

|S
)

+

2
∑

u=1

E
(

χ
u(q2∓q+1)/3
d8

|S
)

)

+
2
∑

t=0

(

E
(

χ
(t)
d6/3

)

+
2
∑

u=1

E
(

χ
(t,u)
d8/3

)

)

3.2. Structure constants for SU(3, q2) and SL(3, q). Let A1, . . . , Am ∈ S,
Aν ∈ Ciν , ν = 1, . . . , m. We suppose that i1 = · · · = in = 3 and iν 6= 3 for ν > n.

Let Aν ∈ C
(kν ,lν)
3 for ν = 1, . . . , n.

We denote E1(χ) = χ(A1) . . . χ(An), E2(χ) = χ(An+1) . . . χ(Am), and E(χ) =
E1(χ)E2(χ)/χ(I)

m−2. Combining the formulas from the previous section with the

fact that χ
(0,r,2r)
d6

(Aν) = ∓1 and χ
u(q2∓q+1)/3)
d8

(Aν) = ∓εkν for ν ≤ n, we obtain

E1

(

χ
(0,r,2r)
d6

)

= (∓1)n, E1

(

χ
(u(q2∓q+1)/3)
d8

)

= (∓1)nε(k1+···+kn)u,

E2

(

χ
(t)
d6/3

)

= 3n−mE2

(

χ
(0,r,2r)
d6

)

, E2

(

χ
(t,u)
d8/3

)

= 3n−mE2

(

χ
(u(q2∓q+1)/3)
d8

)

,

E1

(

χ
(t,u)
d8/3

)

= ε(k1+···+kn)uE1

(

χ
(t)
d6/3

)

, χ
(t)
d6/3

(I) = d6/3, χ
(t,u)
d8/3

(I) = d8/3,

and finally,

N̄S(A1, . . . , Am) =
N̄G(A1, . . . , Am)

q ± 1
+

(

−
(∓1)n

3
+ 3n−2

2
∑

t=0

E1

(

χ
(t)
d6/3

)

)

×

(

E2

(

χ
(0,r,2r)
d6

)

dm−2
6

+

2
∑

u=1

ε(k1+···+kn)uE2

(

χ
(u(q2∓q+1)/3)
d8

)

dm−2
8

)
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In particular, we see from this formula that if n = 0 or n = 1, then N̄G = (q±1)N̄S ,
i. e., we have (I ∈ AG

1 . . . AG
m) ⇔ (I ∈ AS

1 . . . AS
n). Indeed, if n = 0, then the factor

(

− (∓1)n

3 + . . .
)

is equal to −1/3+1/9 (1+1+1) = 0, and if n = 1, then it is equal

to ±1/3+1/3
(

(q− r)− r− r
)

= 0. This equivalence also follows immediately from

the fact that C
(k)
3 are the only classes that split in S.

3.3. Triple products in SU(3, q2) and SL(3, q). Proof of Theorem 1.6. Let
m = 3. It is enough to consider the cases n = 2 and n = 3. We use the following
notation in Table 7. If n = 2, then we set

δ∗ = δ∗(A1, A2) =

{

1, l1 = l2,

0, l1 6= l2.
.

If A3 ∈ C
((q±1)k′)
8 (the last line of the table), then we set

δ∗111 =

{

1, k1 + k2 + k′ ≡ 0 mod q ± 1,

0, otherwise.

Table 7. Structure constants: S = SU(3, q2) or SL(3, q), q = 3r ∓ 1, Aν ∈ Ciν

(i1, i2, i3) NS(A1, A2, A3)/|A
S
1 |

(3, 3, 3) distinct l1, l2, l3 qr
(

qr + (2qr ∓ q + r)δ111
)

(3, 3, 3) l1 = l2 6= l3 qr
(

q(r ∓ 1)− (qr ∓ q − r + 1)δ111
)

(3, 3, 3) l1 = l2 = l3 q
(

q(r2 − 1) + (2q(r ∓ 1)2 + r2 ∓ 1)δ111
)

(3, 3, 2)
(

q2 − (q2 ∓ q + 1)δ111
)

δ∗ + 2qrδLδ111

(3, 3, 4) q2δ∗

(3, 3, 5) q2r(q ∓ 1∓ 3δ∗ + δ211)

(3, 3, 6) λ1(A3)
r = λ2(A3)

r q2
(

(q − 1)r ∓ 2qδ∗ + r∆0

)

(3, 3, 6) λ1(A3)
r 6= λ2(A3)

r q2
(

(q − 1)r ∓ q(1− δ∗) + r∆0

)

(3, 3, 7) q2r(q ∓ 1 + δ111)

(3, 3, 8) q2
(

(q − 1)r ± q(δ∗ + δ∗111 − 3δ∗δ∗111)
)

It is clear that if r > 1, then the structure constants are positive except the case
when i3 ∈ {2, 4} and δ∗ = 0 (note that the case i3 = 6, q = 5, λ1(A3)

r = λ2(A3)
r

is impossible). This completes the proof of Theorem 1.6 for m = 3.
For m = 4, the proof is the same as in 2.6. Moreover, since at least two of

A1, . . . , A4 belong to C3, then only Case (i) of Lemma 2.2 is to be considered.

4. The case q = 2

4.1. Class products in GU(3, q2) for q = 2. Let G = GU(3, 22), S = SU(3, 22).
Then |G| = 648, |S| = 216. We have the following conjugacy classes in G:

det(A) = 1 : C
(k)
1 , C

(k)
2 , C

(k)
3 (k = 0, 1, 2), C

(0,1,2)
6 ,

det(A) = ρ : C
(0,1)
4 , C

(2,0)
4 , C

(1,2)
4 , C

(0,1)
5 , C

(2,0)
5 , C

(1,2)
5 , C

(1)
8 ,

det(A) = ρ2 : C
(0,2)
4 , C

(1,0)
4 , C

(2,1)
4 , C

(0,2)
5 , C

(1,0)
5 , C

(2,1)
5 , C

(2)
8
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We see from Table 4 that C6 · C6 = C1 ∪ C6, hence H = C6 ∪ C1 is a normal
subgroup of G of order 27. We have |G/H| = 24 and S/H = 8. The sizes of classes
and the orders of their representatives in G/H are:

Class: C1
(k) C2

(k) C3
(k) C4

(k,l) C5
(k,l) C6

(0,1,2) C8
(k)

Size: 1 9 54 12 36 24 72

Order in G/H: 1 2 4 3 6 1 3

The elements of C2 (resp. C3) represent elements of order 2 (resp. 4) in S/H. Since
|H| = |C2| = 27 and |C3| = 162, it follows that S/H has one element of order 2 and
six elements of order 4. Therefore, S/H is isomorphic to the unit quaternionic group

Q = {±1,±i,±j,±k}. Since the exact sequence 1 → S/H → G/H
det
−→ {1, ρ, ρ2}

splits, it follows that G/H is isomorphic to a semi-direct product of Q and Z3. We
denote it by F . Since G/H has no element of order 12, this product is not direct,
hence F can be identified with the group whose elements are ±am, ±iam, ±jam,
±kam, m = 0, 1, 2, subject to relations ia = aj, ja = ak, ka = ai, a3 = 1. We
denote a2 by b. The conjugacy classes in F are: {1}, {−1}, iF = {±i,±j,±k},
aF = {a, ia, ja, ka}, −aF = {−a,−ia,−ja,−ka}, bF = {b,−ib,−jb,−kb}, −bF =
{−b, ib, jb, kb}. Their pairwise products are:

{1} {−1} iF aF −aF bF −bF

{−1} {1} iF −aF aF −bF bF

iF iF Q Qa Qa Qb Qb

aF −aF Qa Qb Qb {1} ∪ iF {−1} ∪ iF

−aF aF Qa Qb Qb {−1} ∪ iF {1} ∪ iF

bF −bF Qb {1} ∪ iF {−1} ∪ iF Qa Qa
−bF bF Qb {−1} ∪ iF {1} ∪ iF Qa Qa

Comparing the class sizes and the orders of their representatives, we easily see that
the correspondence between the classes under the projection G → F is

C1 ∪ C6 → {1} C
(1)
48 → aF C

(2)
48 → bF

C2 → {−1} C
(1)
5 → −aF C

(2)
5 → −bF

C3 → iF

where C
(k)
48 = (C4∪C8)∩G(k), C

(k)
5 = C5∩G(k), and G(k) = {A ∈ G | detA = ρk},

k = 1, 2. Thus, the multiplication table for the preimages in G of the conjugacy
classes of F is

H C2 C3 C
(1)
48 C

(1)
5 C

(2)
48 C

(2)
5

C2 H C3 C
(1)
5 C

(1)
48 C

(2)
5 C

(2)
48

C3 C3 S G(1) G(1) G(2) G(2)

C
(1)
48 C

(1)
5 G(1) G(2) G(2) H ∪ C3 C2 ∪ C3

C
(1)
5 C

(1)
48 G(1) G(2) G(2) C2 ∪ C3 H ∪ C3

C
(2)
48 C

(2)
5 G(2) H ∪ C3 C2 ∪ C3 G(1) G(1)

C
(2)
5 C

(2)
48 G(2) C2 ∪ C3 H ∪ C3 G(1) G(1)

The above discussion can be summarized as follows
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Proposition 4.1. Let c = (c1, . . . , cm) is an unordered m-tuple of non-trivial
conjugacy classes in F such that dega c1 + · · · + dega cm = 0. We suppose that
c1 = · · · = c2n = {−1} and (c2n+1, . . . , cm) contains at most one occurrence of
{−1}. Then 1 6∈ c1 . . . cm if and only if (c2n+1, . . . , cm) is one of ({−1}), (iF ),
({−1}, iF ), (aF ,−bF ), (−aF , bF ), ({−1}, aF , bF ), ({−1},−aF ,−bF ).

Proof. It is enough to check that the product of any three non-trivial conjugacy
classes different from {−1} is a coset of Q in F . �

Proposition 4.2. Let A1, . . . , Am ∈ G \ C1 be such that det(A1 . . . An) = 1. Let
A1 ∈ Ci1 , . . . , Am ∈ Cim . Suppose that after removing any number of 6’s and an
even number of 2’s from (i1, . . . , im), we obtain one of (2), (3), (2, 3), (5, 4), (8, 5),
(4, 4, 2), (5, 5, 2), (8, 4, 2), (8, 8, 2). Then I 6∈ AG

1 . . . AG
n .

Proposition 4.3. Let A1, . . . , Am ∈ G\C1, m ≥ 3, be such that det(A1 . . . Am) =
1. Let A1 ∈ Ci1 , . . . , Am ∈ Cim . Suppose that the conditions of Proposition 4.2
are not satisfied. Suppose also that the rank condition (3) holds and the conditions
(i)–(vii) of Theorem 1.3(a) are not satisfied for any permutation of A1, . . . , Am and
for any renumbering of the eigenvalues under restrictions (5).

Then I 6∈ AG
1 . . . AG

m if and only if one of the following cases occurs up to chang-
ing the order of Aj’s, multiplication them by scalar or simultaneous replacing of

A1, . . . , Am by A−1
1 , . . . , A−1

m .

(i) m = 4, A1, A2, A3 ∈ C
(0,1)
4 and A4 ∈ C

(1)
3 ;

(ii) m = 4, A1, A2 ∈ C
(0,1)
4 , A3 ∈ C

(0,2)
4 , and A4 ∈ C

(1,0)
5 .

Proof. Using the structure constants, we computed the products of all m-tuples of
conjugacy classes for m ≤ 5. So we check that the statement is true for m ≤ 5.
The general case easily follows from the following facts.

• C
(0,1,2)
6 C

(0,1,2)
6 = H;

• C
(k1)
2 C

(k2)
2 = C

(k1+k2)
1 ∪ C

(0,1,2)
6 for any k1, k2;

• C
(k)
2 C

(0,1,2)
6 = C2 for any k;

• Letm = 4 or 5. If (i1, . . . , im) is not as in Proposition 4.2 and {i1, . . . , im} 6⊂
{2, 6}, then AG

1 . . . AG
m is a coset of S in G for any A1 ∈ Ci1 , . . . , Am ∈ Cim ;

�

4.2. Class products in SU(3, q2) for q = 2. There are 16 conjugacy classes in
S. These are:

C
(k)
1 , C

(k)
2 , C

(k,l)
3 , C

(0,1,2)
6 , k, l = 0, 1, 2.

We have S/H = Q and S/(H ∪C2) = Q/{±1} = Z2 ⊕Z2. The cosets of H ∪C2 in

S are: H ∪ C2, C
(∗,0)
3 , C

(∗,1)
3 , C

(∗,2)
3 where C

(∗,l)
3 stands for C

(0,l)
3 ∪ C

(1,l)
3 ∪ C

(2,l)
3 .

Proposition 4.4. Let A1, . . . , Am ∈ S \ C1, m ≥ 3, Aν ∈ Ciν , ν = 1, . . . , m. If
3 ∈ {i1 . . . , im}, then AS

1 . . . AS
m is a coset of H ∪ C2 in S. Otherwise AS

1 . . . AS
m is

a coset of H in H ∪ C2.

Proof. It is enough to compute the structure constants for all triples A1, A2, A3 ∈ S.

Corollary 4.5. Let A1, . . . , Am ∈ S \ C1, m ≥ 3, Aν ∈ Ciν , ν = 1, . . . , m. Then
I ∈ A1 . . . Am if and only if none of the following conditions holds:

(i) for some l ∈ {0, 1, 2}, the number of matrices among A1, . . . , Am belonging

to C
(∗,l)
3 is odd;
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(ii) i1, . . . , im ∈ {2, 6} and the number of 2’s in the sequence (i1, . . . , im) is odd.

5. Products of conjugacy classes in GU(2, q2) and SU(2, q2).

Let G (resp. S; PS) be GU(2, q2) or GL(2, q) (resp. SU(2, q2) or SL(2, q);
PSU(2, q2) or PSL(2, q)). We follow the sign convention from §1.3.

5.1. Class products in GU(2, q2) and GL(2, q). We use the notation from [6]
for conjugacy classes in G. The classes (and the respective Jordan normal forms)
are:

C
(k)
1 :

(

ωk 0

0 ωk

)

, C
(k)
2 :

(

ωk 0

1 ωk

)

, C
(k,l)
3 :

(

ωk 0

0 ωl

)

, C
(k)
4 :

(

ρk 0

0 ρ∓qk

)

.

In the last two cases we have C
(k,l)
3 = C

(l,k)
3 , C

(k)
4 = C

(∓qk)
4 and we claim that

the matrix is non-scalar, i. e., that k 6= l and k 6≡ ∓qk mod q2 − 1 respectively.

There are four families of irreducible characters: χ
(t)
1 , χ

(t)
q (0 ≤ t ≤ q), χ

(t,u)
q∓1

(1 ≤ t < u ≤ q± 1), χ
(t)
q±1 (1 ≤ t ≤ q2, t 6≡ 0 mod q∓ 1, χ

(t)
q±1 = χ

(∓qt)
t+1 ); see details

in [6]. We denote the union of all C
(... )
i by Ci. We define δa1,...,am

in the same way
as in §1.6.

Theorem 5.1. Let A1, . . . , Am ∈ G \ C1, m ≥ 3, be matrices which satisfy (2).
Let Aν ∈ Ciν , ν = 1, . . . , m. Let

i0 =

{

3, G = GU,

4, G = GL,
and C =

{

C
(0,2)
3 ∪ C

(1,3)
3 , G = GU(2, q2),

C
(2)
4 , G = GL(2, q).

Then I 6∈ AG
1 . . . AG

m if and only if one of the following conditions holds up to
permutation of A1, . . . , Am:

(i) (i1, . . . , im) = (i0, i0, 2) and δ111 + δ121 = 1;
(ii) q = 3, A1, . . . , Am−1 ∈ C, and Am ∈ C2.
(iii) q = 2, and 2 occurs an odd number of times in (i1, . . . , im).

Proof. Case m = 3. It is enough to compute the structure constants. They are
listed in Table 8.

Table 8. Structure constants for G = GU(2, q2) or GL(2, q), Aν ∈ Ciν

(i1, i2, i3) NG(A1, A2, A3)/|A
G
1 | (i1, i2, i3) NG(A1, A2, A3)/|A

G
1 |

(2, 2, 2) q − 2δ111 (4, 3, 2) q ∓ 1
(3, 2, 2) q ± 1 (4, 3, 3) q ∓ 1
(3, 3, 2) (q ± 1)(1∓ (δ111 + δ121)) (4, 4, 2) (q ∓ 1)(1± (δ111 + δ121))
(3, 3, 3) q ± 1∓ q∆ (4, 4, 3) q ∓ 1
(4, 2, 2) q ∓ 1 (4, 4, 4) q ∓ 1± q∆

∆ = δ111 + δ112 + δ121 + δ211

Case m = 4. Suppose that q ≥ 4. Let C′ = C4 if G = GU and C′ = C3 if
G = GL. Then for any d ∈ Ω there exists B ∈ C′ such that detB = d. Hence we
can choose B ∈ C′ such that detB = det(A1A2). Then it follows from the above
computations for m = 3 that B ∈ AG

1 A
G
2 and B−1 ∈ AG

3 A
G
4 .
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When q = 3, the result easily follows from the following fact. If (A1, A2, A3) is
a triple of non-scalar matrices which does not satisfy (ii), then AG

1 A
G
2 A

G
3 is a coset

of S in G, maybe, with one scalar matrix missing. If q = 2, then G is isomorphic
to S3 × Ω. �

5.2. Conjugacy classes in SU(2, q2) ∼= SL(2, q). In this section we do not
apply the convention of §1.3. We use here “SU -language” but, using Table 9,
everything can be easily translated to “SL-language”. So, we set S = SU(2, q2)

and G = GU(3, q2) and the notation C
(... )
i is used for conjugacy classes of G and

S (except the second column of Table 9).
It is known that S is isomorphic to SL(2, q). In fact, these groups are conjugated

in GL(2, q2) (but not in SL(2, q2)!). Indeed, let z ∈ Fq2 be such that z̄ = −z. Then

the Hermitian form
(

0 z

z̄ 0

)

is preserved by any element of SL(2, q). We fix an

isomorphism Φ : SU(2, q2) → SL(2, q).
If q is even, then G = S × Ω, so the class product problem for S is reduced to

that for G (see §5.4 for more details). So, we suppose that q = pm = 2r − 1. We
set also r′ = r − 1 (so, q = 2r′ + 1). In this case we can choose z = ρr.

The conjugacy classes of S are as follows. Each of C
(k)
2 , k = 0, r, splits into

two classes C
(k,l)
2 , l = 0, 1 so that Φ

(

C
(k,l)
2

)

is the conjugacy class in SL(2, q) of

(−1)k/r
(

1 0

σl 1

)

where σ = ρq+1 is a generator of F∗
q . This notation of conjugacy

classes in S depends on the choice of Φ.
Other conjugacy classes of G contained in S are conjugacy classes of S. The list

of all conjugacy classes of the both groups and the correspondence between them
under the isomorphism Φ is given in Table 9.

Table 9. Correspondence of classes in SU(2, q2) and SL(2, q), q = 3r− 1 = 3r′ + 1

Class in SU Class in SL Range of the parameters Order

C
(rk)
1 C

(r′k)
1 k = 0, 1 k + 1

C
(rk,l)
2 C

(r′k,l)
2 k = 0, 1; l = 0, 1 (k + 1)p

C
(k,−k)
3 C

((q−1)k)
4 k = 1, . . . , r − 1 (q + 1)/ gcd(q + 1, k)

C
((q+1)k)
4 C

(k,−k)
3 k = 1, . . . , r′ − 1 (q − 1)/ gcd(q − 1, k)

The class product problem for pairs of matrices (to determine the class of the
inverse matrix) has an evident solution for C1, C3, C4. The answer for C2 is:

Proposition 5.2. Let A ∈ SU(2, q2), q = 2r − 1. Let A ∈ C
(k,l)
2 , k, rl ∈ {0, r}.

Then A−1 ∈ C
(k,l)
2 when r is odd and A−1 ∈ C

(k,1−l)
2 when r is even.

Proof. This follows from the fact that two matrices
(

1 0

a 1

)

and
(

1 0

b 1

)

, ab 6= 0 are

conjugated in SL(2, K) if and only if ab is a square in K. �

Remark 5.3. (cp. Remark in §1.5). Let C be the conjugacy class of
(

1 0

1 1

)

in

GL(2, q2). Then C ∩ SL(2, q2) splits into two classes, let us denote them by C(0)

and C(1) However, the splitting of C
(0)
2 in SU does not follow the splitting of C.

We have C(1)∩SU = ∅ and C(0)∩SU = C2. This is why there is no any canonical
form of these classes in SL(2, q2).
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5.3. Class products in SU(2, q2) ∼= SL(2, q).

Theorem 5.4. Let G = GU(2, q2), S = SU(2, q2), q = 2r − 1. Let A1, . . . , Am ∈
S\C1, m ≥ 3, be such that I ∈ AG

1 . . . AG
m. Then I 6∈ AS

1 . . .AS
m if and only if m = 3

and one of the following conditions holds up to change of the order of A1, . . . , Am:

(i) m = 3, Aν ∈ C
(rkν ,lν)
2 (ν = 1, 2, 3), l1 6= l2, and δ111 = 0 (i. e., k1 + k2 + k3

is odd);

(ii) m = 3, Aν ∈ C
(rkν ,lν)
2 (ν = 1, 2), A3 ∈ C

(k3,−k3)
3 , and r(k1 + k2 + 1)+ k3 +

l1 + l2 is odd (see Table 10);

(iii) m = 3, Aν ∈ C
(kν ,lν)
2 (ν = 1, 2), A3 ∈ C

((q+1)k3)
4 , and (r− 1)(k1 + k2 +1)+

k3 + l1 + l2 is odd (see Table 10);

(iv) q = 3 and ϕ(A1)+ · · ·+ϕ(Am) 6≡ 0 mod 3 where ϕ(A) = l+1 if A ∈ C
(2k,l)
2

and ϕ(A) = 0 if A 6∈ C2 (see Remark 5.5);

(v) q = 5, m = 3, Aν ∈ C
(3kν ,lν)
2 (ν = 1, 2, 3), l1 = l2 = l3, and δ111 = 1 (i. e.,

k1 + k2 + k3 is even);

(vi) q = 5, m = 4, Aν ∈ C
(3kν ,lν)
2 (ν = 1, 2, 3, 4), l1 = · · · = l4, and δ1111 = 0

(i. e., k1 + · · ·+ k4 is odd);

(vii) q = 5, m = 4, Aν ∈ C
(3kν ,lν)
2 (ν = 1, 2, 3), A4 ∈ C

(k4,−k4)
3 , l1 = l2 = l3, and

k1 + · · ·+ k4 is odd.

Remark 5.5. The mapping a 7→
(

1 0

1 1

)

, i 7→
(

0 −1

1 0

)

defines an isomorphism F ∼=

SL(2, 3) where F is the group discussed in §4.1. The class products in F are de-
scribed in Proposition 4.1. The correspondence of classes between F and SU(2, 32)

is: {(−1)k} → C
(2k)
1 , iF → C

(1,−1)
3 , (−1)kaF → C

(2k,0)
2 , (−1)kbF → C

(2k,1)
2 .

Table 10.
N

SU(2,q2)(A1,A2,A3)

qr(q−1) for q = 2r − 1, A1 ∈ C
(rk1,l1)
2 , A2 ∈ C

(rk2,l2)
2 , A3 ∈

C3 ∪ C4

r r even r odd

l1, l2 l1 = l2 l1 6= l2 l1 = l2 l1 6= l2

k1 + k2 mod 2 0 1 0 1 0 1 0 1

k3 mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A3 ∈ C
(k3,−k3)
3 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1

A4 ∈ C
((q+1)k3)
4 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1

Proof. Case m = 3. It is enough to consider only the triples (A1, A2, A3) containing
at least two matrices from C2 (otherwise NS(A1, A2, A3) = NG(A1, A2, A3)). We

compute NS(A1, A2, A3) for all such triples. If Aν ∈ C
(kν ,lν)
2 , ν = 1, 2, 3, then we

have

NS(A1, A2, A3) =

{

r(r − 1)(2q − (3r − 3er + 1)δ111), l1 = l2 = l3,

r(r − 1)(r − er − 1)δ111, l1 = l2 6= l3,

where er = 1+(−1)r

2
.
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If A1 ∈ C
(rk1,l1)
2 , A2 ∈ C

(rk2,l2)
2 , and A3 ∈ C3 ∪ C4, we have NS(A1, A2, A3) =

qr(q − 1)δ∗ where the values of δ∗ are given in Table 10.

Case m ≥ 4. The result for m > 4 follows from the result for m = 4. So we
assume that m = 4. If q = 3, then S is isomorphic to the group F discussed in
§4 and the result follows from Proposition 4.1. If q = 5, then S then it is enough
to compute explicitly the structure constants for all triples and quadruples. So, we
assume that q ≥ 7.

If one of Aν does not belong to C2, then we can choose B ∈ C4 such that
B ∈ AS

1A
S
2 and B−1 ∈ AS

3A
S
4 .

If Aν ∈ C
(rkν ,lν)
2 , k = 1, . . . , 4, then without loss of generality we may assume

that l3 = l4 = l. Let B ∈ C
(rk,l)
2 where k + k1 + k2 is even. Then B ∈ AS

1A
S
2 and

B−1 ∈ AS
3A

S
4 . �

5.4. Class products in PSU(2, q2) ∼= PSL(2, q).
Let PS = PSU(2, q2) ∼= PSL(2, q), q ≥ 4. Like in Corollary 1.8, we denote

the projection of a class C
(... )
i by C̃

(... )
i . Products of conjugacy classes in PS

are partially computed in [1; Ch. 4, Th. 4.2]. For reader conenience we give the
correspondence of notation in Tables 11.1 – 11.2.

Table 11.1. Conjugacy classes in SU(2, q2) = PSU(2, q2) ∼= SL(2, q) = PSL(2, q)
for even q.

In [1] Class in SU Class in SL Parameters Order

C1 C
(0)
1 C

(0)
1 1

C2 C
(0)
2 C

(0)
2 2

Rk C
(k,−k)
3 C

((q−1)k)
4 k = 1, . . . , q2 (q + 1)/ gcd(q + 1, k)

Kk C
((q+1)k)
4 C

(k,−k)
3 k = 1, . . . , q−2

2 (q − 1)/ gcd(q − 1, k)

Table 11.2. Conjugacy classes in PSU(2, q2) ∼= PSL(2, q) for q = pm = 2r − 1 (for
a prime p), r′ = r − 1.

In [1] Class in PSU Class in PSL Parameters Order

C1 C̃
(0)
1 C̃

(0)
1 1

C2 C̃
(0,0)
2 C̃

(0,0)
2 p

C3 C̃
(0,1)
2 C̃

(0,1)
2 p

Rk C̃
(k,−k)
3 C̃

((q−1)k)
4 k = 1, . . . , [ r

2
] r/ gcd(r, k)

Kk C̃
((q+1)k)
4 C̃

(k,−k)
3 k = 1, . . . , [ r

′

2 ] r′/ gcd(r′, k)

As in the previous section, we use here the “SU -notation” for conjugacy classes
in PS (the second column in Tables 11.1 – 11.2).

Corollary 5.6. Let m ≥ 3, q ≥ 4, and c1, . . . , cm are non-identity conjugacy
classes in PS. Then I 6∈ c1 . . . cm if and only if m = 3 and one of the following
cases occurs up to permutation:

(i) q is even and (c1, c2, c3) =
(

C
(k,−k)
3 , C

(k,−k)
3 , C

(0)
2

)

, k = 1, . . . , q/2;
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(ii) q = 2r − 1 ≡ 1 mod 4 (so, r is odd) and (c1, c2, c3) is
(

C̃
(0,l1)
2 , C̃

(0,l2)
2 , C̃

((q+1)k)
4

)

, k + l1 + l2 is odd, k = 1, . . . , r−1
2 ;

(iii) q = 2r − 1 ≡ 3 mod 4 (so, r is even) and (c1, c2, c3) is one of:
(

C̃
(0,l1)
2 , C̃

(0,l2)
2 , C̃

(k,−k)
3

)

, k + l1 + l2 is odd, k = 1, . . . , r2 ;
(

C̃
(0,l)
2 , C̃

(r/2,−r/2)
3 , C̃

(r/2,−r/2)
3

)

, l = 0, 1.

In particular, we see that cn(PS) = 3, ecn(PS) = 4 (see §1.8). This fact was
already proved in [1; Ch. 4].
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