ASYMPTOTIC NUMBER OF TRIANGULATIONS WITH VERTICES IN Z^{2}

S.Yu.Orevkov

Abstract

Let \mathcal{T}_{n}^{2} be the set of all triangulations of the square $[0, n]^{2}$ with all the vertices belonging to \mathbf{Z}^{2}. We show that $C n^{2}<\log \operatorname{Card} \mathcal{T}_{n}^{2}<D n^{2}$.

Triangulations with integral vertices appear in the algebraic geometry. They are used in Viro's method of construction of real algebraic varieties with controlled topological properties [2]. In [1], the discriminant of a polynomial $\sum_{a \in A} c_{a} x^{a}$ with a fixed finite set of multi-indices $A \subset \mathbf{Z}^{d}$ is described in terms of triangulations of the convex hull of A with vertices in A. Here we study the asymptotics of the number of triangulations with integral vertices when the size of the triangulated polytope tends to infinity.

Denote by I_{n} the segment $[0, n] \subset \mathbf{R}$ and let $I_{n}^{d}:=I_{n} \times \cdots \times I_{n} \subset \mathbf{R}^{d}$ be the d-dimensional cube with the side n. Denote by \mathcal{T}_{n}^{d} the set of all triangulations of I_{n}^{d} whose vertices are integral points.

Question. What are the asymptotics of $\log \operatorname{Card} \mathcal{T}_{n}^{d}$ when $n \rightarrow \infty$?
Only the evident estimates are known for an arbitrary $d \geq 2$:

$$
A_{d} n^{d}<\log \operatorname{Card} \mathcal{T}_{n}^{d}<B_{d} n^{d} \log n, \quad\left(A_{d}, B_{d}>0\right)
$$

To get the left inequality, divide I_{n}^{d} into n^{d} cubes; each of them can be subdivided into simplices at least in two ways. To obtain the right inequality, note that the number of all integral d-simplices contained in I_{n}^{d} is bounded by $c_{1} n^{c_{2}}$ and the number of d-simplices in each $T \in \mathcal{T}_{n}^{d}$ is bounded by $c_{3} n^{d}$, hence,

$$
\operatorname{Card} \mathcal{T}_{n}^{d} \leq \sum_{q=1}^{c_{3} n^{d}}\binom{c_{1} n^{c_{2}}}{q} \leq c_{4}\left(c_{1} n^{c_{2}}\right)^{c_{3} n^{d}}
$$

(here c_{1}, \ldots, c_{4} depend on d but do not depend on n).
In this note we show that for $d=2$ the main term of the asymptotics is const $\cdot n^{2}$.
A triangulation $T \in \mathcal{T}_{n}^{d}$ is called primitive if the volume of each d-dimensional simplex equals $1 / d!$. Let $\mathcal{P} \mathcal{T}_{n}^{d}=\left\{T \in \mathcal{T}_{n}^{d} \mid T\right.$ is primitive $\}$.

Theorem. There exist positive constants A and B such that

$$
A n^{2}<\log \operatorname{Card} \mathcal{P} \mathcal{T}_{n}^{2}<B n^{2}
$$

[^0]Corollary. There exist positive constants C and D such that

$$
C n^{2}<\log \operatorname{Card} \mathcal{T}_{n}^{2}<D n^{2}
$$

Denote by $\pi: I_{n}^{2} \rightarrow I_{n}$ the projection $(x, y) \mapsto x$. Given a $T \in \mathcal{T}_{n}^{2}$, let us say that a subset $U \subset I_{n}^{2}$ is T-univalent if U is a closed simplicial subcomplex of T such that $I_{n} \times\{0\} \subset U$, and all the fibers $\left(\left.\pi\right|_{U}\right)^{-1}(x), x \in I_{n}$ are connected.

Lemma. Let $T \in \mathcal{P} \mathcal{T}_{n}^{2}$ and let U be a T-univalent subset of I_{n}^{2}. If $U \neq I_{n}^{2}$ then there exists a triangle $\sigma \in T$ such that $\sigma \not \subset U$ and $U \cup \sigma$ is T-univalent.

Proof. Denote by T_{U} the set of all triangles $\sigma \in T$ such that $\sigma \not \subset U$ and $\sigma \cap U$ contains a segment. Let $\sigma \in T_{U}$. Denote the vertices of σ by a, b, c so that $\pi(a) \leq \pi(b),[a b] \subset U$. We shall say that σ hangs to the left (resp. to the right) if $\pi(c)<\pi(a)$ (resp. $\pi(b)<\pi(c))$ and $c \notin U$. Denote by $T_{U}^{(L)}$ (resp. $T_{U}^{(R)}$) the set of triangles $\sigma \in T_{U}$ hanging to the left (resp. to the right). Clearly that if $\sigma \in T_{U}$ and $U \cup \sigma$ is not T-univalent then $\sigma \in T_{U}^{(L)} \cup T_{U}^{(R)}$. Thus, in the case $T_{U}^{(L)}=T_{U}^{(R)}=\varnothing$ we can choose any $\sigma \in T_{U}$. Suppose $T_{U}^{(L)} \neq \varnothing$ (the case $T_{U}^{(R)} \neq \varnothing$ can be treated the same way). Say that $\sigma_{1} \in T_{U}$ is to the left of $\sigma_{2} \in T_{U}$ if $\sigma_{1} \cap U$ is to the left of $\sigma_{2} \cap U$. Let σ_{0} be the most left triangle from $T_{U}^{(L)}$ and let $\sigma \in T_{U}$ be such that $\sigma \cap U$ is adjacent from the left to $\sigma_{0} \cap U$. Then $\sigma \notin T_{U}^{(L)}$ because σ_{0} was the most left. We have also $\sigma \notin T_{U}^{(R)}$. Indeed, otherwise σ would intersect σ_{0} because σ hangs to the right and σ_{0} hangs to the left. Hence, $U \cup \sigma$ is T-univalent.
Proof of Theorem. As we pointed out above, the estimate $A n^{2}<\log \operatorname{Card} \mathcal{P} \mathcal{T}_{n}^{2}$ is evident. Let us prove that $\log \operatorname{Card} \mathcal{P} \mathcal{T}_{n}^{2}<B n^{2}$.

To each $T \in \mathcal{P} \mathcal{T}_{n}^{2}$ we associate the sequence of T-univalent subsets $I_{n} \times\{0\}=$ $U_{0} \subset U_{1} \subset \cdots \subset U_{N}=I_{n}^{2}, N=2 n^{2}$, where $U_{j+1}=U_{j} \cup \sigma_{j}$ and σ_{j} is the most left among the triangles $\sigma \in T$ such that $\sigma \not \subset U_{j}, \sigma \cup U_{j}$ is T-univalent. Denote by E the set of all edges of T and put $E_{j}=\left\{e \in E \mid e \subset U_{j}\right\}, k_{j}=\operatorname{Card} E_{j}$. Let $e_{1}, \ldots, e_{k_{N}}$ be all the edges of T numerated so that $E_{0}=\left\{e_{1}, \ldots, e_{k_{0}}\right\}$ and $E_{j+1} \backslash E_{j}=\left\{e_{k_{j}+1}, \ldots, e_{k_{j+1}}\right\}(j=0, \ldots, N)$, the elements of each $E_{j+1} \backslash E_{j}$ being numerated from the left to the right. Let us define the vector $v_{T}=\left(v_{1}, \ldots, v_{k_{N}}\right)$ as follows. If e_{j} is vertical or $e_{j} \subset I_{n} \times\{1\}$ then we put $v_{j}=1$. Otherwise, if $e_{j}=[a b]$, $\pi(a)<\pi(b)$, and $\sigma=[a b c] \in T$ is the triangle adjacent to [ab] from above, then put

$$
v_{j}= \begin{cases}1 & \text { if } \pi(c)<\pi(a) \\ 2 & \text { if } \pi(c)=\pi(a), \\ 3 & \text { if } \pi(a)<\pi(c) \leq \pi(b), \\ 4 & \text { if } \pi(c)>\pi(b)\end{cases}
$$

It is clear that that the number of all possible vectors v_{T} is bounded by $4^{3 n^{2}}$. Therefore, to complete the proof it suffices to show that T is uniquely determined by v_{T}. Indeed, if v_{T} is known then one can inductively reconstruct all the sets E_{0}, E_{1}, \ldots as follows. Suppose U_{j} is already reconstructed. Let $e_{j_{1}}, \ldots, e_{j_{m}}$ be all the non-vertical edges (numerated from the left to the right) lying on $\partial U_{j} \backslash \partial I_{n}^{2}$. Then the triangle σ, adjacent to $\epsilon_{j_{i}}$ from above, being attached to E_{j} yields a T-univalent set if and only if one of the following three cases holds: (i) $2 \leq v_{j_{i}} \leq 3$;
(ii) $v_{j_{i-1}}=4$ and $v_{j_{i}}=1$; (iii) $v_{j_{i}}=4$ and $v_{j_{i+1}}=1$. In all the cases σ is uniquely determined by $\sigma \cap E_{j}$ (due to the primitivity condition).
Proof of Corollary. Each $T \in \mathcal{T}_{n}^{2}$ can be subdivided to a $T^{\prime} \in \mathcal{P} \mathcal{T}_{n}^{2}$. Let E and E^{\prime} be the sets of edges of T and T^{\prime} not lying on ∂I_{n}^{2}. Clearly that T is uniquely determined by T^{\prime} and E. Hence, $\operatorname{Card} \mathcal{T}_{n}^{2} \leq \sum_{T^{\prime}} \operatorname{Card}\left\{E \subset E^{\prime}\right\}<\left(\operatorname{Card} \mathcal{P} \mathcal{T}_{n}^{2}\right) \cdot 2^{3 n^{2}}$ since Card $E^{\prime}=3 n^{2}-2 n<3 n^{2}$.

The properties of integral points were essential to our proof. However, the following generalization seems to be true. Given a finite set $A \subset \mathbf{R}^{2}$, denote by $\mathcal{T}(A)$ the set of triangulations of the convex hull of A with vertices belonging to A.
Conjecture. There exists a constant C_{1} such that $\log \operatorname{Card} \mathcal{T}(A) \leq C_{1}$ Card A for any finite $A \subset \mathbf{R}^{2}$.

This is well-known when A is the set of vertices of a convex polygon. In this case Card $\mathcal{T}(A)$ is the Catalan number $\frac{1}{n-1}\binom{2 n-4}{n-2}$ where $n=\operatorname{Card} A$. Note also, that an analogue of the Lemma is true for any finite $A \subset \mathbf{R}^{2}$.

I am grateful to V. Kharlamov for suggesting the problem and useful discussions. I thank the referee for useful remarks.

References

[1]. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinskii, Discriminants, resultants an multidimensional determinants, Birkhäuser, Boston, 1994.
[2] O.Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lect. Notes Math. 1960 (1984), 187-200.

Steklov Mathematical Institute, Russ. Acad. Sci. Gubkina 8, Moscow, 117966, Russia

[^0]: Partially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502

