ASYMPTOTIC NUMBER OF TRIANGULATIONS WITH VERTICES IN Z²

S.YU.OREVKOV

ABSTRACT. Let \mathcal{T}_n^2 be the set of all triangulations of the square $[0,n]^2$ with all the vertices belonging to \mathbf{Z}^2 . We show that $Cn^2 < \log \operatorname{Card} \mathcal{T}_n^2 < Dn^2$.

Triangulations with integral vertices appear in the algebraic geometry. They are used in Viro's method of construction of real algebraic varieties with controlled topological properties [2]. In [1], the discriminant of a polynomial $\sum_{a \in A} c_a x^a$ with a fixed finite set of multi-indices $A \subset \mathbf{Z}^d$ is described in terms of triangulations of the convex hull of A with vertices in A. Here we study the asymptotics of the number of triangulations with integral vertices when the size of the triangulated polytope tends to infinity.

Denote by I_n the segment $[0, n] \subset \mathbf{R}$ and let $I_n^d := I_n \times \cdots \times I_n \subset \mathbf{R}^d$ be the *d*-dimensional cube with the side *n*. Denote by \mathcal{T}_n^d the set of all triangulations of I_n^d whose vertices are integral points.

Question. What are the asymptotics of log Card \mathcal{T}_n^d when $n \to \infty$?

Only the evident estimates are known for an arbitrary $d \geq 2$:

$$A_d n^d < \log \operatorname{Card} \mathcal{T}_n^d < B_d n^d \log n, \qquad (A_d, B_d > 0)$$

To get the left inequality, divide I_n^d into n^d cubes; each of them can be subdivided into simplices at least in two ways. To obtain the right inequality, note that the number of all integral *d*-simplices contained in I_n^d is bounded by $c_1 n^{c_2}$ and the number of *d*-simplices in each $T \in \mathcal{T}_n^d$ is bounded by $c_3 n^d$, hence,

Card
$$\mathcal{T}_n^d \le \sum_{q=1}^{c_3 n^d} {\binom{c_1 n^{c_2}}{q}} \le c_4 (c_1 n^{c_2})^{c_3 n^d}$$

(here c_1, \ldots, c_4 depend on d but do not depend on n).

In this note we show that for d = 2 the main term of the asymptotics is const n^2 . A triangulation $T \in \mathcal{T}_n^d$ is called *primitive* if the volume of each *d*-dimensional simplex equals 1/d!. Let $\mathcal{PT}_n^d = \{T \in \mathcal{T}_n^d \mid T \text{ is primitive}\}.$

Theorem. There exist positive constants A and B such that

$$An^2 < \log \operatorname{Card} \mathcal{PT}_n^2 < Bn^2$$
.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!\mathrm{E}}\!X$

Partially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502

Corollary. There exist positive constants C and D such that

$$Cn^2 < \log \operatorname{Card} \mathcal{T}_n^2 < Dn^2$$
.

Denote by $\pi: I_n^2 \to I_n$ the projection $(x, y) \mapsto x$. Given a $T \in \mathcal{T}_n^2$, let us say that a subset $U \subset I_n^2$ is *T*-univalent if U is a closed simplicial subcomplex of T such that $I_n \times \{0\} \subset U$, and all the fibers $(\pi|_U)^{-1}(x), x \in I_n$ are connected.

Lemma. Let $T \in \mathcal{PT}_n^2$ and let U be a T-univalent subset of I_n^2 . If $U \neq I_n^2$ then there exists a triangle $\sigma \in T$ such that $\sigma \notin U$ and $U \cup \sigma$ is T-univalent.

Proof. Denote by T_U the set of all triangles $\sigma \in T$ such that $\sigma \not\subset U$ and $\sigma \cap U$ contains a segment. Let $\sigma \in T_U$. Denote the vertices of σ by a, b, c so that $\pi(a) \leq \pi(b), [ab] \subset U$. We shall say that σ hangs to the left (resp. to the right) if $\pi(c) < \pi(a)$ (resp. $\pi(b) < \pi(c)$) and $c \notin U$. Denote by $T_U^{(L)}$ (resp. $T_U^{(R)}$) the set of triangles $\sigma \in T_U$ hanging to the left (resp. to the right). Clearly that if $\sigma \in T_U$ and $U \cup \sigma$ is not T-univalent then $\sigma \in T_U^{(L)} \cup T_U^{(R)}$. Thus, in the case $T_U^{(L)} = T_U^{(R)} = \varnothing$ we can choose any $\sigma \in T_U$. Suppose $T_U^{(L)} \neq \emptyset$ (the case $T_U^{(R)} \neq \emptyset$ can be treated the same way). Say that $\sigma_1 \in T_U$ is to the left of $\sigma_2 \in T_U$ if $\sigma_1 \cap U$ is to the left of $\sigma_2 \cap U$. Let σ_0 be the most left triangle from $T_U^{(L)}$ and let $\sigma \in T_U$ be such that $\sigma \cap U$ is adjacent from the left to $\sigma_0 \cap U$. Then $\sigma \notin T_U^{(L)}$ because σ_0 was the most left. We have also $\sigma \notin T_U^{(R)}$. Indeed, otherwise σ would intersect σ_0 because σ hangs to the right and σ_0 hangs to the left. Hence, $U \cup \sigma$ is T-univalent. \Box

Proof of Theorem. As we pointed out above, the estimate $An^2 < \log \operatorname{Card} \mathcal{PT}_n^2$ is evident. Let us prove that $\log \operatorname{Card} \mathcal{PT}_n^2 < Bn^2$.

To each $T \in \mathcal{PT}_n^2$ we associate the sequence of T-univalent subsets $I_n \times \{0\} = U_0 \subset U_1 \subset \cdots \subset U_N = I_n^2$, $N = 2n^2$, where $U_{j+1} = U_j \cup \sigma_j$ and σ_j is the most left among the triangles $\sigma \in T$ such that $\sigma \not\subset U_j$, $\sigma \cup U_j$ is T-univalent. Denote by E the set of all edges of T and put $E_j = \{e \in E \mid e \subset U_j\}, k_j = \text{Card } E_j$. Let e_1, \ldots, e_{k_N} be all the edges of T numerated so that $E_0 = \{e_1, \ldots, e_{k_0}\}$ and $E_{j+1} \setminus E_j = \{e_{k_j+1}, \ldots, e_{k_{j+1}}\}$ $(j = 0, \ldots, N)$, the elements of each $E_{j+1} \setminus E_j$ being numerated from the left to the right. Let us define the vector $v_T = (v_1, \ldots, v_{k_N})$ as follows. If e_j is vertical or $e_j \subset I_n \times \{1\}$ then we put $v_j = 1$. Otherwise, if $e_j = [ab]$, $\pi(a) < \pi(b)$, and $\sigma = [abc] \in T$ is the triangle adjacent to [ab] from above, then put

$$v_j = \begin{cases} 1 & \text{if } \pi(c) < \pi(a), \\ 2 & \text{if } \pi(c) = \pi(a), \\ 3 & \text{if } \pi(a) < \pi(c) \le \pi(b), \\ 4 & \text{if } \pi(c) > \pi(b). \end{cases}$$

It is clear that the number of all possible vectors v_T is bounded by 4^{3n^2} . Therefore, to complete the proof it suffices to show that T is uniquely determined by v_T . Indeed, if v_T is known then one can inductively reconstruct all the sets E_0, E_1, \ldots as follows. Suppose U_j is already reconstructed. Let e_{j_1}, \ldots, e_{j_m} be all the non-vertical edges (numerated from the left to the right) lying on $\partial U_j \setminus \partial I_n^2$. Then the triangle σ , adjacent to e_{j_i} from above, being attached to E_j yields a T-univalent set if and only if one of the following three cases holds: (i) $2 \leq v_{j_i} \leq 3$; (ii) $v_{j_{i-1}} = 4$ and $v_{j_i} = 1$; (iii) $v_{j_i} = 4$ and $v_{j_{i+1}} = 1$. In all the cases σ is uniquely determined by $\sigma \cap E_j$ (due to the primitivity condition). \Box

Proof of Corollary. Each $T \in \mathcal{T}_n^2$ can be subdivided to a $T' \in \mathcal{PT}_n^2$. Let E and E' be the sets of edges of T and T' not lying on ∂I_n^2 . Clearly that T is uniquely determined by T' and E. Hence, $\operatorname{Card} \mathcal{T}_n^2 \leq \sum_{T'} \operatorname{Card} \{E \subset E'\} < (\operatorname{Card} \mathcal{PT}_n^2) \cdot 2^{3n^2}$ since $\operatorname{Card} E' = 3n^2 - 2n < 3n^2$. \Box

The properties of integral points were essential to our proof. However, the following generalization seems to be true. Given a finite set $A \subset \mathbf{R}^2$, denote by $\mathcal{T}(A)$ the set of triangulations of the convex hull of A with vertices belonging to A.

Conjecture. There exists a constant C_1 such that $\log \operatorname{Card} \mathcal{T}(A) \leq C_1 \operatorname{Card} A$ for any finite $A \subset \mathbb{R}^2$.

This is well-known when A is the set of vertices of a convex polygon. In this case Card $\mathcal{T}(A)$ is the Catalan number $\frac{1}{n-1}\binom{2n-4}{n-2}$ where n = Card A. Note also, that an analogue of the Lemma is true for any finite $A \subset \mathbf{R}^2$.

I am grateful to V. Kharlamov for suggesting the problem and useful discussions. I thank the referee for useful remarks.

References

- I.M. Gelfand, M.M. Kapranov, A.V. Zelevinskii, Discriminants, resultants an multidimensional determinants, Birkhäuser, Boston, 1994.
- [2] O.Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lect. Notes Math. **1960** (1984), 187-200.

Steklov Mathematical Institute, Russ. Acad. Sci. Gubkina 8, Moscow, 117966, Russia