
LINK THEORY AND OVAL ARRANGEMENTSOF REAL ALGEBRAIC CURVESS.Yu. Orevkov0. IntrodutionHow a real algebrai urve of a given degree an be deposed on the plane up to anambient isotopy? This is one of the questions posed by Hilbert in the 16-th problemalmost 100 years ago. There are few hanes of obtaining a omplete answer to thisquestion in the near future. However, a lot of partial results in this diretion areobtained (see surveys [9, 21, 31, 28, 25℄). All the ativity around this question an byroughly divided in two more or less independent parts: Construtions (how to realizeisotopy types whih exist) and prohibitions (how to prove that some isotopy types donot exist). In this paper we disuss only the prohibitions.Let Y be the double overing of CP2 rami�ed along the omplexi�ation CA of areal urve RA. Almost all of the most powerful modern methods to obtain restritionson the topology of plane real urves are based on the onstrution of 2-yles in Yand the omputation of their intersetions. On one hand, Y is a standard omplexobjet whose topology is well studied and, on the other hand, a lot of 2-yles are"visible" on the real plane. This idea appeared in the remarkable paper of Arnold [1℄and then it was exploited and developed by di�erent authors. In partiular, Viro [28;(4.12)℄, [12; Setions (5.1), (5.2)℄ suggested a method to onstrut 2-yles whih arenot visible on the real plane but whih are visible on the 3-manifold CLp onsistingof all omplex points of the real lines of some penil Lp. This method was furtherdeveloped in [23℄, [24℄. (First, the idea to onsider CLp was proposed by Fiedler [6℄as a tool to obtain topologial restritions from the Rokhlin's omplex orientationsformula [20℄).In this paper we propose a method of prohibitions based on the onsideration ofCLp as the boundary of one of two parts into whih it uts CP2. If we push CLpa little into the interiority of this 4-manifold then the singularities of CLp \CA willbe smoothed in a ontrolled way and we obtain a link L in a 3-sphere S3 boundingan embedded surfae N � B4 (N is a piee of CA; see Setions 3 and 4 for details).The topologial type of N an be found by Riemann-Hurwitz formula. Thus, weredue the problem to a lassial problem of link theory: what surfaes in B4 an bebounded by a given link in S3. A rather strong neessary ondition for N in terms ofthe Seifert form of L is provided by Murasugi-Tristram inequality [13, 26℄ (see Setion2.2 below). The most of the results of this paper are obtained using this inequality.However, even elementary arguments based on the linking numbers of omponentsPartially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502Typeset by AMS-TEX1



2 S.YU. OREVKOVof L sometimes anable to obtain some new restritions (see Setions 4.3, 4.4, andLemma 5.11).In fat, the method based on the Murasugi{Tristram inequality is very lose tothose based on 2-yles on the double overing. For instane, it is shown in [27℄ thatthe signature of the double overing of B4 branhed along N is equal to the signatureof the Seifert form. However, the onstrution of the yles in our approah is hiddeninto the proof of this fat. Thus, the art of yles onstrution is replaed with a wellalgorithmized omputation of a Seifert matrix.The Murasugi{Tristram inequality was already used in the ontext of real urves(in a di�erent way) by P. Gilmer [8℄.1. Statements of the results1.1. Classi�ation of exible aÆne M-sextis.Let C1 be the in�nite line RP2 nR2 and Cm � RP2 a urve of degree m. We shallsay that the aÆne urve Cm nC1 is an aÆne M -urve if it has the maximal possiblenumber (m2�m+2)=2 of onneted omponents. This is equivalent to the fat thatCm is a projetive M -urve, i.e. it has the maximal possible number of onnetedomponents 1 + (m � 1)(m � 2)=2 and it uts C1 transversally at m distint realpoints whih all lie on the same onneted omponent of Cm. This de�nition di�ersfrom that, given in [12, 23℄ but it seems to be more natural.Aording to the Gudkov's [9℄ isotopy lassi�ation of real projetive sextis, aprojetive M -sexti has 11 ovals 10 of whih are empty1 and one surrounds 1, 5, or9 others. Choosing in di�erent ways a line passing through 2 empty ovals and usingthe fat that it uts C6 at most in 6 points, one an easily hek that eah aÆneM -sexti belongs to one of the isotopy types depited in Fig. 1 where a priori �, �,�i, �i are arbitrary integers providing one of the three possible isotopy types of C6(utting RP2 along C1 one obtain a disk; these disks are depited in Fig. 1).Theorem 1.1. All the isotopy types not listed in the tables in Fig. 1, are not realizableby aÆne M -sextis.The 33 isotopy types orresponding to the lines not marked by "(f)" are realizedin [12℄. Other onstrutions (exposed with more details) of these 33 urves an befound in [11℄. It is announed also in [12℄ that all the other isotopy types but 19do not exist. Later, it was announed in [23℄ that 10 more ases of these 19 oneswere also prohibited. However, the proofs of at least 3 of these prohibitions (namely,A3(0; 5; 5), A4(1; 4; 5), C2(1; 3; 6)) are wrong beause these isotopy types in priniplean not be prohibited by methods used in [12, 23℄ (see Setion 7.2).Moreover, the on�guration A3(0; 5; 5) is realizable by a suitable smoothing of thereal rational sexti that has 5 singular points of types A8, E6, A2, A1, A1, the linethrough E6 and A2 being tangent to the urve at A2. There exists a unique (upto SL3(R)) real sexti with this on�guration of singularities. Similarly (see [15℄),a urve realizing B2(1; 8; 1) an be onstruted by smoothing of a rational sextiwith A16, A2, A1. The realizability of A4(1; 4; 5), B2(1; 4; 5), and C2(1; 3; 6) is stillunknown, but we onstrut in 7.2 exible urves (see the de�nition in [28℄ or in 3.1below) realizing these three isotopy types as well as all the others marked by "(f)" inFig. 1. Theorem 1.1 is proven in x5.1An oval is said to be empty if its interiority does not ontain other ovals (it is not ?!)
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Fig. 1Added in 2002: Now the lassi�ation of aÆne M-sextis is ompleted in by S. Fiedler-LeTouz�e,E. Shustin, and the author in the papersS. Fiedler-LeTouz�e, S.Yu. Orevkov, A exible aÆne M-sexti whih is algebraially unrealizable,J.of Algebrai Geometry 11 (2002,), 293{310.S.Yu. Orevkov, E.I. Shustin, Flexible, algebraially unrealizable urves: rehabilitation of Hilbert-Rohn-Gudkov approah, J. Reine und Angew. Math. (to appear).S.Yu. Orevkov, E.I. Shustin, Pseudoholomorphi, algebraially unrealizable urves,http://piard.ups-tlse.fr/eorevkov.1.2. Reduible urves of degree 7.As another illustration of appliability of the link-theoretial methods to the studyof the topology of reduible urves we prove in Setion 6 the following two results.Theorem 1.2A. There does not exist M -quinti C5 whose odd omponent is deposedwith respet to a oni C2 as it is depited in Fig. 2.It is easy to derive from B�ezout theorem that the ovals of C5 must be distributedbetween the regions marked by h�1i, h�2i, h�i. The omplex orientations formulasallow only 13 possible distributions (see 6.1). Using some other methods it is possibleto prohibit 3 of them (see [19; (2.1.2)℄). The realizability of the other 10 ases wasunknown.Now let us onsider mutual arrangements of a quarti and a ubi. Suppose that anoval O4 of anM -quarti C4 is deposed with respet to anM -ubi C3 as it is depitedin Fig. 3. Denote by kh�i (k; � = 1; 2; 3) the arrangement where the k-th outer (withrespet to O4) digon ontains � ovals of C4 and the other 3� � ovals are deposed in
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Fig. 2 Fig. 3 Fig. 4the non-bounded omponent of RP2 n (C3 [C4). Let 0h0i be the arrangement whereall the 3 free ovals of C4 are outside. It follows from B�ezout theorem that all theother distributions of free ovals of C4 are impossible (or an be redued to these 10by reversing the order of digons).Theorem 1.2B. All the arrangements kh�i exept 0h0i and 2h1i are not realizable.These two arrangements are realizable by exible urves (see 7.3).Some open questions in the lassi�ation of reduible 7th degree urves (in partiu-lar, those answered in 1.2A,B) were kindly ommuniated to me by G.M. Polotovskii.Using the methods of this paper we have obtained with him [17℄ an isotopy lassi�a-tion of all mutual arrangements of an M -ubi and an M -quarti suh that two ovalsinterset in 12 points.Added in 2002: 1. Theorem 1.2A is wrong. The mistake was found by G.M. Polotovskii. However,using the methods of this paper, he found all arrangements of a oni and an M-quinti of the formas in Fig. 2.2. The both arrangements 0h0i and 2h1i whih are not exluded by Theorem 1.2B are realizedin the paperS.Yu. Orevkov, Constrution of arrangements of an M-quarti and an M-ubi with maximallyinterseting oval and odd branh, http://piard.ups-tlse.fr/eorevkov.1.3. Curves of degree 8 with a 5-fold point. (Compare with [18℄, [3℄).Theorem 1.3. There do not exist urves of degree 8 shown in Fig. 4 with �+� = 11.Originally, this theorem was proven in the same way as Theorem 1.1 (using thepenil of lines through the 5-fold point). However, it follows from the results of [16℄(see also 4.1). So, we do not present the proof here.1.4. A singularity without M-perturbations.Let C0 2 R2 be a real analyti urve whih has three analyti branhes at the origin,eah branh having an ordinary usp A2. Let U be a small disk with the enter in theorigin and let C be a perturbation of C0. A loal version of the Harnak inequalityimplies that C \ U has not more than 16 omponents: three omponents with theboundaries on �U and 13 ovals. Suh a perturbation is alled an M -perturbation. Inthe ase when C0 is arranged as in Fig. 5(left), an M -perturbation exists (simplifythe singularity into an ordinary 6-fold point and then perturb it gluing any aÆneM -sexti of the series A). However, if C0 is like in Fig. 5(middle), all the attempts toonstrut it fail.V. Kharlamov and E. Shustin have prohibited all the possible arrangements ofovals for the perturbation in the latter ase exept two very partiular arrangements
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Fig. 5shown in Fig. 5(right). Using the loal version of the method from Setion 4.2, theauthor proved that the last possibility also is not realizable. An outline of the proofis presented in Setion 8.1. The details are planned to be published in the joint paper[10℄.1.5. A new formula for omplex orientations for a projetive M-urve witha deep nest.Let RA � RP2 be a real projetive M -urve of degree m. Reall (see [20℄, [21℄,or [28, x2℄) that CA n RA = A+ t A� and the omplex orientation of RA is theboundary orientation oming from A+. Two ovals O, O0 bounding an annulus form apositive (resp. negative ) injetive pair if their omplex orientations do (resp. do not)oinide with the boundary orientation of the annulus; we write this as [O : O0℄ = 1(resp. [O : O0℄ = �1).In the ase when m is odd, an oval O is alled positive (resp. negative) if [O℄ =�2[N ℄ 2 H1(RP2nIntO) (resp. [O℄ = 2[N ℄) where N is the odd omponent ofRA. Inthe ase when m is even and O is not outer, O is said to be positive if [O : O0℄ = 1 (or,equivalently, [O℄ = �[O0℄ 2 H1(RP2 n IntO)) where O0 is the outer oval surroundingO. Otherwise O is alled negative. If m is even, we assume also (this is not so in [21℄,[28℄) that any outer non-empty oval is negative by de�nition.Suppose RA has a nest (O1; : : : ; Ok�1) of depth k�1 where k = [m=2℄. This meansthat the oval Oj is surrounded by Ok for j > k. It follows from B�ezout theorem thatall the other ovals are empty. In Setion 4.4 we prove the followingTheorem 1.4A. Let k+ (resp. k�) be the number of positive (resp. negative) non-empty ovals, �+ (resp. ��) the number of positive (resp. negative) empty ovals,and let �Ss , S; s 2 f+;�g be the number of pairs (O; o) where o is an empty ovalsurrounded by O and (S; s) are the signs of (O; o). Then�+� � �++ = (k+)2; ��+ � ��� = (k�)2 (m is even);�+� � �++ = (k+)2; ��+ � ��� + (�+ � ��)=2 = (k�)2 + k� (m is odd):Corollary 1.5. If a real sheme2 of an M -urve of degree 7 is hJ t � t 1h�ii with� > 0, and the non-empty oval is positive then(a) � and � are odd;(b) the omplex sheme is hJ t (�+12 )+ t (��12 )� t 1+h(��12 )+ t (�+12 )�ii2See the de�nition and notation of real and omplex shemes in [28℄.



6 S.YU. OREVKOVCorollary 1.6. If a real sheme of an M -urve of degree 8 is h t 1h� t 1h�iii with� > 0, and the non-empty ovals form a positive injetive pair then(a) � and  are odd;(b) the omplex sheme is h t 1h(�2 + 1)+ t (�2 � 1)� t 1+h(��12 )+ t (�+12 )�iii.Corollary 1.7. If a real sheme of an M -urve of degree 8 is h t1h2t1h�iii where� and  are even and � > 0 then the omplex sheme ish t 1h1+ t 1� t 1�h(�2 + 1)+ t (�2 � 1)�iii.Corollary 1.8. There does not exist M -urve C of degree 9 with the real shemehJ t 2 t 1h1 t 1h23iii.Proof. The only orresponding omplex sheme satisfying 1.4A is hJ t 1+ t 1� t1�h1� t 1�h13+ t 10�iii. Denote the outer empty ovals by o+, o� and hoose pointsp+, p� inside them. Applying [6℄ to the penil of lines through p�, we see that the linel := (p+p�) separates some two of the most inner ovals o1, o2 and l \ (C n (o+ [ o�))lies in one omponent of l n fp+; p�g. Then the oni through o+, o�, o1, o2, and onemore empty oval uts C in � 20 points. �Remarks. 1. Two independent formulas for omplex orientations are known forsmoothings of singularities (see [25, 10℄).2. The prohibition in Corollary 1.8 was unknown aording to [11℄. This realsheme equipped with the omplex orientations hJ t 2+ t 1�h1+ t 1+h12+ t 11�iiidoes not ontradit the Rokhlin's omplex orientation formula and it is not lear howto prohibit it without Theorem 1.4A.3. Some of omplex 7 degree shemes prohibited in Corollary 1.5 were earlierprohibited in [5℄ by another method as well as some other omplex shemes notovered by Corollary 1.5.Added in 2002: Corollary 1.8 was published in the erratum to this paper. Some more M-urvesof degree 9 are exluded by the same method inS.Yu. Orevkov, Link theory and new restritions for M-urves of degree 9, Funt. Anal. andAppl. 34 (2000), 229{231.1.6. A exible realization of the sheme h1 t 1h1i t 1h18ii of degree 8. Thisis one of the 9 real M -sheme of degree 8 whose realizability is still unknown (1997;see [4℄). In Setion 8.2 we realize it by a exible urve (see [28℄). This urve isompatible with the penil of lines through the nest 1h1i (see Setion 3.1). Moreover,all the known methods of onstrutions 2-yles on the double overing work for thisurve.We also prove some topologial properties of suh urves and possibilities for theirdegenerations.Added in 2002: Now the lassi�ation of exible M-urves of degree 8 is ompleted and it remains6 open ases for algebrai M-urves, see the paperS.Yu. Orevkov, Classi�ation of exible M-urves of degree 8 up to isotopy, GAFA { Geom. andFunt. Anal. (to appear).x2. Preliminaries. Links and braidsIn this setion we reall some de�nitions and known fats (mostly, to �x the nota-tion) and perform some elementary alulations with Seifert matries.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 72.1. Seifert matrix.Reall some de�nitions. Let L be a link in the 3-sphere S3, i.e. several disjointirles smoothly embedded into S3. A Seifert surfae of a link L is a onneted3oriented 2-manifold X smoothly embedded into S3 suh that �X = L (taking intoaount the orientations). A Seifert form of a link L is the bilinear (non-symmetri)form on H1(X;Z) whose value on x, y equals the linking number of the yles x+and y where x+ is the result of a small shift of x along a positive normal vetor �eldto X. A Seifert matrix is the Gramm matrix of a Seifert form with respet to somebase of H1(X;Z).Let A be an Hermitian matrix and B = QAQ� its diagonalization. The signature�(A) is the sum of the signs of the diagonal entries of B and the nullity n(A) is thenumber of zeros on the diagonal of B.Let V be a Seifert matrix of a link L and � 2 C, j�j = 1. The higher signatureand nullity of L are said to be ��(L) := �(V�) and n�(L) := n(V�) + 1 whereV� = (1 � �)V + (1 � ��)V �. For � = �1 they are alled just the signature and thenullity of L. The Alexander polynomial of L is de�ned as det(V � tV �) and detL asits value at �1. Though the Seifert matrix is not unique, ��(L), n�(L) and j detLjare link invariants. The Alexander polynomial is invariant up to multiplying by �tk.Lemma 2.1. If the Alexander polynomial of a link L has a simple root t0, jt0j = 1then for a prime p and a primitive p-root of unity � one has n�(L) = 1 and j��(L)j > 0Proof. When � passes t0 moving along the unit irle, �� hanges by �2. �2.2. Murasugi { Tristram inequality.Let L be a link in S3 regarded as the boundary of the 4-ball B4. Let N be a surfaeof genus g smoothly embedded into B4 suh that �N = L. If N is not onneted thenits genus by de�nition is equal to the sum of the genera of the onneted omponents.Following [26℄, denote by �(�) the number of onneted omponents. Then for eahprime p and for eah primitive p-root of unity � one has [13, 26℄2g � �(N)� �(L) + j��(L)j+ jn�(L)� �(N)j (1)2.3. Braids.As usual, we all a braid on m strings the graph of a smooth m-valued funtionF : [0; 1℄ ! C whose values are pairwise disjoint at eah point and the real parts ofits values are pairwise disjoint at 0 as well as at 1. The projetion used for pituringbraids (and for de�nition of the standard generators of the braid group) is supposedto be (t; z) 7! (t;Re z).
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. . .�i ��1i �6Fig. 63Sometimes the onnetedness is not laimed, but this ondition is important for the belowde�nition of the nullity.



8 S.YU. OREVKOVBy �1; : : : ; �m�1 we shall denote the standard generators of the braid group Bmand by � (or �m) the Garside element (see Fig. 6)� = �m = (�1�2 : : : �m�1) � : : : � (�1�2�3) � (�1�2) � �1The diretions of the twists are de�ned by the onvention that �1 2 B2 is the funtionw = pz along the path z = e2�it.The losure of a braid b is de�ned as the link b̂ whih is the image of b under thestandard embedding of the solid torus ([0; 1℄�C)=(0;z)�(1;z) into S3. The orientationof b̂ is indued by the projetion [0; 1℄�C! [0; 1℄.2.4. Quasipositive braids.A braid b is alled quasipositive if b =Qj wj�ijw�1j .L. Rudolph [22℄ shown that a braid b 2 Bm is quasipositive if and only if it isthe boundary braid of an m-valued algebrai funtion on a disk w = F (z) impliitlyde�ned by wn + a1(z)wn�1 + � � � + an(z) = 0 where ai(z) are polynomials in z.Perturbing, if neessary, the oeÆients, we may assume that all the singularities ofF are ordinary rami�ations. Then the number of the branhing points is equal toe(b) where e : Bm ! Z is the homomorphism "exponent sum": e(�i) = 1 for all i.Hene, by Riemann-Hurwitz formula, the Euler harateristi of N :=graph(F )equals m� e(b) = �(N) = 2�(N)� 2g(N)� �(b̂): (2)Combining this with (1), we obtain immediately the following neessary ondition forthe quasipositivity of a braid b 2 Bmn�(b̂) � j��(b̂)j+m� e(b): (3)Corollary 2.2. If a braid b 2 Bm is quasipositive and e(b) < m�1 then the Alexanderpolynomial of b̂ is identially equal to zero, in partiular, det b̂ = 0.2.5. Seifert matrix of a losed braid.Fix a presentation of a braid b 2 Bmb = �"1i1 �"2i2 : : : �"nin ; "j = �1: (4)To onstrut a Seifert surfae of b̂, one an take m parallel equally oriented disksand onnet them with n one-twisted ribbons as it is shown in Fig.7. This surfae(denote it by X) is onneted if and only ifAll the indies 1; : : : ;m� 1 appear among i1; : : : ; in. (5)Multiplying if neessary the right hand side of (4) by expressions of the form �k��1k ,we an always assume that (5) is satis�ed.As a base of H1(X;Z) let us hoose the s = n � m + 1 yles x1; : : : ; xs whihorrespond to iruits in the positive diretion around the bounded regions of theprojetion of the braid onto the plane (see Fig. 7).This onstrution leads to the following algorithm for omputing a Seifert matrixstarting with a braid. Denote by I the set f1; :::; ng. The multi-index i = (i1; : : : ; in)de�nes the partition I = I1[I2[� � �[Im�1 where Ih = fj j ij = hg. Let Sh be the setof pairs of suessive (in asending order) elements of Ih, and put Si := S1[� � �[Sm�1.
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x1 x2

3xb = �2��11 �2�2�1; m = 2; n = 5; S = f(1; 3); (3; 4); (2; 5)gFig. 7Let Si = f(a1; b1); : : : ; (as; bs)g where (a� ; b�) orresponds to x� (see Fig. 7). De-note h� := ia� = ib� , � = 1; : : : ; s. Then the Seifert matrix V = jjv�� jjs�;�=1 and itssymmetrization V + V � = jj~v�� jjs�;�=1 an be omputed as follows.v�� = 8>>><>>>: �"; if � = � and "a� = "b� = "1; if h� = h� , b� = a� , "b� = 1 or h� = h� + 1, a� < a� < b� < b��1; if h� = h� , a� = b� , "a� = �1 or h� = h� + 1, a� < a� < b� < b�0; otherwise~v�� = 8>>><>>>: �"a� � "b� ; if � = �"j ; if h� = h� and a� = b� = j"; if h� = h� + " and a� < a� < b� < b� for " = �10; otherwisewhere (�; �) denotes some permutation of (�; �). All the mutual positions of x� andx� whih provide v�� 6= 0 are shown shematially in Fig. 8.
x x x

x

x x

xv�� = �" v�� = ("+ 1)=2 v�� = 0 v�� = �1v�� = ("� 1)=2 v�� = 1 v�� = 0~v�� = �2" ~v�� = " ~v�� = 1 ~v�� = �1Fig. 8Examples 2.3. 1. (Trefoil). m = 2, b = �1�1�1, S = f(1; 2); (2; 3)g, V = ��1 10 �1�.2. (Braid in Fig.7). b = �2��11 �2�2�1, V = ��1 1 00 �1 01 0 0�, V + V � = ��2 1 11 �2 01 0 0�.2.6. Signature of a braid as a funtion of generator exponents.Now let us �x m > 1, a multi-index i = (i1; : : : ; in) satisfying (5) and onsider thefamily f�ei g � Bm of braids�ei = �e1i1 �e2i2 : : : �enin ; e = (e1; : : : ; en) 2 Zn: (6)



10 S.YU. OREVKOVTo avoid a misunderstanding with the notation of braid generators, we denote in thissetion the signature and the nullity of a matrix and those of a link by Sign and Null.De�ne S = Si = fa�g�=1;:::;s and h� 's the same way as in Setion 2.5. If all ej 6= 0,put U = Ui(e) = jju�� jjs�;�=1 where (ompare with the formula for ~v�� in 2.5):u�� = 8>>><>>>: �e�1a� � e�1b� ; if � = �e�1j ; if h� = h� and a� = b� = j"; if h� = h� + " and a� < a� < b� < b� for " = �10; otherwiseas above, (�; �) denotes some permutation of (�; �).Denote by V = Vi(e) the Seifert matrix of b̂ (where b = �ei ) onstruted in Setion2.5 starting with the presentation of b in the form (4) obtained from (6) by replaingeah �ejij with the produt of jej j opies of �sign ejij . Denote by �s the dimension of V(learly, �s = 1�m+P jej j).Proposition 2.4. Let e 2 (Z n 0)n, V = Vi(e), ~V = V + V �. Then there existsQ 2 SL(�s;Q) suh that Q~V Q� = Ui(e) � DU where DU is a diagonal matrix withSign(DU ) = �P(ej � sign ej) and j detDU j =Q jej j.Proof. Denote by �S the set whih was denoted by S in the onstrution of V . Let �ei beone of the fators in the right hand side of (6) and " = sign e. Let a; a+1; : : : ; a+e�1be the indies of the orresponding part in the developing of (6) into the form (4).Denote the 1-yles orresponding to (a; a + 1); : : : ; (a + e � 2; a + e � 1) 2 �S byx1; : : : ; xe�1 and those orresponding to (a0; a) and (a+ e � 1; a1) (if they exist) byx0 and xe. We shall write the symmetrized Seifert form as x � y. Aording to theomputations of Setion 2.5 we have:xk �xj = �2" if k = j; xk �xj = " if jk � jj = 1; xk �xj = 0 if jk � jj > 1;and xk � x = 0 for x 2 �S n fx0; : : : ; xeg, k = 1; : : : ; e� 1.Put yk =Pkj=1 jxj=k for k = 1; : : : ; e and y0 =Pe�1j=0(e� j)xj=e.This is an easy exerise to hek that for k > 0 one has yk � yk = xk �xk+ "� ("=e),(k = 0; e); y0 � ye = "=e; yk � yk = �(k + 1)"=k, (k = 1; : : : ; e � 1), yk � yl = 0,(k = 1; : : : ; e�1; l 6= k), and yk �x = xk �x for any x 2 �Snfx0; : : : ; xeg and k = 0; : : : ; e.Thus, if we hange the base �S of H1(X;Q) replaing xk with yk (k = 0; : : : ; e) theny1; : : : ; ye�1 generate a diagonal diret summand and " is replaed with "=e in thefour entries of the Seifert matrix orresponding to y0 and ye.We write this hange of the base in the matrix form for e = 5, " = �1:Q0BB� :::+1 �1�1 2 �1 0�1 2 �1�1 2 �10 �1 2 �1�1 :::+11CCAQ� = 0BBB� :::+15 0 0 0 0 �1=5�1 2 �1 0 0 0�1=2 0 3=2 �1 0 0�1=3 0 0 4=3 �1 0�1=4 0 0 0 5=4 �1�1=5 0 0 0 0 :::+15
1CCCAQ�

= 0BBB� :::+15 0 0 0 0 �1=50 2 0 0 0 00 0 3=2 0 0 00 0 0 4=3 0 00 0 0 0 5=4 0�1=5 0 0 0 0 :::+15
1CCCA ; where Q = 0BB� 1 0 0 0 0 04=5 1 1=2 1=3 1=4 1=53=5 0 1 2=3 2=4 2=52=5 0 0 1 3=4 3=51=5 0 0 0 1 4=50 0 0 0 0 1 1CCARepeating this proedure for eah fator of (6) we obtain the desired result. �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 11Examples 2.5. 1. (Trefoil). b = �31. U is the empty matrix; D = ��2 00 �3=2�.2. (Braid in Fig. 7). b = �2��11 �22�1. U = ��3=2 11 0�; D = (�2).Now we are going to modify the above matries to avoid the denominators andhene, to have a possibility to use the same formulas in the ase when some of theexponents ej vanish.Reall that we have �xed a multi-index i = (i1; : : : ; in) satisfying (5). Given anye 2 Zn, we de�ne the matrix Wi(e) as follows. Let S = Si = f(a1; b1); : : : ; (as; bs)gand h� be as in 2.5. Consider a vetor spae over Q with a base y1; : : : ; ys; z1; : : : ; znendowed with the symmetri bilinear form de�ned byzj � zj = ej ; zj � y� = 1 if b� = j; zj � y� = �1 if a� = j;y� � y� = " if h� = h� + " and a� < a� < b� < b� for " = �1 (7)where (�; �) is some permutation of (�; �) and the value of the form on any other pairof the base elements is zero.De�ne Wi(e) is de�ned as the Gramm matrix of the base fy1; : : : ; yn; z1; : : : ; zng.Note, that n of diagonal entries of Wi(e) are e1 : : : ; en but the size of the matrix andall the other entries depend only on i and do not depend on e.Proposition 2.6. Let e 2 Zn, V = Vi(e), ~V = V +V �. Then there exists Q 2 SL(�s+2n;Q) suh that Q( ~V �Ze)Q� =Wi(e)�DW where Ze =Lnj=1 Zej , Ze = � e 00 �1=e�for e 6= 0, Z0 = � 0 11 0�, and DW is a diagonal matrix with Sign(DW ) = �P ej andj detDW j = 1.Proof. Step 1. If all ej 6= 0 then Wi(e) is ongruent to Ui(e) � De where De isthe diagonal matrix with e1; : : : ; en on the diagonal. Indeed, perform for eah jthe following hange of the base: (y�; zj ; y�) ! (y� � zj=ej ; zj; y� + zj=ej) whereb� = j = a� � � 1 01 e �10 �1 � � ! � ��e�1 0 e�10 e 0e�1 0 ��e�1 � ; e = ej :Step 2. Wi(e) is ongruent to �Lej=0 Z0��Wi0(e0) where i0 and e0 are obtainedfrom i and e by removing all ij and ej suh that ej = 0. Indeed, the latter ma-trix an be obtained from the former one by the following sequene of elementarytransformations performed for eah j with ej = 00B� � A� 0 0 �A � 1 0 00 1 0 �1 00 0 �1 � B� 0 0 B� � 1CA ! 0B� � A� 0 A� �A � 1 � 00 1 0 0 0A � 0 �+� B� 0 0 B� � 1CA ! 0B� � 0 0 A� �0 0 1 0 00 1 0 0 0A 0 0 �+� B� 0 0 B� � 1CAwhere the three entral rows and olumns orrespond to y�; zj; y� (b� = j = a�) andthe �rst (resp. last) row and olumn orrespond to all the base elements whih are"to the left (resp. right) of y�", this means the elements zk with k < j (resp. > j)and y� with a� < a� (resp. b� < b�). �Corollary 2.7. For any b = �ei , e 2 Zn one hasSign(b̂) = Sign �Wi(e)��P ej , Null(b̂) = 1 + Null �Wi(e)�, det(b̂) = � detWi(e).



12 S.YU. OREVKOVExample 2.8. If m = 2, b = �e1 then W = (e) and Sign(b̂) = �e+ sign e.For the needs of pratial omputation it is onvenient to use a "mixture" of Uand W . Namely, let J � I = f1; : : : ; ng be some subset of indies suh that fejgj2Jare really indeterminate for whih it is not known a priori if they are zeros or not,and fejgj 62J are some �xed non-zero onstants.Then we de�ne W Ji as the Gramm matrix of the symmetri bilinear form ony1; : : : ; ys and fzjgj2J whose all non-zero values on the base elements are (7) andy� � y� = ( �e�1a� �(a�)� e�1b� �(b�); if � = �e�1j ; if h� = h� and a� = b� = j 62 Jwhere � is the harateristi funtion of I n J , that means �(j) = 1 if j 62 J and�(j) = 0 if j 2 J (in this formula we assume that 0�1 � 0 = 0). As above, (�; �) issome permutation of (�; �). Clearly, W Ii (e) =Wi(e) and W?i (e) = Ui(e).Proposition 2.9. Let e 2 Zn be suh that ej 6= 0 for j 62 J . Let V = Vi(e),~V = V + V �. Then there exists Q 2 SL(�s + 2jJ j;Q) suh that Q( ~V � ZJe )Q� =W Ji (e) � DJW where ZJe = Lj2J Zej (Ze are like in 2.6.2), and DJW is a diagonalmatrix with Sign(DJW ) = �P ej +Pj 62J sign ej and detDJW = �Qj 62J ej .Example 2.10. m = 3, b = �21�e2�31��12 . S = f(1; 3); (2; 4)g,W f2g = �� 13� 12 �1 0�1 1 �10 �1 e �.Corollary 2.11. Let b = �ei be suh that ej 6= 0 for j 62 J . Put W =W Ji (e). ThenSign b̂ = SignW �P ej+Pj 62J sign ej; Null b̂ = 1+NullW ; det b̂ = � detW Qj 62J ej.2.7. Double overing of S3 branhed along a string of a braid.Let b 2 Bm and L = b̂. Suppose that the k-th string is a �xed point of the image ofb in the symmetri group, i.e. its losure Lk is a omponent of L. Consider the doubleovering � : X ! S3 branhed along Lk. Clearly, Lk is unknoted, hene, X = S3.We give here an algorithm for writing down a braid whose losure is ��1(L).Step 1. Construt a braid b0 of the form (b01�2"1m�1)(b02�2"2m�1) : : : where b0j 2 Bm�1and "j = �1 suh that L is isotopi to b̂0 and Lk orresponds to the m-th string ofb0. We omit the formal desription of this proedure. Note only that geometriallythis means that we move Lk in the diretion Im z (see Setion 2.3) pulling the stringswhih are linked with it and then do the same in the diretion Re z (see Fig. 9).
Fig. 9Step 2. Let r be the homomorphism Bm�1 ! B2m�1 de�ned by r�k = �2m�k�1.The required braid is (b01rb01�"1m�"1m�1�"1m )(b02rb02�"2m�"2m�1�"2m ) : : : (see Fig. 9).



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 13x3. Braids orresponding to real algebrai urves3.1. Flexible urves ompatible with a penil of lines.All the prohibitions of this paper are valid for the following topologial objetsgeneralizing real algebrai urves. For a point p 2 RP2 we denote by �p the projetionCP2 n fpg ! CP1 from p and by Lp = flt j t 2 CP1g the penil of lines lt = ��1p (t).Let A be a ompat oriented 2-submanifold of CP2 and RA := A\RP2. We shallsay that A is a exible irreduible urve of degree m ompatible with Lp (we shall usealso the shorter version of this term: Lp-exible irreduible urve of degree m) if(i ) A is invariant under the omplex onjugation;(ii ) �pjA is an orientation preserving rami�ed overing of degree m;(iii ) All the rami�ations of are positive. This means that for eah rami�ationpoint q there exists an orientation preserving di�eomorphism of some neigh-borhood of q to C2 whih de�nes loal oordinates (z; w) near q suh that Ltand A take form z = onst and z = w2 (but not �z = w2);It an be easily shown that an Lp-exible urve of degree m in the sense of thisde�nition is a exible urve in the sense of [28℄, in partiular, the genus of A isg = (m� 1)(m� 2)=2, the number  of onneted omponents of RA is � g + 1 andif A is an Lp-exible M -urve (i.e.  = g + 1) then the genus of A nRA is zero. Weshall always suppose also that the following onditions of general position hold.(iv ) Projetions of rami�ation points of �jA are distint (i.e. no line of Lp isbitangent to A).(v ) If a point q 2 A is not a rami�ation point of �jA then A is transversal to��1(RP1) at q.We shall all reduible Lp-exible urve a union of several Lp-exible irreduibleurves, all whose intersetions are transversal and positive. Its degree is the sumof degrees of the irreduible omponents. As we pointed out above, an irreduibleLp-exible urve A of degree m is a exible urve in the sense of [28℄, in partiular,(ii ) implies [A℄ = m[CP1℄ 2 H2(CP2;Z), hene, the B�ezout theorem is valid forirreduible omponents of a reduible Lp-exible urve. The generality ondition fora reduible urve A of degree m is(vi ) Eah line lt 2 Lp has at least m� 1 distint intersetion points with A.3.2. De�nition of the link L(A; p) and its obordism N(A; p).Fix a point p 2 RP2 and let A � CP2 be an Lp-exible urve generi with respetto p (all the onditions (i ) { (vi ) of Setion 3.1 are satis�ed). Fix an orientation onRP1 and let H+ be the half of CP1 n RP1 that indues the hosen orientation ofRP1.Sine ��1p (H+) is �bered over H+ with the �ber C, it an be mapped di�eomorphi-ally onto R4. Fix suh a di�eomorphism and denote by Br the preimage of the ballof radius r and by Sr the boundary of Br. For r� 1 the link Sr \A and the surfaeBr \ A do not depend on r up to an isotopy, and we denote them by L = L(A; p)and N = N(A; p) (assuming that Br and Sr are identi�ed with standard ball B4 andsphere S3). N is oriented as a part of A (reall that A is oriented by de�nition of aexible urve). Orient L as the boundary of N .3.3. Link L(A; p) as a perturbation of A \ ��1p (RP1).Let A be as above. Clearly, A \ ��1p (RP1) is the union of RA and a losed one-dimensional manifold S(A; p) whih meets RA at the points where A is tangent to



14 S.YU. OREVKOVlines of Lp. It is lear also that L(A; p) is obtained from A\��1p (RP1) by smoothingof the double points aording to Fig. 10. Near S(A; p)\RA, the smoothing looks likereplaing of a ross with a hyperbola in the same plane, and near the double pointsof RA, like replaing of a ross with a pair of skew lines.
v u S(A,p)

RAI

L(A,p)

t Fig. 10Orientation rule. Let q be a double point of A \ ��1p (RP1) and (t; w), w = u+ ivloal oordinates on ��1p (RP1) near q where t is a oordinate on RP1 with �=�tde�ning the hosen orientation, and w ompatible with the real struture on the �bers.(a) Let q 2 S(A; p) \ RA. Then the branh of RA at q in the diretion of �=�uis joined after the smoothing with the branh of S(A; p) at q in the diretion of �=�v(resp. ��=�v) if tjRA has a minimum (resp. maximum) at q.(b) Let q be a double point of RA and Ba, Bb the branhes of RA at q with tangentsrespetively u = at, u = bt, a < b. Then, after the smoothing, Bb passes higher (withrespet to the v-oordinate) than Ba. �Remark 3.1. (a) yields one more proof of the Fiedler's theorem [6℄ (see also [29℄, 1.4).Reall (see Setion 2.2) that �(�) is the number of onneted omponents and g(�)is the sum of their genera. A non-singular real projetive urve A is said to be of thetype I if A nRA is not onneted (denote in this ase the onneted omponents byA�). In partiular, all M -urves are of the type I.Proposition 3.2. If A is a real non-singular projetive urve of the type I then2g(N) � 2g(A+) = (m� 1)(m� 2)=2 + 1� �(RA) where m = degA.Proof. Let CP1 nRP1 = H+ tH�. Put As1s2 = As1 \��1p (Hs2), si 2 f+;�g. Clearly,onj(As1s2) = A�s1�s2 and As n S(A; p) = As+ t As�. Hene, g(N) = g(A++ [ A�+) =g(A++ [A+�) � g(A+). �3.4. Link L(A; p) as a losed braid.Let p and A be as above. Choose an aÆne oordinates (z; w) on C2 2 CP2 so thatp is the in�nite point of the axes z = 0 and the in�nite line l1 is transversal to A.We shall suppose also thatAll the intersetions of l1 and A are real. (8)If neessary, all the onstrutions below an be modi�ed to avoid the ondition (8) butin all the appliations onsidered in this paper suh a line exists, so we shall supposefor simpliity that (8) is satis�ed.In the oordinates (z; w), the projetion �p takes form (z; w) 7! z and H+ is theupper half-plane Im z > 0. Denote by D1 the intersetion of a disk jzj � R1 anda half-plane Im z � ". Choose R1 � 1 and " � 1 so that eah line z = z0 with



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 15z0 2 H+ nD1 have m distint intersetions with A. Denote by D2 the ball jwj � R2where R2 is so big that ��1p (D1) \ A � B4 where B4 := D1 �D2. Put S3 := �B4.Let w = F (z) be the multi-valued funtion whose graph is A. Let  : [0; 1℄! H+be the parametrization of �D1 and let b = bA;p be the braid F Æ  (see 2.3). Thus,L(A; p) = b̂. Denote by R the part of the path  whih is a segment of a lineand by 1 that whih is an ar of a irle. Let b = bR b1 be the orrespondingdeomposition of b. Clearly that b1 = �m (see Setion 2.3) and bR in some asesan be reonstruted from the topology of RA.Aording to Setion 3.2, the link L(A; p) is de�ned by the set RA [ S(A; p).Clearly that S(A; p) is determined up to an isotopy by RA when the onditionEah line lt 2 Lp has at least m� i intersetions with RA. (Hi)holds with i = 2. If (H4) holds but (H2) does not then the isotopy type of S(A; p) isdetermined by RA only up to some unknown integer parameters ej , one parameterfor eah interval of the penil where (H2) does not hold. These parameters are thenumbers of twists whih have two branhes of S(A; p) with Imw > 0.More preisely, put�k;l = 8><>: (��1k+1�k)(��1k+2�k+1) : : : (��1l �l�1); if l > k(��1k�1�k)(��1k�2�k�1) : : : (��1l �l+1); if l < k1 if l = k (9)Clearly that �k;l = ��1l;k . Suppose that A satis�es (8) and (H4). Choose a pointqj 2 R2 nRA in eah interval of the penil Lp where (H2) does not hold. Join thepoints qj and the ritial points of Re z (the points of RA with vertial tangent) bynon-interseting paths '1; '2; : : : so that eah generi vertial line uts RA+ 2P'iin m points (this notation means that points of 'i are ounted twie; see Fig. 11,left). To onstrut the braid (see Fig. 11, right), one has to move a vertial rule fromthe left to the right and to write��1k if the rule meets a double point of RA or if the rule is tangent to RA at apoint where Re z has maximum on RA;��1k;k+1 (see the sign in Fig. 11) if the rule meets an intersetion of some 'i with RA;��1k+1��ejk �ejk+2�k+1 if the rule meets qj .In all the ases k� 1 equals the number of intersetions of the rule with RA+2P'iwhih are stritly beneath the ritial point.
e1

e1
2e

2e

��12 �2;3��11 (��12 ��e11 �e13 �2)�3;4��11 �1;2(��13 ��e22 �e24 �3)��13Fig. 11



16 S.YU. OREVKOVRemark 3.3. If A satis�es (Hi) with i > 4 then pairs of symmetri unknown braidson i=2 strings appear instead of ��ejk �ejk+2.Proposition 3.4. Let A be an Lp-exible urve (maybe, reduible) of degree m sat-isfying (i) { (vi) of 3.1. Denote by dR the number of real double points and by R thenumber of points where the tangent belongs to Lp. Then2e(bA;p) = m(m� 1)� 2dR � R:Proof. e(bR) = �dR � R=2 beause the unknown parts of bR orresponding to SA;pare symmetri with respet to the omplex onjugation and their ontributions toe(b) anel eah other. Clearly, e(b1) = m(m� 1)=2. �3.5. Arrangements of real shemes with respet to a penil of lines.Following [28℄, we say that real sheme is an isotopy lass of smooth real urves(maybe with self-intersetions) on RP2. A sheme is realizable by an algebrai (resp.exible) urve if there exists a real algebrai (resp. exible) urve whose set of realpoints belongs to the given sheme. By analogy, we de�ne an Lp-sheme as a smoothurve on RP2 n fpg up to an isotopy 's whih ommutes with �p, i.e. 's(lt) is a lineof Lp for all s, t. An aÆne Lp-sheme is an Lp-sheme with some line l1 2 Lp �xed.We shall onsider only Lp-shemes in general position. Namely, eah line lt hasat most one non-generi intersetion point with the urve, and this point is either anordinary tangeny or a transversal intersetion of two branhes, non-tangent to lt.We shall use the following ode to desribe Lp-shemes.First, we de�ne the ode for aÆne Lp-shemes. Let (x; y) be oordinates on R2suh that p is the in�nite point of the line x = 0. Let p1 = (x1; y1); : : : ; pn = (xn; yn),x1 < � � � < xn be all the points where a urve B is not transversal to the penil. TheLp-sheme of B will be desribed by a pair [m1;w℄ where m1 := #(l1 \ B) and wis a word s1 : : : sn wheresj = 8><>:�k if pi is a double point of B,�k if x-oordinate has minimum at pj ,�k if x-oordinate has maximum at pj .In all the three ases k = 1 + #fy j (xj; y) 2 B & y < yjg.Projetive Lp-shemes are oded by the same words onsidered up to yli permu-tation followed by the hange of m1 and reversing the indies. The subword�k�kwill be abbreviated to ok (oval). If a urve is denoted by a word w without m1, thismeans that m1 = m.Examples 3.5. 1. The aÆne urve (x2+y2�4)(y�1) = 0 is oded by [1;�1�2�2�1℄.The projetivization provides [1;�1�2�2�1℄ � [�2�1�2�2℄ � [�1�2�1�2℄ � : : :2. The projetion of a braid (6) on the plane is oded by [�je1ji1 : : :�jenjin ℄Proposition 3.6. Suppose that an Lp-sheme B0 is obtained from B by one of thefollowing elementary substitutions�j�j�1 ! �j�1�j �j�1�j !�j�j�1 �juk ! uk�j (10)�j�j�1 ! ? �j�k !�k�j (11)



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 17where jk � jj > 1 and "u" stands for one of the symbols "�", "�", or "�".If B is realizable by a Lp-exible urve then B0 is also realizableProof. The only non-trivial ase is � j � j�1 ! ?. By means of equivariant dif-feomorphism we an hoose omplex oordinates (z; w) suh that the above (x; y)are (Re z;Rew) and the piee of B orresponding to �j �j�1 is loally de�ned byz = w3 � "w (0 < "� 1). Replae it with z = w3 + "w and glue it together with therest of the urve by a partition of unity. �Remark 3.7. Similar statements were used in [6℄, [29℄, and [12℄.The onstrution of the braid in Setion 3.4 an be reformulated now as the fol-lowing replaing rulesProposition 3.8. If an Lp-exible urve A of degree m satis�es (H2) and (8) thenL(A; p) = b̂ where b = bR�m and the braid bR an be obtained from the RA =[s1 : : : sn℄ by the following proedure (see Fig. 12):replae eah symbol �i whih appears between �k and �l with �i;replae eah subword [�k�i1 : : :�ir �l ℄ with ��1k u1 : : : ur�k;l whereuj = 8><>: ��1ij if ij < k � 1��1ij+2 if ij > k � 1�k;k+1�k�1�k+1;k if ij = k � 1

�3�1�2�3�5 ! ��13 ��11 �3;4��12 �4;3��15 �3;5Fig. 12Similar replaing rules an be formulated also in the (H4)-ase.x4. The methods of prohibitionsThe onsiderations of x3 show that there are ertain neessary onditions for agiven Lp-sheme B to be realizable by an Lp-exible urve A of a given degree m.4.1. Quasipositivity.It follows from [22℄ (see Setion 2.4) that the braid b = bA;p is quasipositive. Thisis a very restritive ondition on b. Unfortunately, I do not know if for any m thereexists an algorithm to deide if a given braid is quasipositive or not.However, for m = 3 this problem is easily resolvable using the Garside normal form[7℄ (see also [2℄) whih is very elementary in this ase. The results obtained by this



18 S.YU. OREVKOVmethod will be exposed in [16℄. As an example, we formulate here without a proofone of them. Let Tk be the triangle with verties (0; 0), (3k; 0), (0; 3). An M -urveon Tk is said to be a real (3k � 1)-omponent urve with Newton polygon Tk. AnLp-isotopy lass is a onneted omponent of the spae of all Lp-exible urves.Theorem 4.1. There exist exatly 2k�1 Lp-isotopy lasses of M -urves on Tk; eahlass ontains an algebrai urve glued by Viro [30℄ from k projetive M -ubis.4.2. Appliation of Murasugi { Tristram inequality.Though neessary and suÆient onditions are unknown, Murasugi { Tristraminequality provides a test for the quasipositivity (see Setion 2.4). The most of newresults here are obtained in this way.If one an hoose a point p suh that (H2) holds then the braid is determinedby the real Lp-sheme and one an ompute all the ingredients of (3). Sine theomputations are rather messy, I has written a omputer program whose input is areal Lp-sheme B enoded as in Setion 3.5 and the output is the number h = h(B),equal to the di�erene between the right and left hand sides of (3). If h > 0 then Bis not realizable. The program implements the algorithms of Setions 2.5, 3.4, andProposition IIIoVoII.Now, suppose (H4) does hold and (H2) does not. Let e1; e2; : : : be the numbersof twists (see Setion 3.4). Eah possible distribution of onneted omponents of Lbetween those of N provides a system of simultaneous linear equations (inequalities)for the ei's (see Setion 4.3 below). If eah the system has a unique solution then wehave a �nite number of expliit braids and we an apply the same arguments (andthe same programs) as in the (H2)-ase (see Setion 8.2). Otherwise one an omputethe detL in terms of the ei's (see Setion 2.6) and apply Corollary 2.2. (see Setion8.1).Remark 4.2. Analyzing the ases when (3) gave prohibitions, I have found that mostof them ould be obtained ignoring the signature, using only Corollary 2.2.4.3. Rokhlin's formula for omplex orientations and its generalization.The methods based on the Seifert matrix require a lot of omputations. However,some neessary onditions an be extrated from the braid bA;p without them. In therest of the setion we suppose that all the double points are real.Aording to (2), the number of the onneted omponents of N is�(N) = g(N) + ��(L) +m� e(b)�=2 (12)(in the M -ase g(N) = 0). Let N = N1 t � � � t Nk be some partition of N . It isknown that the intersetion of Ni �Nj is equal to the linking number of �Ni and �Nj.Thus, if we know how the omponents of L are distributed between the links �Ni (forinstane, one an try all the possibilities) then a simple test for realizability of a realLp-sheme is to hek that the linking numbers are zero.Let A1; : : : ; Ar be the irreduible omponents of A. Sine eah Ai is an M -urve,AinRAi onsists of two onneted omponents, denote them by A+i and A�i (of ourse,the pluses and minuses may be arbitrarily swapped). Put A� = SA�i , N� = N\A�,and L� = �N�. Sometimes one an �nd the distribution of onneted omponentsof L between L� using the following simple observation.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 19Proposition 4.3. Let lt 2 Lp be tangent to RA at q and L1, L2 be the two branhesof L whih pass near q (see Fig. 10). If L1 � L+ then L2 � L�. �The fat that the linking number of L+ and L� is zero, yields nothing new beauseit is equivalent to the Rokhlin's formula for omplex orientations [20, 21℄ (omparewith [8℄). However, dividing N into more then 2 parts, sometimes one an obtain bythis method an additional information (see Lemma 5.11 below).When a link L is presented in the form of a losed braid, the linking number oftwo omponents Li � Lj , i 6= j is the half-sum of the exponents of the braid groupgenerators orresponding to the twists involving Li and Lj . Forgetting the onditioni 6= j, we get something like "self-linking number" (of ourse, it is not a link invariant).In the next subsetion we show that it an serve also as a soure of restritions.4.4. Proof of Theorem 1.5A. We onsider in details the ase of even degreem = 2k. Odd degree an be treated similarly. Let the notation be as in Setion 1.5.We shall say the ovals O1; : : : ; Ok�1 are big and all the other ovals are small (the lastbig oval is empty). Denote by K� the number of positive/negative big ovals and by�Ss the number of injetive pairs (O; o) of the signs (S; s) where O is big and o issmall. Choose a point p inside the most inner big oval Ok�1 and let L, N , L�, N�be as in Setion 4.3. Let b� 2 B1+2K� be the braid orresponding to L�.By Proposition 3.8 we may suppose the big ovals have no vertial tangents (i.e,tangents belonging to Lp) and eah small oval has only two vertial tangents. Thenwe have �(L�) = 1 + K� and L� = L�0 t L�1 t � � � t L�K� where L�i (i � 1) is aperturbation of a big oval of the same sign and L+0 tL�0 is a perturbation of the unionof S(A; p) (see Setion 3.3) and all the small ovals. �pjL�i is one-to-one for i = 0 anda double overing for i � 1.Lemma 4.4. e(b+) = 2�++ � 2�+� +K+(1 + 2K+); e(b�) = 2��� � 2��+ +K�(1 +2K�).Proof. If all the small ovals are outside O1 then all �Ss are zero and e(b�) = e(b�1) =e(�1+2K�) = K�(1 + 2K�), hene, the required equality holds. If we move a smalloval through one big oval then the both sides are hanged by the same quantity(onsider 8 ases: 4 ombinations of the signs � 2 branhes of the big oval). �Sine A is an M -urve, we have (m� 1)(m� 2)=2� k + 2 small ovals. Hene, byProposition 3.4 we have e(b) = 3k� 3 and by (12), �(N) = 2. Therefore, �(N�) = 1.Eah N� has only positive rami�ations, hene, (12) is appliable. Putting �(N�) =1, �(L�) = 1 + K�, m� = 1 + 2K�, and e(b�) from the Lemma 4.4 into (12), weobtain �+� � �++ = K+(K+ � 1); ��+ � ��� = K�(K� � 1):It remains to note that Ks = ks + 1, K�s = k�s, �Ss = �Ss � kS, �S�s = �S�s,S 2 f+;�g where s is the sign of the empty big oval Ok�1.x5. Prohibitions of affine M-sextisIn this setion we prove Theorem 1.1. We onsider separately several groups ofpossible arrangements but almost all the proofs follow the same sheme:(i) hoose the base point of the penil (the point p) so that (H2) holds;(ii) write down a set of words suh that all the other words oding the possibleLp-shemes an be redued to them using Proposition 3.6;



20 S.YU. OREVKOV(iii) selet the words whih do not ontradit to the B�ezout theorem and the om-plex orientations formula;Then for eah word:(iv) ompute the braid b aording to Proposition 3.8;(v) ompute e(b) to ensure that Corollary 2.2 is appliable;(vi) ompute det b̂ 6= 0; if det b̂ = 0 then ompute �(b̂) and n(b̂);(vii) if (4) holds then hek if the Alexander polynomial is zero.The only exeptions is the urve B1(9; 0) (see Setion 5.5) where we apply Lemma2.1. Also, we apply to the series A3 the generalization of the omplex orientationsformulas to prohibit some real shemes and to redue the number of words to beheked for the others. The steps (iv) { (vii) (and partially (iii)) were performed witha omputer. In Setion 5.8 we show how sometimes the step (vii) an be replaedwith the onsideration of the double overing of S3 rami�ed along the in�nite line.5.1. Common preliminaries. C6 and C1 will denote the set of real points of anM -sexti and the in�nite line; RA = C6 [ C1 will be the urve whose arrangementswe study in this setion; The non-empty oval of C6 will be denoted by O11. Thepenil Lp on all the pitures will be the penil of vertial lines.Lemma 5.1. No inner oval of C6 an be inside a triangle with verties on three otherinner ovals.We say that inner ovals O1, O2 of C6 are separated by a line l if l does not intersetthem and they lie in di�erent omponents of RP2 n (O11 [ l).Lemma 5.2. [12℄. A line through two outer ovals an not separate two inner ovals.Lemma 5.3. Let points p, p1, p2 lie inside 3 di�erent inner ovals of C6. Then anytwo outer ovals lie in the same onneted omponent of RP2 n �(pp1) [ (pp2)�.Proof of 5.1, 5.2, and 5.3. Otherwise the oni passing through the 4 given ovals andone more empty oval (resp. through the 5 given ovals in 5.3) meets C6 in 14 points(see the elegant proof of [29; Lemma 3.3℄). �The shemes A1(1; 8), A1(5; 4) are realized and A1(9; 0) is prohibited by omplexorientations [12℄. Therefore, we shall not onsider the series A1.5.2. The series A2(�1; �2; �) and B�(�1; �2; �), � = 2; 3. Here we onsider onlythe ase �2 6= 0 beause the urves A2(1; 0; 9), A2(5; 0; 5), B2(1; 0; 9), B2(5; 0; 5) exist,A2(9; 0; 1) an be prohibited by omplex orientations formula [12℄, and B3(�; 0; �) =B2(0; �; �). The ase B2(9; 0; 1) will be onsidered in Setion 5.5. In the series B3we assume that �2 � �1 > 0 beause B3(0; �; �) = B2(0; �; �) and B3(�1; �2; �) =B3(�2; �1; �).Choose the point p inside the oval O10, the most far form C1 among the ovals h�2iif to look from an empty digon (for the series B from the empty digon whih has onlyone ommon point with the region ontaining h�2i).Using Proposition 3.6, all possible Lp-shemes an be redued to the shemes odedby a word w = [�3 w1�2w2�3�2�3�3�3�3℄ in the ase A2, w = [�4 w1�2 w2�2�2�2�3�3�4 ℄in the ase B2, and w = [� 4 w1 �2�2�2 w2 � 2�3�3�4 ℄ in the ase B3 wherew1 = oi1 : : : oid , w2 = oid+1 : : : oi9 , 0 � d � 9, 2 � ij � 4 and �1 = #(j > d; ij = 3),�2 = 1+#(ij = 2), �1 = #(ij = 4), �2 = #(j � d; ij = 3), � = �1+ �2 (see Fig. 13).Due to (10) we may assume also that either d = 0 or id = 3. The fat that all ij 6= 5 is
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A2(�1; �2; �) A3(�1; �2; �) A4(�; �1; �2)Fig. 13provided by the extremal hoie of O10. Denote the empty ovals by O1; : : : ; O9 whereOj mathes oij .Lemma 5.4. (a) The word w2 an not ontain :::o3:::o2:::o3:::; (b) if j < k < l,d < k, ik = 3, il = 2 then Oj is above C1 (i.e. either ij = 4 or j > d and ij = 3).() If �1 > 0 then eah oval of h�1i is to the right of eah oval of h�2i.(d) The sequene O1; :::; O9 an be divided into 3 or less intervals, eah interval on-taining either only inner ovals or only outer ones.Proof. (a) Follows from 5.1. (b) Suppose that a oni passing through Ok, Ol, p andthe point q (see Fig. 13) meets O11 not more than at 4 points (by B�ezout theoremthis is the ase if it passes through Oj). There is only two possibilities for the orderof its intersetions with the given objets: O11, Ok, C1, Ol, p, O11, O11, q, O11 andO11, Ok, O11, O11, p, Ol, C1, q, O11. In the both ases the piee of the oni to theleft of Ok is above C1. () Apply 5.2 to the line through these ovals, O10, and one ofh�1i. (d) See 5.3. �It follows from the Fiedler's orientations alternating rule [6℄ that if Oj is an inneroval then [Oj : O11℄ = (�1)j (see Setion 1.5).Put "10 = [O10 : O11℄, Æ�1 = Pj>d;ij=3(�1)j , Æ�2 = "10 +Pij=2(�1)j , Æ�1 =Pj�d;ij=3(�1)j , Æ�2 =Pij=4(�1)j , and Æ� = Æ�1 + Æ�2, Æ� = Æ�1 + Æ�2.Lemma 5.5. a). Æ� + Æ� = "10 � 1; b). Æ� = 1; ). Æ�1 � Æ�2 + 2Æ�1 = " where" = �1 for the series A2 and " = 1 for the series B2, B3.Proof. (a) is trivial, (b) is the omplex orientations formula (see [20℄) for C6, and ()is that for a perturbation of C6 [ C1 (see [29℄) ombined with (b). �Corollary 5.6. (Combine Lemmas 5.4d and 5.5a,b) "10 = 1.The restritions from Lemmas 5.4{5.5 and Corollary 5.6 are satis�ed for 296pairs of sequenes [i1:::id℄[id+1:::i9℄ in the series A2 (resp. 272 and 34 in B2 andB3). 227 of them (resp. 196 and 28) orrespond to the 6 (resp. 2 and 3) realshemes realized in [12℄. Let b be the braid orresponding to the reduible 7th degreeurve C6 [ C1. In all the ases we have e(b) = 5, hene, we an apply Corollary2.2. The omputation shows that det b̂ = 0 only in 27 (resp. 11 and 3) ases.This prohibits the shemes A2(0; 9; 1), A2(3; 6; 1), A2(5; 4; 1), A2(7; 2; 1), A2(3; 2; 5),B2(2; 3; 5), B2(4; 1; 5), B3(1; 8; 1), B3(2; 7; 1), B3(4; 5; 1), and B2(�; 9 � �; 1) with



22 S.YU. OREVKOV� 6= 1; 7. The Alexander polynomial is zero only forA2(1;8;1): [2222223℄[23℄ A2(8;1;1): [℄[333333433℄ � A2(0;5;5): [433℄[422224℄ �[3℄[22222223℄ � [℄[433333333℄ � [433℄[442222℄A2(1;4;5): [2233333℄[23℄ A2(4;1;5): [℄[334444433℄ � A2(0;1;9): [433333333℄[℄[33333℄[2223℄ � [℄[444443333℄ [433℄[444444℄ �B2(1;8;1): [℄[432222222℄ �� B2(0;5;5): [443℄[422224℄ � B2(0;1;9): [443333333℄[℄B2(1;4;5): [℄[432224444℄ �� [443℄[442222℄ [443℄[444444℄ �B3(3;6;1): [℄[222223433℄ � B3(1;4;5): [223℄[444433℄ � B3(2;3;5): [223℄[444433℄ �This prohibits A2(2; 7; 1), A2(4; 5; 1), A2(6; 3; 1), A2(0; 5; 5), A2(2; 3; 5), B2(7; 2; 1),and B2(3; 2; 5). One an hek that the onstrutions [12, 11℄ realize the ases markedby *. The sequenes marked by ** are realizable by Lp-exible urves.For the shemes, not overed by [12℄ we needed to ompute the determinant in theases: [℄[222222234℄, [℄[432222222℄ for B2(1; 8; 1), [℄[o2o7�2k3 o4o2k3 ℄, [℄[o2k3 o4o7�2k3 o2℄ forB2(7; 2; 1), [o2k2 o3℄[o4�2k2 o43℄ for B3(4; 5; 1) and in the following 22 (resp. 6,9,11) asesA2(2;3;5): [223333℄[433℄ [33℄[2233444℄ [33℄[4223344℄ [℄[422334444℄ [℄[444223344℄ [℄[444442233℄[2233℄[44433℄ [℄[332244444℄ [33℄[4422334℄ [℄[433224444℄ [℄[444332244℄ [℄[444443322℄[℄[223344444℄ [3333℄[22334℄ [33℄[4442233℄ [℄[442233444℄ [℄[444422334℄[℄[224444433℄ [3333℄[42233℄ [℄[334444422℄ [℄[443322444℄ [℄[444433224℄A2(3;2;5): [3℄[23334444℄ [333℄[233344℄ [33333℄[2333℄ [333℄[442333℄ [3℄[44233344℄ [3℄[44442333℄B2(1;4;5): [℄[222344444℄ [3333℄[22234℄ [℄[432224444℄ [℄[444322244℄ [℄[444443222℄[33℄[2223444℄ [33℄[4422234℄ [℄[442223444℄ [℄[444422234℄B2(3;2;5): [℄[233344444℄ [33℄[2333444℄ [33℄[4423334℄ [℄[433324444℄ [℄[444333244℄ [℄[444443332℄[℄[234444433℄ [3333℄[23334℄ [℄[334444432℄ [℄[442333444℄ [℄[444423334℄Besides the above ases **, det b̂ = 0 for [℄[224444433℄, [℄[444442233℄ (the shemeA2(2; 3; 5)), [℄[433333332℄ (B2(7; 2; 1)), and [℄[433324444℄ (B2(3; 2; 5)). The Alexanderpolynomials are respetively �51�22�26�10 � (t6 + 2t4 + t3 + 2t2 + 1), �51�22�3�26�10,�51�22�23�26, and �51�22�6 where �k is the k-th ylotomi polynomial.5.3. The series A3(�1; �2; �). Sine A3(�1; 0; �) = A2(�1; 0; �), we shall assumethat �2 > 0. Choose p inside the oval O10, the extremal among h�2i if to look froman empty digon (see Fig. 13, where �2 = 1 + �02 + �002 , � = �01 + �001 + �2). Put�1 = �01 + �001 .The generating word is w = [�3�3�3�2 w1�2�3�3�3�4 w2�3℄ where w1 = oi1 :::oid ,w2 = oid+1 :::oi9 , 0 � d � 9, 2 � ij � 4. Like above, we assume that either d = 0 orid = 3 and the extremal hoie of O10 guarantees that all ij 6= 5. Denote the emptyovals by O1; :::; O9 from left to right.Lemma 5.7. (a) the word w1 an not ontain :::o3:::o2:::o3:::;(b) if k < l < d, ik = 3, il = 2 then �002 = �001 = 0 and ij 6= 2 for all j < k;(b0) If l < k < d, il = 2, ik = 3 then �002 = �2 = 0 and ij 6= 2 for all j > k;() If �1 > 0 then eah oval of h�001 i is to the left of eah oval of h�2i.(d) The same as in Lemma 5.4(d); (e) One of �1, �02, �002 equals to zero.Proof. (a) { (d). The proofs are similar to those of Lemma 5.4. In (b) (resp. (b0))the oni through Ok, Ol, p, q (resp. q0) may meet the objets in the following twoyli orders: O11, Ok, C1, Ol, p, O11, O11, q, O11 or O11, Ok, O11, O11, p, Ol, C1, q,O11 (resp. O11, q0, O11, O11, p, Ol, C1, Ok, O11 or O11, q0, C1, Ol, p, O11, O11, Ok,O11).(e). Combine (b) and (b0). �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 23Lemma 5.8. (Follows from [6℄) �1 + �02 + �01 is odd; �002 + �001 + �2 is even. �De�ne "10, Æ�; Æ�; Æ�i; : : : like in 5.2, for instane, Æ�2 = "10+Pij=2(�1)j, Æ�02 =Pj�d;ij=2(�1)j , et. The omplex orientations formulas (.o.) yield:Lemma 5.9. (a). Æ� = 1; (b). Æ�1 � Æ�2 + 2Æ�2 = �1;(). Æ�01 � Æ�2 � Æ�001 + 2(Æ�02 + Æ�1) = �"10.Proof. (a) C.o. for C6; (b) .o. for C6 [C1; () .o. for C6 [ l0 where q 2 l0 2 Lp. �Corollary 5.10. (Combine Lemmas 5.7d and 5.9a) "10 = 1. �The onditions provided by Lemmas 5.7{5.9 and by Corollary 5.10 are satis�edfor 435 words w. In priniple, we ould hek (3) for all of them and omplete theproof. However, we are going to demonstrate how the generalized method of omplexorientations (Setion 4.3) works in this ase and to prohibit by this method 378 wordsmore and, as onsequene, 6 real shemes.Lemma 5.11. 2Æ�01 + �002 + �2 + �001 = 2.Proof. Let us numerate the onneted omponents L1; : : : ; L5 of L(A; p) aording toFig. 13. Let lij be the linking number of Li, Lj . Using Proposition 3.8, one an hekthatl12 = 2; l13 = l14 = l15 = 1; l23 = 1+Æ�1+Æ�01; l24 = Æ�002+(1��1��02��01)=2;l25 = 1+Æ�01�Æ�002 ; l34 = �2�Æ�1�Æ�1; l35 = Æ�001 l45 = �Æ�01�(�002+�2+�001 )=2:It follows from Proposition 4.3 and Corollary 5.10 that L2[L5 � L+ and L1[L4 � L�("+" and "�" may be swapped). One has �(N) = 4 by (12), hene only one of thesetwo links an bound a onneted omponent of N . It must be L1 [ L4 beauseotherwise the omponent of N bounded by L1 together with its image under theomplex onjugation would be disjoint from the rest of A. Hene, all the linkingnumbers between L1 [L4, L2, L3, L5 are zero, in partiular, l15+ l45 = 0 implies therequired equality (the vanishing of the other linking numbers give nothing new withrespet to Lemma 5.9). �Example 5.12. [i1:::id℄[id+1:::i9℄ = [333℄[244333℄ satis�es the restritions providedby Lemmas 5.7{ 5.9 and Corollary 5.10 but not those provided by Lemma 5.11.Adding Lemma 5.11 to the other restritions, we leave only 57 words w non-prohibited, none of whih representing A3(�1; �2; 1) with �1 62 f0; 4; 7g. For all theseries we have e(b) = 4. The det b̂ = 0 only when [i1:::id℄[id+1:::i9℄ is one ofA3(0;9;1): [22224℄[2222℄ A3(4;5;1): [33433℄[2222℄ � A3(2;3;5): [33444℄[3322℄ �[22422℄[2222℄ A3(7;2;1): [3333333℄[23℄ � [44433℄[2244℄ �[42222℄[2222℄ A3(0;5;5): [22224℄[3344℄ �� A3(4;1;5): [33334℄[3333℄ �A3(0;1;9): [44444℄[3344℄ � [42222℄[3344℄ �� [43333℄[4444℄ �Calulating the signature and nullity for the words orresponding to A3(0; 9; 1), wesee that �(b̂) = �1, n(b̂) = 2 in all the three ases. This ontradits to (3). Theases marked by * are realized in [12,11℄; the real sheme orresponding to A3(0; 5; 5)(marked by **) is realizable by an Lp-exible urve (see Setion 7.2 below). The proofof its non-realizability in [23℄ is fault.



24 S.YU. OREVKOVThe words allowed by lemmas 5.7{ 5.11 orresponding to real shemes neither real-ized nor prohibited in [12℄ are [32224℄[4333℄, [32224℄[4443℄ for A3(1; 4; 5), [33324℄[4333℄,[33324℄[4443℄, [4444333℄[23℄ for A3(3; 2; 5), and the following 18 words for A3(0; 5; 5)[22224℄[3333℄ [22224℄[4334℄ [42222℄[3333℄ [42222℄[4334℄ [22444℄[3322℄ [44422℄[2244℄[22224℄[3344℄ [22224℄[4433℄ [42222℄[3344℄ [42222℄[4433℄ [22444℄[4422℄ [4444222℄[24℄[22224℄[3443℄ [22224℄[4444℄ [42222℄[3443℄ [42222℄[4444℄ [44422℄[2233℄ [44444℄[2222℄5.4. The series A4(�; �1; �2). We suppose �2 > 0 beause A4(�; �; 0) = A2(�; 0; �).Choose p inside the oval O10, the most far from line among the ovals h�2i. Thegenerating word is w = [�4�5�4 oj1 :::oj9 �4�5�4�4�4 ℄, 3 � j � 5 (see Fig. 13). Likeabove, ij 6= 2 due to the hoie of O10. We have � = #(ij = 3), �k = #(ij = 3 + k).Lemma 5.13. (a) w an not ontain [:::o3:::ok:::o3:::℄ with k > 3.(b) w an not ontain [:::o5:::o3:::o4:::o5:::℄, nor [:::o5:::o4:::o3:::o5:::℄.Proof. (a) See 5.2; (b) B�ezout theorem for the oni through these ovals and p. �Put "10 = 1 if O10 is oriented with respet to O11 as it is shown in Fig. 13 and "10 = �1otherwise. Let Æ� = Pij=3(�1)j , Æ�1 = Pij=4(�1)j , Æ�2 = "10 + Pij=5(�1)j,Æ� = Æ�1 + Æ�2. Like in 5.2.2 we have:Lemma 5.14. (a) Æ�+ Æ� = "10 � 1; (b) Æ� = 1; () Æ�1 � Æ�2 = �3: �160 words w satisfy Lemmas 5.13 and 5.14 none of them orresponding to realshemes with �1 = 0; 1. We have e(b) = 5 for all the series. Hene, Corollary 2.2 isappliable. det b̂ = 0 only when [i1:::i9℄ is one ofA4(1;4;5): 444355554 �� A4(1;6;3): 434554444444553554 A4(1;8;1): 444443444 �444555534 A4(5;4;1): 433333444 �and the Alexander polynomial is identially equal to zero only in the two ases markedby * (realized in [12℄) and in the ase marked by ** (realized by an Lp-exible urve;see Setion 7.2). The proof [12℄ of non-realizability of A4(1; 4; 5) is fault.The sequenes i1:::i9 allowed by Lemmas 5.7{5.11 orresponding to real shemesneither realized nor prohibited in [12℄ are 433333455, 433333554, 455333334, 554433333for A4(5; 2; 3) and the following 40 sequenes for A4(1; 6; 3)434444455 434455444 435445444 444345544 444445534 445445434 454454434 544543444434444554 434544445 435544444 444354454 444455434 445543444 455344444 544544434434445445 434544544 444344455 444355444 444544534 445544434 455443444 554344444434445544 434554444 444344554 444443455 444553444 454444534 455444434 554443444434454454 435444454 444345445 444443554 444554434 454453444 544445434 5544444345.5. The rest of the series B. It remains to onsider the three shemes B1(�; �)and B2(9; 0; 1). The shemes B1(1; 8) and B1(5; 4) are realized.B1(9; 0). Choose p inside the most right inner oval if to look from the outer one.Then all possible Lp-shemes an be redued to [�3�4�4�3�3�4 �3 o82 �3℄ usingProposition 3.6. We have e(b) = 6, �(L) = 5, �(N) = 3. The Alexander polynomialis (t12+2t11+2t10+5t9+4t8+8t7+5t6+8t5+4t4+5t3+2t2+2t+1)(t2�t+1)(t�1)4.Thus, the primitive 6-th roots of unity are its simple roots and we an apply Lemma2.1 and (1).B2(9; 0; 1) is treated the same way as B2(0; 9; 1) but the generating word should bereplaed with [�3 w1�2 w2 �3�2�3�4�4�3; ℄ and �1, �2 should be swapped everywherein Setion 5.2. Only the 5 words [o2k2 o3℄[o8�2k2 ℄ are allowed by Lemmas 5.4{5.6, forall of them det b̂ 6= 0.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 255.6. The series Ci(�1; �2; �). Choose the point p on C1 so that the aÆne Lp-shemeof C6 with C1 at in�nity takes form w = [�4oi1 : : : oi10 �5℄ where 2 � ij � 5 and�1 = #(ij = 3), �2 = #(ij = 5), �1 = #(ij = 4), �2 = #(ij = 2). Denote the emptyovals by O1; : : : ; O10 where Oj mathes to oij . The series C1 (resp. C2) orrespondsto �2 = 0 (resp. �2 = 0). De�ne Æ�; Æ�1; : : : as above.Lemma 5.15. (a) If ij = 3 and ik = 5 then j < k; If ij = 4 and ik = 2 then j < k.(b) [12℄. w an not ontain [:::o4:::o3:::o4:::o3:::℄, nor [:::o3:::o4:::o3:::o4:::℄() w an not ontain [:::o3:::o2:::o4:::o3:::℄, nor [:::o3:::o4:::o2:::o3:::℄Proof. (a) Otherwise the line passing through Oj and Ok meets C6 in 8 points.(b) Otherwise the oni passing through them and p meets C6 in 14 points.() Follows from Lemma 5.2. �Lemma 5.16. (Compare with Lemma 5.5).a): Æ�1 � Æ�2 = 1; b): 2Æ�1 + Æ� =1: �The restritions provided by Lemmas 5.15 and 5.16 are satis�ed for 293 sequenesi1; :::; i10 in the series C1 and for 272 in C2 (133 and 20 of them orrespond the shemesrealized in [12℄). Corollary 2.2 is appliable to C6 beause e(b) = 4. The determinantis zero only forC1(0;9;1): 5455555555 � C1(0;5;5): 4444555554 C1(3;2;5): 3344444355 �5555555455 4455555444 4444433355C1(7;2;1): 3333334355 � 5444445555 C1(0;1;9): 4444444454 �4333333355 5554444455 4454444444C2(1;3;6): 4443222222 �� C2(1;7;2): 4444434422 � C2(5;3;2): 4333334422 �and 4354454455 (the sheme C1(1; 4; 5)) but in the latter ase �(b̂) = 4 whih on-tradits (3). The ases marked by * are realized in [12℄. The ase marked by ** isrealizable by an Lp-exible urve, its prohibition in [12℄ is fault.All the sequenes of ovals allowed by Lemmas 5.15{5.16 whih are neither on-struted nor prohibited in [12℄ are: o4o3o85 for C1(1; 8; 1), o2k3 o4o9�2k3 for C1(9; 0; 1),o43o54o3, o23o54o33, o4o53o44, o34o53o24, o54o53 for C1(5; 0; 5), the following 70 sequenes forand o4o53o2, o34o53o4o2, o44o2k3 o2o5�2k3 for C2(5; 4; 1).5.7. The series D(�; �1; �2; �3). Sine the piture is symmetri, we suppose �1 ��2 � �3. Choose p inside the oval O10, the most far from the line among the ovalsh�3i if to look from an empty digon, not adjaent to the region ontaining h�1i.The generating word is w = [�3�3 �2 w1 �3�3w2 �2�3�3 ℄ where w1 = oi1 :::oid ,w2 = oid+1 :::oi9 , 2 � ij � 4, �1 = #(j � d; ij = 3), �2 = #(j > d; ij = 3),�3 = 1 + #(ij = 2), � = #(ij = 4). Due to (10) we may assume that either d = 0 orid = 3. De�ne Æ�, Æ�, Æ�j as above (Æ�3 = "10 + : : : where "10 = 1 if the orientationof the upper branhes of O10 and O11 oinide with the orientation of the ribbonbounded by them).



26 S.YU. OREVKOVLemma 5.17. (a) w does not ontain :::o4:::ok:::o4:::, k < 4;(b) w1 does not ontain :::o2:::o3:::; () w2 does not ontain :::o3:::o2:::.Proof. (a) See 5.2. (b,) B�ezout theorem for the oni through the two ovals, the twonearest to them empty digons, and the point p. �Lemma 5.18. (a) Æ� = 1; (b) Æ�1 + Æ�2 � Æ�3 = �3. �The restritions provided by Lemmas 5.17{5.18 hold for 25 words. For all of theme(b) = 5, det b̂ 6= 0.5.8. Double overings of S3 branhed along C1. Now we show how sometimesthe omputation of the Alexander polynomial an be replaed with the omputationof usual signature and nullity for a double overing of S3. As an example, we givehere another proof of non-realizability of B2(7; 2; 1). We have seen in Setion 5.2 thatthe only ase where the usual signature and nullity do not work is [�4�2 o4o73o2�2�2�2�3�3�4 ℄. One has b = ��2��24��3�4��73��2�3��2��24��23��4�, e(b) = 5 (here ��i = ��1i ). LetL = b̂, then �(L) = 4, hene, �(N) = 3 by (12). Components of L orrespond toyles of the image of b in the symmetri group. They are (17)(246)(3)(5). Denote theorresponding omponents of L respetively by L1; : : : ; L4 and their linking numbersby lij . One has l12 = 3, l13 = l14 = 1, l23 = 0, l24 = �3, l34 = �1. Like in Lemma5.11, we see that the boundaries of omponents of N are �N1 = L1 [ L4, �N2 = L2,�N3 = L3.The line C1 and its omplexi�ation orrespond to L3 and N3. Thus, the doubleovering of B4 branhed along N3 is the ball. Denote by ~N , ~L, ~Ni, ~Li the preimagesof N; : : : We see from the linking numbers that�(~L1) = �(~L3) = �(~L4) = �( ~N1) = �( ~N3) = 1; �(~L2) = �( ~N2) = 2;hene, �(~L) = 5, �( ~N) = 4. Compute the braid de�ning ~L as in Setion 2.7 and thenompute �(~L) = 2, n(~L) = 1. This ontradits to (1).x6. Other reduible urves of degree 7In this setion we prove Theorems 1.2A, 1.2B. Everything is similar to x5. Thepoint p in the both ases is hosen aording to Fig. 2,3.6.1. The quinti and the oni depited in Fig. 2. Using Proposition 3.6,eah Lp-sheme an be redued to the one enoded by a word w = [�3�3�2�2�3�2 oi1 : : : oi6 �1�2�1�2�3�3℄ where �1 = �01 + �001 , �01 = #(ij = 2), �001 = #(ij = 5),�2 = #(ij = 4), � = #(ij = 3). De�ne Æ�j , Æ�01, Æ�001 , Æ� like in x5, for instane,Æ�01 =Pij=2(�1)j.Lemma 6.1. (a). Let j < k. If ij = 5 then ik = 5; if ik = 2 then ij = 2.(b). w an not ontain :::oj:::o4:::o3:::o4::: (j < 4), nor :::o4:::o3:::o4:::o3:::Proof. (a) B�ezout theorem for the line through these two ovals.(b). B�ezout theorem for the oni through the 4 ovals and p. �Lemma 6.2. (a) Æ�001 = 0; (b) Æ�01 = Æ�2.Proof. The omplex orientations formula (a) for C5; (b) for C5 [ C2. �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 27These restritions are satis�ed for the following 40 sequenes i1:::i6:444444 224455 225555 433444 234443 334455 222343 335555 344333 234333224444 445555 555555 443344 223344 344355 234355 333344 433334 223333444455 222222 334444 444334 223443 433455 222233 333443 443333 333355222244 222255 344443 444433 224433 443355 223355 334433 233343 333333We have e(b) = 4 for all of them and det b̂ = 0 only for o2k2 o6�2k5 and o32o3o4o3. Butn(b̂) = 2 in the latter 5 ases, whih ontradits (3).6.2. The quarti and the ubi depited in Fig. 3. Choose the omplex ori-entations of C3 and C4 aording to Fig. 3. Then the omplex orientations formulawritten for C4 [ C3 implies that all the 3 free ovals of C4 are negatively orientedwith respet to the oval of C3 (in partiular, � 6= 3). Hene all the Lp-shemesan be redued to those enoded by the words wh1ik = [�3o4�12�2k2 �2k3 o3 �4℄ andwh2ik = [�4o3�12�2k2 �2k3 o4�3℄ (k = 0; :::; 3) where wh�ik orresponds to kh�i for k > 0and to 0h0i for k = 0. In all the ases we have e(b) = 6. Hene, by (3) and Lemma2.1, an arrangement kh�i is prohibited if the Alexander polynomial has a simple rooton the unit irle. The Alexander polynomials are respetively (t� 1)4ph�ik (t) whereph1i1 = 2t14 � 2t13 + 5t12 � 5t11 + 7t10 � 9t9 + 7t8 � 11t7 + :::ph1i3 = t14 � 2t13 + 4t12 � 7t11 + 11t10 � 15t9 + 17t8 � 19t7 + :::ph2i1 = t20 � t19 + 2t18 + t16 + 2t15 � 2t14 + 3t13 � 5t12 + 2t11 � 7t10 + :::ph2i2 = t20 � t19 + 3t18 � 2t17 + 3t16 � t14 + 3t13 � 7t12 + 6t11 � 11t10 + :::ph2i3 = t20 � t19 + 3t18 � 2t17 + 4t16 � 2t15 + 3t13 � 8t12 + 8t11 � 13t10 + :::(we do not write other oeÆients beause Alexander polynomials are symmetri).The onformal mapping t = (i + u)=(i � u) maps the line Imu = 0 onto theirle jtj = 1. Let, for instane, p = ph1i1 . Performing this substitution we getp((i+ u)=(i� u)) = q(u)=(u� i)14 where q(u) is a real (due to the symmetriity of p)polynomial of the form 85u14 + ::: and one an ompute q(1) = �128. Thus, q has areal root u0 and it orresponds to a root t0, jt0j = 1 of p. Cheking that gd(p; p0) = 1we see that all roots of p are simple.x7. Constrution of Lp-flexible urves7.1. The method of onstrution. The onstrutions of Lp-exible urves arebased on the following simple observation whose proof we omit.Proposition. A real Lp-sheme is realizable by an Lp-exible urve if and only if oneof the braids obtained by the onstrution desribed in Setion 3.4 (see also Remark3.3) is quasipositive.Evidently, the quasipositivity of a braid is equivalent to the existene of transfor-mations w1 ! w2 ! � � � ! �i ! 1 of yli words in �1; : : : ; �m, eah transformationbeing either an equivalene of losed braids, or removing �i, or inserting ��1i . So,to �nd the exible urves, we used the following heuristi method. In eah step, us-ing equvalenies of losed braids, we tried to minimize the length of the word (n in(4)) and to put it "to the most elegant form". Then we tried to remove/insert somegenerators, testing eah time if the Murasugi-Tristram inequality still holds.We leave to the reader to hek identities in the braid groups used below. Theword problem in Bm is e�etively deidable (see, for instane, [2℄). Also, one an usefor this purpose the program GAP supplied with the pakage Chevie [14℄.



28 S.YU. OREVKOVIn this setion we abbreviate the notation of braids denoting �1, �2; : : : by 1; 2; : : :and ��11 , ��12 ; : : : by �1; �2; : : : . The onjugate w�1bw is denoted by bw, for example,12�1 means �1��12 �1�2��11 . Attention: 12 means ��12 �1�2 but not �1�1!7.2. Construtions of exible aÆne M-sextis. Now we realize by Lp-exibleurves the isotopy types of aÆne M -sextis marked by (f) in Fig. 1.The isotopy types A4(1; 4; 5) and C2(1; 3; 6) an be desribed respetively by[�4�5�4 o34o3o45o4 �4�5�4�4�4℄ and [�4�5�4 o34o3o55 �5�4�5�5�4℄(in the both ases p is hosen inside one of the ovals h�2i, like in Setion 5.4). Thesetwo Lp-shemes de�ne by Proposition 3.8 the same quasipositive braid:(654�53 � 456)�4�43444454 � (3�24 � 123)4454 � 65The Lp-sheme [�4�3�3�2 o42o4 �3�2�3�4�3 o23o24�4℄ of A3(0; 5; 5) gives:(5�632432 � 65�643 � 1)2334 � 564�3The urves B2(1; 8; 1) and B2(1; 4; 5) an be represented respetively (� = 1; 2) by[�3�4�4�3�2�3 o43 e(�)8 �2 o3 �3℄ where e(1)8 = [o33 �3�4 o3℄, e(2)8 = [o4 �3�4 o34℄They de�ne the same braid (54 � 65)4432433 � 123 � 456Remarks. 1. A3(0; 5; 5), B2(1; 8; 1) are realizable by real algebrai urves (see Setion1.1).2. The Lp-exible realizability of the above Lp-shemes B2 is stronger than therealizability of those obtained by omitting �3�4 from e(�)8 (the redution (11) worksonly in one diretion). The words e(�)8 an be obtained as di�erent smoothings of thesingularity E8. Thus, it would be very natural if the both urves might be obtainedby smoothing of the same urve with E8.7.3. Curves from Theorem 1.2B. Algorithm form Proposition 3.8 applied towh�ik (see Setion 6.2) yields:0h0i wh1i0 ! 3243�4 � (4�53423 � 5�643 � 1)�6233333333343 � (54 � 65)4444442h1i wh1i2 ! 32�343 � (453423 � 65443423 � 12)3333343 � (54 � 65)44x8. Other appliations8.1. A singularity without M-perturbations. (See Setion 1.4). Choose theenter of projetion inside the shadowed oval (Fig. 5; right). Using B�ezout theoremand the redutions from Proposition 3.6, we redue the problem to the quasipositivityof the braidsbi = �1 � �6�5�4�3�2�1 � Ti � �1;2��12 ��11 ��13 � � hiYj=1��12 �ej3 ��ej1 � � �3�1�� �2 � �1�2�3�4�5�6 � �2�1�3�2 � ��15 2 B7; i = 1; 2; 3where h1 = h2 = 4, h3 = 2, T1 = �2;3��13 �3;4��14 �4;1��51 , T2 = �2;4��14 �4;3��13 �3;1��51 ,T3 = �2;4��54 �4;1��41 , and �i;k are de�ned by (9).



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 29We have e(bi) = m� 2, hene, by Corollary 2.2, it suÆes to show that det b̂i 6= 0.Applying Corollary 2.11, we obtain (up to a non-zero onstant fator)det b̂1 =� 228 + 28e1 + 64e2 + 100e3 + 136e4 � 9e21 � 32e22 � 41e23 � 36e24� 16e1e2 � 14e1e3 � 12e1e4 � 48e2e3 � 32e2e4 � 52e3e4;det b̂2 =� 1236� 120e1 + 36e2 + 192e3 + 348e4 � 85e21 � 324e22 � 381e23 � 256e24� 120e1e2 � 70e1e3 � 20e1e4 � 416e2e3 � 184e2e4 � 348e3e4;det b̂3 =� 180 + 240e1 � 60e2 + 109e21 + 256e22 + 76e1e2:Eah det b̂i, i = 1; 2 is a quadrati funtion of ej whose Hessian is negatively de�niteand whose value at the minimum is also negative. Hene, det b̂i < 0 for i = 1; 2. Easyto hek that det b̂3 6= 0 for any integer (e1; e2).8.2. On the real sheme h1t1h1it1h18ii of degree 8. Choose the point p insidethe nest 1h1i. It follows from the omplex orientations formula that the omplexsheme must be h1t1h1+it1h10+t8�ii and a line through 1h1i and an empty outeroval must separate the inner ovals of the nest 1h18i into two hains, an odd numberof ovals in eah. Therefore, by Proposition 3.6, the admissible Lp-shemes are[�4�2�2 o2k+14 o5 o16�2k4 �4℄; 0 � k � 4.Hene, by Setion 3.4, L = b̂ where b is one ofbk;e = ��14 ��15 ��13 ��14 �1�e5 �1+e3 ��2k�14 �4;5��15 �5;4�2k�164 �8; e(b) = 8:The omplex orientations imply that e is even, hene, �(L) = 6 and by (12), �(N) = 3.Like in Setion 5.8, denote respetively by L1; : : : ; L6 the onneted omponents ofL orresponding to the yles (18)(26)(3)(4)(5)(6) of the permutation. The linkingnumbers lij := Li � Lj are: l12 = 2, �l35 = l1;i = l2;i = 1 (i > 2), l34 = 2 � e=2,l45 = �9, l56 = 1+e=2, l36 = l46 = 0. De�ne N�, L� as in Setion 4.3. It follows fromProposition 4.3 and the omplex orientations formula that L3[L5 � L�, L4[L6 � L+and L1, L2 have opposite signs. Suppose L1 � L�, L2 � L+ (the other ase is similar).Then �(L+) = �(L�) = 3. Sine �(N) = 3, we have N = N� t N�1 t N�2 where�(�N�i ) = i. Let �N�1 = Lj . Then j > 2 beause otherwise N�1 [ onj(N�1 ) wouldbe disonneted from the rest of the urve.j = 3 : 0 = �N�1 � �N+ = L3 � (L2 [ L4 [ L6) = 6� e. Hene, e = 6.j = 5 : 0 = �N�1 � �N+ = L5 � (L2 [ L4 [ L6) = �14 + e. Hene, e = 14.j = 4 : 0 = �N+1 � �N+2 = L4 � (L2 [ L6) = 2. Contradition.j = 6 : 0 = �N+1 � �N+2 = L6 � (L2 [ L4) = 2. Contradition.Computing ��(b̂k;e) = 3, n�(b̂k;e) = 1 for k = 1; 2, e = 6; 14, � = exp(5�i=4), we seethat the realizability of these 4 braid ontradits (3). Thus, it remains only 6 braidsbk;e, k = 0; 3; 4, e = 6; 14. At least one of them, namely b0;6 is quasipositive.4 Thus,the orresponding real Lp-sheme is realizable by an Lp-exible urve. Moreover,analyzing the proess of obtaining the quasipositive representation (see Setion 7.1)one an see that this urve an be degenerated into the singular Lp-exible urveshown in Fig. 14(left) whose braid an be written (in the notation of Setion 7.1) as4We did not study the question of quasipositivity of the other 5 braids
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820A AFig. 1432�3�3�3�3�3�3�354534 � (6543 � 76 � 2 � 1)�7543234543 � 67:Thus, there is no topologial obstrution for the existene of a urve of degree 8shown in Fig. 14(right) where the singular point has 2 branhes of types A8 and A20.Maybe, some of the remained 3 ovals might be further degenerated to nodes (onean show that these nodes must be isolated points). The apaity of available to meomputers was not enough to onstrut suh a singular urve by a diret resolving ofsimultaneous equations for the oeÆients as it was done in [15℄.Aknowlegements. I am grateful to V.M. Kharlamov and O.Ya.Viro who noted that the methodsused in some of my papers ould be applied to the topology of real algebrai urves. I thank theuniversities of Rennes-1 and Zaragoza for their hospitality.Referenes[1℄ V.I. Arnold, The arrangment of the ovals of real plane algebrai urves, involutions of four-dimensional manifolds and the arithmetis of integral quadrati forms, Funt. Anal. and Appl.5 (1972), 169{175.[2℄ J.S. Birman, Braids, links, and mapping lass groups, Ann. Math. Stud., Prineton Univ. Press,Prineton, 1974.[3℄ B. Chevallier, Travel notes from M-urves onstrutions, Preprint.[4℄ B. Chevallier, Une ourbe entrale de degre 8, Preprint.[5℄ S. Fiedler, Orientations omplexes des ourbes alg�ebriques r�eeles, Th�ese dotorale.[6℄ T. Fiedler, Penils of lines and the topology of real algebrai urves, Math. USSR-Izvestia 21(1983), 161{170.[7℄ F.A. Garside, The braid group and other groups, Quart. J. Math. 20 (1969), 235{254.[8℄ P. Gilmer, Real algebrai urves and link obordism, Pai� J. Math. 153 (1992), 31{69; II. Amer.Math. So. Transl.(2) 173 (1996), 73{84.[9℄ D.A. Gudkov, The topology of real projetive algebrai varieties, Russian Math. Surv. 29:4 (1974),1{79.[10℄ V. Kharlamov, S. Orevkov, E. Shustin, A singularity whih has no M-smoothing. Preprint 1998.[11℄ A.B. Korhagin, Smoothing of 6-fold singular points and onstrutions of 9th degree M-urves,Amer. Math. So. Transl. (2) 173 (1996), 141{155.[12℄ A.B. Korhagin, E.I. Shustin, AÆne urves of degree 6 and smoothing of non-degenerate six-foldsingular points, Math. USSR-Izvestia 33 (1989), 501{520.[13℄ K. Murasugi, On a ertain numerial invariant of link types, Trans. Amer. Math. So. 117(1965), 387{422.[14℄ J. Neub�user, M. Sh�onert et al., Groups, Algorithms and Programming, Available via anonymousftp from samson.math.rwth-aahen.de.[15℄ S.Yu. Orevkov, A new aÆne M-sexti, Funt. Anal. and Appl. (to appear).[16℄ S.Yu. Orevkov, Braid theory and ovals of real algebrai urves, (in preparation).[17℄ S.Yu. Orevkov, G.M. Polotovskii, Projetive M-ubis and M-quartis in general position witha maximally interseting pair of ovals, St.-Petersburg J. of Math. (to appear).[18℄ G.M. Polotovskii, On the lassi�ation of non-singular urves of degree 8, Topology and Geom-etry - Rokhlin Seminar, Let. Notes in Math. 1346, 1989, pp. 455{485.[19℄ G.M. Polotovskii, On the lassi�ation of deomposing 7-th degree urves, Contemporary Math.(to appear).
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