
LINK THEORY AND OVAL ARRANGEMENTSOF REAL ALGEBRAIC CURVESS.Yu. Orevkov0. Introdu
tionHow a real algebrai
 
urve of a given degree 
an be deposed on the plane up to anambient isotopy? This is one of the questions posed by Hilbert in the 16-th problemalmost 100 years ago. There are few 
han
es of obtaining a 
omplete answer to thisquestion in the near future. However, a lot of partial results in this dire
tion areobtained (see surveys [9, 21, 31, 28, 25℄). All the a
tivity around this question 
an byroughly divided in two more or less independent parts: Constru
tions (how to realizeisotopy types whi
h exist) and prohibitions (how to prove that some isotopy types donot exist). In this paper we dis
uss only the prohibitions.Let Y be the double 
overing of CP2 rami�ed along the 
omplexi�
ation CA of areal 
urve RA. Almost all of the most powerful modern methods to obtain restri
tionson the topology of plane real 
urves are based on the 
onstru
tion of 2-
y
les in Yand the 
omputation of their interse
tions. On one hand, Y is a standard 
omplexobje
t whose topology is well studied and, on the other hand, a lot of 2-
y
les are"visible" on the real plane. This idea appeared in the remarkable paper of Arnold [1℄and then it was exploited and developed by di�erent authors. In parti
ular, Viro [28;(4.12)℄, [12; Se
tions (5.1), (5.2)℄ suggested a method to 
onstru
t 2-
y
les whi
h arenot visible on the real plane but whi
h are visible on the 3-manifold CLp 
onsistingof all 
omplex points of the real lines of some pen
il Lp. This method was furtherdeveloped in [23℄, [24℄. (First, the idea to 
onsider CLp was proposed by Fiedler [6℄as a tool to obtain topologi
al restri
tions from the Rokhlin's 
omplex orientationsformula [20℄).In this paper we propose a method of prohibitions based on the 
onsideration ofCLp as the boundary of one of two parts into whi
h it 
uts CP2. If we push CLpa little into the interiority of this 4-manifold then the singularities of CLp \CA willbe smoothed in a 
ontrolled way and we obtain a link L in a 3-sphere S3 boundingan embedded surfa
e N � B4 (N is a pie
e of CA; see Se
tions 3 and 4 for details).The topologi
al type of N 
an be found by Riemann-Hurwitz formula. Thus, weredu
e the problem to a 
lassi
al problem of link theory: what surfa
es in B4 
an bebounded by a given link in S3. A rather strong ne
essary 
ondition for N in terms ofthe Seifert form of L is provided by Murasugi-Tristram inequality [13, 26℄ (see Se
tion2.2 below). The most of the results of this paper are obtained using this inequality.However, even elementary arguments based on the linking numbers of 
omponentsPartially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502Typeset by AMS-TEX1



2 S.YU. OREVKOVof L sometimes anable to obtain some new restri
tions (see Se
tions 4.3, 4.4, andLemma 5.11).In fa
t, the method based on the Murasugi{Tristram inequality is very 
lose tothose based on 2-
y
les on the double 
overing. For instan
e, it is shown in [27℄ thatthe signature of the double 
overing of B4 bran
hed along N is equal to the signatureof the Seifert form. However, the 
onstru
tion of the 
y
les in our approa
h is hiddeninto the proof of this fa
t. Thus, the art of 
y
les 
onstru
tion is repla
ed with a wellalgorithmized 
omputation of a Seifert matrix.The Murasugi{Tristram inequality was already used in the 
ontext of real 
urves(in a di�erent way) by P. Gilmer [8℄.1. Statements of the results1.1. Classi�
ation of 
exible aÆne M-sexti
s.Let C1 be the in�nite line RP2 nR2 and Cm � RP2 a 
urve of degree m. We shallsay that the aÆne 
urve Cm nC1 is an aÆne M -
urve if it has the maximal possiblenumber (m2�m+2)=2 of 
onne
ted 
omponents. This is equivalent to the fa
t thatCm is a proje
tive M -
urve, i.e. it has the maximal possible number of 
onne
ted
omponents 1 + (m � 1)(m � 2)=2 and it 
uts C1 transversally at m distin
t realpoints whi
h all lie on the same 
onne
ted 
omponent of Cm. This de�nition di�ersfrom that, given in [12, 23℄ but it seems to be more natural.A

ording to the Gudkov's [9℄ isotopy 
lassi�
ation of real proje
tive sexti
s, aproje
tive M -sexti
 has 11 ovals 10 of whi
h are empty1 and one surrounds 1, 5, or9 others. Choosing in di�erent ways a line passing through 2 empty ovals and usingthe fa
t that it 
uts C6 at most in 6 points, one 
an easily 
he
k that ea
h aÆneM -sexti
 belongs to one of the isotopy types depi
ted in Fig. 1 where a priori �, �,�i, �i are arbitrary integers providing one of the three possible isotopy types of C6(
utting RP2 along C1 one obtain a disk; these disks are depi
ted in Fig. 1).Theorem 1.1. All the isotopy types not listed in the tables in Fig. 1, are not realizableby aÆne M -sexti
s.The 33 isotopy types 
orresponding to the lines not marked by "(f)" are realizedin [12℄. Other 
onstru
tions (exposed with more details) of these 33 
urves 
an befound in [11℄. It is announ
ed also in [12℄ that all the other isotopy types but 19do not exist. Later, it was announ
ed in [23℄ that 10 more 
ases of these 19 oneswere also prohibited. However, the proofs of at least 3 of these prohibitions (namely,A3(0; 5; 5), A4(1; 4; 5), C2(1; 3; 6)) are wrong be
ause these isotopy types in prin
iple
an not be prohibited by methods used in [12, 23℄ (see Se
tion 7.2).Moreover, the 
on�guration A3(0; 5; 5) is realizable by a suitable smoothing of thereal rational sexti
 that has 5 singular points of types A8, E6, A2, A1, A1, the linethrough E6 and A2 being tangent to the 
urve at A2. There exists a unique (upto SL3(R)) real sexti
 with this 
on�guration of singularities. Similarly (see [15℄),a 
urve realizing B2(1; 8; 1) 
an be 
onstru
ted by smoothing of a rational sexti
with A16, A2, A1. The realizability of A4(1; 4; 5), B2(1; 4; 5), and C2(1; 3; 6) is stillunknown, but we 
onstru
t in 7.2 
exible 
urves (see the de�nition in [28℄ or in 3.1below) realizing these three isotopy types as well as all the others marked by "(f)" inFig. 1. Theorem 1.1 is proven in x5.1An oval is said to be empty if its interiority does not 
ontain other ovals (it is not ?!)
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Fig. 1Added in 2002: Now the 
lassi�
ation of aÆne M-sexti
s is 
ompleted in by S. Fiedler-LeTouz�e,E. Shustin, and the author in the papersS. Fiedler-LeTouz�e, S.Yu. Orevkov, A 
exible aÆne M-sexti
 whi
h is algebrai
ally unrealizable,J.of Algebrai
 Geometry 11 (2002,), 293{310.S.Yu. Orevkov, E.I. Shustin, Flexible, algebrai
ally unrealizable 
urves: rehabilitation of Hilbert-Rohn-Gudkov approa
h, J. Reine und Angew. Math. (to appear).S.Yu. Orevkov, E.I. Shustin, Pseudoholomorphi
, algebrai
ally unrealizable 
urves,http://pi
ard.ups-tlse.fr/eorevkov.1.2. Redu
ible 
urves of degree 7.As another illustration of appli
ability of the link-theoreti
al methods to the studyof the topology of redu
ible 
urves we prove in Se
tion 6 the following two results.Theorem 1.2A. There does not exist M -quinti
 C5 whose odd 
omponent is deposedwith respe
t to a 
oni
 C2 as it is depi
ted in Fig. 2.It is easy to derive from B�ezout theorem that the ovals of C5 must be distributedbetween the regions marked by h�1i, h�2i, h�i. The 
omplex orientations formulasallow only 13 possible distributions (see 6.1). Using some other methods it is possibleto prohibit 3 of them (see [19; (2.1.2)℄). The realizability of the other 10 
ases wasunknown.Now let us 
onsider mutual arrangements of a quarti
 and a 
ubi
. Suppose that anoval O4 of anM -quarti
 C4 is deposed with respe
t to anM -
ubi
 C3 as it is depi
tedin Fig. 3. Denote by kh�i (k; � = 1; 2; 3) the arrangement where the k-th outer (withrespe
t to O4) digon 
ontains � ovals of C4 and the other 3� � ovals are deposed in
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Fig. 2 Fig. 3 Fig. 4the non-bounded 
omponent of RP2 n (C3 [C4). Let 0h0i be the arrangement whereall the 3 free ovals of C4 are outside. It follows from B�ezout theorem that all theother distributions of free ovals of C4 are impossible (or 
an be redu
ed to these 10by reversing the order of digons).Theorem 1.2B. All the arrangements kh�i ex
ept 0h0i and 2h1i are not realizable.These two arrangements are realizable by 
exible 
urves (see 7.3).Some open questions in the 
lassi�
ation of redu
ible 7th degree 
urves (in parti
u-lar, those answered in 1.2A,B) were kindly 
ommuni
ated to me by G.M. Polotovskii.Using the methods of this paper we have obtained with him [17℄ an isotopy 
lassi�
a-tion of all mutual arrangements of an M -
ubi
 and an M -quarti
 su
h that two ovalsinterse
t in 12 points.Added in 2002: 1. Theorem 1.2A is wrong. The mistake was found by G.M. Polotovskii. However,using the methods of this paper, he found all arrangements of a 
oni
 and an M-quinti
 of the formas in Fig. 2.2. The both arrangements 0h0i and 2h1i whi
h are not ex
luded by Theorem 1.2B are realizedin the paperS.Yu. Orevkov, Constru
tion of arrangements of an M-quarti
 and an M-
ubi
 with maximallyinterse
ting oval and odd bran
h, http://pi
ard.ups-tlse.fr/eorevkov.1.3. Curves of degree 8 with a 5-fold point. (Compare with [18℄, [3℄).Theorem 1.3. There do not exist 
urves of degree 8 shown in Fig. 4 with �+� = 11.Originally, this theorem was proven in the same way as Theorem 1.1 (using thepen
il of lines through the 5-fold point). However, it follows from the results of [16℄(see also 4.1). So, we do not present the proof here.1.4. A singularity without M-perturbations.Let C0 2 R2 be a real analyti
 
urve whi
h has three analyti
 bran
hes at the origin,ea
h bran
h having an ordinary 
usp A2. Let U be a small disk with the 
enter in theorigin and let C be a perturbation of C0. A lo
al version of the Harna
k inequalityimplies that C \ U has not more than 16 
omponents: three 
omponents with theboundaries on �U and 13 ovals. Su
h a perturbation is 
alled an M -perturbation. Inthe 
ase when C0 is arranged as in Fig. 5(left), an M -perturbation exists (simplifythe singularity into an ordinary 6-fold point and then perturb it gluing any aÆneM -sexti
 of the series A). However, if C0 is like in Fig. 5(middle), all the attempts to
onstru
t it fail.V. Kharlamov and E. Shustin have prohibited all the possible arrangements ofovals for the perturbation in the latter 
ase ex
ept two very parti
ular arrangements



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 5
d

c

b

aa   b   c   d

1   5   0   4
3   1   1   5

Fig. 5shown in Fig. 5(right). Using the lo
al version of the method from Se
tion 4.2, theauthor proved that the last possibility also is not realizable. An outline of the proofis presented in Se
tion 8.1. The details are planned to be published in the joint paper[10℄.1.5. A new formula for 
omplex orientations for a proje
tive M-
urve witha deep nest.Let RA � RP2 be a real proje
tive M -
urve of degree m. Re
all (see [20℄, [21℄,or [28, x2℄) that CA n RA = A+ t A� and the 
omplex orientation of RA is theboundary orientation 
oming from A+. Two ovals O, O0 bounding an annulus form apositive (resp. negative ) inje
tive pair if their 
omplex orientations do (resp. do not)
oin
ide with the boundary orientation of the annulus; we write this as [O : O0℄ = 1(resp. [O : O0℄ = �1).In the 
ase when m is odd, an oval O is 
alled positive (resp. negative) if [O℄ =�2[N ℄ 2 H1(RP2nIntO) (resp. [O℄ = 2[N ℄) where N is the odd 
omponent ofRA. Inthe 
ase when m is even and O is not outer, O is said to be positive if [O : O0℄ = 1 (or,equivalently, [O℄ = �[O0℄ 2 H1(RP2 n IntO)) where O0 is the outer oval surroundingO. Otherwise O is 
alled negative. If m is even, we assume also (this is not so in [21℄,[28℄) that any outer non-empty oval is negative by de�nition.Suppose RA has a nest (O1; : : : ; Ok�1) of depth k�1 where k = [m=2℄. This meansthat the oval Oj is surrounded by Ok for j > k. It follows from B�ezout theorem thatall the other ovals are empty. In Se
tion 4.4 we prove the followingTheorem 1.4A. Let k+ (resp. k�) be the number of positive (resp. negative) non-empty ovals, �+ (resp. ��) the number of positive (resp. negative) empty ovals,and let �Ss , S; s 2 f+;�g be the number of pairs (O; o) where o is an empty ovalsurrounded by O and (S; s) are the signs of (O; o). Then�+� � �++ = (k+)2; ��+ � ��� = (k�)2 (m is even);�+� � �++ = (k+)2; ��+ � ��� + (�+ � ��)=2 = (k�)2 + k� (m is odd):Corollary 1.5. If a real s
heme2 of an M -
urve of degree 7 is hJ t � t 1h�ii with� > 0, and the non-empty oval is positive then(a) � and � are odd;(b) the 
omplex s
heme is hJ t (�+12 )+ t (��12 )� t 1+h(��12 )+ t (�+12 )�ii2See the de�nition and notation of real and 
omplex s
hemes in [28℄.



6 S.YU. OREVKOVCorollary 1.6. If a real s
heme of an M -
urve of degree 8 is h
 t 1h� t 1h�iii with� > 0, and the non-empty ovals form a positive inje
tive pair then(a) � and 
 are odd;(b) the 
omplex s
heme is h
 t 1h(�2 + 1)+ t (�2 � 1)� t 1+h(��12 )+ t (�+12 )�iii.Corollary 1.7. If a real s
heme of an M -
urve of degree 8 is h
 t1h2t1h�iii where� and 
 are even and � > 0 then the 
omplex s
heme ish
 t 1h1+ t 1� t 1�h(�2 + 1)+ t (�2 � 1)�iii.Corollary 1.8. There does not exist M -
urve C of degree 9 with the real s
hemehJ t 2 t 1h1 t 1h23iii.Proof. The only 
orresponding 
omplex s
heme satisfying 1.4A is hJ t 1+ t 1� t1�h1� t 1�h13+ t 10�iii. Denote the outer empty ovals by o+, o� and 
hoose pointsp+, p� inside them. Applying [6℄ to the pen
il of lines through p�, we see that the linel := (p+p�) separates some two of the most inner ovals o1, o2 and l \ (C n (o+ [ o�))lies in one 
omponent of l n fp+; p�g. Then the 
oni
 through o+, o�, o1, o2, and onemore empty oval 
uts C in � 20 points. �Remarks. 1. Two independent formulas for 
omplex orientations are known forsmoothings of singularities (see [25, 10℄).2. The prohibition in Corollary 1.8 was unknown a

ording to [11℄. This reals
heme equipped with the 
omplex orientations hJ t 2+ t 1�h1+ t 1+h12+ t 11�iiidoes not 
ontradi
t the Rokhlin's 
omplex orientation formula and it is not 
lear howto prohibit it without Theorem 1.4A.3. Some of 
omplex 7 degree s
hemes prohibited in Corollary 1.5 were earlierprohibited in [5℄ by another method as well as some other 
omplex s
hemes not
overed by Corollary 1.5.Added in 2002: Corollary 1.8 was published in the erratum to this paper. Some more M-
urvesof degree 9 are ex
luded by the same method inS.Yu. Orevkov, Link theory and new restri
tions for M-
urves of degree 9, Fun
t. Anal. andAppl. 34 (2000), 229{231.1.6. A 
exible realization of the s
heme h1 t 1h1i t 1h18ii of degree 8. Thisis one of the 9 real M -s
heme of degree 8 whose realizability is still unknown (1997;see [4℄). In Se
tion 8.2 we realize it by a 
exible 
urve (see [28℄). This 
urve is
ompatible with the pen
il of lines through the nest 1h1i (see Se
tion 3.1). Moreover,all the known methods of 
onstru
tions 2-
y
les on the double 
overing work for this
urve.We also prove some topologi
al properties of su
h 
urves and possibilities for theirdegenerations.Added in 2002: Now the 
lassi�
ation of 
exible M-
urves of degree 8 is 
ompleted and it remains6 open 
ases for algebrai
 M-
urves, see the paperS.Yu. Orevkov, Classi�
ation of 
exible M-
urves of degree 8 up to isotopy, GAFA { Geom. andFun
t. Anal. (to appear).x2. Preliminaries. Links and braidsIn this se
tion we re
all some de�nitions and known fa
ts (mostly, to �x the nota-tion) and perform some elementary 
al
ulations with Seifert matri
es.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 72.1. Seifert matrix.Re
all some de�nitions. Let L be a link in the 3-sphere S3, i.e. several disjoint
ir
les smoothly embedded into S3. A Seifert surfa
e of a link L is a 
onne
ted3oriented 2-manifold X smoothly embedded into S3 su
h that �X = L (taking intoa

ount the orientations). A Seifert form of a link L is the bilinear (non-symmetri
)form on H1(X;Z) whose value on x, y equals the linking number of the 
y
les x+and y where x+ is the result of a small shift of x along a positive normal ve
tor �eldto X. A Seifert matrix is the Gramm matrix of a Seifert form with respe
t to somebase of H1(X;Z).Let A be an Hermitian matrix and B = QAQ� its diagonalization. The signature�(A) is the sum of the signs of the diagonal entries of B and the nullity n(A) is thenumber of zeros on the diagonal of B.Let V be a Seifert matrix of a link L and � 2 C, j�j = 1. The higher signatureand nullity of L are said to be ��(L) := �(V�) and n�(L) := n(V�) + 1 whereV� = (1 � �)V + (1 � ��)V �. For � = �1 they are 
alled just the signature and thenullity of L. The Alexander polynomial of L is de�ned as det(V � tV �) and detL asits value at �1. Though the Seifert matrix is not unique, ��(L), n�(L) and j detLjare link invariants. The Alexander polynomial is invariant up to multiplying by �tk.Lemma 2.1. If the Alexander polynomial of a link L has a simple root t0, jt0j = 1then for a prime p and a primitive p-root of unity � one has n�(L) = 1 and j��(L)j > 0Proof. When � passes t0 moving along the unit 
ir
le, �� 
hanges by �2. �2.2. Murasugi { Tristram inequality.Let L be a link in S3 regarded as the boundary of the 4-ball B4. Let N be a surfa
eof genus g smoothly embedded into B4 su
h that �N = L. If N is not 
onne
ted thenits genus by de�nition is equal to the sum of the genera of the 
onne
ted 
omponents.Following [26℄, denote by �(�) the number of 
onne
ted 
omponents. Then for ea
hprime p and for ea
h primitive p-root of unity � one has [13, 26℄2g � �(N)� �(L) + j��(L)j+ jn�(L)� �(N)j (1)2.3. Braids.As usual, we 
all a braid on m strings the graph of a smooth m-valued fun
tionF : [0; 1℄ ! C whose values are pairwise disjoint at ea
h point and the real parts ofits values are pairwise disjoint at 0 as well as at 1. The proje
tion used for pi
turingbraids (and for de�nition of the standard generators of the braid group) is supposedto be (t; z) 7! (t;Re z).
. . .

. . .
m

2

i

i+1

1 1
2

i

i+1

m
. . .

. . .�i ��1i �6Fig. 63Sometimes the 
onne
tedness is not 
laimed, but this 
ondition is important for the belowde�nition of the nullity.



8 S.YU. OREVKOVBy �1; : : : ; �m�1 we shall denote the standard generators of the braid group Bmand by � (or �m) the Garside element (see Fig. 6)� = �m = (�1�2 : : : �m�1) � : : : � (�1�2�3) � (�1�2) � �1The dire
tions of the twists are de�ned by the 
onvention that �1 2 B2 is the fun
tionw = pz along the path z = e2�it.The 
losure of a braid b is de�ned as the link b̂ whi
h is the image of b under thestandard embedding of the solid torus ([0; 1℄�C)=(0;z)�(1;z) into S3. The orientationof b̂ is indu
ed by the proje
tion [0; 1℄�C! [0; 1℄.2.4. Quasipositive braids.A braid b is 
alled quasipositive if b =Qj wj�ijw�1j .L. Rudolph [22℄ shown that a braid b 2 Bm is quasipositive if and only if it isthe boundary braid of an m-valued algebrai
 fun
tion on a disk w = F (z) impli
itlyde�ned by wn + a1(z)wn�1 + � � � + an(z) = 0 where ai(z) are polynomials in z.Perturbing, if ne
essary, the 
oeÆ
ients, we may assume that all the singularities ofF are ordinary rami�
ations. Then the number of the bran
hing points is equal toe(b) where e : Bm ! Z is the homomorphism "exponent sum": e(�i) = 1 for all i.Hen
e, by Riemann-Hurwitz formula, the Euler 
hara
teristi
 of N :=graph(F )equals m� e(b) = �(N) = 2�(N)� 2g(N)� �(b̂): (2)Combining this with (1), we obtain immediately the following ne
essary 
ondition forthe quasipositivity of a braid b 2 Bmn�(b̂) � j��(b̂)j+m� e(b): (3)Corollary 2.2. If a braid b 2 Bm is quasipositive and e(b) < m�1 then the Alexanderpolynomial of b̂ is identi
ally equal to zero, in parti
ular, det b̂ = 0.2.5. Seifert matrix of a 
losed braid.Fix a presentation of a braid b 2 Bmb = �"1i1 �"2i2 : : : �"nin ; "j = �1: (4)To 
onstru
t a Seifert surfa
e of b̂, one 
an take m parallel equally oriented disksand 
onne
t them with n on
e-twisted ribbons as it is shown in Fig.7. This surfa
e(denote it by X) is 
onne
ted if and only ifAll the indi
es 1; : : : ;m� 1 appear among i1; : : : ; in. (5)Multiplying if ne
essary the right hand side of (4) by expressions of the form �k��1k ,we 
an always assume that (5) is satis�ed.As a base of H1(X;Z) let us 
hoose the s = n � m + 1 
y
les x1; : : : ; xs whi
h
orrespond to 
ir
uits in the positive dire
tion around the bounded regions of theproje
tion of the braid onto the plane (see Fig. 7).This 
onstru
tion leads to the following algorithm for 
omputing a Seifert matrixstarting with a braid. Denote by I the set f1; :::; ng. The multi-index i = (i1; : : : ; in)de�nes the partition I = I1[I2[� � �[Im�1 where Ih = fj j ij = hg. Let Sh be the setof pairs of su

essive (in as
ending order) elements of Ih, and put Si := S1[� � �[Sm�1.
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x1 x2

3xb = �2��11 �2�2�1; m = 2; n = 5; S = f(1; 3); (3; 4); (2; 5)gFig. 7Let Si = f(a1; b1); : : : ; (as; bs)g where (a� ; b�) 
orresponds to x� (see Fig. 7). De-note h� := ia� = ib� , � = 1; : : : ; s. Then the Seifert matrix V = jjv�� jjs�;�=1 and itssymmetrization V + V � = jj~v�� jjs�;�=1 
an be 
omputed as follows.v�� = 8>>><>>>: �"; if � = � and "a� = "b� = "1; if h� = h� , b� = a� , "b� = 1 or h� = h� + 1, a� < a� < b� < b��1; if h� = h� , a� = b� , "a� = �1 or h� = h� + 1, a� < a� < b� < b�0; otherwise~v�� = 8>>><>>>: �"a� � "b� ; if � = �"j ; if h� = h� and a� = b� = j"; if h� = h� + " and a� < a� < b� < b� for " = �10; otherwisewhere (�; �) denotes some permutation of (�; �). All the mutual positions of x� andx� whi
h provide v�� 6= 0 are shown s
hemati
ally in Fig. 8.
x x x

x

x x

xv�� = �" v�� = ("+ 1)=2 v�� = 0 v�� = �1v�� = ("� 1)=2 v�� = 1 v�� = 0~v�� = �2" ~v�� = " ~v�� = 1 ~v�� = �1Fig. 8Examples 2.3. 1. (Trefoil). m = 2, b = �1�1�1, S = f(1; 2); (2; 3)g, V = ��1 10 �1�.2. (Braid in Fig.7). b = �2��11 �2�2�1, V = ��1 1 00 �1 01 0 0�, V + V � = ��2 1 11 �2 01 0 0�.2.6. Signature of a braid as a fun
tion of generator exponents.Now let us �x m > 1, a multi-index i = (i1; : : : ; in) satisfying (5) and 
onsider thefamily f�ei g � Bm of braids�ei = �e1i1 �e2i2 : : : �enin ; e = (e1; : : : ; en) 2 Zn: (6)



10 S.YU. OREVKOVTo avoid a misunderstanding with the notation of braid generators, we denote in thisse
tion the signature and the nullity of a matrix and those of a link by Sign and Null.De�ne S = Si = fa�g�=1;:::;s and h� 's the same way as in Se
tion 2.5. If all ej 6= 0,put U = Ui(e) = jju�� jjs�;�=1 where (
ompare with the formula for ~v�� in 2.5):u�� = 8>>><>>>: �e�1a� � e�1b� ; if � = �e�1j ; if h� = h� and a� = b� = j"; if h� = h� + " and a� < a� < b� < b� for " = �10; otherwiseas above, (�; �) denotes some permutation of (�; �).Denote by V = Vi(e) the Seifert matrix of b̂ (where b = �ei ) 
onstru
ted in Se
tion2.5 starting with the presentation of b in the form (4) obtained from (6) by repla
ingea
h �ejij with the produ
t of jej j 
opies of �sign ejij . Denote by �s the dimension of V(
learly, �s = 1�m+P jej j).Proposition 2.4. Let e 2 (Z n 0)n, V = Vi(e), ~V = V + V �. Then there existsQ 2 SL(�s;Q) su
h that Q~V Q� = Ui(e) � DU where DU is a diagonal matrix withSign(DU ) = �P(ej � sign ej) and j detDU j =Q jej j.Proof. Denote by �S the set whi
h was denoted by S in the 
onstru
tion of V . Let �ei beone of the fa
tors in the right hand side of (6) and " = sign e. Let a; a+1; : : : ; a+e�1be the indi
es of the 
orresponding part in the developing of (6) into the form (4).Denote the 1-
y
les 
orresponding to (a; a + 1); : : : ; (a + e � 2; a + e � 1) 2 �S byx1; : : : ; xe�1 and those 
orresponding to (a0; a) and (a+ e � 1; a1) (if they exist) byx0 and xe. We shall write the symmetrized Seifert form as x � y. A

ording to the
omputations of Se
tion 2.5 we have:xk �xj = �2" if k = j; xk �xj = " if jk � jj = 1; xk �xj = 0 if jk � jj > 1;and xk � x = 0 for x 2 �S n fx0; : : : ; xeg, k = 1; : : : ; e� 1.Put yk =Pkj=1 jxj=k for k = 1; : : : ; e and y0 =Pe�1j=0(e� j)xj=e.This is an easy exer
ise to 
he
k that for k > 0 one has yk � yk = xk �xk+ "� ("=e),(k = 0; e); y0 � ye = "=e; yk � yk = �(k + 1)"=k, (k = 1; : : : ; e � 1), yk � yl = 0,(k = 1; : : : ; e�1; l 6= k), and yk �x = xk �x for any x 2 �Snfx0; : : : ; xeg and k = 0; : : : ; e.Thus, if we 
hange the base �S of H1(X;Q) repla
ing xk with yk (k = 0; : : : ; e) theny1; : : : ; ye�1 generate a diagonal dire
t summand and " is repla
ed with "=e in thefour entries of the Seifert matrix 
orresponding to y0 and ye.We write this 
hange of the base in the matrix form for e = 5, " = �1:Q0BB� :::+1 �1�1 2 �1 0�1 2 �1�1 2 �10 �1 2 �1�1 :::+11CCAQ� = 0BBB� :::+15 0 0 0 0 �1=5�1 2 �1 0 0 0�1=2 0 3=2 �1 0 0�1=3 0 0 4=3 �1 0�1=4 0 0 0 5=4 �1�1=5 0 0 0 0 :::+15
1CCCAQ�

= 0BBB� :::+15 0 0 0 0 �1=50 2 0 0 0 00 0 3=2 0 0 00 0 0 4=3 0 00 0 0 0 5=4 0�1=5 0 0 0 0 :::+15
1CCCA ; where Q = 0BB� 1 0 0 0 0 04=5 1 1=2 1=3 1=4 1=53=5 0 1 2=3 2=4 2=52=5 0 0 1 3=4 3=51=5 0 0 0 1 4=50 0 0 0 0 1 1CCARepeating this pro
edure for ea
h fa
tor of (6) we obtain the desired result. �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 11Examples 2.5. 1. (Trefoil). b = �31. U is the empty matrix; D = ��2 00 �3=2�.2. (Braid in Fig. 7). b = �2��11 �22�1. U = ��3=2 11 0�; D = (�2).Now we are going to modify the above matri
es to avoid the denominators andhen
e, to have a possibility to use the same formulas in the 
ase when some of theexponents ej vanish.Re
all that we have �xed a multi-index i = (i1; : : : ; in) satisfying (5). Given anye 2 Zn, we de�ne the matrix Wi(e) as follows. Let S = Si = f(a1; b1); : : : ; (as; bs)gand h� be as in 2.5. Consider a ve
tor spa
e over Q with a base y1; : : : ; ys; z1; : : : ; znendowed with the symmetri
 bilinear form de�ned byzj � zj = ej ; zj � y� = 1 if b� = j; zj � y� = �1 if a� = j;y� � y� = " if h� = h� + " and a� < a� < b� < b� for " = �1 (7)where (�; �) is some permutation of (�; �) and the value of the form on any other pairof the base elements is zero.De�ne Wi(e) is de�ned as the Gramm matrix of the base fy1; : : : ; yn; z1; : : : ; zng.Note, that n of diagonal entries of Wi(e) are e1 : : : ; en but the size of the matrix andall the other entries depend only on i and do not depend on e.Proposition 2.6. Let e 2 Zn, V = Vi(e), ~V = V +V �. Then there exists Q 2 SL(�s+2n;Q) su
h that Q( ~V �Ze)Q� =Wi(e)�DW where Ze =Lnj=1 Zej , Ze = � e 00 �1=e�for e 6= 0, Z0 = � 0 11 0�, and DW is a diagonal matrix with Sign(DW ) = �P ej andj detDW j = 1.Proof. Step 1. If all ej 6= 0 then Wi(e) is 
ongruent to Ui(e) � De where De isthe diagonal matrix with e1; : : : ; en on the diagonal. Indeed, perform for ea
h jthe following 
hange of the base: (y�; zj ; y�) ! (y� � zj=ej ; zj; y� + zj=ej) whereb� = j = a� � � 1 01 e �10 �1 � � ! � ��e�1 0 e�10 e 0e�1 0 ��e�1 � ; e = ej :Step 2. Wi(e) is 
ongruent to �Lej=0 Z0��Wi0(e0) where i0 and e0 are obtainedfrom i and e by removing all ij and ej su
h that ej = 0. Indeed, the latter ma-trix 
an be obtained from the former one by the following sequen
e of elementarytransformations performed for ea
h j with ej = 00B� � A� 0 0 �A � 1 0 00 1 0 �1 00 0 �1 � B� 0 0 B� � 1CA ! 0B� � A� 0 A� �A � 1 � 00 1 0 0 0A � 0 �+� B� 0 0 B� � 1CA ! 0B� � 0 0 A� �0 0 1 0 00 1 0 0 0A 0 0 �+� B� 0 0 B� � 1CAwhere the three 
entral rows and 
olumns 
orrespond to y�; zj; y� (b� = j = a�) andthe �rst (resp. last) row and 
olumn 
orrespond to all the base elements whi
h are"to the left (resp. right) of y�", this means the elements zk with k < j (resp. > j)and y� with a� < a� (resp. b� < b�). �Corollary 2.7. For any b = �ei , e 2 Zn one hasSign(b̂) = Sign �Wi(e)��P ej , Null(b̂) = 1 + Null �Wi(e)�, det(b̂) = � detWi(e).



12 S.YU. OREVKOVExample 2.8. If m = 2, b = �e1 then W = (e) and Sign(b̂) = �e+ sign e.For the needs of pra
ti
al 
omputation it is 
onvenient to use a "mixture" of Uand W . Namely, let J � I = f1; : : : ; ng be some subset of indi
es su
h that fejgj2Jare really indeterminate for whi
h it is not known a priori if they are zeros or not,and fejgj 62J are some �xed non-zero 
onstants.Then we de�ne W Ji as the Gramm matrix of the symmetri
 bilinear form ony1; : : : ; ys and fzjgj2J whose all non-zero values on the base elements are (7) andy� � y� = ( �e�1a� �(a�)� e�1b� �(b�); if � = �e�1j ; if h� = h� and a� = b� = j 62 Jwhere � is the 
hara
teristi
 fun
tion of I n J , that means �(j) = 1 if j 62 J and�(j) = 0 if j 2 J (in this formula we assume that 0�1 � 0 = 0). As above, (�; �) issome permutation of (�; �). Clearly, W Ii (e) =Wi(e) and W?i (e) = Ui(e).Proposition 2.9. Let e 2 Zn be su
h that ej 6= 0 for j 62 J . Let V = Vi(e),~V = V + V �. Then there exists Q 2 SL(�s + 2jJ j;Q) su
h that Q( ~V � ZJe )Q� =W Ji (e) � DJW where ZJe = Lj2J Zej (Ze are like in 2.6.2), and DJW is a diagonalmatrix with Sign(DJW ) = �P ej +Pj 62J sign ej and detDJW = �Qj 62J ej .Example 2.10. m = 3, b = �21�e2�31��12 . S = f(1; 3); (2; 4)g,W f2g = �� 13� 12 �1 0�1 1 �10 �1 e �.Corollary 2.11. Let b = �ei be su
h that ej 6= 0 for j 62 J . Put W =W Ji (e). ThenSign b̂ = SignW �P ej+Pj 62J sign ej; Null b̂ = 1+NullW ; det b̂ = � detW Qj 62J ej.2.7. Double 
overing of S3 bran
hed along a string of a braid.Let b 2 Bm and L = b̂. Suppose that the k-th string is a �xed point of the image ofb in the symmetri
 group, i.e. its 
losure Lk is a 
omponent of L. Consider the double
overing � : X ! S3 bran
hed along Lk. Clearly, Lk is unknoted, hen
e, X = S3.We give here an algorithm for writing down a braid whose 
losure is ��1(L).Step 1. Constru
t a braid b0 of the form (b01�2"1m�1)(b02�2"2m�1) : : : where b0j 2 Bm�1and "j = �1 su
h that L is isotopi
 to b̂0 and Lk 
orresponds to the m-th string ofb0. We omit the formal des
ription of this pro
edure. Note only that geometri
allythis means that we move Lk in the dire
tion Im z (see Se
tion 2.3) pulling the stringswhi
h are linked with it and then do the same in the dire
tion Re z (see Fig. 9).
Fig. 9Step 2. Let r be the homomorphism Bm�1 ! B2m�1 de�ned by r�k = �2m�k�1.The required braid is (b01rb01�"1m�"1m�1�"1m )(b02rb02�"2m�"2m�1�"2m ) : : : (see Fig. 9).



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 13x3. Braids 
orresponding to real algebrai
 
urves3.1. Flexible 
urves 
ompatible with a pen
il of lines.All the prohibitions of this paper are valid for the following topologi
al obje
tsgeneralizing real algebrai
 
urves. For a point p 2 RP2 we denote by �p the proje
tionCP2 n fpg ! CP1 from p and by Lp = flt j t 2 CP1g the pen
il of lines lt = ��1p (t).Let A be a 
ompa
t oriented 2-submanifold of CP2 and RA := A\RP2. We shallsay that A is a 
exible irredu
ible 
urve of degree m 
ompatible with Lp (we shall usealso the shorter version of this term: Lp-
exible irredu
ible 
urve of degree m) if(i ) A is invariant under the 
omplex 
onjugation;(ii ) �pjA is an orientation preserving rami�ed 
overing of degree m;(iii ) All the rami�
ations of are positive. This means that for ea
h rami�
ationpoint q there exists an orientation preserving di�eomorphism of some neigh-borhood of q to C2 whi
h de�nes lo
al 
oordinates (z; w) near q su
h that Ltand A take form z = 
onst and z = w2 (but not �z = w2);It 
an be easily shown that an Lp-
exible 
urve of degree m in the sense of thisde�nition is a 
exible 
urve in the sense of [28℄, in parti
ular, the genus of A isg = (m� 1)(m� 2)=2, the number 
 of 
onne
ted 
omponents of RA is � g + 1 andif A is an Lp-
exible M -
urve (i.e. 
 = g + 1) then the genus of A nRA is zero. Weshall always suppose also that the following 
onditions of general position hold.(iv ) Proje
tions of rami�
ation points of �jA are distin
t (i.e. no line of Lp isbitangent to A).(v ) If a point q 2 A is not a rami�
ation point of �jA then A is transversal to��1(RP1) at q.We shall 
all redu
ible Lp-
exible 
urve a union of several Lp-
exible irredu
ible
urves, all whose interse
tions are transversal and positive. Its degree is the sumof degrees of the irredu
ible 
omponents. As we pointed out above, an irredu
ibleLp-
exible 
urve A of degree m is a 
exible 
urve in the sense of [28℄, in parti
ular,(ii ) implies [A℄ = m[CP1℄ 2 H2(CP2;Z), hen
e, the B�ezout theorem is valid forirredu
ible 
omponents of a redu
ible Lp-
exible 
urve. The generality 
ondition fora redu
ible 
urve A of degree m is(vi ) Ea
h line lt 2 Lp has at least m� 1 distin
t interse
tion points with A.3.2. De�nition of the link L(A; p) and its 
obordism N(A; p).Fix a point p 2 RP2 and let A � CP2 be an Lp-
exible 
urve generi
 with respe
tto p (all the 
onditions (i ) { (vi ) of Se
tion 3.1 are satis�ed). Fix an orientation onRP1 and let H+ be the half of CP1 n RP1 that indu
es the 
hosen orientation ofRP1.Sin
e ��1p (H+) is �bered over H+ with the �ber C, it 
an be mapped di�eomorphi-
ally onto R4. Fix su
h a di�eomorphism and denote by Br the preimage of the ballof radius r and by Sr the boundary of Br. For r� 1 the link Sr \A and the surfa
eBr \ A do not depend on r up to an isotopy, and we denote them by L = L(A; p)and N = N(A; p) (assuming that Br and Sr are identi�ed with standard ball B4 andsphere S3). N is oriented as a part of A (re
all that A is oriented by de�nition of a
exible 
urve). Orient L as the boundary of N .3.3. Link L(A; p) as a perturbation of A \ ��1p (RP1).Let A be as above. Clearly, A \ ��1p (RP1) is the union of RA and a 
losed one-dimensional manifold S(A; p) whi
h meets RA at the points where A is tangent to



14 S.YU. OREVKOVlines of Lp. It is 
lear also that L(A; p) is obtained from A\��1p (RP1) by smoothingof the double points a

ording to Fig. 10. Near S(A; p)\RA, the smoothing looks likerepla
ing of a 
ross with a hyperbola in the same plane, and near the double pointsof RA, like repla
ing of a 
ross with a pair of skew lines.
v u S(A,p)

RAI

L(A,p)

t Fig. 10Orientation rule. Let q be a double point of A \ ��1p (RP1) and (t; w), w = u+ ivlo
al 
oordinates on ��1p (RP1) near q where t is a 
oordinate on RP1 with �=�tde�ning the 
hosen orientation, and w 
ompatible with the real stru
ture on the �bers.(a) Let q 2 S(A; p) \ RA. Then the bran
h of RA at q in the dire
tion of �=�uis joined after the smoothing with the bran
h of S(A; p) at q in the dire
tion of �=�v(resp. ��=�v) if tjRA has a minimum (resp. maximum) at q.(b) Let q be a double point of RA and Ba, Bb the bran
hes of RA at q with tangentsrespe
tively u = at, u = bt, a < b. Then, after the smoothing, Bb passes higher (withrespe
t to the v-
oordinate) than Ba. �Remark 3.1. (a) yields one more proof of the Fiedler's theorem [6℄ (see also [29℄, 1.4).Re
all (see Se
tion 2.2) that �(�) is the number of 
onne
ted 
omponents and g(�)is the sum of their genera. A non-singular real proje
tive 
urve A is said to be of thetype I if A nRA is not 
onne
ted (denote in this 
ase the 
onne
ted 
omponents byA�). In parti
ular, all M -
urves are of the type I.Proposition 3.2. If A is a real non-singular proje
tive 
urve of the type I then2g(N) � 2g(A+) = (m� 1)(m� 2)=2 + 1� �(RA) where m = degA.Proof. Let CP1 nRP1 = H+ tH�. Put As1s2 = As1 \��1p (Hs2), si 2 f+;�g. Clearly,
onj(As1s2) = A�s1�s2 and As n S(A; p) = As+ t As�. Hen
e, g(N) = g(A++ [ A�+) =g(A++ [A+�) � g(A+). �3.4. Link L(A; p) as a 
losed braid.Let p and A be as above. Choose an aÆne 
oordinates (z; w) on C2 2 CP2 so thatp is the in�nite point of the axes z = 0 and the in�nite line l1 is transversal to A.We shall suppose also thatAll the interse
tions of l1 and A are real. (8)If ne
essary, all the 
onstru
tions below 
an be modi�ed to avoid the 
ondition (8) butin all the appli
ations 
onsidered in this paper su
h a line exists, so we shall supposefor simpli
ity that (8) is satis�ed.In the 
oordinates (z; w), the proje
tion �p takes form (z; w) 7! z and H+ is theupper half-plane Im z > 0. Denote by D1 the interse
tion of a disk jzj � R1 anda half-plane Im z � ". Choose R1 � 1 and " � 1 so that ea
h line z = z0 with



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 15z0 2 H+ nD1 have m distin
t interse
tions with A. Denote by D2 the ball jwj � R2where R2 is so big that ��1p (D1) \ A � B4 where B4 := D1 �D2. Put S3 := �B4.Let w = F (z) be the multi-valued fun
tion whose graph is A. Let 
 : [0; 1℄! H+be the parametrization of �D1 and let b = bA;p be the braid F Æ 
 (see 2.3). Thus,L(A; p) = b̂. Denote by 
R the part of the path 
 whi
h is a segment of a lineand by 
1 that whi
h is an ar
 of a 
ir
le. Let b = bR b1 be the 
orrespondingde
omposition of b. Clearly that b1 = �m (see Se
tion 2.3) and bR in some 
ases
an be re
onstru
ted from the topology of RA.A

ording to Se
tion 3.2, the link L(A; p) is de�ned by the set RA [ S(A; p).Clearly that S(A; p) is determined up to an isotopy by RA when the 
onditionEa
h line lt 2 Lp has at least m� i interse
tions with RA. (Hi)holds with i = 2. If (H4) holds but (H2) does not then the isotopy type of S(A; p) isdetermined by RA only up to some unknown integer parameters ej , one parameterfor ea
h interval of the pen
il where (H2) does not hold. These parameters are thenumbers of twists whi
h have two bran
hes of S(A; p) with Imw > 0.More pre
isely, put�k;l = 8><>: (��1k+1�k)(��1k+2�k+1) : : : (��1l �l�1); if l > k(��1k�1�k)(��1k�2�k�1) : : : (��1l �l+1); if l < k1 if l = k (9)Clearly that �k;l = ��1l;k . Suppose that A satis�es (8) and (H4). Choose a pointqj 2 R2 nRA in ea
h interval of the pen
il Lp where (H2) does not hold. Join thepoints qj and the 
riti
al points of Re z (the points of RA with verti
al tangent) bynon-interse
ting paths '1; '2; : : : so that ea
h generi
 verti
al line 
uts RA+ 2P'iin m points (this notation means that points of 'i are 
ounted twi
e; see Fig. 11,left). To 
onstru
t the braid (see Fig. 11, right), one has to move a verti
al rule fromthe left to the right and to write��1k if the rule meets a double point of RA or if the rule is tangent to RA at apoint where Re z has maximum on RA;��1k;k+1 (see the sign in Fig. 11) if the rule meets an interse
tion of some 'i with RA;��1k+1��ejk �ejk+2�k+1 if the rule meets qj .In all the 
ases k� 1 equals the number of interse
tions of the rule with RA+2P'iwhi
h are stri
tly beneath the 
riti
al point.
e1

e1
2e

2e

��12 �2;3��11 (��12 ��e11 �e13 �2)�3;4��11 �1;2(��13 ��e22 �e24 �3)��13Fig. 11



16 S.YU. OREVKOVRemark 3.3. If A satis�es (Hi) with i > 4 then pairs of symmetri
 unknown braidson i=2 strings appear instead of ��ejk �ejk+2.Proposition 3.4. Let A be an Lp-
exible 
urve (maybe, redu
ible) of degree m sat-isfying (i) { (vi) of 3.1. Denote by dR the number of real double points and by 
R thenumber of points where the tangent belongs to Lp. Then2e(bA;p) = m(m� 1)� 2dR � 
R:Proof. e(bR) = �dR � 
R=2 be
ause the unknown parts of bR 
orresponding to SA;pare symmetri
 with respe
t to the 
omplex 
onjugation and their 
ontributions toe(b) 
an
el ea
h other. Clearly, e(b1) = m(m� 1)=2. �3.5. Arrangements of real s
hemes with respe
t to a pen
il of lines.Following [28℄, we say that real s
heme is an isotopy 
lass of smooth real 
urves(maybe with self-interse
tions) on RP2. A s
heme is realizable by an algebrai
 (resp.
exible) 
urve if there exists a real algebrai
 (resp. 
exible) 
urve whose set of realpoints belongs to the given s
heme. By analogy, we de�ne an Lp-s
heme as a smooth
urve on RP2 n fpg up to an isotopy 's whi
h 
ommutes with �p, i.e. 's(lt) is a lineof Lp for all s, t. An aÆne Lp-s
heme is an Lp-s
heme with some line l1 2 Lp �xed.We shall 
onsider only Lp-s
hemes in general position. Namely, ea
h line lt hasat most one non-generi
 interse
tion point with the 
urve, and this point is either anordinary tangen
y or a transversal interse
tion of two bran
hes, non-tangent to lt.We shall use the following 
ode to des
ribe Lp-s
hemes.First, we de�ne the 
ode for aÆne Lp-s
hemes. Let (x; y) be 
oordinates on R2su
h that p is the in�nite point of the line x = 0. Let p1 = (x1; y1); : : : ; pn = (xn; yn),x1 < � � � < xn be all the points where a 
urve B is not transversal to the pen
il. TheLp-s
heme of B will be des
ribed by a pair [m1;w℄ where m1 := #(l1 \ B) and wis a word s1 : : : sn wheresj = 8><>:�k if pi is a double point of B,�k if x-
oordinate has minimum at pj ,�k if x-
oordinate has maximum at pj .In all the three 
ases k = 1 + #fy j (xj; y) 2 B & y < yjg.Proje
tive Lp-s
hemes are 
oded by the same words 
onsidered up to 
y
li
 permu-tation followed by the 
hange of m1 and reversing the indi
es. The subword�k�kwill be abbreviated to ok (oval). If a 
urve is denoted by a word w without m1, thismeans that m1 = m.Examples 3.5. 1. The aÆne 
urve (x2+y2�4)(y�1) = 0 is 
oded by [1;�1�2�2�1℄.The proje
tivization provides [1;�1�2�2�1℄ � [�2�1�2�2℄ � [�1�2�1�2℄ � : : :2. The proje
tion of a braid (6) on the plane is 
oded by [�je1ji1 : : :�jenjin ℄Proposition 3.6. Suppose that an Lp-s
heme B0 is obtained from B by one of thefollowing elementary substitutions�j�j�1 ! �j�1�j �j�1�j !�j�j�1 �juk ! uk�j (10)�j�j�1 ! ? �j�k !�k�j (11)



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 17where jk � jj > 1 and "u" stands for one of the symbols "�", "�", or "�".If B is realizable by a Lp-
exible 
urve then B0 is also realizableProof. The only non-trivial 
ase is � j � j�1 ! ?. By means of equivariant dif-feomorphism we 
an 
hoose 
omplex 
oordinates (z; w) su
h that the above (x; y)are (Re z;Rew) and the pie
e of B 
orresponding to �j �j�1 is lo
ally de�ned byz = w3 � "w (0 < "� 1). Repla
e it with z = w3 + "w and glue it together with therest of the 
urve by a partition of unity. �Remark 3.7. Similar statements were used in [6℄, [29℄, and [12℄.The 
onstru
tion of the braid in Se
tion 3.4 
an be reformulated now as the fol-lowing repla
ing rulesProposition 3.8. If an Lp-
exible 
urve A of degree m satis�es (H2) and (8) thenL(A; p) = b̂ where b = bR�m and the braid bR 
an be obtained from the RA =[s1 : : : sn℄ by the following pro
edure (see Fig. 12):repla
e ea
h symbol �i whi
h appears between �k and �l with �i;repla
e ea
h subword [�k�i1 : : :�ir �l ℄ with ��1k u1 : : : ur�k;l whereuj = 8><>: ��1ij if ij < k � 1��1ij+2 if ij > k � 1�k;k+1�k�1�k+1;k if ij = k � 1

�3�1�2�3�5 ! ��13 ��11 �3;4��12 �4;3��15 �3;5Fig. 12Similar repla
ing rules 
an be formulated also in the (H4)-
ase.x4. The methods of prohibitionsThe 
onsiderations of x3 show that there are 
ertain ne
essary 
onditions for agiven Lp-s
heme B to be realizable by an Lp-
exible 
urve A of a given degree m.4.1. Quasipositivity.It follows from [22℄ (see Se
tion 2.4) that the braid b = bA;p is quasipositive. Thisis a very restri
tive 
ondition on b. Unfortunately, I do not know if for any m thereexists an algorithm to de
ide if a given braid is quasipositive or not.However, for m = 3 this problem is easily resolvable using the Garside normal form[7℄ (see also [2℄) whi
h is very elementary in this 
ase. The results obtained by this



18 S.YU. OREVKOVmethod will be exposed in [16℄. As an example, we formulate here without a proofone of them. Let Tk be the triangle with verti
es (0; 0), (3k; 0), (0; 3). An M -
urveon Tk is said to be a real (3k � 1)-
omponent 
urve with Newton polygon Tk. AnLp-isotopy 
lass is a 
onne
ted 
omponent of the spa
e of all Lp-
exible 
urves.Theorem 4.1. There exist exa
tly 2k�1 Lp-isotopy 
lasses of M -
urves on Tk; ea
h
lass 
ontains an algebrai
 
urve glued by Viro [30℄ from k proje
tive M -
ubi
s.4.2. Appli
ation of Murasugi { Tristram inequality.Though ne
essary and suÆ
ient 
onditions are unknown, Murasugi { Tristraminequality provides a test for the quasipositivity (see Se
tion 2.4). The most of newresults here are obtained in this way.If one 
an 
hoose a point p su
h that (H2) holds then the braid is determinedby the real Lp-s
heme and one 
an 
ompute all the ingredients of (3). Sin
e the
omputations are rather messy, I has written a 
omputer program whose input is areal Lp-s
heme B en
oded as in Se
tion 3.5 and the output is the number h = h(B),equal to the di�eren
e between the right and left hand sides of (3). If h > 0 then Bis not realizable. The program implements the algorithms of Se
tions 2.5, 3.4, andProposition IIIoVoII.Now, suppose (H4) does hold and (H2) does not. Let e1; e2; : : : be the numbersof twists (see Se
tion 3.4). Ea
h possible distribution of 
onne
ted 
omponents of Lbetween those of N provides a system of simultaneous linear equations (inequalities)for the ei's (see Se
tion 4.3 below). If ea
h the system has a unique solution then wehave a �nite number of expli
it braids and we 
an apply the same arguments (andthe same programs) as in the (H2)-
ase (see Se
tion 8.2). Otherwise one 
an 
omputethe detL in terms of the ei's (see Se
tion 2.6) and apply Corollary 2.2. (see Se
tion8.1).Remark 4.2. Analyzing the 
ases when (3) gave prohibitions, I have found that mostof them 
ould be obtained ignoring the signature, using only Corollary 2.2.4.3. Rokhlin's formula for 
omplex orientations and its generalization.The methods based on the Seifert matrix require a lot of 
omputations. However,some ne
essary 
onditions 
an be extra
ted from the braid bA;p without them. In therest of the se
tion we suppose that all the double points are real.A

ording to (2), the number of the 
onne
ted 
omponents of N is�(N) = g(N) + ��(L) +m� e(b)�=2 (12)(in the M -
ase g(N) = 0). Let N = N1 t � � � t Nk be some partition of N . It isknown that the interse
tion of Ni �Nj is equal to the linking number of �Ni and �Nj.Thus, if we know how the 
omponents of L are distributed between the links �Ni (forinstan
e, one 
an try all the possibilities) then a simple test for realizability of a realLp-s
heme is to 
he
k that the linking numbers are zero.Let A1; : : : ; Ar be the irredu
ible 
omponents of A. Sin
e ea
h Ai is an M -
urve,AinRAi 
onsists of two 
onne
ted 
omponents, denote them by A+i and A�i (of 
ourse,the pluses and minuses may be arbitrarily swapped). Put A� = SA�i , N� = N\A�,and L� = �N�. Sometimes one 
an �nd the distribution of 
onne
ted 
omponentsof L between L� using the following simple observation.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 19Proposition 4.3. Let lt 2 Lp be tangent to RA at q and L1, L2 be the two bran
hesof L whi
h pass near q (see Fig. 10). If L1 � L+ then L2 � L�. �The fa
t that the linking number of L+ and L� is zero, yields nothing new be
auseit is equivalent to the Rokhlin's formula for 
omplex orientations [20, 21℄ (
omparewith [8℄). However, dividing N into more then 2 parts, sometimes one 
an obtain bythis method an additional information (see Lemma 5.11 below).When a link L is presented in the form of a 
losed braid, the linking number oftwo 
omponents Li � Lj , i 6= j is the half-sum of the exponents of the braid groupgenerators 
orresponding to the twists involving Li and Lj . Forgetting the 
onditioni 6= j, we get something like "self-linking number" (of 
ourse, it is not a link invariant).In the next subse
tion we show that it 
an serve also as a sour
e of restri
tions.4.4. Proof of Theorem 1.5A. We 
onsider in details the 
ase of even degreem = 2k. Odd degree 
an be treated similarly. Let the notation be as in Se
tion 1.5.We shall say the ovals O1; : : : ; Ok�1 are big and all the other ovals are small (the lastbig oval is empty). Denote by K� the number of positive/negative big ovals and by�Ss the number of inje
tive pairs (O; o) of the signs (S; s) where O is big and o issmall. Choose a point p inside the most inner big oval Ok�1 and let L, N , L�, N�be as in Se
tion 4.3. Let b� 2 B1+2K� be the braid 
orresponding to L�.By Proposition 3.8 we may suppose the big ovals have no verti
al tangents (i.e,tangents belonging to Lp) and ea
h small oval has only two verti
al tangents. Thenwe have �(L�) = 1 + K� and L� = L�0 t L�1 t � � � t L�K� where L�i (i � 1) is aperturbation of a big oval of the same sign and L+0 tL�0 is a perturbation of the unionof S(A; p) (see Se
tion 3.3) and all the small ovals. �pjL�i is one-to-one for i = 0 anda double 
overing for i � 1.Lemma 4.4. e(b+) = 2�++ � 2�+� +K+(1 + 2K+); e(b�) = 2��� � 2��+ +K�(1 +2K�).Proof. If all the small ovals are outside O1 then all �Ss are zero and e(b�) = e(b�1) =e(�1+2K�) = K�(1 + 2K�), hen
e, the required equality holds. If we move a smalloval through one big oval then the both sides are 
hanged by the same quantity(
onsider 8 
ases: 4 
ombinations of the signs � 2 bran
hes of the big oval). �Sin
e A is an M -
urve, we have (m� 1)(m� 2)=2� k + 2 small ovals. Hen
e, byProposition 3.4 we have e(b) = 3k� 3 and by (12), �(N) = 2. Therefore, �(N�) = 1.Ea
h N� has only positive rami�
ations, hen
e, (12) is appli
able. Putting �(N�) =1, �(L�) = 1 + K�, m� = 1 + 2K�, and e(b�) from the Lemma 4.4 into (12), weobtain �+� � �++ = K+(K+ � 1); ��+ � ��� = K�(K� � 1):It remains to note that Ks = ks + 1, K�s = k�s, �Ss = �Ss � kS, �S�s = �S�s,S 2 f+;�g where s is the sign of the empty big oval Ok�1.x5. Prohibitions of affine M-sexti
sIn this se
tion we prove Theorem 1.1. We 
onsider separately several groups ofpossible arrangements but almost all the proofs follow the same s
heme:(i) 
hoose the base point of the pen
il (the point p) so that (H2) holds;(ii) write down a set of words su
h that all the other words 
oding the possibleLp-s
hemes 
an be redu
ed to them using Proposition 3.6;



20 S.YU. OREVKOV(iii) sele
t the words whi
h do not 
ontradi
t to the B�ezout theorem and the 
om-plex orientations formula;Then for ea
h word:(iv) 
ompute the braid b a

ording to Proposition 3.8;(v) 
ompute e(b) to ensure that Corollary 2.2 is appli
able;(vi) 
ompute det b̂ 6= 0; if det b̂ = 0 then 
ompute �(b̂) and n(b̂);(vii) if (4) holds then 
he
k if the Alexander polynomial is zero.The only ex
eptions is the 
urve B1(9; 0) (see Se
tion 5.5) where we apply Lemma2.1. Also, we apply to the series A3 the generalization of the 
omplex orientationsformulas to prohibit some real s
hemes and to redu
e the number of words to be
he
ked for the others. The steps (iv) { (vii) (and partially (iii)) were performed witha 
omputer. In Se
tion 5.8 we show how sometimes the step (vii) 
an be repla
edwith the 
onsideration of the double 
overing of S3 rami�ed along the in�nite line.5.1. Common preliminaries. C6 and C1 will denote the set of real points of anM -sexti
 and the in�nite line; RA = C6 [ C1 will be the 
urve whose arrangementswe study in this se
tion; The non-empty oval of C6 will be denoted by O11. Thepen
il Lp on all the pi
tures will be the pen
il of verti
al lines.Lemma 5.1. No inner oval of C6 
an be inside a triangle with verti
es on three otherinner ovals.We say that inner ovals O1, O2 of C6 are separated by a line l if l does not interse
tthem and they lie in di�erent 
omponents of RP2 n (O11 [ l).Lemma 5.2. [12℄. A line through two outer ovals 
an not separate two inner ovals.Lemma 5.3. Let points p, p1, p2 lie inside 3 di�erent inner ovals of C6. Then anytwo outer ovals lie in the same 
onne
ted 
omponent of RP2 n �(pp1) [ (pp2)�.Proof of 5.1, 5.2, and 5.3. Otherwise the 
oni
 passing through the 4 given ovals andone more empty oval (resp. through the 5 given ovals in 5.3) meets C6 in 14 points(see the elegant proof of [29; Lemma 3.3℄). �The s
hemes A1(1; 8), A1(5; 4) are realized and A1(9; 0) is prohibited by 
omplexorientations [12℄. Therefore, we shall not 
onsider the series A1.5.2. The series A2(�1; �2; �) and B�(�1; �2; �), � = 2; 3. Here we 
onsider onlythe 
ase �2 6= 0 be
ause the 
urves A2(1; 0; 9), A2(5; 0; 5), B2(1; 0; 9), B2(5; 0; 5) exist,A2(9; 0; 1) 
an be prohibited by 
omplex orientations formula [12℄, and B3(�; 0; �) =B2(0; �; �). The 
ase B2(9; 0; 1) will be 
onsidered in Se
tion 5.5. In the series B3we assume that �2 � �1 > 0 be
ause B3(0; �; �) = B2(0; �; �) and B3(�1; �2; �) =B3(�2; �1; �).Choose the point p inside the oval O10, the most far form C1 among the ovals h�2iif to look from an empty digon (for the series B from the empty digon whi
h has onlyone 
ommon point with the region 
ontaining h�2i).Using Proposition 3.6, all possible Lp-s
hemes 
an be redu
ed to the s
hemes 
odedby a word w = [�3 w1�2w2�3�2�3�3�3�3℄ in the 
ase A2, w = [�4 w1�2 w2�2�2�2�3�3�4 ℄in the 
ase B2, and w = [� 4 w1 �2�2�2 w2 � 2�3�3�4 ℄ in the 
ase B3 wherew1 = oi1 : : : oid , w2 = oid+1 : : : oi9 , 0 � d � 9, 2 � ij � 4 and �1 = #(j > d; ij = 3),�2 = 1+#(ij = 2), �1 = #(ij = 4), �2 = #(j � d; ij = 3), � = �1+ �2 (see Fig. 13).Due to (10) we may assume also that either d = 0 or id = 3. The fa
t that all ij 6= 5 is
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A2(�1; �2; �) A3(�1; �2; �) A4(�; �1; �2)Fig. 13provided by the extremal 
hoi
e of O10. Denote the empty ovals by O1; : : : ; O9 whereOj mat
hes oij .Lemma 5.4. (a) The word w2 
an not 
ontain :::o3:::o2:::o3:::; (b) if j < k < l,d < k, ik = 3, il = 2 then Oj is above C1 (i.e. either ij = 4 or j > d and ij = 3).(
) If �1 > 0 then ea
h oval of h�1i is to the right of ea
h oval of h�2i.(d) The sequen
e O1; :::; O9 
an be divided into 3 or less intervals, ea
h interval 
on-taining either only inner ovals or only outer ones.Proof. (a) Follows from 5.1. (b) Suppose that a 
oni
 passing through Ok, Ol, p andthe point q (see Fig. 13) meets O11 not more than at 4 points (by B�ezout theoremthis is the 
ase if it passes through Oj). There is only two possibilities for the orderof its interse
tions with the given obje
ts: O11, Ok, C1, Ol, p, O11, O11, q, O11 andO11, Ok, O11, O11, p, Ol, C1, q, O11. In the both 
ases the pie
e of the 
oni
 to theleft of Ok is above C1. (
) Apply 5.2 to the line through these ovals, O10, and one ofh�1i. (d) See 5.3. �It follows from the Fiedler's orientations alternating rule [6℄ that if Oj is an inneroval then [Oj : O11℄ = (�1)j (see Se
tion 1.5).Put "10 = [O10 : O11℄, Æ�1 = Pj>d;ij=3(�1)j , Æ�2 = "10 +Pij=2(�1)j , Æ�1 =Pj�d;ij=3(�1)j , Æ�2 =Pij=4(�1)j , and Æ� = Æ�1 + Æ�2, Æ� = Æ�1 + Æ�2.Lemma 5.5. a). Æ� + Æ� = "10 � 1; b). Æ� = 1; 
). Æ�1 � Æ�2 + 2Æ�1 = " where" = �1 for the series A2 and " = 1 for the series B2, B3.Proof. (a) is trivial, (b) is the 
omplex orientations formula (see [20℄) for C6, and (
)is that for a perturbation of C6 [ C1 (see [29℄) 
ombined with (b). �Corollary 5.6. (Combine Lemmas 5.4d and 5.5a,b) "10 = 1.The restri
tions from Lemmas 5.4{5.5 and Corollary 5.6 are satis�ed for 296pairs of sequen
es [i1:::id℄[id+1:::i9℄ in the series A2 (resp. 272 and 34 in B2 andB3). 227 of them (resp. 196 and 28) 
orrespond to the 6 (resp. 2 and 3) reals
hemes realized in [12℄. Let b be the braid 
orresponding to the redu
ible 7th degree
urve C6 [ C1. In all the 
ases we have e(b) = 5, hen
e, we 
an apply Corollary2.2. The 
omputation shows that det b̂ = 0 only in 27 (resp. 11 and 3) 
ases.This prohibits the s
hemes A2(0; 9; 1), A2(3; 6; 1), A2(5; 4; 1), A2(7; 2; 1), A2(3; 2; 5),B2(2; 3; 5), B2(4; 1; 5), B3(1; 8; 1), B3(2; 7; 1), B3(4; 5; 1), and B2(�; 9 � �; 1) with



22 S.YU. OREVKOV� 6= 1; 7. The Alexander polynomial is zero only forA2(1;8;1): [2222223℄[23℄ A2(8;1;1): [℄[333333433℄ � A2(0;5;5): [433℄[422224℄ �[3℄[22222223℄ � [℄[433333333℄ � [433℄[442222℄A2(1;4;5): [2233333℄[23℄ A2(4;1;5): [℄[334444433℄ � A2(0;1;9): [433333333℄[℄[33333℄[2223℄ � [℄[444443333℄ [433℄[444444℄ �B2(1;8;1): [℄[432222222℄ �� B2(0;5;5): [443℄[422224℄ � B2(0;1;9): [443333333℄[℄B2(1;4;5): [℄[432224444℄ �� [443℄[442222℄ [443℄[444444℄ �B3(3;6;1): [℄[222223433℄ � B3(1;4;5): [223℄[444433℄ � B3(2;3;5): [223℄[444433℄ �This prohibits A2(2; 7; 1), A2(4; 5; 1), A2(6; 3; 1), A2(0; 5; 5), A2(2; 3; 5), B2(7; 2; 1),and B2(3; 2; 5). One 
an 
he
k that the 
onstru
tions [12, 11℄ realize the 
ases markedby *. The sequen
es marked by ** are realizable by Lp-
exible 
urves.For the s
hemes, not 
overed by [12℄ we needed to 
ompute the determinant in the
ases: [℄[222222234℄, [℄[432222222℄ for B2(1; 8; 1), [℄[o2o7�2k3 o4o2k3 ℄, [℄[o2k3 o4o7�2k3 o2℄ forB2(7; 2; 1), [o2k2 o3℄[o4�2k2 o43℄ for B3(4; 5; 1) and in the following 22 (resp. 6,9,11) 
asesA2(2;3;5): [223333℄[433℄ [33℄[2233444℄ [33℄[4223344℄ [℄[422334444℄ [℄[444223344℄ [℄[444442233℄[2233℄[44433℄ [℄[332244444℄ [33℄[4422334℄ [℄[433224444℄ [℄[444332244℄ [℄[444443322℄[℄[223344444℄ [3333℄[22334℄ [33℄[4442233℄ [℄[442233444℄ [℄[444422334℄[℄[224444433℄ [3333℄[42233℄ [℄[334444422℄ [℄[443322444℄ [℄[444433224℄A2(3;2;5): [3℄[23334444℄ [333℄[233344℄ [33333℄[2333℄ [333℄[442333℄ [3℄[44233344℄ [3℄[44442333℄B2(1;4;5): [℄[222344444℄ [3333℄[22234℄ [℄[432224444℄ [℄[444322244℄ [℄[444443222℄[33℄[2223444℄ [33℄[4422234℄ [℄[442223444℄ [℄[444422234℄B2(3;2;5): [℄[233344444℄ [33℄[2333444℄ [33℄[4423334℄ [℄[433324444℄ [℄[444333244℄ [℄[444443332℄[℄[234444433℄ [3333℄[23334℄ [℄[334444432℄ [℄[442333444℄ [℄[444423334℄Besides the above 
ases **, det b̂ = 0 for [℄[224444433℄, [℄[444442233℄ (the s
hemeA2(2; 3; 5)), [℄[433333332℄ (B2(7; 2; 1)), and [℄[433324444℄ (B2(3; 2; 5)). The Alexanderpolynomials are respe
tively �51�22�26�10 � (t6 + 2t4 + t3 + 2t2 + 1), �51�22�3�26�10,�51�22�23�26, and �51�22�6 where �k is the k-th 
y
lotomi
 polynomial.5.3. The series A3(�1; �2; �). Sin
e A3(�1; 0; �) = A2(�1; 0; �), we shall assumethat �2 > 0. Choose p inside the oval O10, the extremal among h�2i if to look froman empty digon (see Fig. 13, where �2 = 1 + �02 + �002 , � = �01 + �001 + �2). Put�1 = �01 + �001 .The generating word is w = [�3�3�3�2 w1�2�3�3�3�4 w2�3℄ where w1 = oi1 :::oid ,w2 = oid+1 :::oi9 , 0 � d � 9, 2 � ij � 4. Like above, we assume that either d = 0 orid = 3 and the extremal 
hoi
e of O10 guarantees that all ij 6= 5. Denote the emptyovals by O1; :::; O9 from left to right.Lemma 5.7. (a) the word w1 
an not 
ontain :::o3:::o2:::o3:::;(b) if k < l < d, ik = 3, il = 2 then �002 = �001 = 0 and ij 6= 2 for all j < k;(b0) If l < k < d, il = 2, ik = 3 then �002 = �2 = 0 and ij 6= 2 for all j > k;(
) If �1 > 0 then ea
h oval of h�001 i is to the left of ea
h oval of h�2i.(d) The same as in Lemma 5.4(d); (e) One of �1, �02, �002 equals to zero.Proof. (a) { (d). The proofs are similar to those of Lemma 5.4. In (b) (resp. (b0))the 
oni
 through Ok, Ol, p, q (resp. q0) may meet the obje
ts in the following two
y
li
 orders: O11, Ok, C1, Ol, p, O11, O11, q, O11 or O11, Ok, O11, O11, p, Ol, C1, q,O11 (resp. O11, q0, O11, O11, p, Ol, C1, Ok, O11 or O11, q0, C1, Ol, p, O11, O11, Ok,O11).(e). Combine (b) and (b0). �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 23Lemma 5.8. (Follows from [6℄) �1 + �02 + �01 is odd; �002 + �001 + �2 is even. �De�ne "10, Æ�; Æ�; Æ�i; : : : like in 5.2, for instan
e, Æ�2 = "10+Pij=2(�1)j, Æ�02 =Pj�d;ij=2(�1)j , et
. The 
omplex orientations formulas (
.o.) yield:Lemma 5.9. (a). Æ� = 1; (b). Æ�1 � Æ�2 + 2Æ�2 = �1;(
). Æ�01 � Æ�2 � Æ�001 + 2(Æ�02 + Æ�1) = �"10.Proof. (a) C.o. for C6; (b) 
.o. for C6 [C1; (
) 
.o. for C6 [ l0 where q 2 l0 2 Lp. �Corollary 5.10. (Combine Lemmas 5.7d and 5.9a) "10 = 1. �The 
onditions provided by Lemmas 5.7{5.9 and by Corollary 5.10 are satis�edfor 435 words w. In prin
iple, we 
ould 
he
k (3) for all of them and 
omplete theproof. However, we are going to demonstrate how the generalized method of 
omplexorientations (Se
tion 4.3) works in this 
ase and to prohibit by this method 378 wordsmore and, as 
onsequen
e, 6 real s
hemes.Lemma 5.11. 2Æ�01 + �002 + �2 + �001 = 2.Proof. Let us numerate the 
onne
ted 
omponents L1; : : : ; L5 of L(A; p) a

ording toFig. 13. Let lij be the linking number of Li, Lj . Using Proposition 3.8, one 
an 
he
kthatl12 = 2; l13 = l14 = l15 = 1; l23 = 1+Æ�1+Æ�01; l24 = Æ�002+(1��1��02��01)=2;l25 = 1+Æ�01�Æ�002 ; l34 = �2�Æ�1�Æ�1; l35 = Æ�001 l45 = �Æ�01�(�002+�2+�001 )=2:It follows from Proposition 4.3 and Corollary 5.10 that L2[L5 � L+ and L1[L4 � L�("+" and "�" may be swapped). One has �(N) = 4 by (12), hen
e only one of thesetwo links 
an bound a 
onne
ted 
omponent of N . It must be L1 [ L4 be
auseotherwise the 
omponent of N bounded by L1 together with its image under the
omplex 
onjugation would be disjoint from the rest of A. Hen
e, all the linkingnumbers between L1 [L4, L2, L3, L5 are zero, in parti
ular, l15+ l45 = 0 implies therequired equality (the vanishing of the other linking numbers give nothing new withrespe
t to Lemma 5.9). �Example 5.12. [i1:::id℄[id+1:::i9℄ = [333℄[244333℄ satis�es the restri
tions providedby Lemmas 5.7{ 5.9 and Corollary 5.10 but not those provided by Lemma 5.11.Adding Lemma 5.11 to the other restri
tions, we leave only 57 words w non-prohibited, none of whi
h representing A3(�1; �2; 1) with �1 62 f0; 4; 7g. For all theseries we have e(b) = 4. The det b̂ = 0 only when [i1:::id℄[id+1:::i9℄ is one ofA3(0;9;1): [22224℄[2222℄ A3(4;5;1): [33433℄[2222℄ � A3(2;3;5): [33444℄[3322℄ �[22422℄[2222℄ A3(7;2;1): [3333333℄[23℄ � [44433℄[2244℄ �[42222℄[2222℄ A3(0;5;5): [22224℄[3344℄ �� A3(4;1;5): [33334℄[3333℄ �A3(0;1;9): [44444℄[3344℄ � [42222℄[3344℄ �� [43333℄[4444℄ �Cal
ulating the signature and nullity for the words 
orresponding to A3(0; 9; 1), wesee that �(b̂) = �1, n(b̂) = 2 in all the three 
ases. This 
ontradi
ts to (3). The
ases marked by * are realized in [12,11℄; the real s
heme 
orresponding to A3(0; 5; 5)(marked by **) is realizable by an Lp-
exible 
urve (see Se
tion 7.2 below). The proofof its non-realizability in [23℄ is fault.



24 S.YU. OREVKOVThe words allowed by lemmas 5.7{ 5.11 
orresponding to real s
hemes neither real-ized nor prohibited in [12℄ are [32224℄[4333℄, [32224℄[4443℄ for A3(1; 4; 5), [33324℄[4333℄,[33324℄[4443℄, [4444333℄[23℄ for A3(3; 2; 5), and the following 18 words for A3(0; 5; 5)[22224℄[3333℄ [22224℄[4334℄ [42222℄[3333℄ [42222℄[4334℄ [22444℄[3322℄ [44422℄[2244℄[22224℄[3344℄ [22224℄[4433℄ [42222℄[3344℄ [42222℄[4433℄ [22444℄[4422℄ [4444222℄[24℄[22224℄[3443℄ [22224℄[4444℄ [42222℄[3443℄ [42222℄[4444℄ [44422℄[2233℄ [44444℄[2222℄5.4. The series A4(�; �1; �2). We suppose �2 > 0 be
ause A4(�; �; 0) = A2(�; 0; �).Choose p inside the oval O10, the most far from line among the ovals h�2i. Thegenerating word is w = [�4�5�4 oj1 :::oj9 �4�5�4�4�4 ℄, 3 � j � 5 (see Fig. 13). Likeabove, ij 6= 2 due to the 
hoi
e of O10. We have � = #(ij = 3), �k = #(ij = 3 + k).Lemma 5.13. (a) w 
an not 
ontain [:::o3:::ok:::o3:::℄ with k > 3.(b) w 
an not 
ontain [:::o5:::o3:::o4:::o5:::℄, nor [:::o5:::o4:::o3:::o5:::℄.Proof. (a) See 5.2; (b) B�ezout theorem for the 
oni
 through these ovals and p. �Put "10 = 1 if O10 is oriented with respe
t to O11 as it is shown in Fig. 13 and "10 = �1otherwise. Let Æ� = Pij=3(�1)j , Æ�1 = Pij=4(�1)j , Æ�2 = "10 + Pij=5(�1)j,Æ� = Æ�1 + Æ�2. Like in 5.2.2 we have:Lemma 5.14. (a) Æ�+ Æ� = "10 � 1; (b) Æ� = 1; (
) Æ�1 � Æ�2 = �3: �160 words w satisfy Lemmas 5.13 and 5.14 none of them 
orresponding to reals
hemes with �1 = 0; 1. We have e(b) = 5 for all the series. Hen
e, Corollary 2.2 isappli
able. det b̂ = 0 only when [i1:::i9℄ is one ofA4(1;4;5): 444355554 �� A4(1;6;3): 434554444444553554 A4(1;8;1): 444443444 �444555534 A4(5;4;1): 433333444 �and the Alexander polynomial is identi
ally equal to zero only in the two 
ases markedby * (realized in [12℄) and in the 
ase marked by ** (realized by an Lp-
exible 
urve;see Se
tion 7.2). The proof [12℄ of non-realizability of A4(1; 4; 5) is fault.The sequen
es i1:::i9 allowed by Lemmas 5.7{5.11 
orresponding to real s
hemesneither realized nor prohibited in [12℄ are 433333455, 433333554, 455333334, 554433333for A4(5; 2; 3) and the following 40 sequen
es for A4(1; 6; 3)434444455 434455444 435445444 444345544 444445534 445445434 454454434 544543444434444554 434544445 435544444 444354454 444455434 445543444 455344444 544544434434445445 434544544 444344455 444355444 444544534 445544434 455443444 554344444434445544 434554444 444344554 444443455 444553444 454444534 455444434 554443444434454454 435444454 444345445 444443554 444554434 454453444 544445434 5544444345.5. The rest of the series B. It remains to 
onsider the three s
hemes B1(�; �)and B2(9; 0; 1). The s
hemes B1(1; 8) and B1(5; 4) are realized.B1(9; 0). Choose p inside the most right inner oval if to look from the outer one.Then all possible Lp-s
hemes 
an be redu
ed to [�3�4�4�3�3�4 �3 o82 �3℄ usingProposition 3.6. We have e(b) = 6, �(L) = 5, �(N) = 3. The Alexander polynomialis (t12+2t11+2t10+5t9+4t8+8t7+5t6+8t5+4t4+5t3+2t2+2t+1)(t2�t+1)(t�1)4.Thus, the primitive 6-th roots of unity are its simple roots and we 
an apply Lemma2.1 and (1).B2(9; 0; 1) is treated the same way as B2(0; 9; 1) but the generating word should berepla
ed with [�3 w1�2 w2 �3�2�3�4�4�3; ℄ and �1, �2 should be swapped everywherein Se
tion 5.2. Only the 5 words [o2k2 o3℄[o8�2k2 ℄ are allowed by Lemmas 5.4{5.6, forall of them det b̂ 6= 0.



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 255.6. The series Ci(�1; �2; �). Choose the point p on C1 so that the aÆne Lp-s
hemeof C6 with C1 at in�nity takes form w = [�4oi1 : : : oi10 �5℄ where 2 � ij � 5 and�1 = #(ij = 3), �2 = #(ij = 5), �1 = #(ij = 4), �2 = #(ij = 2). Denote the emptyovals by O1; : : : ; O10 where Oj mat
hes to oij . The series C1 (resp. C2) 
orrespondsto �2 = 0 (resp. �2 = 0). De�ne Æ�; Æ�1; : : : as above.Lemma 5.15. (a) If ij = 3 and ik = 5 then j < k; If ij = 4 and ik = 2 then j < k.(b) [12℄. w 
an not 
ontain [:::o4:::o3:::o4:::o3:::℄, nor [:::o3:::o4:::o3:::o4:::℄(
) w 
an not 
ontain [:::o3:::o2:::o4:::o3:::℄, nor [:::o3:::o4:::o2:::o3:::℄Proof. (a) Otherwise the line passing through Oj and Ok meets C6 in 8 points.(b) Otherwise the 
oni
 passing through them and p meets C6 in 14 points.(
) Follows from Lemma 5.2. �Lemma 5.16. (Compare with Lemma 5.5).a): Æ�1 � Æ�2 = 1; b): 2Æ�1 + Æ� =1: �The restri
tions provided by Lemmas 5.15 and 5.16 are satis�ed for 293 sequen
esi1; :::; i10 in the series C1 and for 272 in C2 (133 and 20 of them 
orrespond the s
hemesrealized in [12℄). Corollary 2.2 is appli
able to C6 be
ause e(b) = 4. The determinantis zero only forC1(0;9;1): 5455555555 � C1(0;5;5): 4444555554 C1(3;2;5): 3344444355 �5555555455 4455555444 4444433355C1(7;2;1): 3333334355 � 5444445555 C1(0;1;9): 4444444454 �4333333355 5554444455 4454444444C2(1;3;6): 4443222222 �� C2(1;7;2): 4444434422 � C2(5;3;2): 4333334422 �and 4354454455 (the s
heme C1(1; 4; 5)) but in the latter 
ase �(b̂) = 4 whi
h 
on-tradi
ts (3). The 
ases marked by * are realized in [12℄. The 
ase marked by ** isrealizable by an Lp-
exible 
urve, its prohibition in [12℄ is fault.All the sequen
es of ovals allowed by Lemmas 5.15{5.16 whi
h are neither 
on-stru
ted nor prohibited in [12℄ are: o4o3o85 for C1(1; 8; 1), o2k3 o4o9�2k3 for C1(9; 0; 1),o43o54o3, o23o54o33, o4o53o44, o34o53o24, o54o53 for C1(5; 0; 5), the following 70 sequen
es forand o4o53o2, o34o53o4o2, o44o2k3 o2o5�2k3 for C2(5; 4; 1).5.7. The series D(�; �1; �2; �3). Sin
e the pi
ture is symmetri
, we suppose �1 ��2 � �3. Choose p inside the oval O10, the most far from the line among the ovalsh�3i if to look from an empty digon, not adja
ent to the region 
ontaining h�1i.The generating word is w = [�3�3 �2 w1 �3�3w2 �2�3�3 ℄ where w1 = oi1 :::oid ,w2 = oid+1 :::oi9 , 2 � ij � 4, �1 = #(j � d; ij = 3), �2 = #(j > d; ij = 3),�3 = 1 + #(ij = 2), � = #(ij = 4). Due to (10) we may assume that either d = 0 orid = 3. De�ne Æ�, Æ�, Æ�j as above (Æ�3 = "10 + : : : where "10 = 1 if the orientationof the upper bran
hes of O10 and O11 
oin
ide with the orientation of the ribbonbounded by them).



26 S.YU. OREVKOVLemma 5.17. (a) w does not 
ontain :::o4:::ok:::o4:::, k < 4;(b) w1 does not 
ontain :::o2:::o3:::; (
) w2 does not 
ontain :::o3:::o2:::.Proof. (a) See 5.2. (b,
) B�ezout theorem for the 
oni
 through the two ovals, the twonearest to them empty digons, and the point p. �Lemma 5.18. (a) Æ� = 1; (b) Æ�1 + Æ�2 � Æ�3 = �3. �The restri
tions provided by Lemmas 5.17{5.18 hold for 25 words. For all of theme(b) = 5, det b̂ 6= 0.5.8. Double 
overings of S3 bran
hed along C1. Now we show how sometimesthe 
omputation of the Alexander polynomial 
an be repla
ed with the 
omputationof usual signature and nullity for a double 
overing of S3. As an example, we givehere another proof of non-realizability of B2(7; 2; 1). We have seen in Se
tion 5.2 thatthe only 
ase where the usual signature and nullity do not work is [�4�2 o4o73o2�2�2�2�3�3�4 ℄. One has b = ��2��24��3�4��73��2�3��2��24��23��4�, e(b) = 5 (here ��i = ��1i ). LetL = b̂, then �(L) = 4, hen
e, �(N) = 3 by (12). Components of L 
orrespond to
y
les of the image of b in the symmetri
 group. They are (17)(246)(3)(5). Denote the
orresponding 
omponents of L respe
tively by L1; : : : ; L4 and their linking numbersby lij . One has l12 = 3, l13 = l14 = 1, l23 = 0, l24 = �3, l34 = �1. Like in Lemma5.11, we see that the boundaries of 
omponents of N are �N1 = L1 [ L4, �N2 = L2,�N3 = L3.The line C1 and its 
omplexi�
ation 
orrespond to L3 and N3. Thus, the double
overing of B4 bran
hed along N3 is the ball. Denote by ~N , ~L, ~Ni, ~Li the preimagesof N; : : : We see from the linking numbers that�(~L1) = �(~L3) = �(~L4) = �( ~N1) = �( ~N3) = 1; �(~L2) = �( ~N2) = 2;hen
e, �(~L) = 5, �( ~N) = 4. Compute the braid de�ning ~L as in Se
tion 2.7 and then
ompute �(~L) = 2, n(~L) = 1. This 
ontradi
ts to (1).x6. Other redu
ible 
urves of degree 7In this se
tion we prove Theorems 1.2A, 1.2B. Everything is similar to x5. Thepoint p in the both 
ases is 
hosen a

ording to Fig. 2,3.6.1. The quinti
 and the 
oni
 depi
ted in Fig. 2. Using Proposition 3.6,ea
h Lp-s
heme 
an be redu
ed to the one en
oded by a word w = [�3�3�2�2�3�2 oi1 : : : oi6 �1�2�1�2�3�3℄ where �1 = �01 + �001 , �01 = #(ij = 2), �001 = #(ij = 5),�2 = #(ij = 4), � = #(ij = 3). De�ne Æ�j , Æ�01, Æ�001 , Æ� like in x5, for instan
e,Æ�01 =Pij=2(�1)j.Lemma 6.1. (a). Let j < k. If ij = 5 then ik = 5; if ik = 2 then ij = 2.(b). w 
an not 
ontain :::oj:::o4:::o3:::o4::: (j < 4), nor :::o4:::o3:::o4:::o3:::Proof. (a) B�ezout theorem for the line through these two ovals.(b). B�ezout theorem for the 
oni
 through the 4 ovals and p. �Lemma 6.2. (a) Æ�001 = 0; (b) Æ�01 = Æ�2.Proof. The 
omplex orientations formula (a) for C5; (b) for C5 [ C2. �



LINK THEORY AND OVAL ARRANGEMENTS OF REAL ALGEBRAIC CURVES 27These restri
tions are satis�ed for the following 40 sequen
es i1:::i6:444444 224455 225555 433444 234443 334455 222343 335555 344333 234333224444 445555 555555 443344 223344 344355 234355 333344 433334 223333444455 222222 334444 444334 223443 433455 222233 333443 443333 333355222244 222255 344443 444433 224433 443355 223355 334433 233343 333333We have e(b) = 4 for all of them and det b̂ = 0 only for o2k2 o6�2k5 and o32o3o4o3. Butn(b̂) = 2 in the latter 5 
ases, whi
h 
ontradi
ts (3).6.2. The quarti
 and the 
ubi
 depi
ted in Fig. 3. Choose the 
omplex ori-entations of C3 and C4 a

ording to Fig. 3. Then the 
omplex orientations formulawritten for C4 [ C3 implies that all the 3 free ovals of C4 are negatively orientedwith respe
t to the oval of C3 (in parti
ular, � 6= 3). Hen
e all the Lp-s
hemes
an be redu
ed to those en
oded by the words wh1ik = [�3o4�12�2k2 �2k3 o3 �4℄ andwh2ik = [�4o3�12�2k2 �2k3 o4�3℄ (k = 0; :::; 3) where wh�ik 
orresponds to kh�i for k > 0and to 0h0i for k = 0. In all the 
ases we have e(b) = 6. Hen
e, by (3) and Lemma2.1, an arrangement kh�i is prohibited if the Alexander polynomial has a simple rooton the unit 
ir
le. The Alexander polynomials are respe
tively (t� 1)4ph�ik (t) whereph1i1 = 2t14 � 2t13 + 5t12 � 5t11 + 7t10 � 9t9 + 7t8 � 11t7 + :::ph1i3 = t14 � 2t13 + 4t12 � 7t11 + 11t10 � 15t9 + 17t8 � 19t7 + :::ph2i1 = t20 � t19 + 2t18 + t16 + 2t15 � 2t14 + 3t13 � 5t12 + 2t11 � 7t10 + :::ph2i2 = t20 � t19 + 3t18 � 2t17 + 3t16 � t14 + 3t13 � 7t12 + 6t11 � 11t10 + :::ph2i3 = t20 � t19 + 3t18 � 2t17 + 4t16 � 2t15 + 3t13 � 8t12 + 8t11 � 13t10 + :::(we do not write other 
oeÆ
ients be
ause Alexander polynomials are symmetri
).The 
onformal mapping t = (i + u)=(i � u) maps the line Imu = 0 onto the
ir
le jtj = 1. Let, for instan
e, p = ph1i1 . Performing this substitution we getp((i+ u)=(i� u)) = q(u)=(u� i)14 where q(u) is a real (due to the symmetri
ity of p)polynomial of the form 85u14 + ::: and one 
an 
ompute q(1) = �128. Thus, q has areal root u0 and it 
orresponds to a root t0, jt0j = 1 of p. Che
king that g
d(p; p0) = 1we see that all roots of p are simple.x7. Constru
tion of Lp-flexible 
urves7.1. The method of 
onstru
tion. The 
onstru
tions of Lp-
exible 
urves arebased on the following simple observation whose proof we omit.Proposition. A real Lp-s
heme is realizable by an Lp-
exible 
urve if and only if oneof the braids obtained by the 
onstru
tion des
ribed in Se
tion 3.4 (see also Remark3.3) is quasipositive.Evidently, the quasipositivity of a braid is equivalent to the existen
e of transfor-mations w1 ! w2 ! � � � ! �i ! 1 of 
y
li
 words in �1; : : : ; �m, ea
h transformationbeing either an equivalen
e of 
losed braids, or removing �i, or inserting ��1i . So,to �nd the 
exible 
urves, we used the following heuristi
 method. In ea
h step, us-ing equvalen
ies of 
losed braids, we tried to minimize the length of the word (n in(4)) and to put it "to the most elegant form". Then we tried to remove/insert somegenerators, testing ea
h time if the Murasugi-Tristram inequality still holds.We leave to the reader to 
he
k identities in the braid groups used below. Theword problem in Bm is e�e
tively de
idable (see, for instan
e, [2℄). Also, one 
an usefor this purpose the program GAP supplied with the pa
kage Chevie [14℄.



28 S.YU. OREVKOVIn this se
tion we abbreviate the notation of braids denoting �1, �2; : : : by 1; 2; : : :and ��11 , ��12 ; : : : by �1; �2; : : : . The 
onjugate w�1bw is denoted by bw, for example,12�1 means �1��12 �1�2��11 . Attention: 12 means ��12 �1�2 but not �1�1!7.2. Constru
tions of 
exible aÆne M-sexti
s. Now we realize by Lp-
exible
urves the isotopy types of aÆne M -sexti
s marked by (f) in Fig. 1.The isotopy types A4(1; 4; 5) and C2(1; 3; 6) 
an be des
ribed respe
tively by[�4�5�4 o34o3o45o4 �4�5�4�4�4℄ and [�4�5�4 o34o3o55 �5�4�5�5�4℄(in the both 
ases p is 
hosen inside one of the ovals h�2i, like in Se
tion 5.4). Thesetwo Lp-s
hemes de�ne by Proposition 3.8 the same quasipositive braid:(654�53 � 456)�4�43444454 � (3�24 � 123)4454 � 65The Lp-s
heme [�4�3�3�2 o42o4 �3�2�3�4�3 o23o24�4℄ of A3(0; 5; 5) gives:(5�632432 � 65�643 � 1)2334 � 564�3The 
urves B2(1; 8; 1) and B2(1; 4; 5) 
an be represented respe
tively (� = 1; 2) by[�3�4�4�3�2�3 o43 e(�)8 �2 o3 �3℄ where e(1)8 = [o33 �3�4 o3℄, e(2)8 = [o4 �3�4 o34℄They de�ne the same braid (54 � 65)4432433 � 123 � 456Remarks. 1. A3(0; 5; 5), B2(1; 8; 1) are realizable by real algebrai
 
urves (see Se
tion1.1).2. The Lp-
exible realizability of the above Lp-s
hemes B2 is stronger than therealizability of those obtained by omitting �3�4 from e(�)8 (the redu
tion (11) worksonly in one dire
tion). The words e(�)8 
an be obtained as di�erent smoothings of thesingularity E8. Thus, it would be very natural if the both 
urves might be obtainedby smoothing of the same 
urve with E8.7.3. Curves from Theorem 1.2B. Algorithm form Proposition 3.8 applied towh�ik (see Se
tion 6.2) yields:0h0i wh1i0 ! 3243�4 � (4�53423 � 5�643 � 1)�6233333333343 � (54 � 65)4444442h1i wh1i2 ! 32�343 � (453423 � 65443423 � 12)3333343 � (54 � 65)44x8. Other appli
ations8.1. A singularity without M-perturbations. (See Se
tion 1.4). Choose the
enter of proje
tion inside the shadowed oval (Fig. 5; right). Using B�ezout theoremand the redu
tions from Proposition 3.6, we redu
e the problem to the quasipositivityof the braidsbi = �1 � �6�5�4�3�2�1 � Ti � �1;2��12 ��11 ��13 � � hiYj=1��12 �ej3 ��ej1 � � �3�1�� �2 � �1�2�3�4�5�6 � �2�1�3�2 � ��15 2 B7; i = 1; 2; 3where h1 = h2 = 4, h3 = 2, T1 = �2;3��13 �3;4��14 �4;1��51 , T2 = �2;4��14 �4;3��13 �3;1��51 ,T3 = �2;4��54 �4;1��41 , and �i;k are de�ned by (9).
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e, by Corollary 2.2, it suÆ
es to show that det b̂i 6= 0.Applying Corollary 2.11, we obtain (up to a non-zero 
onstant fa
tor)det b̂1 =� 228 + 28e1 + 64e2 + 100e3 + 136e4 � 9e21 � 32e22 � 41e23 � 36e24� 16e1e2 � 14e1e3 � 12e1e4 � 48e2e3 � 32e2e4 � 52e3e4;det b̂2 =� 1236� 120e1 + 36e2 + 192e3 + 348e4 � 85e21 � 324e22 � 381e23 � 256e24� 120e1e2 � 70e1e3 � 20e1e4 � 416e2e3 � 184e2e4 � 348e3e4;det b̂3 =� 180 + 240e1 � 60e2 + 109e21 + 256e22 + 76e1e2:Ea
h det b̂i, i = 1; 2 is a quadrati
 fun
tion of ej whose Hessian is negatively de�niteand whose value at the minimum is also negative. Hen
e, det b̂i < 0 for i = 1; 2. Easyto 
he
k that det b̂3 6= 0 for any integer (e1; e2).8.2. On the real s
heme h1t1h1it1h18ii of degree 8. Choose the point p insidethe nest 1h1i. It follows from the 
omplex orientations formula that the 
omplexs
heme must be h1t1h1+it1h10+t8�ii and a line through 1h1i and an empty outeroval must separate the inner ovals of the nest 1h18i into two 
hains, an odd numberof ovals in ea
h. Therefore, by Proposition 3.6, the admissible Lp-s
hemes are[�4�2�2 o2k+14 o5 o16�2k4 �4℄; 0 � k � 4.Hen
e, by Se
tion 3.4, L = b̂ where b is one ofbk;e = ��14 ��15 ��13 ��14 �1�e5 �1+e3 ��2k�14 �4;5��15 �5;4�2k�164 �8; e(b) = 8:The 
omplex orientations imply that e is even, hen
e, �(L) = 6 and by (12), �(N) = 3.Like in Se
tion 5.8, denote respe
tively by L1; : : : ; L6 the 
onne
ted 
omponents ofL 
orresponding to the 
y
les (18)(26)(3)(4)(5)(6) of the permutation. The linkingnumbers lij := Li � Lj are: l12 = 2, �l35 = l1;i = l2;i = 1 (i > 2), l34 = 2 � e=2,l45 = �9, l56 = 1+e=2, l36 = l46 = 0. De�ne N�, L� as in Se
tion 4.3. It follows fromProposition 4.3 and the 
omplex orientations formula that L3[L5 � L�, L4[L6 � L+and L1, L2 have opposite signs. Suppose L1 � L�, L2 � L+ (the other 
ase is similar).Then �(L+) = �(L�) = 3. Sin
e �(N) = 3, we have N = N� t N�1 t N�2 where�(�N�i ) = i. Let �N�1 = Lj . Then j > 2 be
ause otherwise N�1 [ 
onj(N�1 ) wouldbe dis
onne
ted from the rest of the 
urve.j = 3 : 0 = �N�1 � �N+ = L3 � (L2 [ L4 [ L6) = 6� e. Hen
e, e = 6.j = 5 : 0 = �N�1 � �N+ = L5 � (L2 [ L4 [ L6) = �14 + e. Hen
e, e = 14.j = 4 : 0 = �N+1 � �N+2 = L4 � (L2 [ L6) = 2. Contradi
tion.j = 6 : 0 = �N+1 � �N+2 = L6 � (L2 [ L4) = 2. Contradi
tion.Computing ��(b̂k;e) = 3, n�(b̂k;e) = 1 for k = 1; 2, e = 6; 14, � = exp(5�i=4), we seethat the realizability of these 4 braid 
ontradi
ts (3). Thus, it remains only 6 braidsbk;e, k = 0; 3; 4, e = 6; 14. At least one of them, namely b0;6 is quasipositive.4 Thus,the 
orresponding real Lp-s
heme is realizable by an Lp-
exible 
urve. Moreover,analyzing the pro
ess of obtaining the quasipositive representation (see Se
tion 7.1)one 
an see that this 
urve 
an be degenerated into the singular Lp-
exible 
urveshown in Fig. 14(left) whose braid 
an be written (in the notation of Se
tion 7.1) as4We did not study the question of quasipositivity of the other 5 braids
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820A AFig. 1432�3�3�3�3�3�3�354534 � (6543 � 76 � 2 � 1)�7543234543 � 67:Thus, there is no topologi
al obstru
tion for the existen
e of a 
urve of degree 8shown in Fig. 14(right) where the singular point has 2 bran
hes of types A8 and A20.Maybe, some of the remained 3 ovals might be further degenerated to nodes (one
an show that these nodes must be isolated points). The 
apa
ity of available to me
omputers was not enough to 
onstru
t su
h a singular 
urve by a dire
t resolving ofsimultaneous equations for the 
oeÆ
ients as it was done in [15℄.A
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