SEPARATING SEMIGROUP OF HYPERELLIPTIC
CURVES AND OF GENUS 3 CURVES

S. Yu. OREVKOV

ABSTRACT. A rational function on a real algebraic curve C is called separating if it
takes real values only at real points. Such a function defines a covering RC' — RP!.
Let Aiq,..., A, be connected components of RC. In a recent paper, M. Kummer
and K. Shaw defined the separating semigroup of C' as the set of all sequences
(di(f),...,dn(f)) where f is a separating function and d; is the degree of the re-
striction of f to A;.

We describe the separating semigroup for hyperelliptic curves and for genus 3
curves.

1. INTRODUCTION

By a real algebraic curve we mean a complex algebraic curve C' endowed with
an antiholomorphic involution conj : C'— C' (the complex conjugation involution).
In this case we denote the real locus {p € C' | conj(p) = p} by RC. A real curve
is of dividing type (or of type I) if RC' divides C into two halves exchanged by the
complex conjugation. All curves considered here are smooth and irreducible.

A sufficient condition for C' to be of dividing type is the existence of a sepa-
rating morphism f : C' — P!, that is a morphism such that f~!'(RP') = RC. It
follows from Ahlfors’ results [1] that this condition is also necessary: any real curve
of dividing type admits a separating morphism. The restriction of a separating
morphism to RC is a covering over RP'. If we fix the numbering of connected
components Ay, ..., A, of RC, we may consider the sequence d(f) = (dy,...,d,)
where d; is the covering degree of f restricted to A;.

Kummer and Shaw studied in [2] the following problem. Given a curve C' of
dividing type, which sequences are realizable as d(f) for separating morphisms
f:C — P'? It is easy to see that the set of all realizable sequences is an addi-
tive semigroup (see [2, Proposition 2.1]). Following [2], we call it the separating
semigroup of C' and denote by Sep(C).

Several interesting properties of Sep(C) are established in [2]. In particular, it
is shown that Sep(C) = N9*! for an M-curve C' (a curve C of genus g is called
an M-curve if RC has g + 1 connected components which is the maximal possible
number for genus g curves). Also it is shown in [2] that sometimes the separating
semigroup does depend on the numbering of the components. The simplest example
is a hyperbolic quartic curve in RPP? (a plane curve is called hyperbolic if the linear
projection from some point is a separating morphism). Let C' be such a curve. Then
RC consists of two ovals one inside another. If we number them so that the inner
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oval is first, then we have (1,2) € Sep(C') but (2,1) & Sep(C); see [2, Example 3.7].
Moreover, Sep(C') is almost computed in [2]: it is shown that N x N>o C Sep(C).
We complete this computation:

Theorem 1. Let C' be a nonsingular real hyperbolic quartic curve in RP? whose
ovals are numbered so that the inner one is first. Then Sep(C) =N X N>,.

The proof relies on two facts: Theorem 2 below and Natanzon’s theorem [3,
Theorem 2.3] which states that two branched coverings over a disk are (left-right)
topologically equivalent if and only if they are equivalent over the boundary circle.

Theorem 2. Let C' be a real hyperelliptic curve of genus g > 2 of dividing type but
not an M -curve. Then

Sep(C) = { (L)NU (N3 (g41)2)? Z:fg Z:S odd,
2NUN>, if g is even.

Note that any real genus three curve of dividing type is either an M-curve, or
hyperelliptic, or a plane hyperbolic quartic. Thus the results of [2] completed by
our Theorems 1 and 2 provide separating semigroups of all real curves of dividing
type up to genus 3.

2. DUAL VANDERMONDE SYSTEM OF EQUATIONS

Let x1,29,...,2, be real numbers. We consider the homogeneous system of
linear equations with indeterminates hq, ..., h, (the dual Vandermonde system):

> afh; =0, k=0,...,9-1 (1)
=1

This condition on (hy,...,h,) can be equivalently rewritten as follows
Z hiF(x;) =0 for any F' € R[z] with deg F' < g.
i=1

Given a sequence of real numbers h = (hq,..., h,), we define ch(h) as the number
of changes of sign of h, i. e., the number of pairs (7,j) such that 1 < i < j < n,
hihj<0,andhk20ifi<k<j.

Proposition 2.1. Let 1 < -+ < z,, n > 0. A sequence s = (s1,...,Sy,) with
s; € {—1,0,1} is the sequence of signs of a non-zero solution to the system (1) if
and only if ch(s) > g.

Proof. (=). Suppose that h = (hq,...,hy,) is a solution to (1), and ch(h) < g.
Then we can choose a polynomial F' of degree less than g such that F(z;) # 0 and
hiF(x;) >0foranyi=1,...,n. Then hyF(x1)+---+h,F(x,) =0 and each term
in this sum is non-negative. Hence h = (0, ...,0).

(«<). Letch(s) > g. Let I = {ig,...,ig} C {1,...,n} besuch that ch(s;,,...,s;,)
= g. Let b} = (hj,, ..., h; ) be a non-zero solution to the system (1) with >2, .,
replaced by >, ;. By “(=)” part, we have ch(h}) = g. Thus, changing the sign of
h'y if necessary, we have sign h;j =s;;, #0forall j=0,...,9.
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Let us choose (h;)igr such that signh; = s; and |h;| < ¢ < 1. Set h;, =
h;,. Since the Vandermonde (g x g)-determinant (corresponding to the columns
numbered by I\ {ig}) is non-zero, the remaining numbers h;, , ..., h;, are uniquely
determined by (1). Moreover, if ¢ is small enough, then h; = (h;);cs is close to h',
thus sign h; = signh; =s; foralli € I. O

Corollary 2.2. Let zq,...,x, be real numbers, not necessarily distinct. For x € R
we set I(x) ={i | x; = x}. Let (hy,...,hy) be a real solution to the system (1) such
that h; # 0 for alli=1,...,n. Then at least one of the following two possibilities
takes place:

(i) ZieI(x) h; =0 for any x € R, in particular, each x; occurs at least twice in
the sequence (1, ...,Ty);

(ii) the sequence (hi,...,hy) contains at least [(g + 1)/2] positive and at least
[(g + 1)/2] negative members.

3. SEPARATING SEMIGROUP OF HYPERELLIPTIC CURVES
In this section we prove Theorem 2.

Lemma 3.1. Let C be a (complex) hyperelliptic curve of genus g and f a mero-
morphic function on C such that the zero divisor (f)o is special (this is so, for
example, when deg f < g). Then f = f1 om where © : C — P! is the hyperelliptic
projection and fi a meromorphic function on P'.

Proof. If D and D’ are two effective divisors on a curve, then the embedding ¢p
defined by the complete linear system |D| is a composition of ¢4 pr with a linear
projection. Let D = (f)p and let D’ be an effective divisor such that D + D" ~
K¢ (such D' exists since D is special). Thus ¢p is a projection of the canonical
embedding which is known to factor through the hyperelliptic projection. [

Lemma 3.2. Let C be a real algebraic curve of genus g > 0 of dividing type. Let
wi,...,wg be a base of holomorphic 1-forms on C.

(a). Let f : C — P! be a separating morphism and {p1,...,pn} = f~(p) for
some point p € RP. Then there exist real positive (with respect to a fixed complex

orientation) tangent vectors vy, ..., v, (v; tangent at p;) such that
n
Zwk(m) =0  foreachk=1,...,g. (2)
i=1

(b). Conversely, let py,...,py, be distinct points on RC' and vy, . . ., v, be positive
real tangent vectors (v; tangent at p;) such that (2) holds. Suppose in addition that
the divisor D = py + -+ + p, is non-special i. e., h°(Kc — D) = 0. Then there
exists a separating morphism with fiber D.

Proof. (a). Follows from Abel-Jacobi Theorem.

(b). Follows from Abel-Jacobi Theorem combined with [2, Lemma 2.10]. Indeed,
consider the Abel-Jacobi mapping ¢ : Sym”(C) — J(C). The condition (2) means
that v = (v1,...,v,) considered as a tangent vector to Sym"(C) at D is in the
kernel of the differential of ¢ at D. The non-specialness of D means that ¢ is a
submersion near D, hence v is tangent to ¢~ !(¢(D)) = |D| at D. Hence there
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exists a path [0,ty] — |D|, t = D, such that Dy = D and (%Dt)tzo = v. Then,
for any t, 0 < t < tg, there exists a meromorphic function f; : C' — P! such that
D = (fi)o and Dy = (ft)oo- If t is small enough, then the condition of positivity
of the v;’s implies that the zeros and poles of f; interlace along RC', thus f; is a
separating morphism by [2, Lemma 2.10]. O

Proof of Theorem 2. Let C be a real hyperelliptic curve of genus g > 2 of dividing
type, which is not an M-curve. Then it is given by an equation y? = G(x) where
G(x) is a real polynomial of degree 2¢g + 2, without multiple roots and positive
everywhere on R. We consider the standard base of holomorphic 1-forms wy, ..., w,
where wy, = ¥ 1dx/y. The hyperelliptic projection is given by (z,y) — z. Its
restriction to RC is an unramified two-fold covering over RP' which is trivial for
even g and non-trivial for odd g. We choose the complex orientation on RC' such
that doz > 0 on positive tangent vectors.

Let f : C — P! be a separating morphism and let {p1,...,p,} = f~1(p) for
a generic p € RP*. We set p; = (z;,7:), i = 1,...,n. By Lemma 3.2(a) there
exist positive tangent vectors vy, ..., v, such that (2) holds. Let a; = dz(v;). The
positivity of v; means a; > 0. Then (2) takes the form (1) for h; = a;/y;, and
Theorem 2 follows from Corollary 2.2 and Lemma 3.1.

4. SEPARATING SEMIGROUP OF GENUS THREE CURVES

In this section we prove Theorem 1. Let C' be a plane hyperbolic quartic curve.
We have Nx N>y C Sep(C), see [2, Example 3.7]. Let us prove the inverse inclusion.

It is shown in [2, Example 2.8] that (1,1) & Sep(C). Suppose there exists a
separating morphism fo : C — P! with d(fo) = (n,1), n > 2. Let CT be one of the
two halves into which RC divides C. Then the restriction of fo to C* is a branched
covering over a disk A which is one of the halves of CP' \ RP'. By perturbing f
(together with C) we may assume that all critical values are simple, i. e., f~!(p)
has at least n points for any p € A.

Let fi : C — P! be a separating morphism with d(f;) = (1,n) which exists
by [2, Example 3.7]. It can be chosen so that all its critical values are simple.
Then, by Natanzon’s result [3, Theorem 2.3|, there exists a continuous family of
branched coverings f; : Ct — A, 0 < t < 1, which connects fy with f;. Let C;"
be C* endowed with the complex structure lifted from A by f;, and let C; be
C;" glued along the boundary with its complex conjugate copy. Then f; extends
to a separating morphism C; — P! which we also denote by f;. So, we obtain a
continuous family of separating morphisms f; of genus three curves C;.

By continuity, we have d(f;) = (1, n) for a suitable numbering of the components
of RC;. Hence, by Theorem 2, the curve C; cannot be hyperelliptic for any t.
It is well-known that any non-hyperelliptic genus three curve is isomorphic to a
smooth quartic curve in P2. Thus there exists a continuous family of embeddings
1y Cp — P? such that ¢;(C;) is a smooth real quartic curve, and we have a
continuous family of separating morphisms of them onto P!. The interior and
exterior ovals cannot interchange in this family which contradicts the fact that
d(fo) # d(f1) and the embedding to P? is unique up to projective equivalence.
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