SEPARATING SEMIGROUP OF HYPERELLIPTIC CURVES AND OF GENUS 3 CURVES

S. Yu. Orevkov

Abstract

A rational function on a real algebraic curve C is called separating if it takes real values only at real points. Such a function defines a covering $\mathbb{R} C \rightarrow \mathbb{R P}^{1}$. Let A_{1}, \ldots, A_{n} be connected components of $\mathbb{R} C$. In a recent paper, M. Kummer and K. Shaw defined the separating semigroup of C as the set of all sequences $\left(d_{1}(f), \ldots, d_{n}(f)\right)$ where f is a separating function and d_{i} is the degree of the restriction of f to A_{i}.

We describe the separating semigroup for hyperelliptic curves and for genus 3 curves.

1. Introduction

By a real algebraic curve we mean a complex algebraic curve C endowed with an antiholomorphic involution conj : $C \rightarrow C$ (the complex conjugation involution). In this case we denote the real locus $\{p \in C \mid \operatorname{conj}(p)=p\}$ by $\mathbb{R} C$. A real curve is of dividing type (or of type I) if $\mathbb{R} C$ divides C into two halves exchanged by the complex conjugation. All curves considered here are smooth and irreducible.

A sufficient condition for C to be of dividing type is the existence of a separating morphism $f: C \rightarrow \mathbb{P}^{1}$, that is a morphism such that $f^{-1}\left(\mathbb{R} \mathbb{P}^{1}\right)=\mathbb{R} C$. It follows from Ahlfors' results [1] that this condition is also necessary: any real curve of dividing type admits a separating morphism. The restriction of a separating morphism to $\mathbb{R} C$ is a covering over $\mathbb{R P}^{1}$. If we fix the numbering of connected components A_{1}, \ldots, A_{n} of $\mathbb{R} C$, we may consider the sequence $d(f)=\left(d_{1}, \ldots, d_{n}\right)$ where d_{i} is the covering degree of f restricted to A_{i}.

Kummer and Shaw studied in [2] the following problem. Given a curve C of dividing type, which sequences are realizable as $d(f)$ for separating morphisms $f: C \rightarrow \mathbb{P}^{1}$? It is easy to see that the set of all realizable sequences is an additive semigroup (see [2, Proposition 2.1]). Following [2], we call it the separating semigroup of C and denote by $\operatorname{Sep}(C)$.

Several interesting properties of $\operatorname{Sep}(C)$ are established in [2]. In particular, it is shown that $\operatorname{Sep}(C)=\mathbb{N}^{g+1}$ for an M-curve C (a curve C of genus g is called an M-curve if $\mathbb{R} C$ has $g+1$ connected components which is the maximal possible number for genus g curves). Also it is shown in [2] that sometimes the separating semigroup does depend on the numbering of the components. The simplest example is a hyperbolic quartic curve in $\mathbb{R} \mathbb{P}^{2}$ (a plane curve is called hyperbolic if the linear projection from some point is a separating morphism). Let C be such a curve. Then $\mathbb{R} C$ consists of two ovals one inside another. If we number them so that the inner

[^0]oval is first, then we have $(1,2) \in \operatorname{Sep}(C)$ but $(2,1) \notin \operatorname{Sep}(C)$; see [2, Example 3.7]. Moreover, $\operatorname{Sep}(C)$ is almost computed in [2]: it is shown that $\mathbb{N} \times \mathbb{N}_{\geq 2} \subset \operatorname{Sep}(C)$. We complete this computation:
Theorem 1. Let C be a nonsingular real hyperbolic quartic curve in $\mathbb{R P}^{2}$ whose ovals are numbered so that the inner one is first. Then $\operatorname{Sep}(C)=\mathbb{N} \times \mathbb{N}_{\geq 2}$.

The proof relies on two facts: Theorem 2 below and Natanzon's theorem [3, Theorem 2.3] which states that two branched coverings over a disk are (left-right) topologically equivalent if and only if they are equivalent over the boundary circle.

Theorem 2. Let C be a real hyperelliptic curve of genus $g \geq 2$ of dividing type but not an M-curve. Then

$$
\operatorname{Sep}(C)= \begin{cases}(1,1) \mathbb{N} \cup\left(\mathbb{N}_{\geq(g+1) / 2}\right)^{2} & \text { if } g \text { is odd } \\ 2 \mathbb{N} \cup \mathbb{N}_{\geq g} & \text { if } g \text { is even } .\end{cases}
$$

Note that any real genus three curve of dividing type is either an M-curve, or hyperelliptic, or a plane hyperbolic quartic. Thus the results of [2] completed by our Theorems 1 and 2 provide separating semigroups of all real curves of dividing type up to genus 3 .

2. Dual Vandermonde system of equations

Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. We consider the homogeneous system of linear equations with indeterminates h_{1}, \ldots, h_{n} (the dual Vandermonde system):

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{k} h_{i}=0, \quad k=0, \ldots, g-1 \tag{1}
\end{equation*}
$$

This condition on $\left(h_{1}, \ldots, h_{n}\right)$ can be equivalently rewritten as follows

$$
\sum_{i=1}^{n} h_{i} F\left(x_{i}\right)=0 \quad \text { for any } F \in \mathbb{R}[x] \text { with } \operatorname{deg} F<g
$$

Given a sequence of real numbers $h=\left(h_{1}, \ldots, h_{n}\right)$, we define $\operatorname{ch}(h)$ as the number of changes of sign of h, i. e., the number of pairs (i, j) such that $1 \leq i<j \leq n$, $h_{i} h_{j}<0$, and $h_{k}=0$ if $i<k<j$.
Proposition 2.1. Let $x_{1}<\cdots<x_{n}, n>0$. A sequence $s=\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \in\{-1,0,1\}$ is the sequence of signs of a non-zero solution to the system (1) if and only if $\operatorname{ch}(s) \geq g$.
Proof. (\Rightarrow). Suppose that $h=\left(h_{1}, \ldots, h_{n}\right)$ is a solution to (1), and $\operatorname{ch}(h)<g$. Then we can choose a polynomial F of degree less than g such that $F\left(x_{i}\right) \neq 0$ and $h_{i} F\left(x_{i}\right) \geq 0$ for any $i=1, \ldots, n$. Then $h_{1} F\left(x_{1}\right)+\cdots+h_{n} F\left(x_{n}\right)=0$ and each term in this sum is non-negative. Hence $h=(0, \ldots, 0)$.
(\Leftarrow) Let $\operatorname{ch}(s) \geq g$. Let $I=\left\{i_{0}, \ldots, i_{g}\right\} \subset\{1, \ldots, n\}$ be such that $\operatorname{ch}\left(s_{i_{0}}, \ldots, s_{i_{g}}\right)$ $=g$. Let $h_{I}^{\prime}=\left(h_{i_{0}}^{\prime}, \ldots, h_{i_{g}}^{\prime}\right)$ be a non-zero solution to the system (1) with $\sum_{1 \leq i \leq n}$ replaced by $\sum_{i \in I}$. By " (\Rightarrow) " part, we have $\operatorname{ch}\left(h_{I}^{\prime}\right)=g$. Thus, changing the sign of h_{I}^{\prime} if necessary, we have $\operatorname{sign} h_{i_{j}}^{\prime}=s_{i_{j}} \neq 0$ for all $j=0, \ldots, g$.

Let us choose $\left(h_{i}\right)_{i \notin I}$ such that $\operatorname{sign} h_{i}=s_{i}$ and $\left|h_{i}\right|<\varepsilon \ll 1$. Set $h_{i_{0}}=$ $h_{i_{0}}^{\prime}$. Since the Vandermonde $(g \times g)$-determinant (corresponding to the columns numbered by $I \backslash\left\{i_{0}\right\}$) is non-zero, the remaining numbers $h_{i_{1}}, \ldots, h_{i_{g}}$ are uniquely determined by (1). Moreover, if ε is small enough, then $h_{I}=\left(h_{i}\right)_{i \in I}$ is close to h_{I}^{\prime}, thus $\operatorname{sign} h_{i}=\operatorname{sign} h_{i}^{\prime}=s_{i}$ for all $i \in I$.
Corollary 2.2. Let x_{1}, \ldots, x_{n} be real numbers, not necessarily distinct. For $x \in \mathbb{R}$ we set $I(x)=\left\{i \mid x_{i}=x\right\}$. Let $\left(h_{1}, \ldots, h_{n}\right)$ be a real solution to the system (1) such that $h_{i} \neq 0$ for all $i=1, \ldots, n$. Then at least one of the following two possibilities takes place:
(i) $\sum_{i \in I(x)} h_{i}=0$ for any $x \in \mathbb{R}$, in particular, each x_{i} occurs at least twice in the sequence $\left(x_{1}, \ldots, x_{n}\right)$;
(ii) the sequence $\left(h_{1}, \ldots, h_{n}\right)$ contains at least $[(g+1) / 2]$ positive and at least $[(g+1) / 2]$ negative members.

3. Separating semigroup of hyperelliptic curves

In this section we prove Theorem 2.
Lemma 3.1. Let C be a (complex) hyperelliptic curve of genus g and f a meromorphic function on C such that the zero divisor $(f)_{0}$ is special (this is so, for example, when $\operatorname{deg} f<g)$. Then $f=f_{1} \circ \pi$ where $\pi: C \rightarrow \mathbb{P}^{1}$ is the hyperelliptic projection and f_{1} a meromorphic function on \mathbb{P}^{1}.

Proof. If D and D^{\prime} are two effective divisors on a curve, then the embedding ϕ_{D} defined by the complete linear system $|D|$ is a composition of $\phi_{D+D^{\prime}}$ with a linear projection. Let $D=(f)_{0}$ and let D^{\prime} be an effective divisor such that $D+D^{\prime} \sim$ K_{C} (such D^{\prime} exists since D is special). Thus ϕ_{D} is a projection of the canonical embedding which is known to factor through the hyperelliptic projection.

Lemma 3.2. Let C be a real algebraic curve of genus $g>0$ of dividing type. Let $\omega_{1}, \ldots, \omega_{g}$ be a base of holomorphic 1-forms on C.
(a). Let $f: C \rightarrow \mathbb{P}^{1}$ be a separating morphism and $\left\{p_{1}, \ldots, p_{n}\right\}=f^{-1}(p)$ for some point $p \in \mathbb{R} \mathbb{P}^{1}$. Then there exist real positive (with respect to a fixed complex orientation) tangent vectors $v_{1}, \ldots, v_{n}\left(v_{i}\right.$ tangent at $\left.p_{i}\right)$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} \omega_{k}\left(v_{i}\right)=0 \quad \text { for each } k=1, \ldots, g \tag{2}
\end{equation*}
$$

(b). Conversely, let p_{1}, \ldots, p_{n} be distinct points on $\mathbb{R} C$ and v_{1}, \ldots, v_{n} be positive real tangent vectors (v_{i} tangent at p_{i}) such that (2) holds. Suppose in addition that the divisor $D=p_{1}+\cdots+p_{n}$ is non-special i. e., $h^{0}\left(K_{C}-D\right)=0$. Then there exists a separating morphism with fiber D.

Proof. (a). Follows from Abel-Jacobi Theorem.
(b). Follows from Abel-Jacobi Theorem combined with [2, Lemma 2.10]. Indeed, consider the Abel-Jacobi mapping $\varphi: \operatorname{Sym}^{n}(C) \rightarrow \mathcal{J}(C)$. The condition (2) means that $v=\left(v_{1}, \ldots, v_{n}\right)$ considered as a tangent vector to $\operatorname{Sym}^{n}(C)$ at D is in the kernel of the differential of φ at D. The non-specialness of D means that φ is a submersion near D, hence v is tangent to $\varphi^{-1}(\varphi(D))=|D|$ at D. Hence there
exists a path $\left[0, t_{0}\right] \rightarrow|D|, t \mapsto D_{t}$, such that $D_{0}=D$ and $\left(\frac{d}{d t} D_{t}\right)_{t=0}=v$. Then, for any $t, 0<t \leq t_{0}$, there exists a meromorphic function $f_{t}: C \rightarrow \mathbb{P}^{1}$ such that $D=\left(f_{t}\right)_{0}$ and $D_{t}=\left(f_{t}\right)_{\infty}$. If t is small enough, then the condition of positivity of the v_{i} 's implies that the zeros and poles of f_{t} interlace along $\mathbb{R} C$, thus f_{t} is a separating morphism by [2, Lemma 2.10].
Proof of Theorem 2. Let C be a real hyperelliptic curve of genus $g \geq 2$ of dividing type, which is not an M-curve. Then it is given by an equation $y^{2}=G(x)$ where $G(x)$ is a real polynomial of degree $2 g+2$, without multiple roots and positive everywhere on \mathbb{R}. We consider the standard base of holomorphic 1 -forms $\omega_{1}, \ldots, \omega_{g}$ where $\omega_{k}=x^{k-1} d x / y$. The hyperelliptic projection is given by $(x, y) \mapsto x$. Its restriction to $\mathbb{R} C$ is an unramified two-fold covering over $\mathbb{R P}^{1}$ which is trivial for even g and non-trivial for odd g. We choose the complex orientation on $\mathbb{R} C$ such that $d x>0$ on positive tangent vectors.

Let $f: C \rightarrow \mathbb{P}^{1}$ be a separating morphism and let $\left\{p_{1}, \ldots, p_{n}\right\}=f^{-1}(p)$ for a generic $p \in \mathbb{R} \mathbb{P}^{1}$. We set $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$. By Lemma 3.2(a) there exist positive tangent vectors v_{1}, \ldots, v_{n} such that (2) holds. Let $a_{i}=d x\left(v_{i}\right)$. The positivity of v_{i} means $a_{i}>0$. Then (2) takes the form (1) for $h_{i}=a_{i} / y_{i}$, and Theorem 2 follows from Corollary 2.2 and Lemma 3.1.

4. Separating semigroup of genus three curves

In this section we prove Theorem 1. Let C be a plane hyperbolic quartic curve. We have $\mathbb{N} \times \mathbb{N}_{\geq 2} \subset \operatorname{Sep}(C)$, see [2, Example 3.7]. Let us prove the inverse inclusion.

It is shown in $[2$, Example 2.8] that $(1,1) \notin \operatorname{Sep}(C)$. Suppose there exists a separating morphism $f_{0}: C \rightarrow \mathbb{P}^{1}$ with $d\left(f_{0}\right)=(n, 1), n \geq 2$. Let C^{+}be one of the two halves into which $\mathbb{R} C$ divides C. Then the restriction of f_{0} to C^{+}is a branched covering over a disk Δ which is one of the halves of $\mathbb{C P}^{1} \backslash \mathbb{R} \mathbb{P}^{1}$. By perturbing f_{0} (together with C) we may assume that all critical values are simple, i. e., $f^{-1}(p)$ has at least n points for any $p \in \Delta$.

Let $f_{1}: C \rightarrow \mathbb{P}^{1}$ be a separating morphism with $d\left(f_{1}\right)=(1, n)$ which exists by [2, Example 3.7]. It can be chosen so that all its critical values are simple. Then, by Natanzon's result [3, Theorem 2.3], there exists a continuous family of branched coverings $f_{t}: C^{+} \rightarrow \Delta, 0 \leq t \leq 1$, which connects f_{0} with f_{1}. Let C_{t}^{+} be C^{+}endowed with the complex structure lifted from Δ by f_{t}, and let C_{t} be C_{t}^{+}glued along the boundary with its complex conjugate copy. Then f_{t} extends to a separating morphism $C_{t} \rightarrow \mathbb{P}^{1}$ which we also denote by f_{t}. So, we obtain a continuous family of separating morphisms f_{t} of genus three curves C_{t}.

By continuity, we have $d\left(f_{t}\right)=(1, n)$ for a suitable numbering of the components of $\mathbb{R} C_{t}$. Hence, by Theorem 2, the curve C_{t} cannot be hyperelliptic for any t. It is well-known that any non-hyperelliptic genus three curve is isomorphic to a smooth quartic curve in \mathbb{P}^{2}. Thus there exists a continuous family of embeddings $\iota_{t}: C_{t} \rightarrow \mathbb{P}^{2}$ such that $\iota_{t}\left(C_{t}\right)$ is a smooth real quartic curve, and we have a continuous family of separating morphisms of them onto \mathbb{P}^{1}. The interior and exterior ovals cannot interchange in this family which contradicts the fact that $d\left(f_{0}\right) \neq d\left(f_{1}\right)$ and the embedding to \mathbb{P}^{2} is unique up to projective equivalence.

References

1. L. L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100-134.
2. M. Kummer, K. Shaw, The separating semigroup of a real curve, Annales de la fac. des sciences de Toulouse. Mathématiques (6); (to appear), arxiv:1707.08227.
3. S. M. Natanzon, Topology of two-dimensional coverings and meromorphic functions on real and complex algebraic curves, Trudy Sem. Vektor. Tenzor. Anal. 23 (1988), 79-103 (Russian); English transl., Selecta. Math. Soviet. 12 (1993), no. 3, 251-291.

Steklov Mathematical Institute, Gubkina 8, Moscow, Russia

IMT, l'université Paul Sabatier, 118 route de Narbonne, Toulouse, France E-mail address: orevkov@math.ups-tlse.fr

[^0]: Partially supported by RFBR grant no. 17-01-00592-a

