
SOLUTION OF THE WORD PROBLEMIN THE SINGULAR BRAID GROUPS.Yu. OrevkovAbstra
t. Singular braids are isotopy 
lasses of smooth strings whi
h are allowedto 
ross ea
h other pairwise with distin
t tangents. Under the usual multipli
ationof braids, they form a monoid. The singular braid group was introdu
ed by Fenn-Keyman-Rourke as the quotient group of the singular braid monoid. We give asolution of the word problem for this group. It is obtained as a 
ombination of theresults by Fenn-Keyman-Rourke and some simple geometri
 
onsiderations based onthe mapping 
lass interpretation of braids. Combined with Corran's normal form forthe singular braid monoid, our algorithm provides a 
omputable normal form for thesingular braid group.1. Introdu
tion. Let X be any set. Let us denote X �f1; : : : ; n� 1g by Xn. Weshall denote an element (x; i) of Xn by xi. Let �n = f�1; : : : ; �n�1g. The singularbraid group Bn(X)G is the group generated by Xn[�n and subje
t to the relations�i�j = �j�i; �ixj = xj�i; xiyj = yjxi; ji� jj � 2; x; y 2 X ; (1)�i�j�i = �j�i�j ; xi�j�i = �j�ixj ; ji� jj = 1; x 2 X ; (2)�ixi = xi�i x 2 X: (3)In this paper we give a solution of the word problem for Bn(X)G.Let ��1n = f��11 ; : : : ; ��1n�1g. The singular braid monoid Bn(X)M is the monoidgenerated by Xn [ �n [ ��1n and subje
t to the relations (1) { (3) and�i��1i = ��1i �i = 1: (4)When X = ?, both Bn(X)G and Bn(X)M 
oin
ide with the usual braid group.In the 
ase when X is a one-element set f�g, the singular braid monoid wasintrodu
es by Baez [1℄ and Birman [2℄. Corran solved the word [3℄ and 
onjuga
y[4℄ problems for this monoid (and for its natural generalization for any Artin group).She did it when X = f�g, however the same proofs work for any X .The singular braid group was introdu
ed by Fenn, Keyman, and Rourke [7℄ (forX = f�g but their arguments are valid for any X). They proved that Bn(X)Membeds into Bn(X)G. This result is derived in [7℄ from Theorem 1 formulatedbelow.Let X�1 = fx�1 jx 2 Xg. There is a natural homomorphism of monoids� : Bn(X [X�1)M ! Bn(X)G:2000 Mathemati
s Subje
t Classi�
ation Primary 20F36; Se
ondary 20F10, 57M25.Key words and phrases. Singular braid group, word problem. Typeset by AMS-TEX1



2 S.YU. OREVKOVDe�nition 1. An element � 2 Bn(X [X�1)M is 
alled irredu
ible if it 
annot bewritten as � = �xix�1i 
 or � = �x�1i xi
.Theorem 1. ([7; Corollary 3.3℄). If � and � are irredu
ible elements of Bn(X [X�1)M and �(�) = �(�) then � = �.Thus, due to Theorem 1, we 
an solve the word problem in Bn(X)G as soon aswe know a redu
tion algorithm, i.e. an algorithm whi
h 
omputes an irredu
ibleword representing a given element of Bn(X)G. Indeed, to 
ompare two elements� and � of Bn(X)G, we 
ompute a redu
ed word 
, representing ���1. If 

ontains letters from Xn [ X�1n then 
 6= 1, hen
e � 6= �. Otherwise, we applyany of numerous known algorithms to de
ide if 
 is trivial in the usual braid group.Moreover, 
ombined with Corran's normal form [3℄ for elements of Bn(X [X�1)M ,a redu
tion algorithm provides a 
omputable normal form for elements of Bn(X)G.We shall give a redu
tion algorithm in Se
tion 4. It is based on the life dis
sintrodu
ed in [7℄ and the ideas from [6℄. Modi�ed in Se
tion 6 a

ording to Dynnikov(see [5; Ch.III, 4.19{4.23℄), this algorithm turns out to be of biquadrati
 time(quadrati
 time if one 
onsiders additions and 
omparings of integers as elementaryoperations).2. Geometri
 singular braids. Let D be the 
losed unit dis
 in C and I =[�1; 1℄. Let Pn = fp1; : : : ; png � I , where p0 = �1 < p1 < � � � < pn < pn+1 = 1.A geometri
 X-braid (or geometri
 singular braid if X is not pre
ised) � is aunion of smooth 
losed 
urves (
alled strings) in the 
ylindre D � [0; 1℄, su
h that:(i ) The proje
tion of any string onto [0; 1℄ is a di�eomorphism.(ii ) � \ (D � f0g) = Pn � f0g and � \ (D � f1g) = Pn � f1g.(iii ) Strings meet ea
h other only pairwise and with distin
t tangents at ea
h
rossing.In fa
t, the 
ondition (iii) implies that the number of 
rossings is �nite. To ea
h
rossing is asso
iated an element of X (its 
olor). A dis
 D � ftg, t 2 [0; 1℄ will be
alled level. A union of levels D � ftg for t 2 [a; b℄ � [0; 1℄ will be 
alled layer.Two geometri
 X-braids �0 and �1 are 
alled isotopi
 if there exists a smoothfamily f�tgt2[0;1℄ of geometri
 X-braids relating �0 to �1. The elements of themonoid Bn(X)M are in one-to-one 
orresponden
e with the isotopy 
lasses of geo-metri
 X-braids (see [1, 2, 7℄ for details). Under this 
orresponden
e, the genera-tors �i, ��1i and xi, x 2 X , 
orrespond to geometri
 braids whose proje
tions ontoI � [0; 1℄, (z; t) 7! (Re z; t), are as in Figure 1.
�i ��1i xiFigure 1



SOLUTION OF THE WORD PROBLEM IN THE SINGULAR BRAID GROUP 33. Life dis
s and youth dis
s. The following de�nition is taken from [7℄. Let �be a geometri
 (X [X�1)-braid. A life dis
 for � is a dis
 D embedded in D � [0; 1℄su
h that:(i ) The interior of D is disjoint from �.(ii ) The boundary of D lies on � and 
ontains pre
isely two 
rossings q and q0(
alled birth and death) 
olored by x and x�1 for some x 2 X .(iii ) D is 
ontained in the layer between the levels of q and q0 (in
lusive). Itmeets the levels of q and q0 pre
isely in q and q0 respe
tively and it meetsea
h level stri
tly between q and q0 transversally in an ar
.Lemma 1. [7℄. A geometri
 (X [X�1)-braid is redu
ed if and only if there is nolife dis
 for it. �Let us de�ne a youth dis
 (we are trying to keep the terminology style proposedby Fenn, Keyman, and Rourke) for a singular geometri
 braid � as a dis
 embeddedin D � [0; 1℄ whi
h 
an be 
ompleted to a life dis
 of �� for some singular geometri
braid �. If D is a youth dis
 then the 
urve � = pr1(D \ (D � f1g)) is 
alled the�nal 
urve of D where pr1 : D � [0; 1℄! D is (z; t) 7! z.The following de�nitions are inspired by [6℄. Let Pn and I be as in Se
tion 2.Let � be an embedded 
urve in D whose endpoints belong to Pn and no interiorpoint belong to Pn. We shall say that � is transversal to I if it is either reallytransversal or it 
oin
ides with one of the segments [pi; pi+1℄. Let 
urves � and �0be transversal to I . They are 
alled I-equivalent if they are isotopi
 via an ambientisotopy whi
h is �xed on Pn and whi
h preserves I .Suppose that � is transversal to I . A 
omponent � of D n (�[ I) is 
alls a digonbetween � and I if � is homeomorphi
 to an open dis
 and is bounded by an opensegment of �, an open segment of I nPn, and two points (any of whi
h may, or maynot, belong to Pn). We say that � is redu
ed if it is transversal to I and there is nodigon between � and I . Let us say that a youth dis
 is redu
ed if its �nal 
urve isredu
ed.It it easy to see that any 
urve � 
an be redu
ed by an isotopy whi
h is theidentity on Pn (see, e.g. [6℄). When � = D \ (D � f1g) for a youth dis
 D, su
han isotopy 
an be extended to a neighbourhood of D � f1g up to an isotopy of D.Thus, we haveLemma 2. If there exists a youth dis
 for a singular braid �, born at some 
rossingq, then there exist a redu
ed youth dis
 for � born at q. �Lemma 3. Let D1 and D2 be two youth dis
s for the same geometri
 singular braid� born at the same 
rossing. Then their �nal 
urves are isotopi
 by an ambientisotopy whi
h is �xed on Pn.Proof. This 
an be proved by a kind of standard argument like "Let us 
hoose themaximal t su
h that D1 \ (D �ftg) and D2 \ (D �ftg) are isotopi
 and extend theisotopy a little bit further...". One 
an also pro
eed as in [7; Se
t.4, Case (3)℄. �Combining Lemmas 2 and 3, we getLemma 4. If there exists a youth dis
 for a singular braid �, born at some 
rossingq, then there exist a redu
ed youth dis
 for � born at q and its �nal 
urve is uniquelydetermined by � and q up to I-equivalen
y. �



4 S.YU. OREVKOV4. Prolongation of youth dis
s. Let � be a geometri
 (X [ X�1)-braid andD a youth dis
 for it born at a 
rossing q of a 
olor x", " = �1. Suppose that Dis redu
ed and let � be its �nal 
urve. Let � be a geometri
 braid representing astandard generator, i.e. � 2 � [ ��1 [ X [ X�1. The following lemma is simpleand we omit its proof.Lemma 5. (a). Let � = ��1i . Then there exists a redu
ed youth dis
 for �� born atq. Its �nal 
urve is obtained from � by the standard a
tion of � by a di�eomorphism(see, e.g., [6℄).(b). Suppose that � = yÆi , y 2 X, Æ = �1. Then:(b1). A youth dis
 D0 for �� born at q exists if and only if �\ [pi; pi+1℄ = ?. Inthis 
ase the �nal 
urve of D0 is I-equivalent to �(b2). A life dis
 for �� born at q exists if and only if � = [pi; pi+1℄, y = x andÆ = �".Now we are ready to formulate the redu
tion algorithm. We 
onsider one byone all the 
rossings and 
he
k for ea
h of them if there exists a life dis
 born at ittransforming the �nal 
urve of the youth dis
 a

ording to Lemma 5. To make thisalgorithm to be very fast, in the next se
tion we apply the idea due to Dynnikov.5. Lamination 
oordinates of �nal 
urves. Let us denote by I� the union of Iwith all the segments [pi;�p�1 ℄, i = 1; : : : ; n. We de�ne that � is transverse to I�and redu
ed with respe
t to I� in the same way as in Se
tion 3 (no digons between� and I�). So, let � be redu
ed with respe
t to I�. We de�ne the lamination
oordinates of � as the sequen
e (
0; a1; b1; 
1; a2; b2; 
2; : : : ; an; bn; 
n),ai = #(�\ ℄pi;p�1[ ); bi = #(�\ ℄pi;�p�1[ ); 
i = #(�\ ℄pi; pi+1[ ):If � = [pi; pi+1℄, we set 
i = �1. Let us set also a0 = b0 = an+1 = bn+1 = 0.Lemma 6. (Compare with Dynnikov's formulas [5; III.4.20℄). Let � be a sin-gular braid and let (
0; a1; b1; 
1; : : : ; an; bn; 
n) be the lamination 
oordinates ofthe �nal 
urve of some youth dis
 for � born at q. Then the lamination 
o-ordinates of the �nal 
urve of a youth dis
 for ��"i , " = �1, born at q, are(
00; a01; b01; 
01; : : : ; a0n; b0n; 
0n), where a0k = ak, b0k = bk for k 6= i; i + 1, 
0k = 
k fork 6= i� 1; i+ 1, and the numbers 
0i�1; a0i; b0i; a0i+1; b0i+1; 
0i+1 are de�ned as follows.If " = 1 then
0i�1 = max(
i�1 + bi+1; 
i + bi�1)� bi; 
0i+1 = max(
i + ai+2; 
i+1 + ai)� ai+1;� a0i = max(
0i�1 + ai; 
i + ai�1)� 
i�1b0i+1 = max(
0i+1 + bi+1; 
i + bi+2)� 
i+1 � a0i+1 = aib0i = bi+1If " = �1 then (we swap a and b)
0i�1 = max(
i�1 + ai+1; 
i + ai�1)� ai; 
0i+1 = max(
i + bi+2; 
i+1 + bi)� bi+1;� b0i = max(
0i�1 + bi; 
i + bi�1)� 
i�1a0i+1 = max(
0i+1 + ai+1; 
i + ai+2)� 
i+1 � b0i+1 = bia0i = ai+1



SOLUTION OF THE WORD PROBLEM IN THE SINGULAR BRAID GROUP 56. The redu
tion algorithm. Let � = �0u0u1 � � � 2 Bn(X [ X�1) with uk 2� [ ��1 [X [X�1 and u0 = x"i for some x 2 X , " = �1. We must 
he
k if thereexists a life dis
 for � born at u0. We shall 
ompute the lamination 
oordinatesand the endpoints p and q of the �nal 
urves of youth dis
s born at u0 (if theyexist) su

essively for �0u0, �0u0u1, et
., using Lemmas 5 and 6. For �0u0, wehave p = pi, q = pi+1, 
i = �1 and all the other 
oordinates are zero. When weadd uk to our word, we do the following:If uk = ��1j , we 
ompute new 
oordinates (by Lemma 6) and new endpoints p; q(transposing pj and pj+1), and we pass to uk+1.If uk = yÆj and 
j = �1, then we �nish the 
omputation and 
on
lude that thelife dis
 exists (if y = x and Æ = �", in this 
ase uk is the death point) or does notexist (otherwise).If uk = yÆj , 
j = 0, and fp; qg \ fpj ; pj+1g = ?, we do nothing and pass to uk+1.If uk = yÆj , 
j � 0, and either 
j � 1 or fp; qg \ fpj ; pj+1g 6= ?, we �nish the
omputation and 
on
lude that the life dis
 does not exist.Remark. In fa
t, the enpoints p; q are determined by the lamination 
oordinates.To �nd them, it suÆ
es to �nd the two triples among (ai; ai+1; 
i) and (bi; bi+1; 
i),i = 0; : : : ; n, for whi
h the triangle inequality fails.If we have treated all the uk's and the youth dis
 has survived, we 
on
lude thatthe life dis
 does not exist.If we found a life dis
 born at u0 and died at uk, we just remove u0 and uk fromour word and 
ontinue the redu
tion. If there is no life dis
, then the singular braidis redu
ed by Lemma 1. Referen
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