
RIGID ISOTOPY OF MAXIMALLY WRITHED LINKS

GRIGORY MIKHALKIN AND STEPAN OREVKOV

Abstract. This is a sequel to the paper [4] which identified max-
imally writhed algebraic links in RP3 and classified them topolog-
ically. In this paper we prove that all maximally writhed links of
the same topological type are rigidly isotopic, i.e. one can be de-
formed into another with a family of smooth real algebraic links of
the same degree.

1. Introduction

A real algebraic curve A ⊂ P3 is a (complex) one-dimensional sub-
variety invariant with respect to the involution of complex conjugation
(z0 : z1 : z2 : z3) 7→ (z̄0 : z̄1 : z̄2 : z̄3). We denote with RA the fixed
point locus of conj |A, note that RA = A ∩ RP3. Following the classi-
cal terminology by a real branch of A we mean the image ν(K) for a
connected component K of RÃ, where ν : Ã→ A is a normalization.

In the case of nonsingular A we call L = RA the real algebraic link,
cf. [4], if every component of the normalization of A has non-empty
real part, and if L is not contained in any proper projective subspace of
RP3. We say that L is irreducible if A is irreducible. In this paper real
algebraic links as well as algebraic curves are assumed to be irreducible.

The degree d ∈ Z of a real algebraic link L ⊂ RP3 is a positive
number such that [A] = d[P1] ∈ H2(P3) ∼= Z, the genus of L is the genus
of A. Given a point p ∈ RP3 rRA we denote with πp : P3 r {p} → P2

the linear projection from p so that πp(A) ⊂ P2 is a plane curve of the
same degree d. If p is chosen generically then πp(A) is a nodal curve.
The set

(πp(A) ∩ RP2) r πp(RA)

is not always empty. It is a finite set consisting of solitary nodes of
Rπp(A) = πp(A) ∩ RP2, i.e. the points of real intersection of pairs of
complex conjugate local branches. It was shown in [6] that each node
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of Rπp(A) may be prescribed a sign ±1 or 0 so that the sum w(L)
of the signs of all nodes does not depend on a choice of p and is an
invariant of L.

Non-solitary nodes of Rπp(A) are intersection points of pairs of real
local branches of A. If these local branches belong to different real
branches of A then the sign of the corresponding node is defined as
zero. Otherwise, the definition of sign at a non-solitary node agrees
with the convention used in Knot Theory for the definition of the writhe
of the knot diagram, see Figure 1 (we choose any orientations of the
two local branches that can agree with an orientation of the real branch
containing them).

−1 +1

Figure 1. Writhe signs for a crossing point of two real
branches on the knot diagram.

In the case of solitary nodes the signs were introduced in [6]. Ac-
cordingly, w(L) is called the encomplexed writhe (as in [6]), or the Viro
invariant of L. Note that the number of nodes of πp(A) is Nd − g,

where Nd = (d−1)(d−2)
2

. Thus we have the straightforward upper bound

(1) |w(L)| ≤ Nd − g ≤ Nd

for any real algebraic link L ⊂ RP3 of degree d. Accordingly, an (ir-
reducible) real algebraic link of degree d with |w(L)| = Nd is called a
maximally writhed knot or an MW -knot (since this properties implies
that g = 0, the curve A is rational and thus L is connected).

The following extremal property of (1) was shown in [3].

Theorem 1 ([3]). If L,L′ ⊂ RP3 are MW -knots of the same degree
then the pairs (RP3, L) and (RP3, L′) are diffeomorphic.

In other words, the topological type of an MW -knot of a given degree
is unique.

Consider now the case of an arbitrary g. By Harnack’s inequality the
number of real branches of A is at most g + 1. The (irreducible) real
curves A with g+ 1 real branches are known as M-curves. In this case
the complement Ar RA consists of two components bounded by RA.
The orientations of two component of ArRA yield a pair of opposite
orientations of L. Through these orientations, an orientation of one real
branch of A determines the orientation of all other real branches, and
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we define the sign σ(q) = ±1 also in the case when a node q ∈ Rπp(A)
corresponds to a crossing point of different real branches of A according
to Figure 1. We set

(2) wλ(L) = w(L) +
∑
q

σ(q) = w(L) + 2
∑
K 6=K′

lk(K,K ′),

see [4]. Here the first sum is taken over the nodes q corresponding to
intersection points of different real branches of A while the second sum
is taken over unordered pairs of distinct real branches K,K ′.

Clearly, if |wλ(L)| = Nd then L consists of a single real branch.
Furthermore, a stronger inequality holds

|wλ(L)| ≤ Nd − g.
It has a chance to be sharp even for a multicomponent L.

Definition 1.1. A maximally writhed real algebraic link (or an MWλ-
link) L ⊂ RP3 is a real algebraic link in g+1 real branches, g ≥ 0, such
that the irreducible real algebraic curve A with RA = L is of genus g
and that |wλ(L)| = Nd − g.

Note that Nd > g as, otherwise A must be planar. Therefore,
wλ(L) 6= 0 if L is an MWλ-link. We refer to the sign of wλ(L) as
the chirality of an MWλ-link L.

Let α = (a0, . . . , ag) be a partition of the number d − 2 into l =
g + 1 positive integer numbers. This means that a0 ≥ · · · ≥ ag are

positive integer numbers such that
g∑
j=0

aj = d − 2. In [4] to each α

we have associated a (topological) link Wg(α) in g + 1 components.
Namely, Wg(α) is a link that sits on the boundary (the union of g + 1
hyperboloids) of a regular neighborhood of the Hopf link H in g + 1
component. Each of the g+1 hyperboloids contains a single component
of Wg(α). Furthermore, the linking number of the j-th component Kj

(enhanced with some orientation) and the jth component of the Hopf
link is aj +2 while the linking number of Kj with any other component
of H is aj.

Theorem 2 ([4]). For every MWλ-link L of degree d there exists a
partition α = (a0, . . . , ag) such that (RP3, L) and (RP3,Wg(α)) are
diffeomorphic.

Conversely, for every α there exists an MWλ-link L of degree d such
that the pairs (RP3, L) and (RP3,Wg(α)) are diffeomorphic.

We say that anMWλ-link L corresponds to the partition α if (RP3, L)
and (RP3,Wg(α)) are diffeomorphic.
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The following result is the main theorem of this paper. It strengthens
the second half of Theorem 2. Two real algebraic links are said rigidly
isotopic if they can be connected with a one-parametric family of real
algebraic links of the same degree.

Theorem 3. If L and L′ are MWλ-links of the same chirality corre-
sponding to the same partition α then L and L′ are rigidly isotopic.

This theorem is a particular case of Theorem 4 (see Section 8) where
we describe rigid isotopy classes of nodal curves of any genus. The
proof of Theorem 4 is based on the theory of divisors on nodal Riemann
surfaces and on the properties of MWλ-curves established in [4].

Note that in the case of rational curves Theorem 2 corresponds to
[3, Theorem 1] with a simpler proof specific for genus 0. In contrast
to that, the only known to us way to prove Theorem 3 is to deduce it
from Theorem 4, even in the case of rational curves. In particular, this
proof requires [4, Theorem 2] in whole generality. Note that Theorem
4 provides another proof of [4, Theorem 3], i.e. existence of MWλ-links
isotopic to Wg(α) for any partition α = (a0, . . . , ag).

2. Algebraic Hopf links

Definition 2.1. A real algebraic link L with l real branches is called
an irreducible algebraic Hopf link if it is irreducible, its degree is l + 2,
and each real branch of A is non-contractible in RP3.

An irreducible algebraic Hopf link has minimal possible degree among
all irreducible real algebraic links with l real branches such that each
real branch is non-contractible in RP3 by Proposition 2.2. By Propo-
sition 2.3 it is always a Hopf link topologically.

Proposition 2.2. Let L ⊂ RP3 be an irreducible real algebraic link of
degree d > 1 such that each component of L is non-contractible in RP3.
Then d ≥ l + 2.

Proof. Take a pair of conjugate points on A r RA ⊂ P3 and consider
a real plane through this pair. Since any plane in RP3 must intersect
each non-contractible component of L we get at least l+ 2 intersection
points. �

Proposition 2.3. An irreducible algebraic Hopf link L or its mirror
image is an MWλ-link Wl−1(1, . . . , 1), and thus is topologically isotopic
to a Hopf link, i.e. the union of l fibers of the (positive) Hopf fibration
RP3 → S2.
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Proof. The link L satisfies to condition (iiit) of Theorem 2 of [4].
Namely, any plane section in RP3 intersects L in at least d − 2 = l
points (one for each component). By Theorem 2 of [4] L or its mirror
image is topologically isotopic to Wl−1(1, . . . , 1) as (1, . . . , 1) is the only
partition of l into the sum of l positive integers. �

Lemma 2.4 (cf. Theorem 2.5 of [2]). An effective real divisor D =
n∑
j=1

ajpj, aj > 0, pj ∈ S, on a real curve S is non-special if at least g

distinct real branches of A intersect {p1, . . . , pn}.

Proof. By the Riemann-Roch Theorem, a divisor D is special if and
only if the difference K−D of the canonical class K and the divisor D
is representable with an effective divisor D′. Suppose that there exists
a holomorphic form whose zero divisor is D+D′. But the zero divisor
of a form on each real branch of a curve must be even (if counted with
multiplicities). Thus the degree of D+D′ is at least 2g while the degree
of the canonical class is 2g − 2. �

By a real Riemann surface we mean an (irreducible) Riemann surface
S enhanced with an antiholomorphic involution conj. Its real locus RS
is the fixed locus of conj. By Harnack’s inequality, g+1 is the maximal
possible number of real branches of S if g is the genus of S. Real curves
with this maximality property are known as M-curves.

Recall that all effective divisors linearly equivalent to an effective
divisor D of degree d form a projective space |D| ≈ Pr whose dimension
is called the rank r(D) of the divisor. If the divisor is base point free,
i.e. every point of S is not contained in some divisor from |D| then in
addition we have the map

ιD : S → |D|∨ ≈ Pr

to the space |D|∨ projectively dual to |D|. The point x ∈ S is mapped
to the hyperplane in |D| consisting of divisors containing x. If S is a
real Riemann surface and D is a divisor invariant with respect to the
conjugation then we say that D is a real divisor. In this case the map
ιD is also real, i.e. equivariant with respect to the conjugation and the
image A = ιD(S) ⊂ Pr is a real projective curve.

Proposition 2.5. Let S be a real Riemann surface of genus g = l− 1
with l real branches (i.e. S is an M-curve), and D be a real divisor
of degree l + 2 such that every real branch of S contains odd number
of points from D (counted with multiplicity). Then the algebraic curve
A = ιD(S) ⊂ P3 corresponding to (S,D) is an irreducible algebraic
Hopf link. In particular, A is non-singular, and r(D) = 3.
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Proof. The proposition is the special case of Corollary 2.8 of [2] for
r = 3. �

Corollary 2.6. Irreducible algebraic Hopf links of the same chirality
are rigidly isotopic.

Proof. Let L,L′ ⊂ RP3 be two irreducible algebraic Hopf links repre-
sented as ιD(S) and ιD′(S ′) for real Riemann surfaces S and S ′ and
real divisor D and D′ on them. By Proposition 2.3 the Riemann sur-
faces S and S ′ are M -curves. Therefore their quotients by the complex
conjugation are diffeomorphic to a disk with g holes. Thus (see e.g.
[5, Theorem 2.2]) S and S ′ can be deformed into each other through a
family of real curves.

Without loss of generality (by taking an appropriate real plane sec-
tion of the corresponding irreducible algebraic Hopf links) we may as-
sume that the real divisors D and D′ contain a single point on each
real branch of S and S ′ as well as a pair of complex conjugate points.
Thus we may enhance the deformation of S to S ′ with a deformation
of D into D′ in the space of real divisors on real Riemann surfaces. By
Proposition 2.5 this deformation corresponds to a deformation in the
class of irreducible algebraic Hopf links, i.e. a rigid isotopy.

Therefore, L and L′ are rigidly isotopic up to a projective equiva-
lence. Since the group PGL4(R) consists of two connected components,
L and L′ are rigidly isotopic if and only if their invariant wλ (which
cannot vanish for a MWλ-link) is of the same sign. �

Remark 2.7. Note that Conjecture 3.4 of [2] is false. Not only algebraic
Hopf links, but all MWλ-links are unramified in the sense of [2] by the
condition (iii)t of [4]. Taking a real algebraic link L ⊂ RP3 isotopic
Wg(a0, . . . , ag) with even aj we get an unramified curve whose real
branches are contractible in P3. Existence of such link is ensured by
Theorem 3 of [4].

3. Nodal links

Recall that a nodal projective curve A ⊂ Pn, n ≥ 2, is a (complex)
algebraic curve such that all of its singularities are simple nodes, i.e.
points of crossings of two non-singular local branches with distinct
tangent lines. As before, A is real if it is invariant with respect to
the involution of complex conjugation Pn → Pn. The real locus RA =
RPn ∩A of a nodal curve is a disjoint union of immersed circles and a
finite set RE ⊂ RA. The points of RE are called solitary nodes of RA.

Definition 3.1. A subset L ⊂ RP3 is called an irreducible nodal real
algebraic link if it is infinite and there exists an irreducible nodal real
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algebraic curve A ⊂ RP3 such that L = RA, and L is not contained
in any proper projective subspace of RP3. In particular, L 6= ∅. Two
nodal real algebraic links are rigidly isotopic if they can be connected
with a 1-parametric isotopy in the class of nodal real algebraic links of
the same degree and with the same number of nodes.

A node of L is a node of the curve A.

Nodal real algebraic links provide a generalization of real algebraic
links. As in the case of real algebraic links, an irreducible nodal real
algebraic link L ⊂ RP3 uniquely determines A ⊂ P3.

Definition 3.2. We say that a real algebraic link L1 degenerates to a
real nodal algebraic link L0 if there exists a continuous family of real
algebraic links Lt ⊂ RP3, t ∈ [0, 1], of constant degree such that Lt
for t > 0 is a (non-nodal) real algebraic link. In this case we also say
that the nodal link L0 can be perturbed to the smooth link L1. The
perturbation (resp. degeneration) is called equigeneric if the genus
stays constant.

A smooth perturbation of a nodal curve is equigeneric if each node
is perturbed as in Figure 2 (left) but not as in Figure 2 (right). All
degenerations and perturbations considered in this paper are assumed
to be equigeneric.

Figure 2. Equigeneric (on the left) and non-equigeneric
(on the right) perturbations of a spatial nodal curve.

Proposition 3.3. Any irreducible real algebraic link L = RA ⊂ RP3 of
genus g and degree d degenerates to a nodal link with at least d− g− 3
nodes.

Proof. By induction it is enough to assume that if L = RA is a nodal
link of genus g and degree d with n < d−g−3 nodes, then it degenerates
to a nodal link with at least one node more.

Let p ∈ RP3 be a generic point so that the image B = πp(A) ⊂ P2

under the projection πp : P3 r {p} → P2 is a real nodal planar curve.
By choosing p on a line passing through two distinct real points of A,
we may assume that B has a real node with two real branches which
is not a projection of a node of A. This means that there are distinct
points x, y ∈ RA such that

u = πp(x) = πp(y).
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We choose the coordinates so that p = (0 : 0 : 0 : 1).
Let ι : S → A be the normalization and D = ι−1(A ∩ H) be the

divisor on S obtained as the intersection of A and a generic real plane
H ⊂ P3. The divisor D is a real divisor of rank r ≥ d − g. The
immersions of S given by A ⊂ P3 and B ⊂ P2 correspond to a real
projective 3-dimensional subspace of |D| and a real projective plane
inside it.

Consider the vector space Γ(S,D) formed by the sections of the line
bundle defined by D. In the coordinates the curve A ⊂ P3 is given
by four linearly independent sections s0, s1, s2, s3 ∈ Γ(S,D) such that
s0, s1, s2 define the curve B ⊂ P2. The condition that s0, s1, s2, s define
an immersion with n prescribed nodes imposes n linear conditions on
s ∈ Γ(S,D). Let V ⊂ Γ(S,D) be the space of all sections satisfying
these conditions, in particular, we have s3 ∈ V . Since r(D) − n > 3,
it follows that there exists s4 ∈ V not contained in the linear span
of s0, s1, s2, s3. Taking s4 close to s3 we may assume that s0, s1, s2, s4

define a curve A′ ⊂ P3 without a node at π−1
p (u).

With the help of the plane sections of the curves A,A′ passing
through one point of intersection with π−1

p (u) but not the other we
can choose s′j ∈ Γ(D,S), j = 3, 4, with the following properties:

(1) sj is a linear combination of s0, s1, s2, s
′
j (in particular, the curve

defined by s0, s1, s2, s
′
3 is projectively equivalent to A);

(2) s′3(x̃) = 0 = s′4(ỹ);
(3) s′3(ỹ) 6= 0 6= s′4(x̃).

Here x̃ = ι−1(x), ỹ = ι−1(y) ∈ S. Note that (1) implies linear indepen-
dence of s0, s1, s2, s

′
3, s
′
4.

The image of S in P3 under [s0 : s1 : s2 : s′3 + ts′4], t ∈ R, is a real
curve At ⊂ P3 with A0 = A. Since the first three sections define a nodal
immersion to P2, all singularities of At ⊂ P3 (if any) are nodes. By
linear independence of s0, s1, s2, s

′
3, s
′
4, the curve At cannot be contained

in a plane in P3.
By (2) and (3) there exists tu ∈ R such that Atu has a node over

u while A0 does not have a node over u. Thus A can be degenerated
to a curve with at least one node (though not necessarily over u since
another node may appear during the deformation of t from 0 to tu, in
particular the new node could be solitary, or even a pair of complex
conjugate nodes). �
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4. Nodal MWλ-links and chord diagrams

Definition 4.1. An irreducible nodal algebraic link is called a nodal
MWλ-link if it can be (equigenerically) perturbed to a (smooth) MWλ-
link.

Lemma 4.2. All nodes of a nodal MWλ-link are real and non-solitary.

Proof. Let L0 be a nodal MWλ-link and Lt, t ∈ (0, 1] be smooth MWλ-
links degenerating to L0. If L0 has a non-real node ν then the planar
curve πp(Lε) ⊂ P2 must have a non-real node near πp(ν) for small ε > 0.
Thus Lε can not be maximally writhed.

Suppose that L0 = RA0 has a solitary real node ν. Let p ∈ RP3rRA0

be a point on a line ` connecting a pair of complex conjugate points
of A0. The projection πp(Aε) ⊂ P2 has two solitary nodal points: one
corresponding to ν, and one corresponding to `. We get a contradiction
to Condition (iva) of [4, Theorem 2]. �

Many of the properties of MWλ-links found in [4] hold also for any
nodal MWλ-link L0 = RA0 ⊂ RP3.

Let q ∈ A0 r RA0. Denote with `qq̄ ⊂ RP3 the real line whose
complexification in P3 passes through q (and thus also through q̄).

Lemma 4.3. For any q ∈ A0 rRA0 we have `qq̄ ∩ L0 = ∅.
Proof. By Lemma 4.2 L0 has no solitary nodes. Thus at a point of
`qq̄∩L0 there exists a tangent plane H ⊂ RP3 containing `qq̄. Existence
of such plane contradicts to the property [4, Theorem 2 (ii)] of MWλ-
links which is clearly conserved under passing to the limiting nodal
links. �

Corollary 4.4. For each real branch K the linking number

(3) a(K) = 2| lk(`qq̄, K)|
(taken twice) in RP3 is independent of q ∈ A0 rRA0.

Proof. Lemma 4.3 implies the corollary since the curve A0 is irreducible
and thus the family of lines of the form `qq̄, q ∈ A0rRA0, is connected.

�

We have

(4)
∑
K

a(K) = d− 2

by [4, equation (3)] as the integer numbers a(K) agree with the numbers
introduced in [4, Lemma 4.12] under the degeneration of Lt to L0.

When speaking of nodal curves, we shall use the language of chord
diagrams.
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Definition 4.5. A chord diagram (X,Λ) is a pair consisting of the dis-
joint union Λ of l oriented circles, and the topological space X obtained
as the result of attachment of δ ≥ 0 intervals (chords) along their end-
points to Λ so that distinct endpoints are glued to distinct points of Λ.
We consider (X,Λ) up to homeomorphisms of the pair preserving the
orientation of Λ. We denote the complement of the chord endpoints in
Λ with Λ◦ ⊂ Λ.

Definition 4.6. A chord diagram (X,Λ) is called planar if it can be
embedded to the disjoint union ∆ of l copies of 2-disks so that Λ is
mapped to the boundary of ∆.

Clearly no chord of a planar chord diagram can connect points from
different components of Λ. Thus a planar diagram for arbitrary l is a
disjoint union of l connected planar chord diagrams.

By a loop λ in a chord diagram (X,Λ) we mean a simple closed
loop in X. If (X,Λ) is planar and j : X → ∆ is an embedding from
Definition 4.6 then for each component of ∆ r j(X) there is a loop in
X around this component, we refer to these loops as planar loops.

Definition 4.7. The chord diagram X(L0) of a nodal link L0 is the
chord diagram obtained by attaching a chord to RÃ0 connecting the
respective points of the normalization for every node of RA0.

For a loop λ ⊂ L0 the number

(5) a(λ) = 2| lk(λ, `qq̄)|
is independent of the choice of q ∈ A0 r RA0 by Lemma 4.3 and
irreducibility of A0 (cf. Corollary 4.4).

Proposition 4.8. The chord diagram of a nodal MWλ-link L0 is pla-
nar.

Proof. Let L0 = RA0 be a nodal MWλ-link and ν : Ã0 → A0 be the
normalization of A0. Let x be a node of L0 and H be the real plane
tangent to both local branches of A0 at x. Consider the intersection
number n(K) of H and A0 along a real branch K 3 x. Namely, n(K)
is the intersection number in P3 of the complexification of H and ν(U),
where U is a small neighborhood of K̃ in Ã0 (here K̃ is the connected
component of RÃ0 such that ν(K̃) = K). Consider a point q ∈ ν(U)r
K close to x. Then the line `qq̄ is close to the tangent line at x to K.
The plane H may be perturbed to a real plane H ′ ⊃ `qq̄. We have
#(H ′ ∩ K) ≥ 2| lk(`qq̄, K)| = a(K) since H ′ ⊃ `qq̄. But in addition
the complexification of H ′ intersects A0 at q and q̄. Thus n(K) ≥
#(H ′ ∩K) + 2 ≥ a(K) + 2.
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If two distinct real branches K1, K2 meet at x then taking the sum
over all real branches we get the inequality∑

n(K) ≥
∑

a(K) + 4 = d+ 2

contradicting to the Bezout theorem for the intersection of H and A0.
A node y ∈ L0 where both local branches correspond to the same real

branch K defines a subdivision of K into two loops λj ⊂ K, j = 1, 2.

Each loop λj is the closure of the image of an arc of K̃ r ν−1(y) under
ν. If the chord diagram X(L0) is not planar then we may assume
that K, x, y where chosen so that λ1 and λ2 pass through x. We have
a(λ1) + a(λ2) = a(K); see (5).

Denote with n(λj) the intersection number of the complexification

of H and ν(Uj) for a small neighborhood Uj of ν−1(λj) in Ã0. We get
n(λj) ≥ a(λj) + 2 as above. If y /∈ H then ν(U1 ∩ U2) is disjoint from
H, thus n(K) = n(λ1) + n(λ2) ≥ a(K) + 4, and we get a contradiction
to the Bezout Theorem as before.

If y ∈ H then n(K) = n(λ1) + n(λ1)− n(y), where n(y) is the local
intersection number of A0 and the complexification of H at y. But
in this case we have n(λ1) + n(λ1) ≥ a(K) + 4 + n(y) so we get a
contradiction to the Bezout Theorem anyway. �

Definition 4.9. The degree-chord diagram of a nodal MWλ-link L0 is
a chord diagram enhanced with a number a(λ) defined for any planar
loop of L0. The number a(λ) is the degree of the planar loop λ of the
planar chord diagram X(L0).

5. Divisors on singular Riemann surfaces

Let S be a (closed connected irreducible) Riemann surface.

Definition 5.1. A chord diagram XS on S is a topological space ob-
tained by attaching to S a finite number of 1-cells (chords) I ≈ [0, 1]
in an acyclic way, i.e. so that the union of all chords is a forest (in
particular no chord is a loop in XS). Let δ be the number of chords.
The singular surface Σ = Σ(XS) is obtained by contracting each chord
to a point.

If the boundaries of the chords are disjoint in S, we say that XS is
nodal. Then we may consider Σ as an abstract nodal curve. Otherwise
Σ has k-fold points with k > 2.

The theory of divisors and their linear systems on Σ is very similar
to its counterpart on ordinary Riemann surfaces. Denote with N ⊂ Σ
the singular locus, i.e. the image of the union of chords under the
contraction map c : XS → Σ. Let Ñ = c−1(N) ∩ S. As usual, for a
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meromorphic function f : S → P1 = C ∪ {∞} we denote with (f) its
divisor on S composed of its zeroes and poles with multiplicities. Let
Σ∗ = Σ rN = S r Ñ .

Let us fix an effective divisor D =
∑
ajpj, aj ∈ Z>0, with pj ∈ SrÑ .

The number n =
∑
aj is the degree of D. Denote with VD the set of

meromorphic functions f : S → P1 such that (f) ≥ −D (i.e. f has, at
worst, a pole of order aj at pj, and holomorphic elsewhere) and

c(x) = c(y) =⇒ f(x) = f(y), ∀x, y ∈ S.

The space VD is a vector space. We say that a divisor D′ on S is Σ-
equivalent to D, and write D ∼ D′, if D−D′ = (f) for f ∈ VD. Recall
that we require D to be disjoint from Ñ while we do not impose this
requirement on D′. In particular, the relation ∼ is not an equivalence
relation (cf. Remark 5.5). Let |D|Σ be the set of effective divisors Σ-
equivalent to D. It can be naturally identified with the projectivization
of VD.

The Riemann-Roch theorem implies that for each chord I ⊂ XS

there exists a meromorphic form ωI on S, holomorphic on S r ∂I and
having a pole of the first order at each point of ∂I. Clearly, the residues
of ωI at the two points of ∂I must be opposite. Multiplying this form
by a constant, we may assume that the residues of ωI at ∂I are ±1.
Furthermore, for a choice of a system of a-cycles, i.e. of g simple loops
αj, j = 1, . . . , g, in S such that S r

⋃g
j=1 αg is a planar domain, we

may assume that

(6)

∫
αj

ωI = 0

by adding a holomorphic form on S.
Denote with Ω(Σ) the vector space generated by the holomorphic

forms on S and the forms ωI for the chords I ⊂ XS. This is the
space of meromorphic forms on S holomorphic on S r Ñ , having at
worst poles of the first order at the points of Ñ , and such that the
sum of residues at all points of Ñ corresponding to the same point of
N vanishes. Thus Ω(Σ) depends only on Σ, and not on a particular
representation of Σ by XS. We have

dim Ω(Σ) = g + δ.

We refer to the elements of Ω(Σ) as Σ-holomorphic form.
Any element of H1(Σ∗) defines a functional on Ω(Σ) through inte-

gration. The Jacobian of Σ is defined as the quotient

Jac(Σ) = Ω∗(Σ)/H1(Σ∗)
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of the dual vector space to Ω(Σ) by the image of H1(Σ∗). It is a
(g + δ)-dimensional complex variety homeomorphic to (S1)2g × (C×)δ.
The divisor D defines the Abel-Jacobi map

αD : Symn(Σ∗)→ Jac(Σ)

by associating to D′ the functional ω 7→
∫
Γ

ω, where Γ is a 1-chain in

Σ∗ with ∂Γ = D′ −D.
The following theorem and corollary are a variant of the classi-

cal Abel-Jacobi and Riemann-Roch theorems for the case of singular
curves. Their different versions can also be found in textbooks.

Theorem 5.2 (the Abel-Jacobi Theorem for Σ). For an effective di-
visor D′ supported on Σ∗ we have D′ ∈ |D|Σ if and only if αD(D′) =
0 ∈ Jac(Σ).

Proof. Suppose that D′ ∈ |D|Σ, i.e. (f) = D′−D with f ∈ VD. By the
conventional Abel-Jacobi theorem we have

∫
Γ

ω = 0 for any holomorphic

1-form ω in S. Suppose that I is a chord in XS and x+, x− ∈ S are the
endpoints of I. Let ωI be the meromorphic form on S, holomorphic on
Sr{x+, x−}, with the simple poles of residue ±1 at x±, and satisfying
to (6). Multiplying f by a scalar we may assume that f(x+), f(x−) ∈ C
are non-real numbers. The following equality is known as a reciprocity
law for the Abelian differentials of the third kind (cf. e.g. [1, Lecture
6, Lemma 3])

(7)

∫
Γ

ωI =

∫
ΓI

df

f
.

Here Γ = f−1(R≥0 ∪ {∞}) is oriented so that ∂Γ = D′ − D while ΓI
is a path in S from x− to x+ disjoint from Γ. To prove (7) it suffices
to integrate the 1-form Log(f)ωI over a small contour γ going around
Γ for a holomorphic branch of Log(f) in S r Γ. Since the values of
Log(f) at the two sides of Γ differ by 2πi, we see that

∫
γ

Log(f)ωI

equals to 2πi times the left-hand side of (7). By Cauchy’s residue
formula

∫
γ

Log(f)ωI equals to 2πi times the right-hand side of (7).

Since f ∈ VD, the right-hand side of (7) is zero modulo 2πiZ, and
thus αD(D′) = 0. Conversely, suppose that αD(D′) = 0. By the
conventional Abel-Jacobi theorem there exists a meromorphic function
f : S → P1 with (f) = D′ − D. By (7) the integral

∫
ΓI

df
f

vanishes

(modulo 2πiZ) for any chord I. Thus f ∈ VD. �
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Denote with Ω−D(Σ) ⊂ Ω(Σ) the vector space formed by the Σ-
holomorphic forms vanishing in all points of D.

Corollary 5.3 (The Riemann-Roch Theorem for Σ). We have

dim |D|Σ = n− g − δ + dim Ω−D(Σ).

Proof. Consider the differential dα of the Abel-Jacobi map at D ∈
Symn(Σ∗). It is a linear map from the n-dimensional vector space
composed as the direct sum of the tangent spaces of S at the points
of D (with multiplicities) to the (g+ δ)-dimensional space Ω∗(Σ). The
cokernel of this differential coincides with the space VD. According to
Theorem 5.2 the kernel is VD. �

We say that D is non-special in Σ if dim |D|Σ = n − g − δ, i.e., if
Ω−D(Σ) = 0 (recall that suppD ⊂ Σ∗).

Consider the chord diagram XI
S obtained from XS by removing a

chord I and the corresponding singular surface ΣI .

Lemma 5.4. If a divisor D =
n∑
j=1

ajpj, pj ∈ Σ∗, is non-special in Σ

then it is also non-special in ΣI .

Proof. By definition we have Ω(ΣI) ⊂ Ω(Σ) whence Ω−D(ΣI) ⊂ Ω−D(Σ).
Thus the hypothesis of Ω−D(Σ) = 0 implies the conclusion Ω−D(ΣI) =
0. �

With each effective divisor D such that suppD ⊂ Σ∗ we associate
the map

(8) ιD : S → |D|∨Σ,
sending x to the hyperplane of VD corresponding to divisors D′ ∈ |D|Σ
with x ∈ D′. This mapping evidently factors through a mapping Σ→
|D|∨Σ.

As in the classical theory, any holomorphic mapping f : S → Pk
which factors through Σ is a composition of ιD with a linear projection
π : |D|∨Σ 99K Pk where D is the pull-back of a generic plane section of
f(S). The image of π is the minimal subspace of Pk containing f(S).

Remark 5.5. When a smooth curve is embedded to a complete lin-
ear system |D|, the embedded curve can be completely recovered (up
to projective transformation) by any hyperplane section. Neverthe-
less, the situation is very different in the case of nodal curves. If a
hyperplane section passes through some nodes, then it does not deter-
mine the embedding. This is the reason why we have supposed that
suppD ⊂ Σ∗ in this section.
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6. Real singular Riemann surfaces

A chord diagram XS on a Riemann surface S is real algebraic if
the Riemann surface S is real (i.e., endowed with an antiholomorphic
involution conj : S → S), and the boundaries of all chords are contained
in RS = Fix(S). Then we may consider

RXS = XS r (S rRS)

(the union of RS with all the chords). If XS is nodal then the pair
(RXS,RS) is the chord diagram in the sense of Definition 4.5. Other-
wise, it can be considered as a degeneration of such diagram.

We say that a real algebraic chord diagram XS is planar if RX can
be embedded into the disjoint union of disks in such a way that RS
is mapped homeomorphically onto the boundary. Note that in the
case when the chord boundaries are disjoint, this definition agrees with
Definition 4.6. We have l + δ planar loops in RXS (here l = b0(RS))
that correspond to the components of the complement of the image of
this embedding.

Lemma 6.1. Suppose that XS is a real planar chord diagram and ω ∈
Ω(Σ) is a real form on S whose zeroes are disjoint from Ñ . Then every
planar loop in RXS contains an even number of zeroes of ω (counted
with multiplicities).

Proof. In the complement of its zeroes, a real form ω defines an orien-
tation of the underlying curve. Since the residues of ω at the endpoints
of each chord are opposite, this orientation agrees with an orientation
of the planar loop near the chord. Thus the lemma follows from the
orientability of a circle. �

Corollary 6.2. An effective real divisor D =
n∑
j=1

ajpj, aj ∈ Z>0, pj ∈

Σ∗, is non-special, if XS is planar and at least g + δ distinct planar

loops of XS intersect supp(D) =
n⋃
j=1

{pj}.

Proof. Suppose that ω ∈ Ω−D(Σ). If ω does not have poles at the
boundary of a chord in XS then we may remove this chord and the
statement follows by induction from the corresponding statement for
the resulting diagram in (δ − 1) chords.

Otherwise ω has the total of 2g + 2δ − 2 zeroes in Σ∗ (counted with
multiplicities). But Lemma 6.1 implies existence of at least 2g + 2δ
zeroes contained in the given g + δ planar loops. �

Consider a real algebraic nodal curve A0 ⊂ P3 endowed with a fixed
orientation of its real branches and its real equigeneric perturbation
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At ⊂ P3, (cf. Definition 4.1 but now At is not required to be smooth)
for small t > 0. We say that At is positive (resp. negative) at a node
x ∈ A0 if the perturbed local branches form a positive (resp. negative)
crossing according to Figure 1 under a generic projection.

Note that the signs of At at all nodes are invariant if we reverse the
orientation of A0. Thus we may choose any orientation in the case if
A0 is rational. In the case when A0 is of type I (the case of this paper)
we take a complex orientation of RA0.

Lemma 6.3. Let ϕ : S → P3 be an analytic mapping which factors
through an injective mapping Σ → P3 and D be the pull-back of a
real plane section. Suppose that A0 = ϕ(S) is a real nodal curve,
supp(D) ⊂ Σ∗, D is non-special in Σ, and dim |D|Σ ≥ 3. Let I1, . . . , Ik
be some chords of XS.

Then for any orientation on RS there exists a real equigeneric per-
turbation At of A0 which has any prescribed signs at the nodes corre-
sponding to I1, . . . , Ik and which keeps all the other nodes.

Proof. Inductively with the help of Lemma 5.4, it suffices to prove
this lemma for k = 1, i.e. that we may perturb a single node of
A0 equigenerically, keeping all the other nodes, and choosing any pre-
scribed sign for the perturbation of this node. Since A0 ⊂ P3 is nodal,
its projection onto P2 from a generic point of P3 is a planar nodal curve
B ⊂ P2. Let s0, s1, s2, s3 ∈ VD(Σ) the sections defining the curve A0,
and such that s0, s1, s2 define the curve B (cf. the proof of Proposition
3.3).

By Corollary 5.3,

dimVD(Σ′) > dimVD(Σ),

where Σ′ is the singular surface corresponding to the diagram XI1 ,
i.e. when the chord I1 is removed. Let s ∈ VD(Σ′) r VD(Σ). Then
s0, s1, s2, s define an analytic mapping S → P3 that factorize through
Σ′ but not through Σ. Thus s0, s1, s2, s3 + ts, t ∈ R, define the required
perturbation of A0 where different signs of t correspond to different
signs of the node perturbation. �

7. Nodal Hopf links

Definition 7.1. A nodal MWλ-link is called a nodal Hopf link if it has
d− 3− g nodes.

By (4) the degree of any planar loop in a nodal Hopf link is 1.
Conversely, as the number of planar loops is d−2, we get the following
characterization of nodal Hopf links.
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Proposition 7.2. A nodal MWλ-link L0 ⊂ RP3 is a nodal Hopf link
if and only if the degree of each planar loop is one.

The following proposition is an immediate consequence of Proposi-
tion 3.3.

Proposition 7.3. Any nodal MWλ-link (in particular, a smooth MWλ-
link) can be degenerated to a nodal Hopf link.

Lemma 7.4. Let A be a real algebraic curve in P3. Let P be a real plane
such that A∩P is finite. Let F ⊂ A∩P be a finite set and let λ1, . . . , λs
be loops contained in RArF such that all pairwise intersections λi∩λj
are finite, and each loop λi is non-trivial in H1(RP3). Then

degA ≥ s+
∑
x∈F

(A · P )x,

where (A · P )x is the local intersection number of A and P at x.

Proof. It is enough to consider a perturbation P ′ of P in the class
of conj-invariant smooth 4-dimensional submanifolds of P3. We may
choose P ′ to coincide with P near F . In addition we may ensure that
P ′ ∩ RP3 is transverse to each λj and all local intersections of P ′ with
A are positive. �

The following proposition generalizes Proposition 2.5. We use the
notations of Section 5. Let V ∨D be the dual space of VD and |D|∨Σ be its
projectivization.

Let XS be a planar nodal real algebraic chord diagram in l = g + 1
circles and δ chords.

Definition 7.5. A Hopf divisor in XS is a real divisor D ⊂ Σ∗ of
degree l+ δ+ 2 such that the part of D contained in every planar loop
of XS has odd degree.

In other words, D has a single point at each of l + δ planar loop of
XS, and also two more points which either form a complex-conjugate
pair, or both belong to the same planar loop of XS. Proposition 7.2
assures that a real plane section of a nodal Hopf link is a Hopf divisor.
The next proposition assures the converse.

Recall that a real curve A0 ⊂ P3 is said to be hyperbolic with respect
to a line ` ⊂ RP3 if for any real plane P ⊂ P3 passing through ` each
intersection point of P r ` and A0 is real.

Proposition 7.6. For a Hopf divisor D ⊂ Σ∗ the map

ιD : S → |D|∨Σ ≈ P3,
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from (8) is a well-defined immersion whose image is a nodal Hopf link.
Furthermore, ιD factors through an embedding of Σ to |D|∨Σ.

Proof.
Step 1: ιD is an immersion to P3. We have |D|Σ ≈ P3 by Corollary
6.2. The same corollary implies that dim |D|Σ > |D − x|Σ for any
x ∈ suppD ∩ Σ∗. Also we have

dim |D − ∂I|ΣI = dim |D|ΣI − 2 < |D|Σ.

Here the equality follows, once again, from Corollary 6.2 (recall that XS

is planar, so both points of ∂I belong to the same component of RS)
while the inequality follows from the observation that |D|Σ has only
one additional linear constraint in addition to those of |D|ΣI . Thus ιD
is well-defined, and A = ιD(S) ⊂ P3 is a real algebraic curve of degree
l + δ + 2 with plane sections parameterized by |D|Σ.

If ιD is not an immersion at x ∈ S then any plane section containing
x has multiplicity greater than one at x. Taking the plane through
x and a pair of complex conjugate points of A we get a contradiction
with Lemma 7.4.

Step 2: A is a nodal curve with exactly δ nodes. If x ∈ RA is such
that ι−1

D (x)rRS 6= ∅ then the plane through x and a pair of conjugate
points of A provides a contradiction with Lemma 7.4. If x ∈ Ar RP3

is such that #(ι−1
D (x)) > 1 then we get a similar contradiction by

considering a real plane containing x and conj(x). This means that
ιD|SrRS is an embedding.

Suppose that we have ιD(x) = ιD(y) for x 6= y ∈ RS. Consider the
plane H through ιD(x) tangent to the local branches of S at x and
y. The corresponding divisor has multiplicity at least 2 at x and y.
If x, y ∈ RS r Ñ then by the parity reasons there must be another
intersection point of this plane with the planar cycles containing x or
y which gives a contradiction. Suppose that y ∈ Ñ , and y′ 6= x is
the other endpoint of the same chord. Then the divisor cut by H
also contains y′. Let us perturb H to a generic plane section with
two imaginary points near x. By the degree count no other imaginary
points may appear under this perturbation. Thus y and y′ produce
at least three real intersection points which should be repartitioned
among the two planar cycles adjacent to I. Thus at least one planar
cycle of RXS contains more than a single point of the divisor. Since the
divisor has a pair of complex conjugate points, we have a contradiction
once again. Thus ιD identifies only the endpoints of the same chord.

To prove that A is nodal it remains to show that the two branches at
each of its singular points are not tangent to the same direction. But
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if they were, we could find a plane tangent to one of the branch with
order at least 3 and, simultaneously, tangent to the other branch with
order of at least 2, and obtain a contradiction with Lemma 7.4.

Step 3: A is hyperbolic with respect to any real tangent line (for
definition, see just before Proposition 7.6). Using Lemma 7.4 we con-
clude that a plane tangent to RA has only real intersections with RA
(cf. the condition (ii) in Theorem 2 of [4]), and also that no plane may
be tangent to a local branch of RA with order greater than 3. The
latter condition implies that the (differential geometric) torsion of RA
cannot change sign within the same real branch of A. Reflecting the
orientation of RP3 if needed, we may assume that RA has points of
positive torsion.

Step 4: Positivity of the linking number of a pair of oriented tangent
lines to RA. Here we assume the orientation to be compatible with
a fixed complex orientation of RA. Due to the hyperbolicity of RA
with respect to tangent lines, this fact follows from [4, Lemma 4.6 and
Lemma 4.7] (see, in particular, [4, Figure 2]). In its turn this positivity
implies that all points of RA have positive torsion, and also that all
crossing points (in the knot-theoretic sense) of a plane projection of
RA ⊂ RP3 are positive.

Step 5: There exists a point p ∈ RP3 such that all singularities
of πp(A) are ordinary real nodes with real local branches. The central
projection πp : A→ P2 from a generic real point p on a tangent line ` to
RA at its non-nodal point has a cusp corresponding to `. Furthermore,
all singular points of the curve πp(RA) ⊂ RP2 must be real singularities
such that all of its branches are also real. Indeed, the curve πp(RA)
may not have a pair of complex conjugate singularities, as otherwise
the inverse image under πp of the real line through this pair would
intersect A at least in 4 imaginary points producing a contradiction
with Lemma 7.4. Also the curve πp(RA) may not have a real singularity
q with imaginary branches as otherwise we would get the contradiction
to Lemma 7.4 by considering the plane passing through ` and π−1

p (q).

Consider the central projection πp′ : A → P2 from a generic real
point p′ close to p. The image πp′(A) is a real nodal curves with the
nodes of three types: the nodes of A, the perturbations of the nodes of
πp(A) and the node resulting from the cusp of πp(A). Choosing p′ in an
approproate way we ensure that the last node has real local branches.
Recall that all the nodes of πp(RA) are positive as knot-theoretical
crossing points by the previous step.
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Step 6: A is a nodal Hopf link. Lemma 6.3 allows us to perturb
all the nodes of RA in a positive way. The result of perturbation has
Nd − g positive crossings, and thus is a MWλ-link. �

Proposition 7.7. All nodal Hopf links of the same chirality (the sign
of wλ for a smooth MWλ-perturbation), and with homeomorphic chord
diagrams are rigidly isotopic, i.e. isotopic in the class of real nodal
algebraic links of the same degree.

Proof. A nodal Hopf link is determined by a Hopf divisor on a planar
real algebraic chord diagram by Proposition 7.6. If a homeomorphism
between the chord diagrams of two nodal Hopf links respects the corre-
sponding Hopf divisors then there exists a 1-parametric family of Hopf
divisors on planar real algebraic chord diagrams producing an isotopy
between the two nodal Hopf link. Lemmas 7.8 and 7.9 reduce the
general case to the case considered above. �

Let (X,Λ) be a planar chord diagram in l circles with δ chords. We
say that a triple (X,Λ,∆) is a Hopf triple if ∆ ⊂ Λ is a set of δ + l
points disjoint from the chord endpoints, and such that each planar
loop of (X,Λ) contains a single point of ∆.

Let I ⊂ X be one of the chords of (X,Λ). The chord I is adjacent
to two plane loops, αI1 and αI2. Let ∆′ ⊂ X be a set of l+ δ − 2 points
disjoint from the chord endpoints, and such that each planar loop of
(X,Λ) except for αI1 and αI2 contains a single point of ∆′.

Let ∆+ (resp. ∆−) be the union of ∆′ and the two-point set ob-
tained by moving both points of ∂I in the direction (resp. contrary to
the direction) of the orientation of Λ. Note that both (X,Λ,∆+) and
(X,Λ,∆−) are Hopf triples. In this case we say that these triples are
linked with a chord move in I.

Lemma 7.8. For any two Hopf triples (X,Λ,∆±) linked with a chord
move there exists a nodal Hopf link A0 ⊂ P3 and two generic real
planes H± ∈ P3 such that (RXA0 ,RS, S ∩ RH±) is homeomorphic to
(X,Λ,∆±). Here XA0 is the natural chord diagram on the normaliza-
tion S of the nodal curve A0.

Proof. Choose a real algebraic realization (RXS,RS,D′) of (X,Λ,∆′).
Define D to be the divisor obtained as the union of D′ ∪ ∂I with a
pair Π of complex conjugate points in S r RS. Note that according
to Lemma 6.2 the divisor D is non-special in the singular surface ΣI

corresponding to the removal of I from the chord diagram XS. Thus
there exists a real divisor E close to D and ΣI-equivalent to D such
that E ∩ ∂I = ∅ and (RXS,RS,E ∩ RS) is a Hopf triple. Note that



RIGID ISOTOPY OF MAXIMALLY WRITHED LINKS 21

D ∈ |E|Σ since D ∈ |E|ΣI and the value of a meromorphic function
f : S → P1 with (f) = D − E is zero (and thus is the same) on both
points of ∂I.

By Proposition 7.6 A0 = ιE(S) ⊂ P3 is a nodal Hopf link. Since
D ∈ |E|Σ there exists a real plane H ∈ P3 with ι−1

E (H) = D. In
particular, H passes through the node of A0 corresponding to I. Let
H± be the real planes obtained by perturbing H to two different sides of
the node. Since the pencil of real planes through Π defines a totally real
map SrΠ→ P1 (i.e. the inverse image of RP1 coincides with RS), the
triples (RXA0 ,RS, S ∩ RH±) and (X,Λ,∆±) are homeomorphic. �

Lemma 7.9. Any two Hopf triples (X,Λ, D1) and (X,Λ, D2) on the
same planar chord diagram (X,Λ) can be linked with a sequence of
chord moves.

Proof. Inductively by δ we may assume that the lemma holds for all
planar chord diagrams in less than δ chords. Since (X,Λ) is dual to a
tree, there exists a chord I dual to a leaf edge of the tree.

This means that there exists a planar loop α adjacent to I and
not adjacent to any other chord of (X,Λ). We apply the induction
hypothesis to the diagram obtained by removing I from (X,Λ) and the
divisors obtained by removing α ∩Dj from Dj, j = 1, 2. �

Corollary 7.10. Two MWλ-links of the same degree and chirality are
rigidly isotopic if they can be degenerated to the nodal Hopf link with
the same chord diagram.

Proof. To deduce this statement from Proposition 7.7 it suffices to show
that there exists an open neighborhood of the map ιD : S → P3 (with δ
nodes in the image) in the space of all holomorphic maps S → P3 of the
same degree such that the space inside this neighborhood formed by
the MWλ-links is open and connected. Corollary 6.2 implies such con-
nectedness once we perturb only one coordinate of P3 leaving the other
coordinates (responsible for the planar diagram in RP2) unchanged.
Combining this with local connectedness of the space of perturbations
of the planar diagram we get the statement. �

8. Generalization and proof of Theorem 3

We say that a degree-chord diagram (X,Λ), see Definition 4.9, is
realized by an MWλ-link L0 ⊂ RP3 if X(L0) is homeomorphic to (X,Λ)
as the chord diagram and a generic real plane section of L0 containing
a pair of complex conjugate point has a(λ) points on each planar loop
λ in X(L0). Recall that a(λ) does not depend on the choice of the
plane section.
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The following theorem generalizes Theorem 3 to nodal MWλ-links.
Thus its proof also provides a proof of Theorem 3.

Theorem 4. The nodal MWλ-links of degree d and genus g are clas-
sified up to rigid isotopy by the degree-chord diagrams.

Namely, any planar degree-chord diagram (X,Λ) in l = g+ 1 circles
with δ chords and the degree function on the planar loops satisfying to
(4) is realized by a nodal MWλ-link of genus g and degree d. Any two
nodal MWλ-links with the same degree-chord diagram and the same
chirality (i.e. the sign of wλ for its smooth MWλ-perturbation) are
rigidly isotopic.

Suppose that (X,Λ) is a planar degree-chord diagram of nodal Hopf
link (i.e. with the degree of each planar loop equal to 1). Consider the
diagram (Y,Λ) obtained from (X,Λ) by removing some chords. Then
(Y,Λ) is also a planar chord diagram. A planar loop λ of Y is composed
of several planar loops of X. We set the degree of λ to be the number
of such planar loops in X.

Lemma 8.1. The degree-chord diagram (Y,Λ) is realizable as the result
of perturbation of a nodal Hopf link with the chord diagram (X,Λ).

Proof. Consider a real algebraic chord diagram XS corresponding to
(X,Λ), and a divisor D with a pair of complex conjugate points and
a single non-nodal point at each of the planar loops of XS. Let ιD :
S → |D|∨Σ ≈ P3 be the corresponding map (as in (8)). As in the proof
of Proposition 7.6, by Corollary 6.2, Lemma 5.4, and Lemma 6.3 the
nodes corresponding to the chords missing in (Y,Λ) may be perturbed
in a positive way keeping the other nodes. The result is a nodal MWλ-
link LY as it could be further perturbed to a smooth MWλ-link. The
number of points of LY in its plane section near D agrees with our
definition of a(λ). �

Suppose (X,Λ) is a planar chord diagram, and x, y, z ∈ Λ be three
distinct points different from the endpoints of the chords and contained
in a single planar loop λ of X in the order agreeing with the cyclic
orientation of λ. Consider a point y′ on λ close to y and a point z′ on
λ close to z so that the cyclic order of x, y, y′, z, z′ agrees with that on
λ.

Form a planar diagram (Y,Λ) by attaching two new chords to X:
the one connecting x and y and the one connecting y′ and z, see Figure
3. Also form a planar diagram (Z,Λ) by attaching two new chords to
X: the one connecting x and z′ and the one connecting y and z. In
this case we say that the chord diagrams (Y,Λ) and (Z,Λ) differ by a
chord slide.
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Figure 3. The chord diagrams (Y,Λ), (Z,Λ) and the
resulting modification of nodal links.

Let (X ′,Λ) be the plane diagram obtained from (Y,Λ) by remov-
ing the chord [xy] from (Y,Λ) (which results in the same diagram as
removing the chord [xz′] from (Z,Λ)). One of the planar loop of X ′

corresponds to two planar loops of Y (or of Z). We set its degree equal
to 2. All other planar loops have degree 1. This turns (X ′,Λ) into a
degree-chord diagram. We consider the diagrams (Y,Λ) and (Z,Λ) as
the degree-chord diagrams with the degrees of all planar loops equal to
1.

Lemma 8.2. Suppose that two nodal MWλ-links Ly, Lz ⊂ RP3 both
have the degree-chord diagram (X ′,Λ), and degenerate to nodal Hopf
links with the chord diagrams (Y,Λ) and (Z,Λ). Then Ly and Lz are
rigidly isotopic.

Proof. Choose a real Riemann surface S of genus g with l = g + 1 real
branches, and an orientation-preserving homeomorphism between RS
and Λ. Consider the real algebraic chord diagram Y 0

S on S obtained by
attaching all chords of the diagram (X,Λ), a chord connecting x and
y, and a chord connecting y and z. Also consider the real algebraic
chord diagram Z0

S on S obtained by attaching all chords of the diagram
(X,Λ), a chord connecting x and z, and a chord connecting y and z.
Note that both Y 0

S and Z0
S are planar diagrams which are not nodal.

Also note that that Y 0
S and Z0

S can be perturbed to nodal diagrams YS
and ZS from Figure 3.

Choose a divisor on D of degree l + δ + 2 consisting of a pair of
complex conjugate points on S and a single non-nodal point at each
planar cycle of RY 0

S . Note that then the same divisor will have a single
point at each planar cycle of RZ0

S.
Real algebraic chord diagrams Y 0

S and Z0
S define the same map ιD :

S → |D|Σ ≈ P3 since the linear system |D|Σ is the same for both
diagrams: the functions in VD have the same values at x, y and z.
The image A = ιD(S) has a triple point with three real branches at
τ = ιD(x) = ιD(y) = ιD(z), the rest of the singularities are nodes
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corresponding to the chords of (X,Λ). This can be seen in the same
way as in the proof of Proposition 7.6.

We claim that all three local branches of A cannot be tangent to
the same plane, as otherwise the corresponding plane section has a
tangency of order 6 that must be repartitioned to the planar cycles.
There are l + g − 3 planar cycles which are not adjacent to the points
x, y, z ∈ Y 0

S . As the degree of each of them is 1, and the degree of A is
l + g + 2 we get a contradiction. Thus we may choose a generic point
p ∈ RP3 so that the local intersection sign of the y-branch and the
z-branch with the x-branch of πp ◦ ιD(RS) ⊂ RP2 coincide, see Figure
4. As in the proof of Proposition 7.6 we change the coordinates in RP3

branchx

branches

y and z

branches

y and z

branchx

Figure 4. Perturbation of the triple point.

so that p = (0 : 0 : 0 : 1).
Let Σ′ be the singular surface obtained by contracting S along each

chord of (X ′,Λ). Using Corollary 6.2 and Lemma 5.4 (cf. Lemma 6.3)
we may perturb the map ιD keeping the image of the curve under πp
(the plane diagram) so that it factors through an embedding of Σ′, and
so that the new crossing points resulting from the perturbation are
positive, see Figure 4. Performing the same perturbation for a family
of chord diagrams connecting Y 0

S to YS and Z0
S to ZS we obtain an

isotopy between MWλ-links degenerating to the nodal Hopf links with
the chord diagrams (Y,Λ) and (Z,Λ). �

Proof of Theorem 4. If we have two nodal MWλ-links corresponding
to the same planar degree-chord diagram (X,Λ) then both of them
degenerate to nodal Hopf links as in Proposition 3.3. The chord dia-
grams of these nodal Hopf links must contain (X,Λ) as a subdiagram
so that the degree of a planar cycle in X equals to the number of the
planar cycles that appear in the subdivisions of this cycle in the larger
diagrams. But then the two larger chord diagrams can be connected
with a sequence of chord slides. Theorem now follows from Lemma 8.2.

�
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