ON RIGID RATIONAL CUSPIDAL PLANE CURVES

M. G. ZAIDENBERG, S. YU. OREVKOV

Let Y be a smooth affine algebraic surface over \mathbb{C} . Suppose that it is \mathbb{Q} -acyclic, i.e. $H_i(Y; \mathbb{Q}) = 0$, i > 0, and that it is of log-general type, i.e. $\bar{k}(Y) = 2$ where \bar{k} is the logarithmic Kodaira dimension (see [4], [5], [7]). In [2], it is asked if such a surface is necessarily rigid. The rigidity means that $h^1(\Theta) = 0$ where X is the minimal smooth completing of Y by a simple normal crossing divisor (SNC-divisor) D, and $\Theta = \Theta_X \langle D \rangle$ is the logarithmic tangent bundle of X along D. If $\bar{k} = 2$ then all known \mathbb{Q} -acyclic surfaces are rigid. For $\chi = h^0 - h^1 + h^2$, one has $\chi(\Theta) = (K_X + D)^2 + 2$ (see [2, Lemma 1.3(5)]).

1. Statement of the result. Consider a plane irreducible curve D. It is easy to see that $Y = \mathbb{P}^2 \setminus D$ is Q-acyclic if and only if D is rational and cuspidal (we say that a curve is *cuspidal*, if all its singularities are *cusps*, i.e. analytically irreducible). If D has at least three cusps then $\bar{k}(Y) = 2$ (see [9]). The rigidity of Y is equivalent to the projective rigidity of D: any embedded equisingular deformation is projectively equivalent to D [3, (2.1)]. The rigidity has place in all known examples [3]. This note is devoted to a proof of the following fact.

Proposition (1.1). (see [8]). A projectively rigid rational cuspidal curve in \mathbb{P}^2 has at most 9 cusps.

2. Logarithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality. Let D be an SNCcurve on a smooth projective surface X, and let $Y = X \setminus D$. If $\bar{k}(Y) \ge 0$ then there exists the Zariski decomposition K + D = H + N where H, N are \mathbb{Q} -divisors on X such that (i) the intersection form is negative definite on the subspace V_N generated by irreducible components of N (in particular, $N^2 \le 0$); (ii) $HC \ge 0$ for each irreducible curve $C \subset X$; (iii) H is orthogonal to V_N (hence, $(K + D)^2 = H^2 + N^2$).

Theorem (2.1). [7], [5]. If $\bar{k}(Y) = 2$ then $H^2 \leq 3e(Y)$ where e is the Euler characteristic.

3. Dual graph. Let E be an SNC-curve on a smooth surface whose irreducible components are E_1, \ldots, E_k . Let $A_E = (E_i \cdot E_j)_{ij}$ be its intersection matrix. This is the same as the incidence matrix of the *dual graph* Γ_E of E. Its vertices correspond to the irreducible components of Eand the edges correspond to their intersection points; the weight of a vertex is defined as the self-intersection number of the corresponding component. Set $d(\Gamma_E) = \det(-A_E)$. An extremal linear branch of a graph will be called a *twig*. Let us denote the endpoint of a twig T by tip(T). The *inductance* of a twig T is $\operatorname{ind}(T) = d(T - \operatorname{tip}(T))/d(T)$. Applying Cramer's rule, we get the following lemma.

Lemma (3.1). If Γ is a weighted tree with $d(\Gamma) \neq 0$ and $B = (b_{ij}) = A^{-1}$ where A is the incidence matrix then $b_{ij} = -d(\Gamma - [ij])/d(\Gamma)$ where [ij] is the minimal subgraph containing the *i*-th and the *j*-th vertex.

Combining (3.1) with Jacobi's formula for a minor of the inverse matrix, applied to the 2×2 -minor corresponding to the vertices v and v_0 , we get one more lemma:

Lemma (3.2). Let Γ be a weighted tree, T its twig incident to $v_0 \in \Gamma - T$, and $v = \operatorname{tip}(T)$. Set $d_T(\Gamma) = d(\Gamma - T - v_0)$. Then $d_T(\Gamma) = d(\Gamma - v)d(T) - d(\Gamma)d(T - v)$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Corollary (3.3). If $d(\Gamma) = 1$ and $d(T) \neq 0$ then $\operatorname{ind}(T) =]d_T(\Gamma)/d(T)[$. (Here]a[denotes [a] - a where $[a] := \min\{n \in \mathbb{Z} \mid n \geq a\}$.)

4. Puiseux expansion and dual graph of resolution. Let C be a germ of a plane irreducible analytic curve at a singular point p, and let $E = \bigcup E_i$ be the exceptional curve of a minimal resolution of the singularity. Let Γ be the dual graph of $E \cup C$. In suitable analytic coordinates, C has the form $x = t^n$, $y = a_m t^m + a_{m+1} t^{m+1} + \ldots$ Set $d_1 = n$, $m_i = \min\{j \mid a_j \neq 0 \text{ and } j \neq 0 \mod d_i\}$, $d_{i+1} = \gcd(d_i, m_i)$. Let h be such that $d_h \neq 1$, $d_{h+1} = 1$. Set $r_1 = m_1$; $r_i = r_{i-1}d_{i-1}/d_i + m_i - m_{i-1}$ for i > 1.

Proposition (4.1). [1] (a). The graph Γ has the form

$$E_1 E_2 E_h C$$

where edges depict linear chains of vertices.

(b) Let R_i , D_i , and S_i be the connected components of $\Gamma - E_i$ respectively to the left, to the bottom, and to the right of E_i . Then $d(R_i) = r_i/d_{i+1}$, $d(D_i) = d_i/d_{i+1}$, $d(S_i) = 1$.

Denote by n_p the sum of the inductances of all twigs of Γ , not containing C.

Corollary (4.2). $n_p = d_1/r_1 [+\sum_{i=1}^h] r_i/d_i [> 1/2.$

Proof. Since $d(\Gamma) = 1$, the required equality follows from (3.3). Hence, $n_p \ge d_1/r_1[+]r_1/d_1[$. It is clear that if 0 < x < 1, $x \ne 1/2$ then |x[+]1/x[> 1/2.

5. Let D be a rational cuspidal curve in \mathbb{P}^2 , and $\sigma : X \to \mathbb{P}^2$ be the minimal resolution of singularities of D, i.e. $\tilde{D} = \sigma^{-1}(D)$ is an SNC-divisor and $X \setminus \tilde{D} = Y$. Let $K + \tilde{D} = H + N$ be the Zariski decomposition. Denote: $S = \operatorname{Sing}(D)$, s = #S.

Lemma (5.1). If $s \ge 3$ then $-N^2 = \sum_{p \in S} n_p$.

Proof. The surface Y is Q-acyclic, moreover, by [9] we have $\bar{k}(Y) = 2$. Therefore, Y does not contain any simply connected curve [10], [6]. Since $s \geq 3$, the graph $\Gamma_{\tilde{D}}$ has at least three brancings. Under these conditions, the statement of the lemma is proved in [4, (6.20)–(6.24)].

Proof of (1.1). Since $\bar{k}(Y) = 2$ (see [9]), log-BMY inequality (2.1) implies $H^2 \leq 3$, hence, by (5.1) and (4.2), we have $(K + \tilde{D})^2 = H^2 - \sum n_p < 3 - s/2$. Let $h^i = h^i(\Theta_X \langle \tilde{D} \rangle)$. Since D is supposed to be rigid, i.e. $h^1 = 0$, we have $(K + \tilde{D})^2 + 2 = \chi(\Theta_X \langle \tilde{D} \rangle) = h^0 + h^2 \geq 0$. Therefore, $s < 6 - 2(K + \tilde{D})^2 \leq 10$.

REFRERENCES

 Eisenbud D., Neumann W.D. // Ann. Math. Stud. V. 110. Princeton: Princeton Univ. Press, 1985. [2] Flenner H., Zaidenberg M. // Contemporary Math. 1994. V. 162. P. 143–208.
Flenner H., Zaidenberg M. // On a class of rational cuspidal plane curves // Preprint, 1995.
P. 1–28. [4] Fujita T. // J. Fac. Sci. Univ. Tokyo (Ser. 1A). 1982. V. 29. P. 505–566. [5] Kobayashi R., Nakamura S., Sakai F. // Proc. Japan Acad. 1989. V. 65(A). P. 238–241. [6] Miyanishi M., Tsunoda S. // J. Math. Kyoto Univ. 1992. V. 32. P. 443–450. [7] Miyaoka Y. // Math. Ann. 1984. V. 268. P. 159–171. [8] Orevkov S.Yu., Zaidenberg M.G. // Algebraic Geometry. Proc. Conf., Santama Univ., March 15–17, 1995 (to appear). [9] Wakabayashi I. // Proc. Japan Acad. 1978. V. 54(A). P. 157–162. [10] Zaidenberg M.G. // Izv. AN SSSR, Ser. Matem. 1987. V. 51. P. 534–567; 1991. V. 55. P. 444–446. (in Russian); English transl.: Math. USSR-Izv. 1988. V. 30. p. 503–532; 1992. V. 38. p. 435–437.

Univeristé Grenoble I

System Study Inst., Russ. Acad. Sci., Moscow