ON RIGID RATIONAL CUSPIDAL PLANE CURVES

M. G. Zaidenberg, S. Yu. Orevkov

Let Y be a smooth affine algebraic surface over \mathbb{C}. Suppose that it is \mathbb{Q}-acyclic, i.e. $H_{i}(Y ; \mathbb{Q})=0$, $i>0$, and that it is of log-general type, i.e. $\bar{k}(Y)=2$ where \bar{k} is the logarithmic Kodaira dimension (see [4], [5], [7]). In [2], it is asked if such a surface is necessarily rigid. The rigidity means that $h^{1}(\Theta)=0$ where X is the minimal smooth completing of Y by a simple normal crossing divisor (SNC-divisor) D, and $\Theta=\Theta_{X}\langle D\rangle$ is the logarithmic tangent bundle of X along D. If $\bar{k}=2$ then all known \mathbb{Q}-acyclic surfaces are rigid. For $\chi=h^{0}-h^{1}+h^{2}$, one has $\chi(\Theta)=\left(K_{X}+D\right)^{2}+2$ (see [2, Lemma 1.3(5)]).

1. Statement of the result. Consider a plane irreducible curve D. It is easy to see that $Y=\mathbb{P}^{2} \backslash D$ is \mathbb{Q}-acyclic if and only if D is rational and cuspidal (we say that a curve is cuspidal, if all its singularities are cusps, i.e. analytically irreducible). If D has at least three cusps then $\bar{k}(Y)=2$ (see [9]). The rigidity of Y is equivalent to the projective rigidity of D : any embedded equisingular deformation is projectively equivalent to $D[3,(2.1)]$. The rigidity has place in all known examples [3]. This note is devoted to a proof of the following fact.

Proposition (1.1). (see [8]). A projectively rigid rational cuspidal curve in \mathbb{P}^{2} has at most 9 cusps.
2. Logarithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality. Let D be an SNCcurve on a smooth projective surface X, and let $Y=X \backslash D$. If $\bar{k}(Y) \geq 0$ then there exists the Zariski decomposition $K+D=H+N$ where H, N are \mathbb{Q}-divisors on X such that (i) the intersection form is negative definite on the subspace V_{N} generated by irreducible components of N (in particular, $N^{2} \leq 0$); (ii) $H C \geq 0$ for each irreducible curve $C \subset X$; (iii) H is orthogonal to V_{N} (hence, $\left.(K+D)^{2}=H^{2}+N^{2}\right)$.
Theorem (2.1). [7], [5]. If $\bar{k}(Y)=2$ then $H^{2} \leq 3 e(Y)$ where e is the Euler characteristic.
3. Dual graph. Let E be an $S N C$-curve on a smooth surface whose irreducible components are E_{1}, \ldots, E_{k}. Let $A_{E}=\left(E_{i} \cdot E_{j}\right)_{i j}$ be its intersection matrix. This is the same as the incidence matrix of the dual graph Γ_{E} of E. Its vertices correspond to the irreducible components of E and the edges correspond to their intersection points; the weight of a vertex is defined as the self-intersection number of the corresponding component. Set $d\left(\Gamma_{E}\right)=\operatorname{det}\left(-A_{E}\right)$. An extremal linear branch of a graph will be called a twig. Let us denote the endpoint of a twig T by $\operatorname{tip}(T)$. The inductance of a twig T is $\operatorname{ind}(T)=d(T-\operatorname{tip}(T)) / d(T)$. Applying Cramer's rule, we get the following lemma.

Lemma (3.1). If Γ is a weighted tree with $d(\Gamma) \neq 0$ and $B=\left(b_{i j}\right)=A^{-1}$ where A is the incidence matrix then $b_{i j}=-d(\Gamma-[i j]) / d(\Gamma)$ where $[i j]$ is the minimal subgraph containing the i-th and the j-th vertex.

Combining (3.1) with Jacobi's formula for a minor of the inverse matrix, applied to the 2×2 minor corresponding to the vertices v and v_{0}, we get one more lemma:

Lemma (3.2). Let Γ be a weighted tree, T its twig incident to $v_{0} \in \Gamma-T$, and $v=\operatorname{tip}(T)$. Set $d_{T}(\Gamma)=d\left(\Gamma-T-v_{0}\right)$. Then $d_{T}(\Gamma)=d(\Gamma-v) d(T)-d(\Gamma) d(T-v)$.

Corollary (3.3). If $d(\Gamma)=1$ and $d(T) \neq 0$ then $\operatorname{ind}(T)=] d_{T}(\Gamma) / d(T)[$. (Here $] a[$ denotes $[a]-a$ where $[a]:=\min \{n \in \mathbb{Z} \mid n \geq a\}$.)
4. Puiseux expansion and dual graph of resolution. Let C be a germ of a plane irreducible analytic curve at a singular point p, and let $E=\bigcup E_{i}$ be the exceptional curve of a minimal resolution of the singularity. Let Γ be the dual graph of $E \cup C$. In suitable analytic coordinates, C has the form $x=t^{n}, y=a_{m} t^{m}+a_{m+1} t^{m+1}+\ldots$. Set $d_{1}=n, m_{i}=\min \left\{j \mid a_{j} \neq 0\right.$ and $\left.j \neq 0 \bmod d_{i}\right\}, d_{i+1}=\operatorname{gcd}\left(d_{i}, m_{i}\right)$. Let h be such that $d_{h} \neq 1, d_{h+1}=1$. Set $r_{1}=m_{1}$; $r_{i}=r_{i-1} d_{i-1} / d_{i}+m_{i}-m_{i-1}$ for $i>1$.
Proposition (4.1). [1] (a). The graph Γ has the form

where edges depict linear chains of vertices.
(b) Let R_{i}, D_{i}, and S_{i} be the connected components of $\Gamma-E_{i}$ respectively to the left, to the bottom, and to the right of E_{i}. Then $d\left(R_{i}\right)=r_{i} / d_{i+1}, d\left(D_{i}\right)=d_{i} / d_{i+1}, d\left(S_{i}\right)=1$.

Denote by n_{p} the sum of the inductances of all twigs of Γ, not containing C.
Corollary (4.2). $\left.n_{p}=\right] d_{1} / r_{1}\left[+\sum_{i=1}^{h}\right] r_{i} / d_{i}[>1 / 2$.
Proof. Since $d(\Gamma)=1$, the required equality follows from (3.3). Hence, $\left.n_{p} \geq\right] d_{1} / r_{1}[+] r_{1} / d_{1}[$. It is clear that if $0<x<1, x \neq 1 / 2$ then $] x[+] 1 / x[>1 / 2$.
5. Let D be a rational cuspidal curve in \mathbb{P}^{2}, and $\sigma: X \rightarrow \mathbb{P}^{2}$ be the minimal resolution of singularities of D, i.e. $\tilde{D}=\sigma^{-1}(D)$ is an SNC-divisor and $X \backslash \tilde{D}=Y$. Let $K+\tilde{D}=H+N$ be the Zariski decomposition. Denote: $S=\operatorname{Sing}(D), s=\# S$.
Lemma (5.1). If $s \geq 3$ then $-N^{2}=\sum_{p \in S} n_{p}$.
Proof. The surface Y is \mathbb{Q}-acyclic, moreover, by [9] we have $\bar{k}(Y)=2$. Therefore, Y does not contain any simply connected curve [10], [6]. Since $s \geq 3$, the graph $\Gamma_{\tilde{D}}$ has at least three brancings. Under these conditions, the statement of the lemma is proved in [4, (6.20)-(6.24)].
Proof of (1.1). Since $\bar{k}(Y)=2$ (see [9]), log-BMY inequality (2.1) implies $H^{2} \leq 3$, hence, by (5.1) and (4.2), we have $(K+\tilde{D})^{2}=H^{2}-\sum n_{p}<3-s / 2$. Let $h^{i}=h^{i}\left(\Theta_{X}\langle\tilde{D}\rangle\right)$. Since D is supposed to be rigid, i.e. $h^{1}=0$, we have $(K+\tilde{D})^{2}+2=\chi\left(\Theta_{X}\langle\tilde{D}\rangle\right)=h^{0}+h^{2} \geq 0$. Therefore, $s<6-2(K+\tilde{D})^{2} \leq 10$.

REFRERENCES

[1] Eisenbud D., Neumann W.D. // Ann. Math. Stud. V. 110. Princeton: Princeton Univ. Press, 1985. [2] Flenner H., Zaidenberg M. // Contemporary Math. 1994. V. 162. P. 143-208. [3] Flenner H., Zaidenberg M. // On a class of rational cuspidal plane curves // Preprint, 1995. P. 1-28. [4] Fujita T. // J. Fac. Sci. Univ. Tokyo (Ser. 1A). 1982. V. 29. P. 505-566. [5] Kobayashi R., Nakamura S., Sakai F. // Proc. Japan Acad. 1989. V. 65(A). P. 238-241. [6] Miyanishi M., Tsunoda S. // J. Math. Kyoto Univ. 1992. V. 32. P. 443-450. [7] Miyaoka Y. // Math. Ann. 1984. V. 268. P. 159-171. [8] Orevkov S.Yu., Zaidenberg M.G. // Algebraic Geometry. Proc. Conf., Santama Univ., March 15-17, 1995 (to appear). [9] Wakabayashi I. // Proc. Japan Acad. 1978. V. 54(A). P. 157-162. [10] Zaidenberg M.G. // Izv. AN SSSR, Ser. Matem. 1987. V. 51. P. 534-567; 1991. V. 55. P. 444-446. (in Russian); English transl.: Math. USSR-Izv. 1988. V. 30. p. 503-532; 1992. V. 38. p. 435-437.

Univeristé Grenoble I
System Study Inst., Russ. Acad. Sci., Moscow

