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Let Y be a smooth affine algebraic surface over C. Suppose that it is Q-acyclic, i.e. Hi(Y ; Q) = 0,
i > 0, and that it is of log-general type, i.e. k̄(Y ) = 2 where k̄ is the logarithmic Kodaira dimension
(see [4], [5], [7]). In [2], it is asked if such a surface is necessarily rigid. The rigidity means that
h1(Θ) = 0 where X is the minimal smooth completing of Y by a simple normal crossing divisor
(SNC-divisor) D, and Θ = ΘX〈D〉 is the logarithmic tangent bundle of X along D. If k̄ = 2 then
all known Q-acyclic surfaces are rigid. For χ = h0 − h1 + h2, one has χ(Θ) = (KX +D)2 + 2 (see
[2, Lemma 1.3(5)]).

1. Statement of the result. Consider a plane irreducible curve D. It is easy to see that
Y = P2 \D is Q-acyclic if and only if D is rational and cuspidal (we say that a curve is cuspidal,
if all its singularities are cusps, i.e. analytically irreducible). If D has at least three cusps then
k̄(Y ) = 2 (see [9]). The rigidity of Y is equivalent to the projective rigidity of D: any embedded
equisingular deformation is projectively equivalent to D [3, (2.1)]. The rigidity has place in all
known examples [3]. This note is devoted to a proof of the following fact.

Proposition (1.1). (see [8]). A projectively rigid rational cuspidal curve in P2 has at most 9
cusps.

2. Logarithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality. Let D be an SNC-
curve on a smooth projective surface X, and let Y = X \ D. If k̄(Y ) ≥ 0 then there exists
the Zariski decomposition K + D = H + N where H, N are Q-divisors on X such that (i) the
intersection form is negative definite on the subspace VN generated by irreducible components of
N (in particular, N2 ≤ 0); (ii) HC ≥ 0 for each irreducible curve C ⊂ X; (iii) H is orthogonal to
VN (hence, (K +D)2 = H2 +N2).

Theorem (2.1). [7], [5]. If k̄(Y ) = 2 then H2 ≤ 3e(Y ) where e is the Euler characteristic.

3. Dual graph. Let E be an SNC-curve on a smooth surface whose irreducible components
are E1, . . . , Ek. Let AE = (Ei · Ej)ij be its intersection matrix. This is the same as the incidence
matrix of the dual graph ΓE of E. Its vertices correspond to the irreducible components of E
and the edges correspond to their intersection points; the weight of a vertex is defined as the
self-intersection number of the corresponding component. Set d(ΓE) = det(−AE). An extremal
linear branch of a graph will be called a twig. Let us denote the endpoint of a twig T by tip(T ).
The inductance of a twig T is ind(T ) = d(T − tip(T ))/d(T ). Applying Cramer’s rule, we get the
following lemma.

Lemma (3.1). If Γ is a weighted tree with d(Γ) 6= 0 and B = (bij) = A−1 where A is the incidence
matrix then bij = −d(Γ− [ij])/d(Γ) where [ij] is the minimal subgraph containing the i-th and the
j-th vertex.

Combining (3.1) with Jacobi’s formula for a minor of the inverse matrix, applied to the 2 × 2-
minor corresponding to the vertices v and v0, we get one more lemma:

Lemma (3.2). Let Γ be a weighted tree, T its twig incident to v0 ∈ Γ − T , and v = tip(T ). Set
dT (Γ) = d(Γ− T − v0). Then dT (Γ) = d(Γ− v)d(T )− d(Γ)d(T − v).
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Corollary (3.3). If d(Γ) = 1 and d(T ) 6= 0 then ind(T ) =]dT (Γ)/d(T )[. (Here ]a[ denotes [a]− a
where [a] := min{n ∈ Z |n ≥ a}.)

4. Puiseux expansion and dual graph of resolution. Let C be a germ of a plane
irreducible analytic curve at a singular point p, and let E =

⋃
Ei be the exceptional curve of

a minimal resolution of the singularity. Let Γ be the dual graph of E ∪ C. In suitable analytic
coordinates, C has the form x = tn, y = amt

m + am+1t
m+1 + . . . . Set d1 = n, mi = min{j | aj 6= 0

and j 6= 0 mod di}, di+1 = gcd(di,mi). Let h be such that dh 6= 1, dh+1 = 1. Set r1 = m1;
ri = ri−1di−1/di +mi −mi−1 for i > 1.

Proposition (4.1). [1] (a). The graph Γ has the form

E1 E2 Eh C

where edges depict linear chains of vertices.
(b) Let Ri, Di, and Si be the connected components of Γ − Ei respectively to the left, to the

bottom, and to the right of Ei. Then d(Ri) = ri/di+1, d(Di) = di/di+1, d(Si) = 1.

Denote by np the sum of the inductances of all twigs of Γ, not containing C.

Corollary (4.2). np =]d1/r1[+
∑h

i=1]ri/di[> 1/2.

Proof. Since d(Γ) = 1, the required equality follows from (3.3). Hence, np ≥]d1/r1[+]r1/d1[. It is
clear that if 0 < x < 1, x 6= 1/2 then ]x[+]1/x[> 1/2.

5. Let D be a rational cuspidal curve in P2, and σ : X → P2 be the minimal resolution of
singularities of D, i.e. D̃ = σ−1(D) is an SNC-divisor and X \ D̃ = Y . Let K + D̃ = H + N be
the Zariski decomposition. Denote: S = Sing(D), s = #S.

Lemma (5.1). If s ≥ 3 then −N2 =
∑

p∈S np.

Proof. The surface Y is Q-acyclic, moreover, by [9] we have k̄(Y ) = 2. Therefore, Y does not
contain any simply connected curve [10], [6]. Since s ≥ 3, the graph ΓD̃ has at least three
brancings. Under these conditions, the statement of the lemma is proved in [4, (6.20)–(6.24)].

Proof of (1.1). Since k̄(Y ) = 2 (see [9]), log-BMY inequality (2.1) implies H2 ≤ 3, hence, by
(5.1) and (4.2), we have (K + D̃)2 = H2 −

∑
np < 3 − s/2. Let hi = hi(ΘX〈D̃〉). Since D is

supposed to be rigid, i.e. h1 = 0, we have (K + D̃)2 + 2 = χ(ΘX〈D̃〉) = h0 + h2 ≥ 0. Therefore,
s < 6− 2(K + D̃)2 ≤ 10.
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