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Abstract. Let Bm = 〈σ1, . . . , σm |σjσj+1σj = σj+1σjσj+1, [σj , σk] = 1 for |k −

j| > 1〉 be the braid group. A braid b is called quasipositive if it has the form

b = (a1σ1a
−1

1
) . . . (akσ1a

−1

k
). Using Gromov’s theory of pseudo holomorphic curves,

we prove that b ∈ Bm is quasipositive if and only if bσm ∈ Bm+1 is quasipositive.

Let Bm denote the group of braids with m strings (m-braids). Recall that it is
defined by generators σ1, . . . , σm−1 and relations [σj, σk] = 1 for |k − j| > 1 and
σjσkσj = σkσjσk for |k − j| = 1. An m-braid b is called quasipositive (see [6]) if

b =
∏k

j=1
ajσ1a

−1

j for some braids aj ∈ Bm (recall that all standard generators are

conjugated).
One says that b′ ∈ Bm+1 is obtained from b ∈ Bm by a Markov move if b′ =

bσε
m for ε = ±1 (we identify here Bm with the subgroup of Bm+1 generated by

σ1, . . . , σm−1). Say that the Markov move is positive if ε = 1 and negative otherwise.
It follows immediately from the definitions that a braid is quasipositive if it is
obtained from a quasipositive braid by a positive Markov move. Here we prove the
converse.

Theorem 1. Let b′ ∈ Bm+1 be obtained from b by a positive Markov move. If b′

is quasipositive then b is also quasipositive.

This is a pure existence theorem. Our proof is based on Gromov’s theory of
pseudo holomorphic curves [2] and it is absolutely non-constructive: we do not know
an algorithm to find a quasipositive presentation of b starting with a quasipositive
presentation of b′.

Theorem 1 can be applied to the study of the topology of plane real algebraic
curves because the realisability of an arrangement of ovals by an algebraic curve
of a given degree implies that a certain braid is quasipositive (see [5]). In another
paper we shall give examples of such applications.

The idea of the proof also came from the topology of real algebraic curves. It was
the result of the following observation. Let C ⊂ RP2 be an algebraic curve and A is
its small convex arc whose convex hull contains a point p and does not contain other
parts of C. Then the braid corresponding to the projection from p is obtained by a
positive Markov move from the braid corresponding to the projection from a point
on A. In the proof of Theorem 1 we simulate this situation by pseudo-holomorphic
curves.

Remark. If b′ is obtained from any braid b by a negative Markov move then b′ is
never quasipositive. This is an immediate consequence of the following result of
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Burckel [1] and Laver [3] (a geometric proof was given by Wiest [7]): any conjugate

of a quasipositive braid is positive in Dehornoy’s right-invariant order.
Say that an oriented link in 3-sphere is a quasipositive link if it is isotopic to the

closure of a quasipositive braid.

Question 1. Let L be a quasipositive link and b a braid representing L with the
minimal possible number of strings. Is it true that b is quasipositive?

In the case when b is a 2-braid (i.e. the braid index of L is 2), the affirmative
answer follows immediately from the fact that for a non-slice link L, at most one
of L and its mirror image can be quasipositive (see [6]).

Question 2. Let b1 and b2 be two quasipositive braids representing the same link.
Is it always possible to pass from b1 to b2 using only conjugations and positive
Markov move?

Recall that a smooth oriented 2-surface F in a smooth symplectic 4-manifold
(X,ω) is called symplectic if j∗(ω) is positive on F where j is the embedding F ⊂ X .
Let (z, w), z = x + iy, w = u + iv, i =

√
−1, be coordinates in C2 and ω0 the

standard symplectic form ω0 = dx ∧ dy + du ∧ dv.

Lemma. Let F ∈ C2 be the graph of a smooth function w = f(z) = u(z) + iv(z)

defined in a domain D ⊂ C. If |u′

x|, |u′

y|, |v′x|, |v′y| < 1/
√
2 then F is symplectic.

Proof. Let p(z, w) = z. Then ((p|F )−1)∗(ω0) = (1 + u′

xv
′

y − u′

yv
′

x)dx ∧ dy. �

We shall consider m-braids as isotopy classes ofm-valued functions f : [0, 1] → C

such that each of f(0) and f(1) is a set of m points with distinct real parts. The
generator σk ∈ Bm is represented by t 7→ {1, . . . , k−1, k+(1±eπit)/2, k+1, . . . , m}.

Proof of Theorem 1. Denote the conic w2−2w = z2 by H and let p = (0, 2) ∈ H.
Denote the cylinder {(z, w) | Im z ≥ 0, |z| ≤ 3} by C∞. Let D be the half-disk
C∞ ∩ {w = 0} and Cp = {(z, w) | Im

(

2z/(2− w)
)

≥ 0, |2z/(2− w)| ≤ 3} the cone
over D with the vertex p (the union of all complex lines (pp′), p′ ∈ D).

H is the graph of the 2-valued function w = 1 ±
√
1 + z2. It has two points

of ramification z = ±i. Let h− and h+ be the single-valued branches in the band
{| Im z| < 1} such that h−(0) = 0 and h+(0) = 2. Denote also the graphs of h−

and h+ by H− and H+.
Denote the cylinder {(z, w) | Im z = 0 , |z| ≤ 1, |w| ≤ 1 } by U . Let us fix a

geometric realization B ⊂ U of the braid σ−1

1 σ−1

2 . . . σ−1

m−1b σ−1

m−1 . . . σ
−1

2 σ−1

1 such

that B ∩
(

{±1} ×C
)

= {±1} × ({−1} ∪X) where X is a finite set {x2, . . . , xm} ⊂
[−1/2, 1/2]. Thus, the ”lower corners” (−1,−1) and (1,−1) belong to B (they
correspond to the first string of the braid).

For a real ε > 0, let Uε, and Bε be the images of U , and B under the lin-
ear transformation (z, w) 7→

(

εz/2 , −h−(ε/2)w
)

, and let Xε = {x2,ε, . . . , xm,ε}
where xj,ε = −h−(ε/2)xj (so, we place the ”lower corners” of Uε onto the lower
branch of H). Bε is the graph of an m-valued function w = f(z) defined on
the segment [−ε/2, ε/2]. Let us continue f to the rectangle R = {|Re z| ≤
ε, | Im z| ≤ ε}. If |Re z| ≤ ε/2, we put f(z) = f(Re z). If |Re z| ≥ ε/2, we put
f(z) = {f1(z), x2,ε, . . . , xm,ε}. where f1(z) = h−(z) for Re z = ±ε, f1(z) = h−(ε/2)
for Re z = ±ε/2, and f1 is linear on each segment [±ε+yi, ±ε/2+yi] with |y| ≤ ε.
For small z, we have h−(z) = −z2 + o(z2). Hence, for ε ≪ 1, the branches of f do
not meet each other (see Figure 1).
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Let Eε = R × {|w| ≤ ε} and let Fε ⊂ Eε be the graph of f . When ε → 0, the
height of Uε decreases faster than the width. Hence, maxz∈R |f ′(z)| → 0, and one
can choose ε so small that the complexifications of real lines passing through p meet
Fε transversally and cut from it a braid Bp

ε which is equivalent to B. For such ε,
the graph of the restriction of f onto the upper side of R is contained in Cp.

Put L = C ×Xε and B̄ε = Bε ∪
(

((H ∪ L) ∩ ∂C∞) \ Uε

)

. In other words, B̄ is
the graph of an (m + 1)-valued function on the closed curve ∂D. This function is
defined as {f, h+} on [−ε, ε] and {h+, h−, x2,ε , . . . , xm,ε} outside [−ε, ε]. It is easy
to check that the braid represented by B̄ is conjugated to b′ = bσm (see Figure 3).

b

−ε-3 3ε i3 -3

Figure 3

Now, let us construct a symplectic surface F in C∞∪Cp such that F ∩∂C∞ = B̄
and F ∩ ∂Cp represents b.

For z ∈ C, let Cp(z) = {w | (z, w) ∈ Cp} be the fiber of Cp over z. We have

Cp(z) = {w | Im z̄(w − 2) ≥ 0, |2z| ≤ 3 · |2− w|}
= {w | Arg(w − 2) ∈ [θ, π + θ], |w − 2| ≥ 2r/3}, z = reθi.

In Figure 4, the domain Cp(z) is shaded.
The vertical line {z = i} is tangent to H at q = (i, 1). It is easy to check (see

Figure 4) that there exist r∗, 1 < r∗ < 2 and a small disk D∗ ⊂ C centred at
i such that (D∗ × C) ∩ (H ∪ L) ⊂ E∗ ⊂ Cp where E∗ = D∗ × {|w| ≤ r∗}. Let
T ⊂ C be the triangle with vertices −ε + εi, ε + εi, i (see Figure 2). Denote
ET = (T \D∗)×{|w| <≤ 1} and E = Eε ∪ET ∪E∗. One can check (see Figure 4)
that ET ∪ E∗ ⊂ Cp.

Define F as Fε ∪FT ∪F ∗ ∪
(

(H ∪L) \E
)

where Fε ⊂ Eε was constructed above
and the surfaces FT ⊂ ET and F ∗ ⊂ E∗ are as follows.
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It is easy to check that |h−(z)| < 1 for z ∈ T (see Figure 5). Hence, the part of
F \H+ which is already constructed, defines pairwise disjoint sections over (∂T )\D∗

of the trivial fibration E∗ → T \D∗, (z, w) 7→ z. They can be extended to pairwise
non-intersecting global sections. Let us define FT as the union of their graphs.
Note that FT ∩H+ = ∅ because H+ is outside ET (see Figure 5).
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Figure 4 Figure 5

Let us construct F ∗. Since F ∩
(

(D \ D∗) × C
)

is unbranched over D \ D∗,

its boundary braid over ∂D∗ is b′. Let
∏k

j=1
ajσ1a

−1

j be a quasipositive presenta-

tion of b′ (with respect to some base point z0). Inside D∗, choose distinct points
z1, . . . , zk and paths αj connecting z0 to some z′j ∈ ∂Dj where Dj = {|z − zj | ≤
δ2}. Define Fj = F ∩ (Dj × C) as the graph of the (m + 1)-valued function
z 7→ {±√

z − zj , 2δ, . . . , mδ} on Dj . When δ ≪ 1, we have Fj ⊂ E∗.
Note that each Fj ∩ (∂Dj ×C) represents the braid σ1 ∈ Bm+1. Let us define

the sets Aj = F ∪ (αj ×C) so that they geometrically represent the braids aj and
define the part of F over D∗ \ ⋃

(Dj ∪ αj) as the graph of an isotopy between b′

and
∏k

j=1
ajσ1a

−1

j . Since both braids are inside E∗, the isotopy can be chosen also
inside E∗.

Let z∗ = 2z/(2−w), w∗ = w/(2−w) be the affine coordinates in CP2 where Cp

is the cylinder {(z∗, w∗) | Im z∗ ≥ 0, |z∗| ≤ 3} over D. Then F defines an m-valued
function w∗(z∗) on ∂D. The corresponding braid is b. Indeed, the branches of
F ∩ ∂Cp close to ∂D are isotopic to those of F ∩ ∂C∞, and H becomes a parabola
w∗ = −z2

∗
/4, hence, the braid looks as in Figure 6.

b

−ε-3 3ε -3

Figure 6 Figure 7

Let us describe what happens with the braid when the projection point pt moves
continuously from (0 : 1 : 0) to p along the segment z = Rew = 0, Imw ≥ 2 (the
segment z∗ = Rew∗ = 0, Im z∗ ≤ 1 in coordinates (z∗ , w∗)). The two branches of
H over the point q0 = (3i, 0) approache each other and at the moment when the
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line (pt, q0) is tangent to H, they bifurcate as in Figure 7. After the bifurcation,
σm disappears and the (m+1)-th string turns into a circle non-linked with the rest
of the braid. Then this circle mounts and goes away to infinity.

Let us smooth the constructed surface F in small neighbourhoods of its non-
smooth points. The surface F ⊂ (C∞ ∩ Cp) contains a complex analytic part
Fan such that F \ Fan is compact and unbranched with respect to the projection
(z, w) 7→ z. Hence, A(F ) is symplectic by Lemma where A(z, w) = (z, aw), 0 <
a ≪ 1, and B(F ) is symplectic with respect to Fubini-Studi symplectic form ωFS on
CP2 where B(z, w) = (bz, aw), 0 < a ≪ b ≪ 1 (we suppose that C2 is embedded
to CP2 by (z, w) 7→ (z : w : 1)). Thus, the closure of F in CP2 is symplectic with
respect to ω = B∗(ωFS).

Let us choose an almost complex structure J , tamed by ω (see [2]), such that
F and all lines (pp′) for p′ ∈ ∂D are J-holomorphic. This is possible because all
these lines meet F transversally and the intersections are positive. By the results
of Gromov [2], Cp \ {p} is fibered over D by J-holomorphic lines passing through
p. Since F is J-holomorphic, its projection onto D along the fibers is a branched
covering which has only positive ramifications (see [4]1). Hence, b is quasipositive.
Theorem 1 is proven.
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