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Abstract. We prove that the connected sum of two links is quasipositive if and only

if each summand is quasipositive. The proof is based on the filling disk technique.

1. Introduction

An n-braid is called quasipositive if it is a product of conjugates of the standard
(Artin’s) generators σ1, . . . , σn−1 of the braid group Bn. A braid is called strongly
quasipositive if it is a product of braids of σj,k+1 = τk,jσjτ

−1

k,j for j ≤ k where

τk,j = σkσk−1 . . . σj . Such braids are called band generators (they are also known
as the generators in the Birman-Ko-Lee presentation of Bn, see [3]).

All links in this paper are assumed to be oriented links in the 3-sphere S3. A link
is called (strongly) quasipositive if it is the braid closure of a (strongly) quasipositive
braid. This terminology was introduced by Lee Rudolph (see [13, 14]) and now it
has become standard in the knot theory.

The main result of this note is the (a) statement of the following theorem.

Theorem 1. Let L = L1#L2 be the connected sum of two links in S3. Then:

(a). L is quasipositive if and only if L1 and L2 are.

(b). L is strongly quasipositive if and only if L1 and L2 are.

Note that the (b) statement of this theorem is an almost immediate corollary of
the main result of [14] (see §3). I added it just for the sake of completeness as well
as the following two theorems.

Theorem 2. Let L = L1 ⊔ L2 be the split sum of two links in S3. Then:

(a). L is quasipositive if and only if L1 and L2 are.

(b). L is strongly quasipositive if and only if L1 and L2 are.

Let shm : Bn → Bm+n be the homomorphism defined on the generators by
σk 7→ σm+k (the m-shift). If links L1 and L2 are represented by braids X1 ∈ Bm

and X2 ∈ Bn, then L1 ⊔ L2 and L1#L2 can be represented by the braids

X1 shm(X2) ∈ Bm+n and X1 shm−1(X2) ∈ Bm+n−1 (1)

respectively. So, the next result is a braid-theoretic counterpart of Theorem 2.
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Theorem 3. Let X1 ∈ Bm and X2 ∈ Bn. Let X = X1 shm(X2) ∈ Bm+n. Then:

(a). ([12, Thm. 3.2]) X is quasipositive if and only if X1 and X2 are.

(b). X is strongly quasipositive if and only if X1 and X2 are.

Conjecture 4. Let X1 ∈ Bm and X2 ∈ Bn. Let X = X1 shm−1(X2) ∈ Bm+n−1.
Then X is quasipositive if and only if X1 and X2 are.

Remark 5. A particular case of Conjecture 4 is the main result of [11] which states
that an n-braid X is quasipositive if and only if the (n+ 1)-braid Xσn is.

Remark 6. In [11, Question 1] I asked if the minimal braid index representative
of a quasipositive link is necessarily a quasipositive braid. In virtue of Theorem
1(a), an affirmative answer to this question combined with arguments from [9] would
imply Conjecture 4. Indeed, the self-linking number (the algebraic length minus the
number of strings) of a quasipositive braid is maximal over all braids representing
the same link type, see e.g. [15]. It follows that, in the setting of Conjecture 4, it
is maximal for each Xj , j = 1, 2. Then, as shown in the proof of [9, Thm. 1.2],
Xj can be transformed into a braid X ′

j with the minimal number of strings by
conjugations and positive (de)stabilizations only. Hence Theorem 1(a) combined
with an affirmative answer to [11, Question 1] would imply the quasipositivity of
X ′

j which is equivalent to that of Xj by [11, Thm. 1]. See also [8, 9] for some
interesting results related to [11, Question 1].

Remark 7. In particular, Theorem 3(a) implies that an n-braid is quasipositive, if
so is the m-braid given by the same braid word for some m ≥ n (see [12, Thm. 3.1]).
This fact is also an immediate formal consequence from the invariance of quasipos-
itivity under destabilizations (see [11] and Remark 5). Indeed, if X ∈ Bn and the
(n + 1)-braid given by the same braid word is quasipositive, then evidently so is
Xσn ∈ Bn+1 whence, by [11], X as well.

Remark 8. All the discussed statements concerning (not strongly) quasipositive
braids are purely combinatorial whereas their proofs are based on the (almost)
complex analysis, PDE, etc. The only particular case where I know a combinatorial
proof is the statement in Remark 7; see [12, §3.3].

Remark 9. Conjecture 4 is a braid-theoretical counterpart of Theorem 1(a). Using
the Birman-Ko-Lee version of Garside’s theory [3], one can easily prove several
analogs of Theorem 1(b) for braids. However, they do not seem to be of any
interest because the strong quasipositivity is not invariant under conjugations.

Acknowledgements. I am grateful to Michel Boileau for attracting my attention
to this topic and to Nikolay Kruzhilin and Stefan Nemirovski for useful discussions.
Also I thank the referee for correcting some errors.

2. Quasipositive links: proof of the (a) cases of the theorems

The proofs of the (a) cases of the theorems are inspired by Eroshkin’s paper
[7] which is based on the filling disk technique [1, 6, 10]. In fact, Theorems 2(a)
and 3(a) are almost immediate consequences from [7] (see [12, Thm. 3.2] for more
details). Our proof of Theorem 1(a) is a combination of a more precise version
of Bedford-Klingenberg-Kruzhilin’s Theorem (with the smoothness of the Levi-flat
hypersurface), the smoothing of pseudoconvex domains, and the result from [4]
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which states that the boundary link of an algebraic curve in a pseudoconvex ball is
a quasipositive link.

Lemma 10. Let Ω be a bounded pseudoconvex domain in C2 with smooth boundary.
Let B ⊂ Ω be a smooth Levi-flat hypersurface transverse to ∂Ω, and A be a smooth
two-dimensional surface transverse to both B and ∂Ω. Suppose that Ω \ B has
two connected components Ω1 and Ω2. Then for each j = 1, 2, there exists a
strictly pseudoconvex domain Ω−

j ⊂ Ωj with smooth boundary such that the pairs

(Ωj , A ∩ Ωj) and (Ω−

j , A ∩ Ω−

j ) are homeomorphic.

Proof. We identify C2 with an affine chart of CP2. Let j = 1 or 2. For z ∈ Ωj , we
define d(z) as the distance from p to ∂Ωj with respect to the Fubini-Study metric

on CP
2. By [16, Thm. 1], h := − log d is a plurisubharmonic function on Ωj . Let

ϕ be a smooth function in C2 supported on the unit ball and positive on it, and
let ϕε(z) = ϕ(z/ε)/ε4 (thus ϕε tends to a delta-function as ε → 0). Let Uε = {p ∈
Ωj | d(p) > ε}. Let hε be the convolution h∗ϕε, it is smooth and plurisubharmonic
on Uε (see e.g. [5, Thm. 5.5]). Then, for a ≫ 1 and 0 < ε ≪ exp(−a), the domain
Ω−

j = {z ∈ C2 | hε(z) + ε‖z‖2 < a} has the required properties. �

Proof of Theorem 1(a). (⇐) Follows from (1).
(⇒) Suppose that L is a quasipositive link in S3 which we identify with the unit

sphere in C2. By [13] we may assume that L = S3 ∩ A where A is an algebraic
curve transverse to S3. Let Γ ⊂ S3 be a smooth embedded 2-sphere which defines
the decomposition of L into the connected sum L1#L2. This means that Γ divides
S3 into two 3-balls B1 and B2, and there is an embedded segment I ⊂ Γ such that
(L ∩ Bj) ∪ I = Lj , j = 1, 2. It follows from [1, Thm. 1] that, after perturbing Γ
if necessary, one can find a smoothly embedded Levi-flat 3-ball B transverse1 to
S3 and such that ∂B = Γ. Moreover (see also [6]), there exists a smooth function
F : B → R with non-vanishing gradient, whose restriction to Γ (we denote it by f)
is a Morse function, and all whose level surfaces are unions of holomorphic disks
and (for some critical levels) isolated points.

Let {p1, p2} = ∂I = Γ∩L, we number the points p1 and p2 so that f(p1) ≤ f(p2).
Then the linking numbers of L with the level lines of f are:

lk
(

L, f−1(c)
)

=

{

1 if f(p1) ≤ c ≤ f(p2),

0 otherwise.

Hence F−1(c) meets A transversally at a single point when f(p1) ≤ c ≤ f(p2), and
F−1(c) ∩ A = ∅ otherwise. Therefore B ∩ A is an unknotted arc in B with the
endpoints p1, p2 ∈ Γ = ∂B (it is crucial here that the fibers F−1(c) are unions of
disks because otherwise an arc cutting each fiber at most once might be knotted).

Let Ω1 and Ω2 be the two domains into which B divides the unit ball in C2. Let
j = 1 or 2. We have ∂Ωj = B ∪Bj, and the arc I is isotopic to B ∩A in B relative
to the boundary whence the homeomorphisms (see Figure 1):

(S3, Lj) = (S3, (Bj ∩ A) ∪ I) ∼= (∂Ωj, (Bj ∩ A) ∪ I) ∼= (∂Ωj, ∂(Ωj ∩A)).

By Lemma 10, we may approximate Ωj by a strictly pseudoconvex domain Ω−

j

with smooth boundary diffeomorphic to the 3-sphere. Then, by Eliashberg’s result

1The transversality is not stated in [1, Thm. 1], however, the proof of the smoothness of B is
nothing else than a proof of its transversality to S3.



4 S. YU. OREVKOV

[6, Thm. 5.1], Ω−

j is diffeomorphic to the 4-ball, and then the quasipositivity of

(∂Ωj, ∂(Ωj ∩A)) follows from [4, Thm. 2]. �

Bj B3−j

replace
B3−j by B
−−−−−−−→

Bj B

I ∼ A ∩B
inside B

−−−−−−→
Bj B

Figure 1.

3. Strongly quasipositive links: proof

of the (b) cases of the theorems

Lemma 11. Let L be L1#L2 or L1⊔L2. Let S be a Seifert surface of L of maximal
Euler characteristic. Then the sphere S3 can be presented as a union of embedded
3-balls S3 = B1 ∪B2 such that:

(i) B1 ∩B2 = ∂B1 = ∂B2;
(ii) ∂(S ∩Bj) is Lj for j = 1, 2;
(iii) S ∩ ∂B1 is an embedded segment if L = L1#L2 and empty if L = L1 ⊔ L2.

Proof. The lemma follows from the standard arguments used in the proof of the
additivity of the knot genus. Namely, let S3 = B1∪B2 be a splitting of S3 involved
in the definition of the split or connected sum. We assume that ∂B1 is transverse
to S. If (B1, B2) is not as required, we choose a closed curve C in S ∩ ∂B1 which
bounds a disk D in ∂B1\S. If C bounds a disk D′ in S, then D∪D′ bounds a 3-ball
B ⊂ Bj , j = 1 or 2, and we may replace B3−j with a thickening of B3−j ∪B which
reduces the number of components of S ∩ ∂B1. Otherwise we attach a 2-handle to
S along D and remove a closed component if it appears. This operation increases
χ(S) which contradicts its maximality. �

If an n-braid X is a product of c band generators, then its braid closure admits a
Seifert surface of a special form which has Euler characteristic n− c. It is obtained
by attaching c positively half-twisted bands to n parallel disks so that a band
corresponding to σi,j connects the i-th disk with the j-th disk; see details in [14].
Such a surface is called a quasipositive Seifert surface.

Proof of Theorems 1(b) and 2(b). (⇐) Follows from (1).
(⇒) Suppose that L is strongly quasipositive. Let S be a quasipositive Seifert

surface for L. By Bennequin’s inequality [2, Ch. II, Thm. 3] the Euler characteristic
of S is maximal among all Seifert surfaces of L. Hence the sphere S3 can be cut
into two 3-balls S3 = B1 ∪B2 as in Lemma 11. Then Bj ∩ S is a Seifert surface of
Lj which is a full subsurface of S (see the definition in [14, p. 231]), thus Bj ∩ S
is isotopic to a quasipositive surface by the main result of [14], whence the strong
quasipositivity of Lj. �

Proof of Theorem 3(b). (⇐) Evident.
(⇒) Let S be the quasipositive Seifert surface. By the same reasons as in the

proof of Theorems 1(b) and 2(b), S is a disjoint union S1∪S2 with ∂Sj = Lj . Then
each Sj is a quasipositive Seifert surface by construction. �
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