
PETROVSKI-OLEINIK INEQUALITIES ANDCOMBINATORICS OF VIRO T-HYPERSURFACESS.Yu.OrevkovIntrodutionLet X � RPn�1 be a smooth real algebrai hypersurfae de�ned by the equationf(x1; : : : ; xn) = 0 where f is a homogeneous polynomial of degree m with realoeÆients. The Petrovski|Oleinik inequality (in the form given by Arnold [1℄)states j~�(Sn�1+ )j � �n(m); (�)where ~� denotes the redued (lowered by 1) Euler harateristi, Sn�1+ = fx 2Sn�1 j f(x) � 0g (as usual, Sn�1 denotes the (n � 1)-dimensional sphere) and�n(m) is the Petrovski number:�n(m) = #f(k1; : : : ; kn) 2 Zn j 0 < ki < m; k1 + � � �+ kn = mn=2g:It is the number of integral interior points on the setion of the n-dimensionalube with the side m by the hyperplane orthogonal to the diagonal and passingthrough the enter of the ube. Petrovski showed that (*) is sharp for n = 3; Viro[14℄ showed that (*) is sharp for n = 4. This paper appeared as the result of anunseessful attempt to prove the sharpness of (*) for all dimensions.A real algebrai hypersurfae is alled Viro T-hypersurfae if it an be on-struted by the Viro method [15℄ starting with a triangulation and a polyno-mial whih has non-zero monomials only at the verties of the triangulation (seex2 for an exat de�nition). Viro T -hypersurfaes gave the �rst realizations of:ounter-examples to Ragsdale's onjeture [7℄; examples of M -hypersurfaes (andM -omplete intersetions) of any degree and any dimension [8℄; examples of exp(Cm3=2)pairwise non-isotopi M -urves of degree m (see [12℄, the tehniques from [6℄ wereused there).In this paper, we give a ombinatorial interpretation of the Petrovski | Oleinikinequality for T-hypersurfaes in terms of the triangulations. Namely, we rewriteeah side of (*) as a sum over all simplies of the triangulation (see (4.3), (6.2)) andshow that eah summand in the left hand side is less or equal than the orrespondingsummand in the right hand side (see (7.3). In other words, we deompose (*) intoa sum of loal inequalities.First, this yeilds another proof of the Petrovski { Oleinik inequality for T-hypersurfaes. Seond, for T-hypersurfaes, this provides a neessary and suÆientondition for the equality sign in (*): one has \=" in (*) i� one has \=" in allthe loal inequalities. The question of \=" in the loal inequalities is disussed inxx7{9. Typeset by AMS-TEX1



2 S.YU.OREVKOVThe proof of the loal inequalities is based on a relative version of the MaMulleninequalities for the numbers of k-dimensional faes of a simpliial polytope. Therelative MaMullen inequalities are formulated and proven in the Appendix (jointwith R. MaPherson).I am grateful to A.G. Khovanski, O.Ya. Viro, I. Itenberg and E. Shustin foruseful disussions. x1. Definitions and notation(1.1). Throughout the paper n and m will denote respetively the dimension andthe degree (see Introdution). Denote the set f1; 2; : : : ; ng by �n. Let � � Rn bethe simplex � = fx 2 Rn jxi > 0; x1 + � � �+ xn = mg.We denote by [p1; : : : ; pk℄ the onvex hull of points p1; : : : ; pk 2 Rn.For x 2 Rn, a 2 Zn we denote xa11 xa22 : : : xann by xa.For a �nite set M we denote the number of elements in M by jM j or by #M .For a polynomial p(t) we denote by oef�(p) the oeÆient of t�.The aÆne span of a set A � Rn is the minimal aÆne plane ontaining A.An aÆne plane V � Rn is alled integral if it oinides with the aÆne span ofV \ Zn. Any k-dimensional integral aÆne plane is supposed to be endowed withthe lattie k-dimensional volume normalized by the ondition that the volume of afundamental parallelepiped of V \ Zn is 1.(1.2) Triangulations. k-Simplex in Rn (k � n) is the onvex hull of k+1 pointsin general position. If � is a fae of a simplex � then we write � � �. The emptysimplex ? and � itself are always onsidered as faes of �. The interiority Int� ofa simplex � is the interiority with respet to the aÆne span of � (if dim� = 0 thenInt� = �).Simpliial omplex in Rn is the set � of simplies satisfying the standard axioms:(1) if � 2 � and � � � then � 2 �; (2) if � = �1 \ �2 then � � �1 and � � �2. (Inpartiular, the empty simplex ? is always an element of �.)For a simpliial omplex �, we denote by [�℄ its support: [�℄ = [�2� � and wedenote by Som� the set of the verties. � is alled a triangulation of a set X � Rnif [�℄ = X .A simplex (or a triangulation) is alled integral if all its verties are integralpoints. x2. Viro T-hypesurfaes(2.1) Regular triangulations. Let � 2 Rn be as in (1.1). An integral triangu-lation � of � is alled regular if there exists a onvex funtion ' : � ! R whihis linear on any � 2 � and is not linear on �1 [ �2 for any �1; �2 2 �, �1 6= �2,dim�1 = dim �2 = n � 1. Suh a funtion ' is alled �-onvex. An example of anon-regular triangulation see [4; p. 119, Fig. 3℄.(2.2) Indued triangulation of an otahedron. Let � be a regular triangula-tion of � (see (2.1)). Denote by gi the reetion in the oordinate hyperplane xi = 0and let G = (Z=2)n be the group generated by g1; :::; gn. Clearly, G = fgI j I � �ngwhere gI =Qi2I gi. Set �̂ = G� = Sg2G g� and �̂ = fg� j� 2 �; g 2 Gg. Thus,�̂ is an n-dimensional otahedron and �̂ is a triangulation of �̂.



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 3Lemma. �̂ is ombinatorially equivalent to the fae omplex of a onvex polytope.Proof. Projet Graph(') � Rn �R onto Rn � 0 from a point (0;�y) for y � 1and reet the result with respet to all the oordinate hyperplanes. �(2.3) Viro T-hypersurfaes. Let � be a regular triangulation of � (see (2.1))and s a sign distribution on �. (Sign distribution is an arbitrary funtion s :Som� ! f�1;+1g.) Let ' be a �-onvex funtion (see (2.1)). Then Viro T-hypersurfae assoiated with (�; s) is the hypersurfae X(�;s) � RPn�1 de�ned byf"(x) = 0, for " suÆiently small, wheref"(x) = Xa2Som� s(a)"'(a)xaIf 0 < "� 1 then up to an ambient isotopy X(�;s) does not depend on the hoieof ' and ". The topologial type of X(�;s) an be expliitly desribed as follows.Let gi and gI be as in (2.2). Extend the sign distribution s onto Som �̂: ifa = (a1; :::; an) 2 Som �̂ and s(a) is already de�ned then put s(gi(a)) = (�1)ais(a).Thus, for a 2 Som� one has s(gI(a)) = s(a)�Qi2I(�1)ai . Denote: �̂+ = f� j s(v) =+1 for any vertex v of �g. Then Som �̂+ = fa 2 Som �̂ j s(a) = +1g.Let �̂ and �̂ be as in (2.2) and let �̂0 be the baryentri subdivision of �̂. Denote:Sn�1+ = Sn�1 \ ff" � 0g (like in (1)) and �̂+ = Sa2Som�̂+ Star�̂0(a).Theorem. (Viro [15℄) For " > 0 suÆiently small there is a homeomorphism(Sn�1; Sn�1+ ) � (�̂; �̂+).x3. Combinatorial polynomials(3.1) Relative H-polynomial of a onvex polytope. Let P 2 Rn be a onvexsimpliial polytope suh that dimP = n. Let fk be the number of its faes ofdimension k. De�ne the H-polynomial1 of P asHP (t) = nXi=0 hiti = (t� 1)n + nXk=1 fk�1 � (t� 1)n�k = X�<P(t� 1)n�d(�)where d(�) = 1 + dim � (Reall, that � < P means that � is a fae of P ; byonvention, ? < P and d(?) = 0.)If � = f�1; : : : ; �kg, k � n is a set of hyperplanes in general position whihagrees with P , then we all HrelP;� the relative H-polynomial of P with respet to �(see Appendix).Examples. (a) If P is a simplex then HP (t) = 1 + t + � � � + tn. (b) If P isan otahedron then HP (t) = (1 + t)n. () If S is the k-suspension over P thenHS(t) = (t+ 1)kHP (t).1In the Appendix, the H-polynomial of a polytope is alled the Poinar�e polynomial. However,in the main part of the paper we use the term H-polynomial beause following Arnold [1℄, weintrodue in x5 the Poinar�e polynomial of a fae.



4 S.YU.OREVKOV(3.2) Combinatorial polynomial of a fae of a triangulation of �. Let �be as in (1.1) and � a regular triangulation of � (see (2.1)). Let � be any simplexfrom � (possibly, � = ?). Following [1℄, de�ne the ombinatorial polynomial of �as R� (t) =X���(�1)n�k(�)(t� 1)k(�)�d(�);where d(�) = 1 + dim� is the dimension of the one over �, and k(�) is thedimension of the minimal oordinate hyperplane whih ontains �.(3.3) Slie polytope of a fae. Let � be a fae of a onvex simpliial polytopeP � Rn, suh that 0 2 IntP . Let L be a linear funtional whih de�nes a hy-perplane of support of � , i.e. LjP � 1 and L(x) = 1 i� x 2 � . Let �� be theintersetion of the hyperplane fL = 1 � "g, 0 < " � 1 with a plane of dimensionn � dim � whih is transversal to � and intersets Int � . De�ne the slie polytopeof � as �� = P \ �� . The following Lemma A is a standard fat about onvexpolytopes and Lemma B below an be proven in a similar way.Lemma A. The mapping � 7! � \ �� de�nes a monotoni (i.e. respeting theorder \�") bijetion of f� j � � � < Pg onto the fae omplex of ��. �Let � = f�ig be a set of hyperplanes whih agrees with P (see Appendix). Set�� = f�i \ �� j�i 2 � & � � �igLemma B. �� agrees with ��. �(3.4) Notation. Let �̂, �̂ be as in (2.2). Denote byX̂ond(�)expr(�); respetively: Xond(�) expr(�)the sum of the expression expr(�) over all simplies � 2 �̂ (respetively: � 2 �;the empty simplex inluded in the both ases!) satisfying a ondition ond(�).Let k(�) be as in (3.2). The following lemma is evident.Lemma. If � 2 � thenX̂��� ; ond(�)expr(�) = X��� ; ond(�) 2k(�)�k(�)expr(�)(3.5) ComparingHrel and R� . Let � be as in (1.1) and � a regular triangulationof �. Let �̂ and �̂ be as in (2.2). Denote by � = f�igi=1;:::;n the set of theoordinate hyperplanes �i = fxi = 0g. Let � be any fae of �̂. De�ne �� and ��as in (3.3) assuming that P is a onvex realization of �̂ (see Lemma (2.2)).Proposition. If � 2 � then Hrel��;�� (t) = 2n�k(�)R� (t).



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 5Proof. For I � �n denote: �I = Ti2I �i and k(�I) = dim�I = n� jI j. ThenHrel��;�� (t) = X�I��(�1)jIj(t+ 1)jIjH��\�I (t)= X�I��(�1)jIj(t+ 1)jIj X̂�����I(t� 1)k(�I )�d(�) by Lemma (3.3.A)= X�I��(�1)jIj(t+ 1)jIj X�����I 2k(�)�k(�)(t� 1)k(�I)�d(�) by Lemma (3.4)=X���(�1)n�k(�)(t� 1)k(�)�d(�)2k(�)�k(�) X�I��(t+ 1)n�k(�I )(1� t)k(�I )�k(�)=X���(�1)n�k(�)(t� 1)k(�)�d(�)2k(�)�k(�) � 2n�k(�) = 2n�k(�)R� (t): �Together with Theorem 1 of Appendix and (2.2), (3.3.B) this yeilds(3.6) Corollary. R� is symmetri and unimodal. �x4. Left hand side of the Petrovski{Oleinikinequality for T-hypersurfaes(4.1) Notation. Let � � Rn be an integral simplex suh that its verties v1; :::; vdare linerly independent. Sete(�) = � 1 if v1 + :::+ vd 2 2Zn or if � = ?0 otherwise.If e(�) = 1 we say that � is even, otherwise � is odd.Let G, �̂, �̂ be as in (2.2) and � 2 �̂. Then we denote: s(�) =Qdi=1 s(vi) wherev1; :::; vd are the verties of � .Lemma. For � 2 � one has P� 02G� s(� 0) = 2k(�)s(�)e(�).Proof. Clearly that jG� j = 2k(�). Let v1; :::; vd be the verties of � and let v =(x1; :::; xn) = v1 + :::+ vn. Then s(gI�) = (�1)xIs(�) where xI =Pi2I xi. Hene,if e(�) = 1 then all xI are even, and P� 02G� s(� 0) = jG� js(�) = 2k(�)s(�). Ife(�) = 0 then xj is odd for some j. Put Gj = fgI j j 62 I � �ng. ThenP� 02G� s(�) =P� 02Gj� �s(� 0) + s(gj� 0)� = 0. �Corollary. (see (3.4)) For any expression expr(�) one hasX̂� s(�) expr(�) =X� s(�)e(�)2k(�) expr(�)(4.2) Lemma. Let the notation be as in (2.3). Then [�̂+℄ is a deformation retratof �̂+ (see Fig. 1).



6 S.YU.OREVKOV

Fig. 1.Proof. Consider a sequene of sets [�̂+℄ = X0 � X1 � ::: � Xn = Int �̂+ whereXi = [�̂+℄ [ �[Skeli �̂℄ \ Int �̂+):Construt a sequene of deformation retrationsXn ! Xn�1 ! :::! X0 as follows.If � 2 �̂��̂+ is an i-dimensional simplex and b is the baryenter of � then b 62 Xiand hene, � \Xi an be blown from b onto �� \Xi�1. Performing this proedurefor all i-simplies � 2 �̂� �̂+, we obtain the required retration Xi ! Xi�1. �(4.3) Proposition. Let X = X(�;s) be a Viro T-hypersurfae (see (2.3)) de�nedby f = 0. Let Sn�1+ = Sn�1 \ ff � 0g (as in the left hand side of (*)). Then~�(Sn�1+ ) = (�1)n�1X�2� e(�)s(�)R� (�1)where e(�) and s(�) are de�ned in (4.1) and R� (t) is the ombinatorial polynomialof � (see (3.2)).Proof. It follows from (2.3) and (4.2) that ~�(Sn�1+ ) = ~�(�̂+) = ~�([�̂+℄). Let1�̂+ : �̂ ! f0; 1g and 1Som�̂+ : Som �̂ ! f0; 1g be the harateristi funtions of�̂+ and Som �̂+ i.e. 1�̂+(�) = 1 i� � 2 �̂+ and 1Som�̂+(v) = 1 i� v 2 Som �̂+.Clearly, that 1Som�̂+(v) = (s(v) + 1)=2. Let d(�), k(�) be as in (3.2). Then,1�̂+(�) = d(�)Yi=1 1Som �̂+(vi) = d(�)Yi=1 s(vi) + 12 = �12�d(�)X��� s(�)where v1; :::; vd(�) are the verties of � (reall that ? � �). Let P̂ and P mean



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 7the same as in (3.4). Then we have�~�(Sn�1+ ) = X̂� (�1)d(�)1�̂+(�) = X̂� (�2)�d(�)X̂���s(�) = X̂� s(�)X̂���(�2)�d(�)=X� s(�)e(�)2k(�)X̂���(�2)�d(�) by Corollary (4.1)=X� s(�)e(�)2k(�)X��� 2k(�)�k(�)(�2)�d(�) by Lemma (3.4)= (�1)nX� s(�)e(�)X���(�1)n�k(�)(�2)k(�)�d(�)= (�1)nX� s(�)e(�)R� (�1): �x5. Poinar�e polynomial of a simplex(5.1) De�nition. Given a set S � Rn and a linear funtional L : Rn ! R, de�nethe Poinar�e series of S with respet to L as [S℄L = Pa2S\Zn tL(a) = P� �t�where � is the number of integral points on the hyperplane setion S \ fL = �g.Let � 2 Rn be an integral simplex whose verties v1; :::; vd are linearly indepen-dent. Let C� = R+� = fx1v1 + :::+xdvd jxi � 0g be the losed one generated by� and �� = fx1v1 + :::+ xdvd j 0 � xi < 1g be the \half-losed" parallelepiped.Let L be a linear funtional suh that Lj� = 1. Following Arnold [1℄,2 de�ne thePoinar�e series p� (resp.: q�) and the Poinar�e polynomial P� (resp.: Q�) of thefae � (resp.: of the interiority of the fae �) as follows:p�(t) = [C� ℄L; q�(t) = [IntC� ℄L;P�(t) = [�� ℄L; Q�(t) = [Int��℄L(for � = ?, set by de�nition p? = q? = P? = Q? = 1).(5.2) Examples. (see [1℄) (a). For � as in (1.1) one hasp�(t) = (1� t1=m)�n q�(t) = tn=m(1� t1=m)�nP�(t) = � 1� t1� t1=m�n Q�(t) = � t1=m � t1� t1=m�n(b). The Petrovski number (see Introdution) is �n(m) = oefn=2Q�(t).(5.3) Lemma. (see [1℄).(a) p�(t) =X��� q� (t); (b) q�(t) =X���(�1)d(�)�d(�)p� (t);() P�(t) =X���Q� (t); (d) Q�(t) =X���(�1)d(�)�d(�)P� (t);Proof. (a), () are evident; (b), (d) follow from the inlusion-exlusion formula.2Our notation for Poinar�e series and polynomials di�ers from that in [1℄.



8 S.YU.OREVKOV(5.4) Lemma. (see [1℄). P�(t) = p�(t) � (1� t)d(�).Proof. Let M be the semigroup generated by the verties v1; :::; vd of �. Clearlythat C� is the disjoint union of the sets m + �� over all m 2 M . Note alsothat for any m = m1v1 + ::: + mdvd 2 M and for any subset S � Rn one has[m+ S℄L = tm1+:::+md [S℄L. Hene,p� = [C� ℄L = Xm2M[m+�� ℄L = P� Xm2M tm1+:::+md = P� � (1 + t+ t2 + :::)d(5.5) Lemma. Let � be a fae of a simplex � and a, b elements of any ommutativering. Then P����� ad(�)�d(�)bd(�)�d(�) = (a+ b)d(�)�d(�). �(5.6) Lemma.Q�(t) =X���(�t)d(�)�d(�)q� (t) (1� t)d(�); q�(t) (1� t)d(�) =X��� td(�)�d(�)Q� (t):Proof.Q�(t) (5:3d)= X���(�1)d(�)�d(�)P�(t) (5:4)= X���(�1)d(�)�d(�)p�(t) (1� t)d(�)(5:3a)= X���(�1)d(�)�d(�)(1� t)d(�)X��� q� (t)= X��� q� (t) (1� t)d(�) X�����(�1)d(�)�d(�)(1� t)d(�)�d(�)(5:5)= X��� q� (t) (1� t)d(�) � (�t)d(�)�d(�);q�(t)(1� t)d(�) (5:3b)= (1� t)d(�)X���(�1)d(�)�d(�)p�(t)(5:4)= X���(t� 1)d(�)�d(�)P�(t) (5:3)= X���(t� 1)d(�)�d(�)X���Q� (t)= X���Q� (t) X�����(t� 1)d(�)�d(�) (5:5)= X���Q� (t) td(�)�d(�):x6. Right hand side of the Petrovski {Oleinik inequality for T-hypersurfaes(6.1) Proposition. Let � be a regular triangulation of � (see (1.1), (2.1)). ThenQ�(t) =P�2�Q� (t)R� (t).



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 9Proof. Note that if � 2 � and Int� � Int�0 for some fae �0 of � then d(�0) =k(�). Thus,Q�(t) = X�0��(�t)n�d(�0)q�0(t) (1� t)d(�0) by (5.6; left)= X�2�(�t)n�k(�)q�(t)(1� t)k(�) sine q�0 = XInt��Int�0q�=X� (�t)n�k(�)(1� t)k(�)�d(�)X��� td(�)�d(�)Q� (t) by (5.6; right)=X� Q� (t) tn�d(�)X���(�1)n�k(�)(t�1 � 1)k(�)�d(�)=X� Q� (t) tn�d(�)R� (t�1) =X� Q� (t)R� (t) by symmetriity of R� :(6.2) Corollary. For any regular triangulation � of � one hasP�2� oefn=2 �Q� (t)R� (t)� = �n(m) where �n(m) is the Petrovski number (seeIntrodution). Thus, for a Viro T-hypesurfae X(�;s) (see x2) (*) is equivalent to�����X�2� e(�)s(�)R� (�1)����� �X�2� oefn=2 �Q� (t)R� (t)�where e(�), s(�) are de�ned in (4.1), R� is the ombinatorial polynomial of � (see(3.2)) and Q� the Poinar�e polynomial of Int � (see (5.1)).Proof. Combine (*), (4.3), (5.2b), and (6.1). �x7. The loal inequalities(7.1) Symmetri and unimodal polynomials. Let H(t) = Phiti be a poly-nomial and d 2 Z. Say that H is symmetri with enter td=2 if hi = hd�i; His unimodal with enter td=2 if all its oeÆients are non-negative, hi�1 � hi fori � d=2 and hi � hi+1 for i � d=2.If a polynomial H(t) is symmetri with enter td=2 then we shall denote theoeÆient of td=2 by moefH .We shall use the onvention: if we say that a polynomial written in the formPdi=0 hiti is symmetri and/or unimodal then the enter is supposed to be at td=2,even if hd = 0.Lemma. Let H(t) =Pdi=0 hiti be symmetri and unimodal. Then:(a) jH(�1)j � hd=2;(b) Let d = 2k. Then H(�1) = hk i� h2i = h2i+1, i = 0; :::; [(k � 1)=2℄;() Let d = 2k. Then H(�1) = �hk i� h0 = 0 and h2i�1 = h2i, i = 1; :::; [k=2℄;Proof. If d is odd then the both sides in (a) are zero. If d = 2k then hk�H(�1) =2(h1�h0)+2(h3�h1)+ ::: and hk+H(�1) = 2h0+2(h2�h1)+2(h4�h3)+ ::: �



10 S.YU.OREVKOV(7.2) Corollary. Let HP be the H-polynomial of a onvex simpliial polytope ofdimension d = 2k. (see (3.1)). Then the following statements are equivalent:(a). jHP (�1)j = hk; (b). HP (�1) = hk; (). P is a simplex.Proof. HP is symmetri and unimodal (see [13℄). Hene we an apply Lemma (7.1):(a) =) (b). Otherwise (7.1) would imply hd = 0.(b) =) (). By (7.1b) we have 1 = hd�1, hene, f0 = d+ 1 (see (3.1)).() =) (b) =) (a). See Example (3.1a). �(7.3) Corollary. Let � be a regular triangulation of � and � 2 �. Thene(�)jR� (�1)j � oefn=2 �Q� (t)R� (t)�:Proof. Put q = moef Q� and r = moef R� . Evidently that moef(Q�R� ) � qr,q � e(�), and it follows from (3.6) and (7.1a) that r � jR� (�1)j. �Together with (6.2) this gives a ombinatorial proof of (*) for T-hypersurfaes.(7.4) De�nition. A triangulation of � (see (1.1)) is alled loally extremal if it isregular and for eah simplex � (inluding � = ?) one hase(�)jR� (�1)j = oefn=2 �Q� (t)R� (t)�: (��)Corollary. Let X = X(�;s) be a Viro T-hypersurfaes. If one has \=" in (*) then� is loally extremal.Proof. Compare (6.2) and (7.3). �(7.5) Redued Poinar�e polynomial. Given Q(t) = P�2A q�t�, A � Q and� 2 Q, we de�ne the �-redution of Q(t) as red� Q(t) =P�2A\(�+Z) q�t�For � as in (2.1) and � 2 � we de�ne the redued Poinar�e polynomial of Int �as ~Q� = redn=2Q� (see x5). It easily follows from (6.1) (see also (5.2b)) that�n(m) =X�2�moef � ~Q� (t)R� (t)�:x8. The ase of a primitive triangulation(8.1) De�nition. An integral i-dimensional simplex � 2 Rn is alled minimalif � \ Zn = Som � . It is alled primitive if its i-dimensional volume is 1=i!. Atriangulation is alled primitive (resp. minimal) if eah simplex is primitive (resp.minimal).Clearly, eah primitive simplex is minimal; if dim � � 2 then minimality isequivalent to primitivity; if � is minimal and dim � � 3 then its volume an bearbitrary big.Lemma. Let � 6= ? be an integral primitive simplex. Then:(a) If � is even (see (4.1)) then d(�) is odd (i.e. dim� is even).(b) If the verties of � are linearly independent then � has not more than one evennon-empty fae.() If � � � (see (1.1)) and m is even then � has exatly one even non-empty fae.Proof. Let V be the linear span of �. Sine � is primitive, there exist a 2 V anda base e1; :::; ed of M = Zn \ V , suh that the verties of � are a + e1; :::; a + ed.



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 11Let a = P aiei and let I = fi j ai is odd g. Let � be a fae of � spannedon fa + ej j j 2 Jg. Suppose that � is even. We shall show (and this willprove (b)) that then J = I . Indeed, let v be the sum of the verties of � . Thenv = jJ ja+Pj2J ej 2 2M . If jJ j were even then jJ ja would be an even vetor andeah xj , j 2 J would be odd where v = Pxiei is the expansion of v in the basefeig. Thus, jJ j is odd (this proves (a)). Note that Pi2I ei � a (mod 2), hene,Pi2I ei +Pj2J ej � a +Pj2J ej � v � 0 (mod 2). But feigi2�n is the base ofM 
 Z2, thus, J = I . To prove (), note that J = I = ? implies a 2 2M whihontradits m 2 2Z. �(8.2) Proposition. Let � 2 Rn be a primitive simplex with linearly independentverties. Then ~Q� (t) = e(�)td(�)=2. In partiular, moef(Q�R� ) = moef( ~Q�R� ) =e(�)moef R� (t).Proof. If d(�) is even then ~Q(t) = 0 and the laim is trivial. Suppose that d = d(�)is odd. Let V be the linear span of � , L the linear funtional on V suh thatLj� = 1, and M = fm 2 Zn j 2L(m) 2 Zg. Denote by v1; : : : ; vd the verties of �and let �� be as in (5.1). We have to show that m 2 M \ Int�� =) 2m =P vi.Indeed, the fat that � is primitive means that there exist a 2M with L(a) = 1=2and a base e1; : : : ; ed of M suh that vi = a + ei. Then m = Pmiei with integermi's. On the other hand, if m 2 Int�� then m =Pxivi where 0 < xi < 1. Hene,a �Pmi = P(mi � xi)vi. But 2a lies in the aÆne span of � and � is primitive,this implies that the oeÆients of a in the base fvig are half-integer. Therefore,mi � xi is half-integer for any i, hene xi = 1=2. �Thus, for a primitive simplex � the loal extremality ondition (**) is equivalentto e(�) = 1 =) jR� (�1)j = moef R� ;and if � is primitive, d(�) � nmod 2, and � is not ontained in the union ofoordinate hyperplanes then (**) is equivalent toe(�) = 1 =) �� is a simplex :Reall that �� is the slie polytope of � (see (3.3))(8.3). Even dimension. Let n be even and � be a primitive triangulation of� (see (1.1)). Let Sn�1+ and �n(m) be as in (*) (see Introdution) for the ViroT-hypersurfae X = X�;s (s is an arbitrary sign distribution).Proposition. �~�(Sn�1+ ) = R?(�1); �n(m) = oefn=2R?:In partiular, for n = 4 one has R? = 1t3 + 2t2 + 1t where 1 = �m�13 � and2 = �4(m) = 23m3� 2m2+ 73m� 1, hene, �~�(Sn�1+ ) = 2� 21 = 13m3� 43m+1does not depend on � (nor on s). Thus, one has \=" in (*) for m � 3 and \<"for m � 4.Proof. If � 6= ? then either R� (�1) = moef R� = 0 (when d(�) is odd) or e(�) = 0(when d(�) is even). Thus, the ontribution of � in the both sides of (*) iz zero.To ompute R? for n = 4, note that the number of verties and 3-faes is knownfor a primitive triangulation, and the number of edges and triangles an be foundfrom Dehn { Sommerville equations (see Appendix). �



12 S.YU.OREVKOV(8.4). Odd dimension. Suppose that n is odd and one has "=" in (*) for a Virohypersurfae X(�;s) where � is a primitive triangulation of �. Let � 2 �. If d(�)is even (in partiular, if � = ?) then the ontribution of � to the both sides of (*)is zero. Thus, a neessary ondition on a primitive triangulation � for "=" in (*)is the ondition:The slie polytope �� is a simplex for eah simplex � suh that d(�) is odd andk(�) = n. x9. The ase of low dimensionsRaall (see 1.1) that all integral planes are endowed with the lattie volume, inpartiular, the length of a segment [a; b℄, a; b 2 Zn is #Zn \ [a; b).Given a k-simplex � in an aÆne integral k-plane V and a point p 2 Zn n V ,de�ne the height hp of the simplex [p�℄ as the length of the segment '([p�℄) where' : Rn ! Rn�k is the projetion along V , suh that '(Zn) = Zn�k. Thus, wehave volk+1[p�℄ = hp volk �=(k + 1). n = 3:(9.1) Loal ondition. Let us interpret the loal ondition (**) for eah valuesof (d(�); k(�)). We suppose that m (see (1.1)) is even (for m odd (*) is just 0 = 0).d(�) = 0 (i.e. � = ?): Q� = 1, R� (�1) = oef3=2R� = 0, hene (**) always holds.d(�) = 1: ~Q� = e(�)t1=2. Denote the number of edges of �̂ inident to � by �̂.k(�) = 1; 2: 23�k(�)R� = (�̂ � 4)t, hene (**) holds automatially;k(�) = 3: R� = 1 + (�̂ � 2)t+ t2, hene (**) holds i� e(�) = 0 or �̂ = 3.d(�) = 2:k(�) = 2: R� = 0, hene (**) always holds.k(�) = 3: R� = t+ 1, hene oef3=2(Q�R� ) = 2 oef1=2Q� . Thus, (**) holds i�(Int �) \ 2Z3 = ?.d(�) = 3; k(�) = 3: R� = 1, hene (**) is equivalent to oef3=2Q� = e(�). This isso if and only if one of the following onditions hold:(i) � is primitive;(ii) � = [ab℄ where the line a ontains an even point and the height ha equals 1.(iii) the baryenter b of � is even and � \ Z3 = Som � [ fbg.Analyzing these onditions, one easily obtains(9.2) Proposition. (n = 3, m is even). (a). Any loally extremal (see (7.4))triangulation of � an be subdivided up to a primitive loally extremal triangulation.(b). Let � be loally extremal ands(a) = � �1; if k(a) = 2 and a 62 2Z31; otherwise.Then one has \=" in (*) for the Viro T-hypersurfae X = X(�;s).
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Fig. 2.Examples of (�; s), providing \=" in (*) are given in Fig. 2, (\+" is white, \�"is blak). The regularity follows from (10.1), (10.2) using the hexagonal subdivisionshown by thik lines. n = 4:(9.3) Loal ondition. Like in (9.1), we study the loal extremality ondition(**) for eah pair (d; k).d(�) = 0 (i.e. � = ?): by the de�nition (see (3.2)),R?(t) = X0�d�k(�1)4�k(t� 1)k�dfk;dwhere fk;d := #f� 2 � j k(�) = k; d(�) = dg. Consider separately the two ases:R?(�1) = moef R?;(9.3.1) R?(�1) = �moef R?:(9.3.2)It is lear that oef4R? = 0 and oef3R? = f4;1 = #� Som(�) \ Int��. Thus, wesee from (7.1b) that (9.3.1) holds i� f4;1 = 0. (This means that all the verties of� lie on ��.)Analogously, (9.3.2) is equivalent to f4;2 = 4f4;1 + f3;1.d(�) = 1: ~Q� = 0 and R� (�1) = 0. Hene, (**) holds automatially;d(�) = 2: ~Q� = qt where q = #(Z4 \ Int �). Put �̂ = #f� < � 2 �̂ j d(�) = 4g.k(�) = 2; 3: 24�k(�)R� = (�̂�4)t, hene (**) is equivalent to (�̂�4)(q�e(�)) = 0.(Note that q = e(�) if and only if q � 1).k(�) = 4: R� = 1 + (�̂ � 2)t+ t2, hene (**) takes form e(�)j4� �̂j = q(�̂ � 2).This holds if and only if either (i) q = 0 or (ii) �̂ = 3 and q = 1.d(�) = 3:k(�) = 3: R� = 0, hene (**) holds automatially.k(�) = 4: R� = 1 + t, ~Q� = q + qt where q = #(Z4 \ Int �). Hene, (**) isequivalent to q = 0.d(�) = k(�) = 4: R� = 1, hene (**) is equivalent to the ondition(9.3.3) oef2Q� = e(�):It is possible to list more or less expliitly all the 3-simplies satisfying (9.3.3) aswe did it for the other values of (k; d). However the answer is rather ompliatedand we restrit ourselves by deriving some onsequenes of (9.3.3).



14 S.YU.OREVKOV(9.4) Poinar�e polynomial of the interiority of a 3-simplex. Let � � R4be an integral 3-simplex. Denote by V , S, and l, respetively its lattie volume,the sum of the lattie areas of the faes, and the sum of the lattie lengths of theedges. Put i = #(Z4 \ Int �). Let ~Q� (t) = 1t+ 2t2 + 1t3 be as in (7.5).(9.4.1) Proposition. (a) 1 = i; (b) 2 = 6V � 2S + l � 2i� 3.Proof. (a). Evident. (b). Replaing if neessary Z4 with the lattie generated bythe integral points of the aÆne span of � we may suppose that oef� p� = 0 for� 62 Z (in partiular, ~Q� = Q� ). By Ehrart formula [5℄ we haveoefk p� = V k3 + (S=2)k2 +�k + 1; k � 0; where � = i� V + (S=2) + 1.The summation of tk oefk p� over k = 0; 1; ::: yeildsp� = V � t3 + 4t2 + t(1� t)4 + S2 � t2 + t(1� t)3 + �t(1� t)2 + 11� t :Similarly, we �nd p�;d :=P���;d(�)=d p� by the summation ofoefk p�;3 = Sk2 + lk + 4; oefk p�;2 = lk + 6; oefk p�;1 = 4and apply Q� =P4d=0(t� 1)dp�;d (see (5.3d), (5.4)). �Lemma. There exists a triangulation of � with verties at Som(�) [ (Z4 \ Int �)and with � 3i+ 1 tetrahedra.Proof. Denote the points of Z4 \ Int � by p1; :::; pi. Let �0 = f�g and let �j beobtained from �j�1 by adding the point pj and subdividing the simplies ontainingit. Clearly, eah time we add � 3 tetrahedra. �(9.4.2) Corollary. (a). If i > 0 then 6V � 2S + 3(i � 1); (b). If i > 0 then2 � i+ l � 6; (). 2 � 1.Proof. (a). In the triangulation of the Lemma, the volume of the 4 tetrahe-dra having a ommon fae with � , is � S=3. The volume of the others is �(#tetrahedra� 4)=6 � (3i+ 1� 4)=6(b). Put (a) into (9.4.1b). (). Put 1 = i and l � 6 into (b). �Conjeture. Q� is unimodal for any polyhedron � with verties at integral points.Remark. By the arguments as above one an prove this onjeture when d(�) = 4.(9.4.3) Corollary. If � is minimal (see (8.1)) then 2 = 6V � 1.Proof. Put i = 0, l = 6, S = 2 into (9.4.1b). �(9.4.4) Proposition. If � is minimal then the following onditions are equivalent:(a) � satis�es (9.3.3); (b) V = (1 + e(�))=6; () V is 1=6 or 1=3.Proof. (a)() (b) by (9.4.3); (b) =) () is evident.() =) (b). For V = 1=6 this follows from Lemma (8.1a). Suppose that V = 1=3and let us prove that e(�) = 1. Let v0; : : : ; v3 be the verties of � . Set ej = vj � v0,j = 1; 2; 3. Denote byM the lattie generated by e1; e2; e3. LetM 0 = Z4\(M
R).We haveM 0 :M = 2. Hene,M 0 is generated by e1; e2; e03 and e3 = a1e1+a2e2+2e03.Sine v0+ � � �+ v4 = 4v0+(a1+1)e1+(a2+1)e2+2e03, it suÆes to show that theboth a1 and a2 are odd. Indeed, if a1 � a2 � 0mod2 then the segment [v0v3℄ wouldnot be minimal; if a1 + 1 � a2 � 0mod 2 then [v2v3℄ would not be minimal. �



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 15x10. Regularity riteria(10.1) Regular polyhedral deomposition. Given a onvex polytope � 2 Rn,de�ne its (regular) polyhedral deomposition replaing everywere in (1.2) and (2.1):\simplex" �! \onvex polyhedron" (omit k � n in the de�nition)\simpliial omplex" �! \polyhedral omplex"\triangulation" �! \polyhedral deomposition"Proposition. Let � be a polyhedral deomposition of a onvex n-dimensional poly-tope � � Rn. Suppose that (possibly, after an aÆne hange of oordinates) eahfae � 2 � an be insribed into a sphere whose enter lies either in Int� or inInt(� \�0) for some fae �0 of �. Then � is regular.Proof. Put '(x) =Px2i for x 2 Som� and extend ' linearly onto eah fae. �(10.2) Polyhedral subdivisions. Let �, �0 be polyhedral deompositions of aonvex polytope �. For � 2 � put �0� = f�0 2 �0 j�0 � �g. Say that �0 is apolyhedral subdivision of � if 8� 2 � one has [�0� ℄ = �.Proposition. Let � be a regular polyhedral deomposition of a onvex polytope� and �0 a polyhedral subdivision of �. Suppose that there exists a ontinuousfuntion  : � ! R suh that 8� 2 � the restrition  j� is (�0�)-onvex (i.e. thedeompositions �0� are \oherently regular"). Then �0 is regular.Proof. If ' is �-onvex and 0 < "� 1 then '+ " is �0-onvex. �Appendix: Relative MaMullen Inequalitiesby R. MaPherson and S. OrevkovLet P be a onvex simpliial polytope in Rn. De�ne its Poinar�e polynomialHP as HP (t) = (t� 1)n + nXi=1 fi�1(t� 1)n�i;where fi is the number of i-dimensional simplies of P .Neessary and suÆient onditions on a polynomialhntn + hn�1tn�1 + :::+ h1t+ h0 (1)with hn = 1 for it to be a Poinar�e polynomial of a onvex simpliial polytope, arehi = hn�i; i = 0; :::; [n=2℄ (Dehn-Sommerville equations); (2)hi � hi�1; i = 1; :::; [n=2℄; (3)(hi+1 � hi) � (hi � hi�1)<i>; i = 1; :::; [n=2℄� 1; (4)where m<k> is some expliitly de�ned funtion of the integers m and k.These onditions were onjetured by MaMullen [11℄ and proved by Stanley[13℄ (neessity) and Billera and Lee [3℄ (suÆieny). The proof of the neessity usestori varieties and the hard Lefshetz theorem.



16 S.YU.OREVKOVA polynomial (1) is said to be symmetri and unimodal if hn � 0 and theonditions (2), (3) are satis�ed.Here we give a relative version of the inequality (3) (Theorem 1 below) for oeÆ-ients of Poinar�e polynomials of a polytope and its intersetions with hyperplanesin general position. The proof is based on the the relative hard Lefshetz theoremof Beilinson, Bernstein, Deligne, and Gabber.Let P be a onvex simpliial polytope in Rn and let � = f�1; :::; �kg; k � n bea set of hyperplanes in general position. Denote f1; :::; kg by �k. For I � �k, let�I = \i2I�i, PI = P \ �I (by onvention, �? = Rn, P? = P ). Say that P argeeswith � if any �I intersets IntP and eah fae of PI is a fae of P . If P agrees with�, we de�ne the relative Poinar�e polynomial of P with respet to � asHrelP;�(t) =XI��k(�1)jIj(t+ 1)jIjHPI (t)Theorem 1. The polynomial HrelP;�(t) is symmetri and unimodal.Proof. Sine the hyperplanes �1; :::; �k are in general position, we an hose oor-dinates (x1; :::; xn) in Rn so that �i is de�ned by xi = 0. The ondition that Pagrees with � implies that the origin an be hosen inside P . Sine P is simpliial,we may perturb it so that all its verties are rational. The perturbation an behosen so that all the inidene relations are preserved.For any fae � of P onsider the one obtained as the union of all rays withvertex at the origin, whih interset �. All suh ones de�ne a fan � in Rn, andlet X be the tori variety over C assoiated to � (see [4℄). Let Y be (CP1)k,whih we shall onsider as the tori variety assoiated to the fan �Y onsisting ofall oordinate otants in Rk.The mapping Rn ! Rk de�ned by yi = xi, (where (y1; :::; yk) are oordinatesin Rk) is simpliial (sends any one of � to a one of �Y ). Hene, it de�nes a torimorphism f : X ! Y (see [4℄).The struture of tori variety de�nes the following strati�ation of Y . Let Y0 =C � f0g be the 1{dimensional and Y1 = f0g, Y2 = f1g the 0{dimensional strataof CP1. Denote by M the set of all k-tuplets (m1; :::;mk) where mi = 0; 1; 2. Form 2M let us de�neYm = f(y1; :::; ykg 2 Y j yj = Ymj if mj > 0g:We apply the Deomposition theorem [2; Setion 5.4.5℄ (see also [9; Setion 12℄)to the map f . It expresses the pushforward of the intersetion omplex of X as adiret sum of intersetion omplexes of subvarieties of Y . Sine P is simpliial, X isrationally smooth, the intersetion omplex of X is the onstant sheaf. By diretlyexamining the map f , one an see that only subvarieties Ym of Y our, and that allthe intersetion omplexes involved have un-twisted oeÆients. Taking Poinarepolynomials, we get the following statement (where the unimodality omes fromthe relative hard Lefshetz theorem, [2; Setion 5.4.10℄)Lemma. There exist symmetri unimodal polynomials 'm with integral oeÆientssuh that for any open V � Y ,H(f�1(V )) =Xm 'mH(V \ Ym)
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