PETROVSKI-OLEINIK INEQUALITIES AND
COMBINATORICS OF VIRO T-HYPERSURFACES

S.Yu.OREVKOV

INTRODUCTION

Let X € RP™! be a smooth real algebraic hypersurface defined by the equation
f(x1,...,2,) = 0 where f is a homogeneous polynomial of degree m with real
coefficients. The Petrovski—Oleinik inequality (in the form given by Arnold [1])
states

(S < T, (m), (+)

where x denotes the reduced (lowered by 1) Euler characteristic, Sﬁ71 ={z €
Sn=1] f(x) > 0} (as usual, S"~! denotes the (n — 1)-dimensional sphere) and
I1,,(m) is the Petrovski number:

W, (m) = #{(k1, ... k) € Z"|0 < k; <m; ky + -+ + ky = mn/2}.

It is the number of integral interior points on the section of the n-dimensional
cube with the side m by the hyperplane orthogonal to the diagonal and passing
through the center of the cube. Petrovski showed that (*) is sharp for n = 3; Viro
[14] showed that (*) is sharp for n = 4. This paper appeared as the result of an
unseccessful attempt to prove the sharpness of (*) for all dimensions.

A real algebraic hypersurface is called Viro T-hypersurface if it can be con-
structed by the Viro method [15] starting with a triangulation and a polyno-
mial which has non-zero monomials only at the vertices of the triangulation (see
82 for an exact definition). Viro T-hypersurfaces gave the first realizations of:
counter-examples to Ragsdale’s conjecture [7]; examples of M-hypersurfaces (and
M-complete intersections) of any degree and any dimension [8]; examples of exp(C'm?/?)
pairwise non-isotopic M-curves of degree m (see [12], the techniques from [6] were
used there).

In this paper, we give a combinatorial interpretation of the Petrovski — Oleinik
inequality for T-hypersurfaces in terms of the triangulations. Namely, we rewrite
each side of (*) as a sum over all simplices of the triangulation (see (4.3), (6.2)) and
show that each summand in the left hand side is less or equal than the corresponding
summand in the right hand side (see (7.3). In other words, we decompose (*) into
a sum of local inequalities.

First, this yeilds another proof of the Petrovski — Oleinik inequality for T-
hypersurfaces. Second, for T-hypersurfaces, this provides a necessary and sufficient
condition for the equality sign in (*): one has “=" in (*) iff one has “=” in all
the local inequalities. The question of “=” in the local inequalities is discussed in
§87-9.

Typeset by ApS-TEX
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The proof of the local inequalities is based on a relative version of the MacMullen
inequalities for the numbers of k-dimensional faces of a simplicial polytope. The
relative MacMullen inequalities are formulated and proven in the Appendix (joint
with R. MacPherson).

I am grateful to A.G. Khovanski, O.Ya. Viro, I. Itenberg and E. Shustin for
useful discussions.

§1. DEFINITIONS AND NOTATION

(1.1). Throughout the paper n and m will denote respectively the dimension and
the degree (see Introduction). Denote the set {1,2,...,n} by fi. Let A C R"™ be
the simplex A = {x € R"|2; > 0; 21 + -+ + xp, = m}.

We denote by [p1,...,pr] the convex hull of points py,...,pr € R™.

For z € R", a € Z" we denote z{'z5> ... 2% by z”.

For a finite set M we denote the number of elements in M by |M| or by #M.

For a polynomial p(t) we denote by coef, (p) the coefficient of ¢*.

The affine span of a set A C R™ is the minimal affine plane containing A.
An affine plane V' C R"™ is called integral if it coincides with the affine span of
V NZ". Any k-dimensional integral affine plane is supposed to be endowed with
the lattice k-dimensional volume normalized by the condition that the volume of a
fundamental parallelepiped of VN Z"™ is 1.

(1.2) Triangulations. k-Simplexin R” (k < n) is the convex hull of k£ + 1 points
in general position. If 7 is a face of a simplex ¢ then we write 7 < ¢. The empty
simplex @ and o itself are always considered as faces of o. The interiority Int o of
a simplex ¢ is the interiority with respect to the affine span of ¢ (if dime = 0 then
Into = o).

Simplicial complex in R™ is the set ¥ of simplices satisfying the standard axioms:
(I)ifoeXand 7 <othenT€X; (2)if =01 Noy then 7 < 0y and 7 < 3. (In
particular, the empty simplex & is always an element of X.)

For a simplicial complex ¥, we denote by [X] its support: [¥] = Uyex o and we
denote by Som ¥ the set of the vertices. ¥ is called a triangulation of a set X C R™
if [¥] = X.

A simplex (or a triangulation) is called integral if all its vertices are integral
points.

§2. VIRO T-HYPESURFACES

(2.1) Regular triangulations. Let A € R™ be as in (1.1). An integral triangu-
lation ¥ of A is called regular if there exists a convex function ¢ : A — R which
is linear on any o € X and is not linear on oy U 05 for any o1,09 € 3, 01 # 039,
dimo; = dimoy = n — 1. Such a function ¢ is called ¥-convexr. An example of a
non-regular triangulation see [4; p. 119, Fig. 3].

(2.2) Induced triangulation of an octahedron. Let ¥ be a regular triangula-
tion of A (see (2.1)). Denote by g; the reflection in the coordinate hyperplane z; = 0
and let G = (Z/2)™ be the group generated by g1, ..., gn. Clearly, G = {gr|I C i}
where gr = [];c; gi- Set A=GA = Uyeq 9A and S ={go|lo €, geG}. Thus,

A is an n-dimensional octahedron and ¥ is a triangulation of A.
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Lemma. ¥ is combinatorially equivalent to the face complex of a convex polytope.

Proof. Project Graph(p) C R™ x R onto R™ x 0 from a point (0,—y) for y > 1
and reflect the result with respect to all the coordinate hyperplanes. [

(2.3) Viro T-hypersurfaces. Let ¥ be a regular triangulation of A (see (2.1))
and s a sign distribution on ¥. (Sign distribution is an arbitrary function s :
Som¥ — {—1,41}.) Let ¢ be a X-convex function (see (2.1)). Then Viro T-
hypersurface associated with (X, s) is the hypersurface X5 ;) C RP" ! defined by
f-(x) =0, for ¢ sufficiently small, where

fe(x) = Z s(a)s”(a)w“

a€ESom X

If 0 < e < 1 then up to an ambient isotopy X(x ;) does not depend on the choice
of ¢ and e. The topological type of X(x ;) can be explicitly described as follows.

Let g; and gr be as in (2.2). Extend the sign distribution s onto Som 3: if
a = (ai,...,an) € Som Y and s(a) is already defined then put s(g;(a)) = (—=1)% s(a).
Thus, for a € Som X one has s(gr(a)) = s(a)-[[;c;(—=1)%. Denote: S, ={o]|s() =
+1 for any vertex v of ¢}. Then Som 3, = {a € Som 3| s(a) = +1}.

Let A and 3 be as in (2.2) and let £’ be the barycentric subdivision of 3. Denote:
§nt =871 n{f. >0} (like in (1)) and Ay = J Starg, (a).

a€Som 34

Theorem. (Viro [15]) For ¢ > 0 sufficiently small there is a homeomorphism
(Snil, S:L-_l) ~ (Aa A+)

§3. COMBINATORIAL POLYNOMIALS

(3.1) Relative H-polynomial of a convex polytope. Let P € R™ be a convex
simplicial polytope such that dim P = n. Let f; be the number of its faces of
dimension k. Define the H-polynomial! of P as

HP(t) = Zn: hiti = (t — ].)n + Xn: fk71 . (t _ l)nfk — Z (t _ l)nfd(r)

k=1 T<P

where d(t) = 1+ dim7 (Recall, that 7 < P means that 7 is a face of P; by
convention, & < P and d(@) = 0.)

If « ={a1,...,ar}, K < nis a set of hyperplanes in general position which
agrees with P, then we call H};eé the relative H -polynomial of P with respect to «
(see Appendix).

Examples. (a) If P is a simplex then Hp(t) = 1+t +--- +t". (b) If P is
an octahedron then Hp(t) = (1 +¢)". (c) If S is the k-suspension over P then
Hs(t) = (t+ 1) Hp(t).

n the Appendix, the H-polynomial of a polytope is called the Poincaré polynomial. However,
in the main part of the paper we use the term H-polynomial because following Arnold [1], we
introduce in §5 the Poincaré polynomial of a face.
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(3.2) Combinatorial polynomial of a face of a triangulation of A. Let A
be as in (1.1) and ¥ a regular triangulation of A (see (2.1)). Let 7 be any simplex
from ¥ (possibly, 7 = @). Following [1], define the combinatorial polynomial of T
as

R.(t) = Y (1)Ko (¢ — 1)k =d(o),

o>T

where d(c) = 1 + dimo is the dimension of the cone over o, and k(o) is the
dimension of the minimal coordinate hyperplane which contains o.

(3.3) Slice polytope of a face. Let 7 be a face of a convex simplicial polytope
P C R", such that 0 € Int P. Let L be a linear functional which defines a hy-
perplane of support of 7, i.e. L|p < 1 and L(z) = 1 iff z € 7. Let 3, be the
intersection of the hyperplane {L =1 —¢}, 0 < ¢ < 1 with a plane of dimension
n — dim 7 which is transversal to 7 and intersects Int 7. Define the slice polytope
of T as ™ = PN ;. The following Lemma A is a standard fact about convex
polytopes and Lemma B below can be proven in a similar way.

Lemma A. The mapping o — o N B, defines a monotonic (i.e. respecting the
order “<”) bijection of {o |7 < o < P} onto the face complex of 7*. O

Let @ = {a;} be a set of hyperplanes which agrees with P (see Appendix). Set
a, ={a; NG|l €Ea & 7 Ca;}

Lemma B. a, agrees with 7*. O

(3.4) Notation. Let A, ¥ be as in (2.2). Denote by

Z expr(o); respectively: Z expr(o)

cond(o) cond(o)

the sum of the expression expr(c) over all simplices o € 3 (respectively: o € ¥;
the empty simplex included in the both cases!) satisfying a condition cond(c).
Let k(o) be as in (3.2). The following lemma is evident.

Lemma. If 7 € X then

Z expr(o) = Z 2K =k eepr (o)

o>1;cond(o) o>1;cond(o)

(3.5) Comparing H"*! and R,. Let A be asin (1.1) and ¥ a regular triangulation
of A. Let A and ¥ be as in (2.2). Denote by a = {a;}i=1,..n the set of the
coordinate hyperplanes a; = {z; = 0}. Let 7 be any face of A. Define 7* and o,
as in (3.3) assuming that P is a convex realization of A (see Lemma (2.2)).

Proposition. If 7 € ¥ then H;"ffaT (t) = 2" k(R (¢).
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Proof. For I C 7 denote: ay = ();o; i and k(ay) = dimay = n — |I|. Then

iel
i 1) =Y (=) + DI Hreng, (1)
OzIZT

= Z (=DM + 1)l Z (t — 1)k(ar)—d(@) by Lemma (3.3.A)
ar>T T<o<oar

= > (=plfg+ it Y= okl)=h) ¢ — pyklen=d@) by Lemma (3.4)
ar>T T<o<ar

_ Z(_l)nfk(a) (t _ l)k(o)fd(a)Qk(o)fk(T) Z (t + 1)”716(0[[)(1 _ t)k(oq)fk(o)
o>T ar>o

— Z(_l)n—k(a) (t _ 1)k(a’)—d(a)2k(a')—k(7') . 2n—k(a) — 2n—k(T)RT (t) O
o>T

Together with Theorem 1 of Appendix and (2.2), (3.3.B) this yeilds

(3.6) Corollary. R, is symmetric and unimodal. O

§4. LEFT HAND SIDE OF THE PETROVSKI-OLEINIK
INEQUALITY FOR T-HYPERSURFACES

(4.1) Notation. Let 7 C R" be an integral simplex such that its vertices vy, ..., vg
are linerly independent. Set

1 ifor+..4+vg €2Z" orif 1 =&
e(r) =

0 otherwise.

If e(r) = 1 we say that 7 is even, otherwise 7 is odd.
Let G, A, £ be as in (2.2) and 7 € . Then we denote: s(7) = H?Zl s(v;) where
v1,...,Vq are the vertices of 7.

Lemma. For 7 € ¥ one has 3. .q, s(7') = 28D s()e(r).

Proof. Clearly that |G7| = 25("). Let vy,...,uq be the vertices of 7 and let v =
(x1,...,2n) = v1 + ... + vy Then s(gr7) = (=1)*7s(1) where 7 = 3, ; ;. Hence,
if e(r) = 1 then all x7 are even, and ) .4, s(7) = |G7|s(T) = 28T s(7). If
e(r) = 0 then z; is odd for some j. Put G = {gr|j ¢ I Cn}. Then ) ., s(7) =
Yreas (8(7) +s(g;r')) = 0. O

Corollary. (see (3.4)) For any expression expr(r) one has

ZS(T) expr(t) = Z s(7)e(T)287) expr(T)

T T

(4.2) Lemma. Let the notation be as in (2.3). Then [$.] is a deformation retract
of Ay (see Fig. 1).
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Proof. Consider a sequence of sets [$,] = Xo C X; C ... C X,, = Int A, where
Xi=[S241]U ([Skel’ SN Int A ).

Construct a sequence of deformation retractions X,, - X,_1 — ... = X as follows.

IfoeS— f]+ is an i-dimensional simplex and b is the barycenter of o then b € X;
and hence, 0 N X; can be blown from b onto do N X;_;. Performing this procedure
for all i-simplices o0 € ¥ — X1, we obtain the required retraction X; — X; ;. O

(4.3) Proposition. Let X = X(5 ;) be a Viro T-hypersurface (see (2.3)) defined
by f=0. Let ST~' = S" 1N {f >0} (as in the left hand side of (*)). Then

XS = (D)"Y e(m)s(r)Re (—1)

TEX

where e(t) and s(7) are defined in (4.1) and R, (t) is the combinatorial polynomial
of T (see (3.2)).

Proof. Tt follows from (2.3) and (4.2) that x(ST™') = x(Ay) = X([Z4]). Let
1y 3 — {0,1} and Looms, Som 3 — {0,1} be the characteristic functions of
S, and Som ¥, ie. 1y, (0) =1iff ¢ € £, and 150m2+(v) =1iff v € Som ¥,
Clearly, that 1y, . (v) = (s(v) +1)/2. Let d(o), k(o) be as in (3.2). Then,

d(o) d(o)
; 1 1y d(o)
12+(U) = g 1Som2+(vi) = ll;[l % - (5) T;rs(T)

where vy, ...,vq(s) are the vertices of o (recall that @ < 7). Let i: and ) mean
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the same as in (3.4). Then we have

~

XS = DAL () = 32O Y s(r) = Fs(r) 3 (—2) 1)

= s(r)e(r)2k") z(—2)—d<0> 7 by Co;ollary (4.1)
= is(r)e(r)Zk(T)gg k(@) =k(r)(_g)=d(e) by Lemma (3.4)
= (:1)” Zs(r)e(:i(—l)”’“(‘”(—2)’“(”)d(")

— (1" Y s(r)elr) R (1) 0

T

§5. POINCARE POLYNOMIAL OF A SIMPLEX

(5.1) Definition. Given a set S C R™ and a linear functional L : R™ — R, define
the Poincaré series of S with respect to L as [S]F = 3 gnzn thla) = S cat®
where ¢, is the number of integral points on the hyperplane section S N {L = a}.

Let 0 € R”™ be an integral simplex whose vertices vy, ..., vq are linearly indepen-
dent. Let Cy = Ryo = {x1v1 + ... + £qvq| 2; > 0} be the closed cone generated by
o and I, = {z1v1 + ... + £4vq |0 < x; < 1} be the “half-closed” parallelepiped.

Let L be a linear functional such that L|, = 1. Following Arnold [1],% define the
Poincaré series p, (resp.: q,) and the Poincaré polynomial P, (resp.: Q,) of the
face o (resp.: of the interiority of the face o) as follows:

po(t) = [Col", 4, (t) = [Int C, 1%,
P, (t) = [I,]*, Q. (t) = [Int I, ]~
(for o = &, set by definition py = ¢ = Py = Qp = 1).
(5.2) Examples. (see [1]) (a). For A as in (1.1) one has

palt) = (1 — /™= qa(t) = t/™(1 — ¢t/m)=n

_ n 1/m _ n
PA(t) = (iﬁ) Qa(t) = <%>

(b). The Petrovski number (see Introduction) is II,(m) = coef,, ;» Qa(t).
(5.3) Lemma. (see [1]).

(@ po(t) =1 a:(t), (B) o) =Y (=) p. (1),
(©) Polt) = Q) (d) Qu(t) =Y (- P (1),
<o 7<o

Proof. (a), (c) are evident; (b), (d) follow from the inclusion-exclusion formula.

20ur notation for Poincaré series and polynomials differs from that in [1].
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(5.4) Lemma. (see [1]). P,(t) = p,(t) - (1 — )%,

Proof. Let M be the semigroup generated by the vertices vy, ...,vq4 of . Clearly
that C, is the disjoint union of the sets m + II, over all m € M. Note also
that for any m = mqv; + ... + mgqug € M and for any subset S C R™ one has
[m + S|V = tmit--+ma[S|L. Hence,

Pe=1Col" = D Im+TJ" =Py 3 4™t 4m= P (Lt 824"

meM meM

(5.5) Lemma. Let T be a face of a simplex o and a, b elements of any commutative
rlng Then ZT<A<0’ ad(a)_d()‘) bd(A)_d(T) = (a + b)d(a)_d("-)_ O

(5.6) Lemma.

I (t d(a T)Q )

Qa(t) = Z(_t)d(a)_d(‘r)qr(t) (1 - t)d(T);

<o

Z td(a

<o

Proof.
(5 :3d) Z 1)2@)=dXN) py (1) (5.4) Z(_l)d(a)fd(/\)p)‘(t) (1 — )™
A<o A<o
(5.3a) Z(_l)d(a) (1 — ) Z q-(t
A<o T<A
Z ¢-(t) (1 — )4 Z (1)) =dN) (1 — 4)dN)=d(r)
<o T<A<o
N e (1) (1= 1) (=)t
<o
5. 3b
4o ()(1 = t)¢ d(o) (53 ) d(o) Z d(@)=dN) (1)
A<o
(5:4) Z(t _ l)d(a)—d(A)P)‘(t) (5§C) Z(t _ l)d(a')—d()\) Z Q‘r(t)
A<o A<o T<A
o (5 5) o T
SQ0) 3 (= 1) D S ) pto) ),
<o T<A<o <o

§6. RIGHT HAND SIDE OF THE PETROVSKI —
OLEINIK INEQUALITY FOR T-HYPERSURFACES

(6.1) Proposition. Let ¥ be a regular triangulation of A (see (1.1), (2.1)). Then
Qa(t) = Xres Q- ()R- (D).
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Proof. Note that if 0 € ¥ and Int o C Int A’ for some face A’ of A then d(A') =
k(o). Thus,

Qa(t)y = (=" " Agai(t) (1 — t)4A) by (5.6; left)

AT<A
= ()" Mg, (t)(1 — )M since gar = Y s

oEY Int o CInt A’
— Z n k(a k(a d(o) Z td o)— d(T ) by (56, rlght)

<o
— Z QT( tn d( T)Z n k(o) t 1 )k(a)fd(o)
o>T

= Z Q- ()" DR_(t71) Z Q)R- ( by symmetricity of R,.

(6.2) Corollary. For any regular triangulation ¥ of A one has
> es coef,n (Q(H)R-(t)) = In(m) where I, (m) is the Petrovski number (see
Introduction). Thus, for a Viro T-hypesurface X(x. 5 (see §2) (*) is equivalent to

> eln)s(nR. (-

TEY

1)| <) coefy s (Qr ()R, (1))

TED

where e(7), s(7) are defined in (4.1), R, is the combinatorial polynomial of T (see
(8.2)) and Q. the Poincaré polynomial of Int T (see (5.1)).

Proof. Combine (¥*), (4.3), (5.2b), and (6.1). O

§7. THE LOCAL INEQUALITIES

(7.1) Symmetric and unimodal polynomials. Let H(t) = > h;t! be a poly-
nomial and d € Z. Say that H is symmetric with center t%/? if h; = hqg_;; H
is unimodal with center t%/2 if all its coefficients are non-negative, hj_; < h; for
) S d/2 and hl Z hi+1 for i Z d/2

If a polynomial H(t) is symmetric with center t4/2 then we shall denote the
coefficient of t#/? by mcoef H.

We shall use the convention: if we say that a polynomial written in the form
S, hit' is symmetric and/or unimodal then the center is supposed to be at t%/2,
even if hy = 0.

Lemma. Let H(t) = E?:o hitt be symmetric and unimodal. Then:
(a) |H(=1)| < hajo;
(b) Let d = 2k. Then H(—l) = hk Zﬁ hQi = h2i+1, 1= 0, sy [(k} — 1)/2],
(c) Let d=2k. Then H(—1) = —hy, iff ho =0 and hai—1 = ha, i = 1,...,[k/2];

Proof. If d is odd then the both sides in (a) are zero. If d = 2k then hy — H(—1) =
2(h1 — ho) +2(h3 — hl) +... and hk +H(—].) = 2h0 +2(h2 — hl) +2(h4 — h3) +... O



10 S.YU.OREVKOV

(7.2) Corollary. Let Hp be the H-polynomial of a convex simplicial polytope of
dimension d = 2k. (see (3.1)). Then the following statements are equivalent:

(a). |Hp(=1)| = hy; (b). Hp(—1) = hy; (c). P is a simplex.
Proof. Hp is symmetric and unimodal (see [13]). Hence we can apply Lemma (7.1):
(a) = (b). Otherwise (7.1c¢) would imply hg = 0.
(b) = (c¢). By (7.1b) we have 1 = hq_1, hence, fo =d+ 1 (see (3.1)).
(¢) = (b) = (a). See Example (3.1a). O

(7.3) Corollary. Let ¥ be a regular triangulation of A and 7 € ¥. Then
e(r)|R-(—1)] < coefy, /2 (QT(t)RT(t)).

Proof. Put ¢ = mcoef @, and r = mcoef R,. Evidently that mcoef(Q.R;) > qr,
q > e(7), and it follows from (3.6) and (7.1a) that r > |[R.(—1)|. O

Together with (6.2) this gives a combinatorial proof of (*) for T-hypersurfaces.

(7.4) Definition. A triangulation of A (see (1.1)) is called locally extremal if it is
regular and for each simplex 7 (including 7 = &) one has

e(r)| R, (=1)| = coef,, /> (Q-(t) R, (1)). (%)

Corollary. Let X = X(x ;) be a Viro T-hypersurfaces. If one has “="in (*) then
Y is locally extremal.

Proof. Compare (6.2) and (7.3). O

(7.5) Reduced Poincaré polynomial. Given Q(t) = ) .4 ¢.t", A C Q and
B € Q, we define the S-reduction of Q(t) as redg Q(t) = ZaEAﬂ(B+Z) Gat®

For ¥ as in (2.1) and 7 € ¥ we define the reduced Poincaré polynomial of Int T
as Q, = red, /, Q- (see §5). It easily follows from (6.1) (see also (5.2b)) that

I, (m) = > mcoef (Q-(t)R-(t)).

TED

§8. THE CASE OF A PRIMITIVE TRIANGULATION

(8.1) Definition. An integral i-dimensional simplex 7 € R™ is called minimal
if TNZ"™ = Somr. It is called primitive if its i-dimensional volume is 1/il. A
triangulation is called primitive (resp. minimal) if each simplex is primitive (resp.
minimal).

Clearly, each primitive simplex is minimal; if dim7 < 2 then minimality is

equivalent to primitivity; if 7 is minimal and dim 7 > 3 then its volume can be
arbitrary big.

Lemma. Let o # & be an integral primitive simplex. Then:

(a) If o is even (see (4.1)) then d(o) is odd (i.e. dimo is even).

(b) If the vertices of o are linearly independent then o has not more than one even
non-empty face.

(c) Ifo C A (see (1.1)) and m is even then o has exactly one even non-empty face.

Proof. Let V be the linear span of ¢. Since ¢ is primitive, there exist a € V and
a base ey, ...,eq of M = Z™ NV, such that the vertices of o are a + ey, ...,a + eq.
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Let a = Y ase; and let T = {i | a; is odd}. Let 7 be a face of o spanned
on {a+e; | j € J}. Suppose that 7 is even. We shall show (and this will
prove (b)) that then J = I. Indeed, let v be the sum of the vertices of 7. Then
v=|J|a+3 ;e € 2M. If | J| were even then |J|a would be an even vector and
each z;, j € J would be odd where v = )" z;e; is the expansion of v in the base
{ei}. Thus, |J| is odd (this proves (a)). Note that >, ;e; = a (mod2), hence,
dicr€it Y jesei = a+d i e; =v =0 (mod2). But {e;}icn is the base of
M ® Z,, thus, J = I. To prove (c), note that J = I = & implies a € 2M which
contradicts m € 2Z. O

(8.2) PropositNion. Let 7 € R™ be a primitive simplex with linearly indgpendent
vertices. Then Q(t) = e(t)t™)/2, In particular, mcoef(Q,R,) = mcoef(Q,R,) =
e(7) mcoef R (t).

Proof. Tf d(7) is even then Q(t) = 0 and the claim is trivial. Suppose that d = d(7)
is odd. Let V be the linear span of 7, L the linear functional on V such that
Li; =1,and M = {m € Z" | 2L(m) € Z}. Denote by v1,...,vq the vertices of T
and let II; be as in (5.1). We have to show that m € M NInt I, = 2m = Y v;.
Indeed, the fact that 7 is primitive means that there exist a € M with L(a) = 1/2
and a base ej,...,eq of M such that v; = a +e;. Then m = ) m;e; with integer
m;’s. On the other hand, if m € Int I, then m = Y z;v; where 0 < x; < 1. Hence,
a-y m; =Y (m; —x;)v;. But 2a lies in the affine span of 7 and 7 is primitive,
this implies that the coefficients of a in the base {v;} are half-integer. Therefore,
m; — x; is half-integer for any ¢, hence z; = 1/2. O

Thus, for a primitive simplex 7 the local extremality condition (**) is equivalent
to
6(7') =1 N |RT(—1)| = mCOGfRT 5

and if 7 is primitive, d(7) = nmod2, and 7 is not contained in the union of
coordinate hyperplanes then (**) is equivalent to

*

e(r)=1 = 7" is asimplex.
Recall that 7* is the slice polytope of 7 (see (3.3))

(8.3). Even dimension. Let n be even and ¥ be a primitive triangulation of
A (see (1.1)). Let S7~' and II,(m) be as in (*) (see Introduction) for the Viro
T-hypersurface X = X5 ; (s is an arbitrary sign distribution).

Proposition.

—X(S77") = R (-1); I, (m) = coef,, /2 Ry .

In particular, for n = 4 one has Ry = cit® + cot® + 1t where ¢; = (mg_l) and

c; =My(m) = 2m® —2m> + Im — 1, hence, —x (ST ") =c2—2c; = tm® — 3m +1

does not depend on ¥ (nor on s). Thus, one has “=” in (*) for m < 3 and “<”
form > 4.

Proof. If 7 # & then either R, (—1) = mcoef R, = 0 (when d(7) is odd) or e(7) =0
(when d(7) is even). Thus, the contribution of 7 in the both sides of (*) iz zero.

To compute Ry for n = 4, note that the number of vertices and 3-faces is known
for a primitive triangulation, and the number of edges and triangles can be found
from Dehn — Sommerville equations (see Appendix). O

w
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(8.4). Odd dimension. Suppose that n is odd and one has =" in (*) for a Viro
hypersurface X(x, ;) where ¥ is a primitive triangulation of A. Let 7 € ¥. If d(7)
is even (in particular, if 7 = &) then the contribution of 7 to the both sides of (*)
is zero. Thus, a necessary condition on a primitive triangulation ¥ for =" in (*)
is the condition:

The slice polytope T is a simplex for each simplex T such that d(7) is odd and
k(t) =n.

§9. THE CASE OF LOW DIMENSIONS

Racall (see 1.1) that all integral planes are endowed with the lattice volume, in
particular, the length of a segment [a,b], a,b € Z™ is #Z™ N [a,b).

Given a k-simplex o in an affine integral k-plane V and a point p € Z" \ V,
define the height hy, of the simplex [po] as the length of the segment ¢([po]) where
¢ : R — R™ ¥ is the projection along V, such that p(Z") = Z"*. Thus, we
have voly41[po] = hyvol, o/(k + 1).

n=3.

(9.1) Local condition. Let us interpret the local condition (**) for each values
of (d(7), k(1)). We suppose that m (see (1.1)) is even (for m odd (*) is just 0 = 0).

d(t) =0 (i.e. 7=9): Q. =1, R,(=1) = coefz/, R, = 0, hence (**) always holds.

d(t) = 1: Q, = e(7)t*/2. Denote the number of edges of 3 incident to 7 by 7.

k(t) =1,2: 237k R_ = (0 — 4)t, hence (**) holds automatically;

k(r) =3: R, =1+ (0 —2)t+t2, hence (**) holds iff e(7) = 0 or ¥ = 3.
d(t) =2

k(t) =2: R, =0, hence (**) always holds.

k(t) =3: R, =t+ 1, hence coefs/,(Q,R;) = 2coef; ), Q. Thus, (**) holds iff
(Int7) N2Z° = 2.

d(r) = 3,k(r) =3: R; =1, hence (**) is equivalent to coefs/; @, = e(r). This is
so if and only if one of the following conditions hold:

(i) 7 is primitive;
(ii) 7 = [abc] where the line ac contains an even point and the height h, equals 1.
(iii) the barycenter b of 7 is even and 7N Z* = Som 7 U {b}.

Analyzing these conditions, one easily obtains

(9.2) Proposition. (n = 3, m is even). (a). Any locally extremal (see (7.4))
triangulation of A can be subdivided up to a primitive locally extremal triangulation.
(b). Let X be locally extremal and

{ —1, ifk(a) =2 and a ¢ 273
s(a) = :
1, otherwise.

Then one has “=" in (*) for the Viro T-hypersurface X = X(x ).
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Examples of (¥, s), providing in (*) are given in Fig. 2, (“4+” is white,
is black). The regularity follows from (10.1), (10.2) using the hexagonal subdivision
shown by thick lines.

n=4.

(9.3) Local condition. Like in (9.1), we study the local extremality condition
(**) for each pair (d, k).

d(t) =0 (i.e. 7= @): by the definition (see (3.2)),
Ro(t)= Y (-)*Ft—1)""frq
0<d<k

where fi.q 1= #{0 € £|k(0) = k,d(0) = d}. Consider separately the two cases:

(9.3.1) Rg(—1) = mcoef Ry;
(9.3.2) Rg(—1) = —mcoef Rg.

It is clear that coefs Ry = 0 and coefs Ry = fs;1 = #(Som(X) NInt A). Thus, we
see from (7.1b) that (9.3.1) holds iff f4.1 = 0. (This means that all the vertices of
¥ lie on 0A.)

Analogously, (9.3.2) is equivalent to fio = 4fs1 + f31.

d(t) =1: Q; =0 and R,(—1) = 0. Hence, (**) holds automatically;

d(r) =2: Qr = qt where ¢ = #(Z*NInt 7). Put o = #{r <o € L | d(0) = 4}.
k(1) =2,3: 2 k(R = (9—4)t, hence (**) is equivalent to (7 —4)(g—e(7)) = 0.
(Note that ¢ = e(r) if and only if ¢ < 1).
k() =4: R, =1+ (v —2)t + 2, hence (**) takes form e(7)|4 — 7| = q(¥ — 2).
This holds if and only if either (i) ¢ =0 or (ii) # = 3 and ¢ = 1.
d(r) = 3:
k(r) =3: R, =0, hence (**) holds automatically.
k(r)=4: R, =1+t Q, = q+ qt where ¢ = #(Z* NInt7). Hence, (*¥¥) is
equivalent to ¢ = 0.
d(t) = k() =4: R, =1, hence (**) is equivalent to the condition

(9.3.3) coefy Q- = e(7).

It is possible to list more or less explicitly all the 3-simplices satisfying (9.3.3) as
we did it for the other values of (k,d). However the answer is rather complicated
and we restrict ourselves by deriving some consequences of (9.3.3).
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(9.4) Poincaré polynomial of the interiority of a 3-simplex. Let 7 C R*
be an integral 3-simplex. Denote by V', S, and [, respectively its lattice volume,
the sum of the lattice areas of the faces, and the sum of the lattice lengths of the
edges. Put i = #(Z* NInt 7). Let Q,(t) = c1t + cat? + ¢11° be as in (7.5).

(9.4.1) Proposition. (a) ¢y =i; (b) co =6V =25 +1—2i— 3.

Proof. (a). Evident. (b). Replacing if necessary Z* with the lattice generated by
the integral points of the affine span of 7 we may suppose that coef, p, = 0 for
a ¢ Z (in particular, @, = Q). By Ehrart formula [5] we have

coefy pr = VE* + (S/2)k* + Ak +1, k>0, where A =i —V 4+ (S/2) + 1.
The summation of t* coef p, over k =0, 1,... yeilds

t3+4t2+t+§ t2+t+ At N 1
(1—t)* 2 (1—¢t)3  (1—t)2 1-¢

br = V
Similarly, we find p;q: =3 ., d(o)=d Po by the summation of
coef pr3 = Sk + 1k + 4, coefy, pr o = lk + 6, coefy pr1 =4

and apply @, = Zzzo(t —1)%p,.q (see (5.3d), (5.4)). O

Lemma. There exists a triangulation of T with vertices at Som(r) U (Z* N Int )
and with > 3i + 1 tetrahedra.

Proof. Denote the points of Z* N Int 7 by p1,...,p;. Let S = {7} and let &; be
obtained from X¥;_; by adding the point p; and subdividing the simplices containing
it. Clearly, each time we add > 3 tetrahedra. O

(9.4.2) Corollary. (a). Ifi > 0 then 6V > 2S +3(i —1); (b). Ifi > 0 then
co>i+1—6; (c). ca>c.

Proof. (a). In the triangulation of the Lemma, the volume of the 4 tetrahe-
dra having a common face with 7, is > S/3. The volume of the others is >
(#tetrahedra —4)/6 > (3i + 1 —4)/6
(b). Put (a) into (9.4.1b).  (c). Put ¢y =i and [ > 6 into (b). O
Conjecture. @, is unimodal for any polyhedron 7 with vertices at integral points.
Remark. By the arguments as above one can prove this conjecture when d(7) = 4.
(9.4.3) Corollary. If 7 is minimal (see (8.1)) then co = 6V — 1.
Proof. Put i =0,1=6, S =2into (9.4.1b). O
(9.4.4) Proposition. If 7 is minimal then the following conditions are equivalent:
(a) T satisfies (9.8.3); (b)) V =(1+e(r))/6; (¢c) V is 1/6 or 1/3.
Proof. (a) <= (b) by (9.4.3); (b) = (c) is evident.
(c) = (b). For V = 1/6 this follows from Lemma (8.1a). Suppose that V =1/3
and let us prove that e(r) = 1. Let vy, ..., vs be the vertices of 7. Set e; = v; — vy,
j =1,2,3. Denote by M the lattice generated by ey, ez, e3. Let M' = Z*N(M ®R).
We have M' : M = 2. Hence, M’ is generated by ey, ez, €5 and e3 = aje; +azez+2ej.
Since vg + - - - +v4 = 4vg + (a1 + 1)eg + (az + 1)es + 2€}, it suffices to show that the

both a; and as are odd. Indeed, if a; = a2 = 0mod 2 then the segment [vov3] would
not be minimal; if a1 + 1 = as = 0mod 2 then [vyv3] would not be minimal. O
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§10. REGULARITY CRITERIA

(10.1) Regular polyhedral decomposition. Given a convex polytope A € R,
define its (regular) polyhedral decomposition replacing everywere in (1.2) and (2.1):

“simplex” —»  “convex polyhedron” (omit k& < n in the definition)
“simplicial complex” — “polyhedral complex”
“triangulation” —  “polyhedral decomposition”

Proposition. Let X be a polyhedral decomposition of a convex n-dimensional poly-
tope A C R"™. Suppose that (possibly, after an affine change of coordinates) each
face o € ¥ can be inscribed into a sphere whose center lies either in Into or in
Int(ec NA") for some face A" of A. Then X is regular.

Proof. Put ¢(x) = Y z? for x € Som ¥ and extend ¢ linearly onto each face. [

(10.2) Polyhedral subdivisions. Let ¥, ¥’ be polyhedral decompositions of a
convex polytope A. For 0 € ¥ put ¥/ = {¢’ € ¥'|o’ C o}. Say that ¥’ is a
polyhedral subdivision of ¥ if Vo € ¥ one has [E]] = 0.

Proposition. Let ¥ be a reqular polyhedral decomposition of a convex polytope
A and X' a polyhedral subdivision of ¥.. Suppose that there exists a continuous
function ¢ : A — R such that Yo € ¥ the restriction |, is (X!)-convez (i.e. the
decompositions X! are “coherently regular”). Then X' is regular.

Proof. If ¢ is E-convex and 0 < & < 1 then ¢ + et is ¥'-convex. O

APPENDIX: RELATIVE MACMULLEN INEQUALITIES
by R. MacPherson and S. Orevkov

Let P be a convex simplicial polytope in R™. Define its Poincaré polynomial
Hp as

Hp(t)=(t—1)"+>  fioa(t— 1",

i=1
where f; is the number of i-dimensional simplices of P.
Necessary and sufficient conditions on a polynomial

hpt™ + 1t + .+ Byt + ho (1)

with h, =1 for it to be a Poincaré polynomial of a convex simplicial polytope, are

hi = hp_s, i=0,..,[n/2] (Dehn-Sommerville equations); (2)
hi < hi-, i=1,..,[n/2]; (3)
(hixr = hi) < (hi — hi—1)<", i=1,..,[n/2] -1 (4)

where m<F> is some explicitly defined function of the integers m and k.

These conditions were conjectured by MacMullen [11] and proved by Stanley
[13] (necessity) and Billera and Lee [3] (sufficiency). The proof of the necessity uses
toric varieties and the hard Lefschetz theorem.
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A polynomial (1) is said to be symmetric and unimodal if h, > 0 and the
conditions (2), (3) are satisfied.

Here we give a relative version of the inequality (3) (Theorem 1 below) for coeffi-
cients of Poincaré polynomials of a polytope and its intersections with hyperplanes
in general position. The proof is based on the the relative hard Lefschetz theorem
of Beilinson, Bernstein, Deligne, and Gabber.

Let P be a convex simplicial polytope in R™ and let @ = {ay,...,ar},k < n be
a set of hyperplanes in general position. Denote {1,...,k} by k. For I C k, let
ar = Nierag, Pr = PNay (by convention, ag = R", Py = P). Say that P argees
with a if any a7 intersects Int P and each face of Py is a face of P. If P agrees with
a, we define the relative Poincaré polynomial of P with respect to o as

HEL®) =Y (=) + 1) Hp, (1)
ICk

Theorem 1. The polynomial H};e(ll(t) is symmetric and unimodal.

Proof. Since the hyperplanes oy, ..., ay are in general position, we can chose coor-
dinates (z1, ..., n) in R™ so that «; is defined by x; = 0. The condition that P
agrees with a implies that the origin can be chosen inside P. Since P is simplicial,
we may perturb it so that all its vertices are rational. The perturbation can be
chosen so that all the incidence relations are preserved.

For any face o of P consider the cone obtained as the union of all rays with
vertex at the origin, which intersect o. All such cones define a fan ¥ in R™, and
let X be the toric variety over C associated to ¥ (see [4]). Let Y be (CPh)¥,
which we shall consider as the toric variety associated to the fan ¥y consisting of
all coordinate octants in R¥.

The mapping R" — RF defined by y; = z;, (where (yi,...,yx) are coordinates
in R*) is simplicial (sends any cone of ¥ to a cone of Yy). Hence, it defines a toric
morphism f: X — Y (see [4]).

The structure of toric variety defines the following stratification of Y. Let Yy =
C — {0} be the 1-dimensional and Y; = {0}, Y> = {oo} the O-dimensional strata
of CP'. Denote by M the set of all k-tuplets (m, ..., my) where m; = 0,1,2. For
m € M let us define

Y, = {(yl,...,yk} eY | Y = ij if mj > 0}.

We apply the Decomposition theorem [2; Section 5.4.5] (see also [9; Section 12])
to the map f. It expresses the pushforward of the intersection complex of X as a
direct sum of intersection complexes of subvarieties of Y. Since P is simplicial, X is
rationally smooth, the intersection complex of X is the constant sheaf. By directly
examining the map f, one can see that only subvarieties Y;,, of Y occur, and that all
the intersection complexes involved have un-twisted coefficients. Taking Poincare
polynomials, we get the following statement (where the unimodality comes from
the relative hard Lefschetz theorem, [2; Section 5.4.10])

Lemma. There exist symmetric unimodal polynomials p,, with integral coefficients
such that for any open V. C Y,

H(f7' (V) =) omH(V NY,y,)
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See [10] for a fuller exposition of the Decomposition theorem from this point of
view. )
Let U C Yy be an open disk. For I C k put
Ur= {(yl,...,yk) ey | yieUifi e I}

Define J(m) as {j | m; = 0}.

Then
(cphHlIm =TIl Il IcJ(m)
urny,, = )
otherwise.
The lemma applied to Uy gives us
Hp, =H(f " (UD)) = > emHUINY) = > pu)(t+ D1
meM meM,ICJ(m)

For J € k put pi(t) = ZmEMJ(m):J ©m(t). Then Hp, = ZICJ ws(t)(t+ 1)|J|*|[|,
and

Hyo =Y (=D 37 s+ )P =3 ps@)(t + DY (=) = g (t).

ICk ICJCk JCk IcJ

O
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