
PETROVSKI-OLEINIK INEQUALITIES ANDCOMBINATORICS OF VIRO T-HYPERSURFACESS.Yu.OrevkovIntrodu
tionLet X � RPn�1 be a smooth real algebrai
 hypersurfa
e de�ned by the equationf(x1; : : : ; xn) = 0 where f is a homogeneous polynomial of degree m with real
oeÆ
ients. The Petrovski|Oleinik inequality (in the form given by Arnold [1℄)states j~�(Sn�1+ )j � �n(m); (�)where ~� denotes the redu
ed (lowered by 1) Euler 
hara
teristi
, Sn�1+ = fx 2Sn�1 j f(x) � 0g (as usual, Sn�1 denotes the (n � 1)-dimensional sphere) and�n(m) is the Petrovski number:�n(m) = #f(k1; : : : ; kn) 2 Zn j 0 < ki < m; k1 + � � �+ kn = mn=2g:It is the number of integral interior points on the se
tion of the n-dimensional
ube with the side m by the hyperplane orthogonal to the diagonal and passingthrough the 
enter of the 
ube. Petrovski showed that (*) is sharp for n = 3; Viro[14℄ showed that (*) is sharp for n = 4. This paper appeared as the result of anunse

essful attempt to prove the sharpness of (*) for all dimensions.A real algebrai
 hypersurfa
e is 
alled Viro T-hypersurfa
e if it 
an be 
on-stru
ted by the Viro method [15℄ starting with a triangulation and a polyno-mial whi
h has non-zero monomials only at the verti
es of the triangulation (seex2 for an exa
t de�nition). Viro T -hypersurfa
es gave the �rst realizations of:
ounter-examples to Ragsdale's 
onje
ture [7℄; examples of M -hypersurfa
es (andM -
omplete interse
tions) of any degree and any dimension [8℄; examples of exp(Cm3=2)pairwise non-isotopi
 M -
urves of degree m (see [12℄, the te
hniques from [6℄ wereused there).In this paper, we give a 
ombinatorial interpretation of the Petrovski | Oleinikinequality for T-hypersurfa
es in terms of the triangulations. Namely, we rewriteea
h side of (*) as a sum over all simpli
es of the triangulation (see (4.3), (6.2)) andshow that ea
h summand in the left hand side is less or equal than the 
orrespondingsummand in the right hand side (see (7.3). In other words, we de
ompose (*) intoa sum of lo
al inequalities.First, this yeilds another proof of the Petrovski { Oleinik inequality for T-hypersurfa
es. Se
ond, for T-hypersurfa
es, this provides a ne
essary and suÆ
ient
ondition for the equality sign in (*): one has \=" in (*) i� one has \=" in allthe lo
al inequalities. The question of \=" in the lo
al inequalities is dis
ussed inxx7{9. Typeset by AMS-TEX1



2 S.YU.OREVKOVThe proof of the lo
al inequalities is based on a relative version of the Ma
Mulleninequalities for the numbers of k-dimensional fa
es of a simpli
ial polytope. Therelative Ma
Mullen inequalities are formulated and proven in the Appendix (jointwith R. Ma
Pherson).I am grateful to A.G. Khovanski, O.Ya. Viro, I. Itenberg and E. Shustin foruseful dis
ussions. x1. Definitions and notation(1.1). Throughout the paper n and m will denote respe
tively the dimension andthe degree (see Introdu
tion). Denote the set f1; 2; : : : ; ng by �n. Let � � Rn bethe simplex � = fx 2 Rn jxi > 0; x1 + � � �+ xn = mg.We denote by [p1; : : : ; pk℄ the 
onvex hull of points p1; : : : ; pk 2 Rn.For x 2 Rn, a 2 Zn we denote xa11 xa22 : : : xann by xa.For a �nite set M we denote the number of elements in M by jM j or by #M .For a polynomial p(t) we denote by 
oef�(p) the 
oeÆ
ient of t�.The aÆne span of a set A � Rn is the minimal aÆne plane 
ontaining A.An aÆne plane V � Rn is 
alled integral if it 
oin
ides with the aÆne span ofV \ Zn. Any k-dimensional integral aÆne plane is supposed to be endowed withthe latti
e k-dimensional volume normalized by the 
ondition that the volume of afundamental parallelepiped of V \ Zn is 1.(1.2) Triangulations. k-Simplex in Rn (k � n) is the 
onvex hull of k+1 pointsin general position. If � is a fa
e of a simplex � then we write � � �. The emptysimplex ? and � itself are always 
onsidered as fa
es of �. The interiority Int� ofa simplex � is the interiority with respe
t to the aÆne span of � (if dim� = 0 thenInt� = �).Simpli
ial 
omplex in Rn is the set � of simpli
es satisfying the standard axioms:(1) if � 2 � and � � � then � 2 �; (2) if � = �1 \ �2 then � � �1 and � � �2. (Inparti
ular, the empty simplex ? is always an element of �.)For a simpli
ial 
omplex �, we denote by [�℄ its support: [�℄ = [�2� � and wedenote by Som� the set of the verti
es. � is 
alled a triangulation of a set X � Rnif [�℄ = X .A simplex (or a triangulation) is 
alled integral if all its verti
es are integralpoints. x2. Viro T-hypesurfa
es(2.1) Regular triangulations. Let � 2 Rn be as in (1.1). An integral triangu-lation � of � is 
alled regular if there exists a 
onvex fun
tion ' : � ! R whi
his linear on any � 2 � and is not linear on �1 [ �2 for any �1; �2 2 �, �1 6= �2,dim�1 = dim �2 = n � 1. Su
h a fun
tion ' is 
alled �-
onvex. An example of anon-regular triangulation see [4; p. 119, Fig. 3℄.(2.2) Indu
ed triangulation of an o
tahedron. Let � be a regular triangula-tion of � (see (2.1)). Denote by gi the re
e
tion in the 
oordinate hyperplane xi = 0and let G = (Z=2)n be the group generated by g1; :::; gn. Clearly, G = fgI j I � �ngwhere gI =Qi2I gi. Set �̂ = G� = Sg2G g� and �̂ = fg� j� 2 �; g 2 Gg. Thus,�̂ is an n-dimensional o
tahedron and �̂ is a triangulation of �̂.



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 3Lemma. �̂ is 
ombinatorially equivalent to the fa
e 
omplex of a 
onvex polytope.Proof. Proje
t Graph(') � Rn �R onto Rn � 0 from a point (0;�y) for y � 1and re
e
t the result with respe
t to all the 
oordinate hyperplanes. �(2.3) Viro T-hypersurfa
es. Let � be a regular triangulation of � (see (2.1))and s a sign distribution on �. (Sign distribution is an arbitrary fun
tion s :Som� ! f�1;+1g.) Let ' be a �-
onvex fun
tion (see (2.1)). Then Viro T-hypersurfa
e asso
iated with (�; s) is the hypersurfa
e X(�;s) � RPn�1 de�ned byf"(x) = 0, for " suÆ
iently small, wheref"(x) = Xa2Som� s(a)"'(a)xaIf 0 < "� 1 then up to an ambient isotopy X(�;s) does not depend on the 
hoi
eof ' and ". The topologi
al type of X(�;s) 
an be expli
itly des
ribed as follows.Let gi and gI be as in (2.2). Extend the sign distribution s onto Som �̂: ifa = (a1; :::; an) 2 Som �̂ and s(a) is already de�ned then put s(gi(a)) = (�1)ais(a).Thus, for a 2 Som� one has s(gI(a)) = s(a)�Qi2I(�1)ai . Denote: �̂+ = f� j s(v) =+1 for any vertex v of �g. Then Som �̂+ = fa 2 Som �̂ j s(a) = +1g.Let �̂ and �̂ be as in (2.2) and let �̂0 be the bary
entri
 subdivision of �̂. Denote:Sn�1+ = Sn�1 \ ff" � 0g (like in (1)) and �̂+ = Sa2Som�̂+ Star�̂0(a).Theorem. (Viro [15℄) For " > 0 suÆ
iently small there is a homeomorphism(Sn�1; Sn�1+ ) � (�̂; �̂+).x3. Combinatorial polynomials(3.1) Relative H-polynomial of a 
onvex polytope. Let P 2 Rn be a 
onvexsimpli
ial polytope su
h that dimP = n. Let fk be the number of its fa
es ofdimension k. De�ne the H-polynomial1 of P asHP (t) = nXi=0 hiti = (t� 1)n + nXk=1 fk�1 � (t� 1)n�k = X�<P(t� 1)n�d(�)where d(�) = 1 + dim � (Re
all, that � < P means that � is a fa
e of P ; by
onvention, ? < P and d(?) = 0.)If � = f�1; : : : ; �kg, k � n is a set of hyperplanes in general position whi
hagrees with P , then we 
all HrelP;� the relative H-polynomial of P with respe
t to �(see Appendix).Examples. (a) If P is a simplex then HP (t) = 1 + t + � � � + tn. (b) If P isan o
tahedron then HP (t) = (1 + t)n. (
) If S is the k-suspension over P thenHS(t) = (t+ 1)kHP (t).1In the Appendix, the H-polynomial of a polytope is 
alled the Poin
ar�e polynomial. However,in the main part of the paper we use the term H-polynomial be
ause following Arnold [1℄, weintrodu
e in x5 the Poin
ar�e polynomial of a fa
e.



4 S.YU.OREVKOV(3.2) Combinatorial polynomial of a fa
e of a triangulation of �. Let �be as in (1.1) and � a regular triangulation of � (see (2.1)). Let � be any simplexfrom � (possibly, � = ?). Following [1℄, de�ne the 
ombinatorial polynomial of �as R� (t) =X���(�1)n�k(�)(t� 1)k(�)�d(�);where d(�) = 1 + dim� is the dimension of the 
one over �, and k(�) is thedimension of the minimal 
oordinate hyperplane whi
h 
ontains �.(3.3) Sli
e polytope of a fa
e. Let � be a fa
e of a 
onvex simpli
ial polytopeP � Rn, su
h that 0 2 IntP . Let L be a linear fun
tional whi
h de�nes a hy-perplane of support of � , i.e. LjP � 1 and L(x) = 1 i� x 2 � . Let �� be theinterse
tion of the hyperplane fL = 1 � "g, 0 < " � 1 with a plane of dimensionn � dim � whi
h is transversal to � and interse
ts Int � . De�ne the sli
e polytopeof � as �� = P \ �� . The following Lemma A is a standard fa
t about 
onvexpolytopes and Lemma B below 
an be proven in a similar way.Lemma A. The mapping � 7! � \ �� de�nes a monotoni
 (i.e. respe
ting theorder \�") bije
tion of f� j � � � < Pg onto the fa
e 
omplex of ��. �Let � = f�ig be a set of hyperplanes whi
h agrees with P (see Appendix). Set�� = f�i \ �� j�i 2 � & � � �igLemma B. �� agrees with ��. �(3.4) Notation. Let �̂, �̂ be as in (2.2). Denote byX̂
ond(�)expr(�); respe
tively: X
ond(�) expr(�)the sum of the expression expr(�) over all simpli
es � 2 �̂ (respe
tively: � 2 �;the empty simplex in
luded in the both 
ases!) satisfying a 
ondition 
ond(�).Let k(�) be as in (3.2). The following lemma is evident.Lemma. If � 2 � thenX̂��� ; 
ond(�)expr(�) = X��� ; 
ond(�) 2k(�)�k(�)expr(�)(3.5) ComparingHrel and R� . Let � be as in (1.1) and � a regular triangulationof �. Let �̂ and �̂ be as in (2.2). Denote by � = f�igi=1;:::;n the set of the
oordinate hyperplanes �i = fxi = 0g. Let � be any fa
e of �̂. De�ne �� and ��as in (3.3) assuming that P is a 
onvex realization of �̂ (see Lemma (2.2)).Proposition. If � 2 � then Hrel��;�� (t) = 2n�k(�)R� (t).



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 5Proof. For I � �n denote: �I = Ti2I �i and k(�I) = dim�I = n� jI j. ThenHrel��;�� (t) = X�I��(�1)jIj(t+ 1)jIjH��\�I (t)= X�I��(�1)jIj(t+ 1)jIj X̂�����I(t� 1)k(�I )�d(�) by Lemma (3.3.A)= X�I��(�1)jIj(t+ 1)jIj X�����I 2k(�)�k(�)(t� 1)k(�I)�d(�) by Lemma (3.4)=X���(�1)n�k(�)(t� 1)k(�)�d(�)2k(�)�k(�) X�I��(t+ 1)n�k(�I )(1� t)k(�I )�k(�)=X���(�1)n�k(�)(t� 1)k(�)�d(�)2k(�)�k(�) � 2n�k(�) = 2n�k(�)R� (t): �Together with Theorem 1 of Appendix and (2.2), (3.3.B) this yeilds(3.6) Corollary. R� is symmetri
 and unimodal. �x4. Left hand side of the Petrovski{Oleinikinequality for T-hypersurfa
es(4.1) Notation. Let � � Rn be an integral simplex su
h that its verti
es v1; :::; vdare linerly independent. Sete(�) = � 1 if v1 + :::+ vd 2 2Zn or if � = ?0 otherwise.If e(�) = 1 we say that � is even, otherwise � is odd.Let G, �̂, �̂ be as in (2.2) and � 2 �̂. Then we denote: s(�) =Qdi=1 s(vi) wherev1; :::; vd are the verti
es of � .Lemma. For � 2 � one has P� 02G� s(� 0) = 2k(�)s(�)e(�).Proof. Clearly that jG� j = 2k(�). Let v1; :::; vd be the verti
es of � and let v =(x1; :::; xn) = v1 + :::+ vn. Then s(gI�) = (�1)xIs(�) where xI =Pi2I xi. Hen
e,if e(�) = 1 then all xI are even, and P� 02G� s(� 0) = jG� js(�) = 2k(�)s(�). Ife(�) = 0 then xj is odd for some j. Put Gj = fgI j j 62 I � �ng. ThenP� 02G� s(�) =P� 02Gj� �s(� 0) + s(gj� 0)� = 0. �Corollary. (see (3.4)) For any expression expr(�) one hasX̂� s(�) expr(�) =X� s(�)e(�)2k(�) expr(�)(4.2) Lemma. Let the notation be as in (2.3). Then [�̂+℄ is a deformation retra
tof �̂+ (see Fig. 1).



6 S.YU.OREVKOV

Fig. 1.Proof. Consider a sequen
e of sets [�̂+℄ = X0 � X1 � ::: � Xn = Int �̂+ whereXi = [�̂+℄ [ �[Skeli �̂℄ \ Int �̂+):Constru
t a sequen
e of deformation retra
tionsXn ! Xn�1 ! :::! X0 as follows.If � 2 �̂��̂+ is an i-dimensional simplex and b is the bary
enter of � then b 62 Xiand hen
e, � \Xi 
an be blown from b onto �� \Xi�1. Performing this pro
edurefor all i-simpli
es � 2 �̂� �̂+, we obtain the required retra
tion Xi ! Xi�1. �(4.3) Proposition. Let X = X(�;s) be a Viro T-hypersurfa
e (see (2.3)) de�nedby f = 0. Let Sn�1+ = Sn�1 \ ff � 0g (as in the left hand side of (*)). Then~�(Sn�1+ ) = (�1)n�1X�2� e(�)s(�)R� (�1)where e(�) and s(�) are de�ned in (4.1) and R� (t) is the 
ombinatorial polynomialof � (see (3.2)).Proof. It follows from (2.3) and (4.2) that ~�(Sn�1+ ) = ~�(�̂+) = ~�([�̂+℄). Let1�̂+ : �̂ ! f0; 1g and 1Som�̂+ : Som �̂ ! f0; 1g be the 
hara
teristi
 fun
tions of�̂+ and Som �̂+ i.e. 1�̂+(�) = 1 i� � 2 �̂+ and 1Som�̂+(v) = 1 i� v 2 Som �̂+.Clearly, that 1Som�̂+(v) = (s(v) + 1)=2. Let d(�), k(�) be as in (3.2). Then,1�̂+(�) = d(�)Yi=1 1Som �̂+(vi) = d(�)Yi=1 s(vi) + 12 = �12�d(�)X��� s(�)where v1; :::; vd(�) are the verti
es of � (re
all that ? � �). Let P̂ and P mean



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 7the same as in (3.4). Then we have�~�(Sn�1+ ) = X̂� (�1)d(�)1�̂+(�) = X̂� (�2)�d(�)X̂���s(�) = X̂� s(�)X̂���(�2)�d(�)=X� s(�)e(�)2k(�)X̂���(�2)�d(�) by Corollary (4.1)=X� s(�)e(�)2k(�)X��� 2k(�)�k(�)(�2)�d(�) by Lemma (3.4)= (�1)nX� s(�)e(�)X���(�1)n�k(�)(�2)k(�)�d(�)= (�1)nX� s(�)e(�)R� (�1): �x5. Poin
ar�e polynomial of a simplex(5.1) De�nition. Given a set S � Rn and a linear fun
tional L : Rn ! R, de�nethe Poin
ar�e series of S with respe
t to L as [S℄L = Pa2S\Zn tL(a) = P� 
�t�where 
� is the number of integral points on the hyperplane se
tion S \ fL = �g.Let � 2 Rn be an integral simplex whose verti
es v1; :::; vd are linearly indepen-dent. Let C� = R+� = fx1v1 + :::+xdvd jxi � 0g be the 
losed 
one generated by� and �� = fx1v1 + :::+ xdvd j 0 � xi < 1g be the \half-
losed" parallelepiped.Let L be a linear fun
tional su
h that Lj� = 1. Following Arnold [1℄,2 de�ne thePoin
ar�e series p� (resp.: q�) and the Poin
ar�e polynomial P� (resp.: Q�) of thefa
e � (resp.: of the interiority of the fa
e �) as follows:p�(t) = [C� ℄L; q�(t) = [IntC� ℄L;P�(t) = [�� ℄L; Q�(t) = [Int��℄L(for � = ?, set by de�nition p? = q? = P? = Q? = 1).(5.2) Examples. (see [1℄) (a). For � as in (1.1) one hasp�(t) = (1� t1=m)�n q�(t) = tn=m(1� t1=m)�nP�(t) = � 1� t1� t1=m�n Q�(t) = � t1=m � t1� t1=m�n(b). The Petrovski number (see Introdu
tion) is �n(m) = 
oefn=2Q�(t).(5.3) Lemma. (see [1℄).(a) p�(t) =X��� q� (t); (b) q�(t) =X���(�1)d(�)�d(�)p� (t);(
) P�(t) =X���Q� (t); (d) Q�(t) =X���(�1)d(�)�d(�)P� (t);Proof. (a), (
) are evident; (b), (d) follow from the in
lusion-ex
lusion formula.2Our notation for Poin
ar�e series and polynomials di�ers from that in [1℄.



8 S.YU.OREVKOV(5.4) Lemma. (see [1℄). P�(t) = p�(t) � (1� t)d(�).Proof. Let M be the semigroup generated by the verti
es v1; :::; vd of �. Clearlythat C� is the disjoint union of the sets m + �� over all m 2 M . Note alsothat for any m = m1v1 + ::: + mdvd 2 M and for any subset S � Rn one has[m+ S℄L = tm1+:::+md [S℄L. Hen
e,p� = [C� ℄L = Xm2M[m+�� ℄L = P� Xm2M tm1+:::+md = P� � (1 + t+ t2 + :::)d(5.5) Lemma. Let � be a fa
e of a simplex � and a, b elements of any 
ommutativering. Then P����� ad(�)�d(�)bd(�)�d(�) = (a+ b)d(�)�d(�). �(5.6) Lemma.Q�(t) =X���(�t)d(�)�d(�)q� (t) (1� t)d(�); q�(t) (1� t)d(�) =X��� td(�)�d(�)Q� (t):Proof.Q�(t) (5:3d)= X���(�1)d(�)�d(�)P�(t) (5:4)= X���(�1)d(�)�d(�)p�(t) (1� t)d(�)(5:3a)= X���(�1)d(�)�d(�)(1� t)d(�)X��� q� (t)= X��� q� (t) (1� t)d(�) X�����(�1)d(�)�d(�)(1� t)d(�)�d(�)(5:5)= X��� q� (t) (1� t)d(�) � (�t)d(�)�d(�);q�(t)(1� t)d(�) (5:3b)= (1� t)d(�)X���(�1)d(�)�d(�)p�(t)(5:4)= X���(t� 1)d(�)�d(�)P�(t) (5:3
)= X���(t� 1)d(�)�d(�)X���Q� (t)= X���Q� (t) X�����(t� 1)d(�)�d(�) (5:5)= X���Q� (t) td(�)�d(�):x6. Right hand side of the Petrovski {Oleinik inequality for T-hypersurfa
es(6.1) Proposition. Let � be a regular triangulation of � (see (1.1), (2.1)). ThenQ�(t) =P�2�Q� (t)R� (t).



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 9Proof. Note that if � 2 � and Int� � Int�0 for some fa
e �0 of � then d(�0) =k(�). Thus,Q�(t) = X�0��(�t)n�d(�0)q�0(t) (1� t)d(�0) by (5.6; left)= X�2�(�t)n�k(�)q�(t)(1� t)k(�) sin
e q�0 = XInt��Int�0q�=X� (�t)n�k(�)(1� t)k(�)�d(�)X��� td(�)�d(�)Q� (t) by (5.6; right)=X� Q� (t) tn�d(�)X���(�1)n�k(�)(t�1 � 1)k(�)�d(�)=X� Q� (t) tn�d(�)R� (t�1) =X� Q� (t)R� (t) by symmetri
ity of R� :(6.2) Corollary. For any regular triangulation � of � one hasP�2� 
oefn=2 �Q� (t)R� (t)� = �n(m) where �n(m) is the Petrovski number (seeIntrodu
tion). Thus, for a Viro T-hypesurfa
e X(�;s) (see x2) (*) is equivalent to�����X�2� e(�)s(�)R� (�1)����� �X�2� 
oefn=2 �Q� (t)R� (t)�where e(�), s(�) are de�ned in (4.1), R� is the 
ombinatorial polynomial of � (see(3.2)) and Q� the Poin
ar�e polynomial of Int � (see (5.1)).Proof. Combine (*), (4.3), (5.2b), and (6.1). �x7. The lo
al inequalities(7.1) Symmetri
 and unimodal polynomials. Let H(t) = Phiti be a poly-nomial and d 2 Z. Say that H is symmetri
 with 
enter td=2 if hi = hd�i; His unimodal with 
enter td=2 if all its 
oeÆ
ients are non-negative, hi�1 � hi fori � d=2 and hi � hi+1 for i � d=2.If a polynomial H(t) is symmetri
 with 
enter td=2 then we shall denote the
oeÆ
ient of td=2 by m
oefH .We shall use the 
onvention: if we say that a polynomial written in the formPdi=0 hiti is symmetri
 and/or unimodal then the 
enter is supposed to be at td=2,even if hd = 0.Lemma. Let H(t) =Pdi=0 hiti be symmetri
 and unimodal. Then:(a) jH(�1)j � hd=2;(b) Let d = 2k. Then H(�1) = hk i� h2i = h2i+1, i = 0; :::; [(k � 1)=2℄;(
) Let d = 2k. Then H(�1) = �hk i� h0 = 0 and h2i�1 = h2i, i = 1; :::; [k=2℄;Proof. If d is odd then the both sides in (a) are zero. If d = 2k then hk�H(�1) =2(h1�h0)+2(h3�h1)+ ::: and hk+H(�1) = 2h0+2(h2�h1)+2(h4�h3)+ ::: �



10 S.YU.OREVKOV(7.2) Corollary. Let HP be the H-polynomial of a 
onvex simpli
ial polytope ofdimension d = 2k. (see (3.1)). Then the following statements are equivalent:(a). jHP (�1)j = hk; (b). HP (�1) = hk; (
). P is a simplex.Proof. HP is symmetri
 and unimodal (see [13℄). Hen
e we 
an apply Lemma (7.1):(a) =) (b). Otherwise (7.1
) would imply hd = 0.(b) =) (
). By (7.1b) we have 1 = hd�1, hen
e, f0 = d+ 1 (see (3.1)).(
) =) (b) =) (a). See Example (3.1a). �(7.3) Corollary. Let � be a regular triangulation of � and � 2 �. Thene(�)jR� (�1)j � 
oefn=2 �Q� (t)R� (t)�:Proof. Put q = m
oef Q� and r = m
oef R� . Evidently that m
oef(Q�R� ) � qr,q � e(�), and it follows from (3.6) and (7.1a) that r � jR� (�1)j. �Together with (6.2) this gives a 
ombinatorial proof of (*) for T-hypersurfa
es.(7.4) De�nition. A triangulation of � (see (1.1)) is 
alled lo
ally extremal if it isregular and for ea
h simplex � (in
luding � = ?) one hase(�)jR� (�1)j = 
oefn=2 �Q� (t)R� (t)�: (��)Corollary. Let X = X(�;s) be a Viro T-hypersurfa
es. If one has \=" in (*) then� is lo
ally extremal.Proof. Compare (6.2) and (7.3). �(7.5) Redu
ed Poin
ar�e polynomial. Given Q(t) = P�2A q�t�, A � Q and� 2 Q, we de�ne the �-redu
tion of Q(t) as red� Q(t) =P�2A\(�+Z) q�t�For � as in (2.1) and � 2 � we de�ne the redu
ed Poin
ar�e polynomial of Int �as ~Q� = redn=2Q� (see x5). It easily follows from (6.1) (see also (5.2b)) that�n(m) =X�2�m
oef � ~Q� (t)R� (t)�:x8. The 
ase of a primitive triangulation(8.1) De�nition. An integral i-dimensional simplex � 2 Rn is 
alled minimalif � \ Zn = Som � . It is 
alled primitive if its i-dimensional volume is 1=i!. Atriangulation is 
alled primitive (resp. minimal) if ea
h simplex is primitive (resp.minimal).Clearly, ea
h primitive simplex is minimal; if dim � � 2 then minimality isequivalent to primitivity; if � is minimal and dim � � 3 then its volume 
an bearbitrary big.Lemma. Let � 6= ? be an integral primitive simplex. Then:(a) If � is even (see (4.1)) then d(�) is odd (i.e. dim� is even).(b) If the verti
es of � are linearly independent then � has not more than one evennon-empty fa
e.(
) If � � � (see (1.1)) and m is even then � has exa
tly one even non-empty fa
e.Proof. Let V be the linear span of �. Sin
e � is primitive, there exist a 2 V anda base e1; :::; ed of M = Zn \ V , su
h that the verti
es of � are a + e1; :::; a + ed.



PETROVSKI{OLEINIK INEQUALITIES AND T-HYPERSURFACES 11Let a = P aiei and let I = fi j ai is odd g. Let � be a fa
e of � spannedon fa + ej j j 2 Jg. Suppose that � is even. We shall show (and this willprove (b)) that then J = I . Indeed, let v be the sum of the verti
es of � . Thenv = jJ ja+Pj2J ej 2 2M . If jJ j were even then jJ ja would be an even ve
tor andea
h xj , j 2 J would be odd where v = Pxiei is the expansion of v in the basefeig. Thus, jJ j is odd (this proves (a)). Note that Pi2I ei � a (mod 2), hen
e,Pi2I ei +Pj2J ej � a +Pj2J ej � v � 0 (mod 2). But feigi2�n is the base ofM 
 Z2, thus, J = I . To prove (
), note that J = I = ? implies a 2 2M whi
h
ontradi
ts m 2 2Z. �(8.2) Proposition. Let � 2 Rn be a primitive simplex with linearly independentverti
es. Then ~Q� (t) = e(�)td(�)=2. In parti
ular, m
oef(Q�R� ) = m
oef( ~Q�R� ) =e(�)m
oef R� (t).Proof. If d(�) is even then ~Q(t) = 0 and the 
laim is trivial. Suppose that d = d(�)is odd. Let V be the linear span of � , L the linear fun
tional on V su
h thatLj� = 1, and M = fm 2 Zn j 2L(m) 2 Zg. Denote by v1; : : : ; vd the verti
es of �and let �� be as in (5.1). We have to show that m 2 M \ Int�� =) 2m =P vi.Indeed, the fa
t that � is primitive means that there exist a 2M with L(a) = 1=2and a base e1; : : : ; ed of M su
h that vi = a + ei. Then m = Pmiei with integermi's. On the other hand, if m 2 Int�� then m =Pxivi where 0 < xi < 1. Hen
e,a �Pmi = P(mi � xi)vi. But 2a lies in the aÆne span of � and � is primitive,this implies that the 
oeÆ
ients of a in the base fvig are half-integer. Therefore,mi � xi is half-integer for any i, hen
e xi = 1=2. �Thus, for a primitive simplex � the lo
al extremality 
ondition (**) is equivalentto e(�) = 1 =) jR� (�1)j = m
oef R� ;and if � is primitive, d(�) � nmod 2, and � is not 
ontained in the union of
oordinate hyperplanes then (**) is equivalent toe(�) = 1 =) �� is a simplex :Re
all that �� is the sli
e polytope of � (see (3.3))(8.3). Even dimension. Let n be even and � be a primitive triangulation of� (see (1.1)). Let Sn�1+ and �n(m) be as in (*) (see Introdu
tion) for the ViroT-hypersurfa
e X = X�;s (s is an arbitrary sign distribution).Proposition. �~�(Sn�1+ ) = R?(�1); �n(m) = 
oefn=2R?:In parti
ular, for n = 4 one has R? = 
1t3 + 
2t2 + 
1t where 
1 = �m�13 � and
2 = �4(m) = 23m3� 2m2+ 73m� 1, hen
e, �~�(Sn�1+ ) = 
2� 2
1 = 13m3� 43m+1does not depend on � (nor on s). Thus, one has \=" in (*) for m � 3 and \<"for m � 4.Proof. If � 6= ? then either R� (�1) = m
oef R� = 0 (when d(�) is odd) or e(�) = 0(when d(�) is even). Thus, the 
ontribution of � in the both sides of (*) iz zero.To 
ompute R? for n = 4, note that the number of verti
es and 3-fa
es is knownfor a primitive triangulation, and the number of edges and triangles 
an be foundfrom Dehn { Sommerville equations (see Appendix). �



12 S.YU.OREVKOV(8.4). Odd dimension. Suppose that n is odd and one has "=" in (*) for a Virohypersurfa
e X(�;s) where � is a primitive triangulation of �. Let � 2 �. If d(�)is even (in parti
ular, if � = ?) then the 
ontribution of � to the both sides of (*)is zero. Thus, a ne
essary 
ondition on a primitive triangulation � for "=" in (*)is the 
ondition:The sli
e polytope �� is a simplex for ea
h simplex � su
h that d(�) is odd andk(�) = n. x9. The 
ase of low dimensionsRa
all (see 1.1) that all integral planes are endowed with the latti
e volume, inparti
ular, the length of a segment [a; b℄, a; b 2 Zn is #Zn \ [a; b).Given a k-simplex � in an aÆne integral k-plane V and a point p 2 Zn n V ,de�ne the height hp of the simplex [p�℄ as the length of the segment '([p�℄) where' : Rn ! Rn�k is the proje
tion along V , su
h that '(Zn) = Zn�k. Thus, wehave volk+1[p�℄ = hp volk �=(k + 1). n = 3:(9.1) Lo
al 
ondition. Let us interpret the lo
al 
ondition (**) for ea
h valuesof (d(�); k(�)). We suppose that m (see (1.1)) is even (for m odd (*) is just 0 = 0).d(�) = 0 (i.e. � = ?): Q� = 1, R� (�1) = 
oef3=2R� = 0, hen
e (**) always holds.d(�) = 1: ~Q� = e(�)t1=2. Denote the number of edges of �̂ in
ident to � by �̂.k(�) = 1; 2: 23�k(�)R� = (�̂ � 4)t, hen
e (**) holds automati
ally;k(�) = 3: R� = 1 + (�̂ � 2)t+ t2, hen
e (**) holds i� e(�) = 0 or �̂ = 3.d(�) = 2:k(�) = 2: R� = 0, hen
e (**) always holds.k(�) = 3: R� = t+ 1, hen
e 
oef3=2(Q�R� ) = 2 
oef1=2Q� . Thus, (**) holds i�(Int �) \ 2Z3 = ?.d(�) = 3; k(�) = 3: R� = 1, hen
e (**) is equivalent to 
oef3=2Q� = e(�). This isso if and only if one of the following 
onditions hold:(i) � is primitive;(ii) � = [ab
℄ where the line a
 
ontains an even point and the height ha equals 1.(iii) the bary
enter b of � is even and � \ Z3 = Som � [ fbg.Analyzing these 
onditions, one easily obtains(9.2) Proposition. (n = 3, m is even). (a). Any lo
ally extremal (see (7.4))triangulation of � 
an be subdivided up to a primitive lo
ally extremal triangulation.(b). Let � be lo
ally extremal ands(a) = � �1; if k(a) = 2 and a 62 2Z31; otherwise.Then one has \=" in (*) for the Viro T-hypersurfa
e X = X(�;s).
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Fig. 2.Examples of (�; s), providing \=" in (*) are given in Fig. 2, (\+" is white, \�"is bla
k). The regularity follows from (10.1), (10.2) using the hexagonal subdivisionshown by thi
k lines. n = 4:(9.3) Lo
al 
ondition. Like in (9.1), we study the lo
al extremality 
ondition(**) for ea
h pair (d; k).d(�) = 0 (i.e. � = ?): by the de�nition (see (3.2)),R?(t) = X0�d�k(�1)4�k(t� 1)k�dfk;dwhere fk;d := #f� 2 � j k(�) = k; d(�) = dg. Consider separately the two 
ases:R?(�1) = m
oef R?;(9.3.1) R?(�1) = �m
oef R?:(9.3.2)It is 
lear that 
oef4R? = 0 and 
oef3R? = f4;1 = #� Som(�) \ Int��. Thus, wesee from (7.1b) that (9.3.1) holds i� f4;1 = 0. (This means that all the verti
es of� lie on ��.)Analogously, (9.3.2) is equivalent to f4;2 = 4f4;1 + f3;1.d(�) = 1: ~Q� = 0 and R� (�1) = 0. Hen
e, (**) holds automati
ally;d(�) = 2: ~Q� = qt where q = #(Z4 \ Int �). Put �̂ = #f� < � 2 �̂ j d(�) = 4g.k(�) = 2; 3: 24�k(�)R� = (�̂�4)t, hen
e (**) is equivalent to (�̂�4)(q�e(�)) = 0.(Note that q = e(�) if and only if q � 1).k(�) = 4: R� = 1 + (�̂ � 2)t+ t2, hen
e (**) takes form e(�)j4� �̂j = q(�̂ � 2).This holds if and only if either (i) q = 0 or (ii) �̂ = 3 and q = 1.d(�) = 3:k(�) = 3: R� = 0, hen
e (**) holds automati
ally.k(�) = 4: R� = 1 + t, ~Q� = q + qt where q = #(Z4 \ Int �). Hen
e, (**) isequivalent to q = 0.d(�) = k(�) = 4: R� = 1, hen
e (**) is equivalent to the 
ondition(9.3.3) 
oef2Q� = e(�):It is possible to list more or less expli
itly all the 3-simpli
es satisfying (9.3.3) aswe did it for the other values of (k; d). However the answer is rather 
ompli
atedand we restri
t ourselves by deriving some 
onsequen
es of (9.3.3).



14 S.YU.OREVKOV(9.4) Poin
ar�e polynomial of the interiority of a 3-simplex. Let � � R4be an integral 3-simplex. Denote by V , S, and l, respe
tively its latti
e volume,the sum of the latti
e areas of the fa
es, and the sum of the latti
e lengths of theedges. Put i = #(Z4 \ Int �). Let ~Q� (t) = 
1t+ 
2t2 + 
1t3 be as in (7.5).(9.4.1) Proposition. (a) 
1 = i; (b) 
2 = 6V � 2S + l � 2i� 3.Proof. (a). Evident. (b). Repla
ing if ne
essary Z4 with the latti
e generated bythe integral points of the aÆne span of � we may suppose that 
oef� p� = 0 for� 62 Z (in parti
ular, ~Q� = Q� ). By Ehrart formula [5℄ we have
oefk p� = V k3 + (S=2)k2 +�k + 1; k � 0; where � = i� V + (S=2) + 1.The summation of tk 
oefk p� over k = 0; 1; ::: yeildsp� = V � t3 + 4t2 + t(1� t)4 + S2 � t2 + t(1� t)3 + �t(1� t)2 + 11� t :Similarly, we �nd p�;d :=P���;d(�)=d p� by the summation of
oefk p�;3 = Sk2 + lk + 4; 
oefk p�;2 = lk + 6; 
oefk p�;1 = 4and apply Q� =P4d=0(t� 1)dp�;d (see (5.3d), (5.4)). �Lemma. There exists a triangulation of � with verti
es at Som(�) [ (Z4 \ Int �)and with � 3i+ 1 tetrahedra.Proof. Denote the points of Z4 \ Int � by p1; :::; pi. Let �0 = f�g and let �j beobtained from �j�1 by adding the point pj and subdividing the simpli
es 
ontainingit. Clearly, ea
h time we add � 3 tetrahedra. �(9.4.2) Corollary. (a). If i > 0 then 6V � 2S + 3(i � 1); (b). If i > 0 then
2 � i+ l � 6; (
). 
2 � 
1.Proof. (a). In the triangulation of the Lemma, the volume of the 4 tetrahe-dra having a 
ommon fa
e with � , is � S=3. The volume of the others is �(#tetrahedra� 4)=6 � (3i+ 1� 4)=6(b). Put (a) into (9.4.1b). (
). Put 
1 = i and l � 6 into (b). �Conje
ture. Q� is unimodal for any polyhedron � with verti
es at integral points.Remark. By the arguments as above one 
an prove this 
onje
ture when d(�) = 4.(9.4.3) Corollary. If � is minimal (see (8.1)) then 
2 = 6V � 1.Proof. Put i = 0, l = 6, S = 2 into (9.4.1b). �(9.4.4) Proposition. If � is minimal then the following 
onditions are equivalent:(a) � satis�es (9.3.3); (b) V = (1 + e(�))=6; (
) V is 1=6 or 1=3.Proof. (a)() (b) by (9.4.3); (b) =) (
) is evident.(
) =) (b). For V = 1=6 this follows from Lemma (8.1a). Suppose that V = 1=3and let us prove that e(�) = 1. Let v0; : : : ; v3 be the verti
es of � . Set ej = vj � v0,j = 1; 2; 3. Denote byM the latti
e generated by e1; e2; e3. LetM 0 = Z4\(M
R).We haveM 0 :M = 2. Hen
e,M 0 is generated by e1; e2; e03 and e3 = a1e1+a2e2+2e03.Sin
e v0+ � � �+ v4 = 4v0+(a1+1)e1+(a2+1)e2+2e03, it suÆ
es to show that theboth a1 and a2 are odd. Indeed, if a1 � a2 � 0mod2 then the segment [v0v3℄ wouldnot be minimal; if a1 + 1 � a2 � 0mod 2 then [v2v3℄ would not be minimal. �
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riteria(10.1) Regular polyhedral de
omposition. Given a 
onvex polytope � 2 Rn,de�ne its (regular) polyhedral de
omposition repla
ing everywere in (1.2) and (2.1):\simplex" �! \
onvex polyhedron" (omit k � n in the de�nition)\simpli
ial 
omplex" �! \polyhedral 
omplex"\triangulation" �! \polyhedral de
omposition"Proposition. Let � be a polyhedral de
omposition of a 
onvex n-dimensional poly-tope � � Rn. Suppose that (possibly, after an aÆne 
hange of 
oordinates) ea
hfa
e � 2 � 
an be ins
ribed into a sphere whose 
enter lies either in Int� or inInt(� \�0) for some fa
e �0 of �. Then � is regular.Proof. Put '(x) =Px2i for x 2 Som� and extend ' linearly onto ea
h fa
e. �(10.2) Polyhedral subdivisions. Let �, �0 be polyhedral de
ompositions of a
onvex polytope �. For � 2 � put �0� = f�0 2 �0 j�0 � �g. Say that �0 is apolyhedral subdivision of � if 8� 2 � one has [�0� ℄ = �.Proposition. Let � be a regular polyhedral de
omposition of a 
onvex polytope� and �0 a polyhedral subdivision of �. Suppose that there exists a 
ontinuousfun
tion  : � ! R su
h that 8� 2 � the restri
tion  j� is (�0�)-
onvex (i.e. thede
ompositions �0� are \
oherently regular"). Then �0 is regular.Proof. If ' is �-
onvex and 0 < "� 1 then '+ " is �0-
onvex. �Appendix: Relative Ma
Mullen Inequalitiesby R. Ma
Pherson and S. OrevkovLet P be a 
onvex simpli
ial polytope in Rn. De�ne its Poin
ar�e polynomialHP as HP (t) = (t� 1)n + nXi=1 fi�1(t� 1)n�i;where fi is the number of i-dimensional simpli
es of P .Ne
essary and suÆ
ient 
onditions on a polynomialhntn + hn�1tn�1 + :::+ h1t+ h0 (1)with hn = 1 for it to be a Poin
ar�e polynomial of a 
onvex simpli
ial polytope, arehi = hn�i; i = 0; :::; [n=2℄ (Dehn-Sommerville equations); (2)hi � hi�1; i = 1; :::; [n=2℄; (3)(hi+1 � hi) � (hi � hi�1)<i>; i = 1; :::; [n=2℄� 1; (4)where m<k> is some expli
itly de�ned fun
tion of the integers m and k.These 
onditions were 
onje
tured by Ma
Mullen [11℄ and proved by Stanley[13℄ (ne
essity) and Billera and Lee [3℄ (suÆ
ien
y). The proof of the ne
essity usestori
 varieties and the hard Lefs
hetz theorem.



16 S.YU.OREVKOVA polynomial (1) is said to be symmetri
 and unimodal if hn � 0 and the
onditions (2), (3) are satis�ed.Here we give a relative version of the inequality (3) (Theorem 1 below) for 
oeÆ-
ients of Poin
ar�e polynomials of a polytope and its interse
tions with hyperplanesin general position. The proof is based on the the relative hard Lefs
hetz theoremof Beilinson, Bernstein, Deligne, and Gabber.Let P be a 
onvex simpli
ial polytope in Rn and let � = f�1; :::; �kg; k � n bea set of hyperplanes in general position. Denote f1; :::; kg by �k. For I � �k, let�I = \i2I�i, PI = P \ �I (by 
onvention, �? = Rn, P? = P ). Say that P argeeswith � if any �I interse
ts IntP and ea
h fa
e of PI is a fa
e of P . If P agrees with�, we de�ne the relative Poin
ar�e polynomial of P with respe
t to � asHrelP;�(t) =XI��k(�1)jIj(t+ 1)jIjHPI (t)Theorem 1. The polynomial HrelP;�(t) is symmetri
 and unimodal.Proof. Sin
e the hyperplanes �1; :::; �k are in general position, we 
an 
hose 
oor-dinates (x1; :::; xn) in Rn so that �i is de�ned by xi = 0. The 
ondition that Pagrees with � implies that the origin 
an be 
hosen inside P . Sin
e P is simpli
ial,we may perturb it so that all its verti
es are rational. The perturbation 
an be
hosen so that all the in
iden
e relations are preserved.For any fa
e � of P 
onsider the 
one obtained as the union of all rays withvertex at the origin, whi
h interse
t �. All su
h 
ones de�ne a fan � in Rn, andlet X be the tori
 variety over C asso
iated to � (see [4℄). Let Y be (CP1)k,whi
h we shall 
onsider as the tori
 variety asso
iated to the fan �Y 
onsisting ofall 
oordinate o
tants in Rk.The mapping Rn ! Rk de�ned by yi = xi, (where (y1; :::; yk) are 
oordinatesin Rk) is simpli
ial (sends any 
one of � to a 
one of �Y ). Hen
e, it de�nes a tori
morphism f : X ! Y (see [4℄).The stru
ture of tori
 variety de�nes the following strati�
ation of Y . Let Y0 =C � f0g be the 1{dimensional and Y1 = f0g, Y2 = f1g the 0{dimensional strataof CP1. Denote by M the set of all k-tuplets (m1; :::;mk) where mi = 0; 1; 2. Form 2M let us de�neYm = f(y1; :::; ykg 2 Y j yj = Ymj if mj > 0g:We apply the De
omposition theorem [2; Se
tion 5.4.5℄ (see also [9; Se
tion 12℄)to the map f . It expresses the pushforward of the interse
tion 
omplex of X as adire
t sum of interse
tion 
omplexes of subvarieties of Y . Sin
e P is simpli
ial, X isrationally smooth, the interse
tion 
omplex of X is the 
onstant sheaf. By dire
tlyexamining the map f , one 
an see that only subvarieties Ym of Y o

ur, and that allthe interse
tion 
omplexes involved have un-twisted 
oeÆ
ients. Taking Poin
arepolynomials, we get the following statement (where the unimodality 
omes fromthe relative hard Lefs
hetz theorem, [2; Se
tion 5.4.10℄)Lemma. There exist symmetri
 unimodal polynomials 'm with integral 
oeÆ
ientssu
h that for any open V � Y ,H(f�1(V )) =Xm 'mH(V \ Ym)
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omposition theorem from this point ofview.Let U � Y0 be an open disk. For I � �k putUI = f(y1; :::; yk) 2 Y j yi 2 U if i 2 IgDe�ne J(m) as fj j mj = 0g:Then UI \ Ym = � (CP1)jJ(m)�Ij � U jIj; I � J(m)? otherwise.The lemma applied to UI gives usHPI = H(f�1(UI)) = Xm2M 'm(t)H(UI \ Ym) = Xm2M;I�J(m)'m(t)(t+ 1)jJ(m)�Ij:For J 2 �k put 'J (t) =Pm2M;J(m)=J 'm(t): Then HPI =PI�J 'J (t)(t+1)jJj�jIj;andHrelP;� =XI��k(�1)jIj XI�J��k'J(t)(t + 1)jJj =XJ��k'J(t)(t + 1)jJjXI�J(�1)jIj = '?(t):� Referen
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