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Abstract. We study the following problem: describe the triplets (Ω, g, µ), µ = ρ dx,
where g = (gij(x)) is the (co)metric associated with the symmetric second order

differential operator L(f) = 1

ρ

∑
ij ∂i(g

ijρ ∂jf) defined on a domain Ω of R
d and

such that there exists an orthonormal basis of L2(µ) made of polynomials which
are eigenvectors of L, and the basis is compatible with the filtration of the space of

polynomials with respect to some weighted degree.

In a joint paper with D. Bakry and M. Zani this problem was solved in dimension
2 for the usual degree. In the present paper we solve it still in dimension 2, but for

a weighted degree with arbitrary positive weights.

1. Introduction

In [3] the following problem posed by Dominique Bakry is studied (see also [1],
[2], [5], [6]): describe all triples (Ω,L, µ) where Ω is a domain in Rd, L is an elliptic
second order operator with real coefficients of the form

L(f) =
∑

i,j

gij(x)∂ijf +
∑

i

bi(x)∂if (1)

with gij and bi continuous in Ω and µ a probability measure on Ω with C1-smooth
density, such that there exists a polynomial orthogonal basis of L2(Ω, µ) formed
by eigenvectors of L, which is also a basis (in the algebraic sense) of R[x], x =
(x1, . . . , xd). It is clear that in this case L is symmetric on the space of polynomials,
i.e.,

∫

Ω

f1Lf2 dµ =

∫

Ω

f2Lf1 dµ (2)

for any two polynomial functions f1 and f2.
Suppose that e1, e2, . . . is such a basis, and let Vn be the subspace spanned by

e1, . . . , en. Then we have an increasing sequence of L-invariant subspaces V1 ⊂
V2 ⊂ V3 ⊂ . . . of R[x] whose union is R[x], and R[x] is dense in L2(Ω, µ).

Vice versa, given an increasing sequence of finite-dimensional L-invariant sub-
spaces of R[x] whose union is R[x], one can always choose an orthogonal polynomial
eigenbasis of L2(Ω, µ) provided that L is symmetric on polynomials and the space
of polynomials is dense in L2(Ω, µ).
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It does not seem that this problem can be solved in such generality, without
imposing a condition that the filtration V1 ⊂ V2 ⊂ . . . is somewhat natural. So, in
[3] the above problem was considered with an additional condition that for any n,
the space of polynomials of degree ≤ n is invariant under L and thus occurs among
the Vi’s. It was also assumed in [3] that, when Ω is not bounded, (2) holds for any
pair of compactly supported functions (for bounded domains the latter condition
easily follows from the symmetry of L on the polynomials combined with the density
of R[x] in L(Ω, µ)). Under these assumptions, a complete list of solutions of the
above problem is given in [3] in dimensions 2. Up to affine transformation of R2,
there is a one-parameter family of bounded domains and also 19 rigid domains (10
of them are bounded) for which there exists a solution. One of these 19 domains is
omitted in [3] as well as some solutions for two other domains (see the coorections
in §6.3 below).

Remark 1.1. In dimension 1, the only solutions under the aforementioned as-
sumptions are the classical systems of orthogonal polynomials: Hermite, Laguerre,
and Jacobi polynomials. They are obtained by Gram-Schmidt orthogonalization

process for the measure densities, respectively, Ce−x2/2 on R, Cax
a−1e−x with

a > 0 on [0,∞), and Cp,q(1 − x)p−1(1 + x)q−1 with p, q > 0 on [−1, 1] (here C,
Ca, and Cp,q are normalizing constants). The corresponding operators are ∂2−x∂,
x∂2 + (a− x)∂, and Jp,q = (1− x2)∂2 −

(

(p− q) + (p+ q)x
)

∂.

It turns out that the filtration by the usual degree is too restrictive in dimension
d ≥ 2. Several natural systems of orthogonal polynomial are not covered. However,
they can be obtained by this procedure if one considers a weighted degree instead
(see [1]). As usually, the weighted degree of a polynomial P =

∑

k akx
k, k =

(k1, . . . , kd), with real positive weights w = (w1, . . . , wd) is defined as

deg
w
(P ) = max

ak 6=0
(w1k1 + · · ·+ wdkd).

In this paper (in §6), for any pair of positive weights w = (w1, w2), we give a
complete list of two-dimensional solutions satisfying the condition that for any n,
the set of polynomials P with deg

w
(P ) ≤ n is invariant under L.

Let us give precise definitions. We say that Ω ⊂ Rd is a natural domain if it is a
connected open set which coincides with the interior of its closure.

Definition 1.2. (cf. [1, 3]) Let Ω ⊂ Rd be a natural domain, L be an elliptic
second order differential operator of the form (1) with coefficients continuous in
Ω, and µ(dx) = ρ(x) dx be a probability measure on Ω such that ρ is C1-smooth
in Ω and the space of all polynomials is dense in L2(Ω, µ). Let w be a d-tuple of
positive real numbers. We say that the triple (Ω,L, µ) is a solution of the Diffusion
Orthogonal Polynomial Problem with weights w (w-DOP problem for short) if, for
any n, the space {P ∈ R[x1, . . . , xd] | degw(P ) ≤ n} (considered as a subspace
of L2(Ω, µ)) has an orthogonal basis formed by eigenvectors of L. If in addition
the equality (2) holds for any two smooth functions compactly supported in Rd,
then we say that (Ω,L, µ) is a solution of the Strong w-DOP problem (w-SDOP
problem).

It is shown in [3, Prop. 2.11] that if (Ω,L, µ) is a solution of thew-SDOP problem,
then L is determined by the measure density ρ and by the cometric g = (gij) (the
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gij are the coefficients in (1)), namely, it is the diffusion operator

L(f) =
1

ρ

∑

i,j

∂i

(

gijρ ∂jf
)

. (3)

We shall then speak also of the triple (Ω, g, ρ) as a solution of thew-SDOP problem.
Notice that (3) is the Laplace-Beltrami operator for the riemannian metric (gij) =

g−1 in the case when ρ = (det g)−1/2.
As we mentioned above, any solution of the w-DOP problem with a bounded

domain Ω is a solution of thew-SDOP problem (see [3, Prop. 2.12]). It is also shown
in [3] that any solution of SDOP-problem is a solution of a certain algebraic problem
formulated in terms of the metric gij only (AlgDOP-problem; see §2 below). This
fact is proven in [3] for the usual degree but all the proofs extend without changes
to any weighted degree as well. Then, to find all two-dimensional solutions of the
weighted SDOP problem, we follow the same strategy as in [3]. Namely, we first
find solutions of the algebraic problem over C using some basic properties of plane
complex algebraic curves (see §§4–5), and then we look for Ω and ρ (see §6).

All the bounded domains Ω admitting a solution, appeared already in the litera-
ture except, maybe, one infinite family: the case (B4) with m 6= n in Theorem 6.2.

2. Some general facts about solutions of weighted
DOP/SDOP problem in an arbitrary dimension

2.1. The AlgDOP Problem.
Let w = (w1, . . . , wd) and let (Ω, g, ρ) be a solution of the w-SDOP problem in

Rd. Let ∆ = det(gij). Let Pw(n;K) be the vector space of polynomials in x1, . . . , xd

with coefficients in a field K whose w-weighted degree is at most n. When K is R,
we write just Pw(n).

Let I(∂Ω) be the ideal in R[x1, . . . , xd] of polynomials vanishing on ∂Ω. The
condition that Ω is a natural domain implies that I(∂Ω) is a principal ideal (because
U ∩ ∂Ω cannot be of codimension ≥ 2 for any open U). Let Γ be a generator of
I(∂Ω), that is Γ is a minimal polynomial vanishing on the boundary of Ω. In
particular, if Γ is not identically zero, then it is square-free, i.e., it does not have
multiple factors. By convention we set I(∅) = R[x], i.e., Γ = 1 in the case when Ω
is the whole Rd.

Proposition 2.1. (See [3, Thm. 2.21].)

(A1) gij ∈ Pw(wi +wj) for any i, j = 1, . . . , d. Hence ∆ ∈ Pw(2w1 + · · ·+2wd).
(A2) ∂Ω ⊂ {∆ = 0}, hence Γ divides ∆.
(A3) For each i = 1, . . . , d, one has

∑

j

gij∂jΓ = ΓSi, Si ∈ Pw(wi). (4)

Condition (A1) easily follows from the invariance of the weighted degree, (A3)
is derived in [3] from the symmetry of L, and (A2) follows from (A3).

This proposition leads us to the following definition (cf. [3, Definition 3.2]).

Definition 2.2. Let K be R or C and let w = (w1, . . . , wd) be a d-tuple of positive
real numbers. A solution to the Algebraic Counterpart of the w-SDOP Problem
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over K (w-AlgDOP Problem over K for short) is a pair (g,Γ) where g = (gij) is a
symmetric d× d matrix with polynomial entries and Γ a polynomial such that

(A1) gij ∈ Pw(wi + wj ;K) for each i, j = 1, . . . , d;
(A2) det g is not identically zero, and Γ is a square-free factor of det g;
(A3) Γ divides

∑

j g
ij∂jΓ for each i = 1, . . . , d.

Thus Proposition 2.1 implies that if (Ω, g, ρ) is a solution of thew-SDOP Problem
and Γ is a generator of I(∂Ω), then (g,Γ) is a solution of the w-AlgDOP Problem
over R and hence over C. The following facts follow from the definition.

Proposition 2.3. Let w = (w1, . . . , wd) and w′ = (w′
1, . . . , w

′
d) be two d-tuples

of positive weights. If (g,Γ) is a solution of the w-AlgDOP Problem over K, and
gij ∈ Pw

′(w′
i + w′

j ;K) for each i, j = 1, . . . , d, then (g,Γ) is a solution of the
w′-AlgDOP Problem over K.

Proposition 2.4. If (g,Γ) is a solution of the w-AlgDOP Problem over K and Γ1

is a factor of Γ, then (g,Γ1) is also a solution of the w-AlgDOP Problem over K.

If a square-free polynomial Γ is given, then it is easy to find all cometrics g
such that (g,Γ) is a solution of the w-AlgDOP problem. Indeed, Condition (A3)
of Definition 2.2 (in the form (4)) provides a system of linear equations for the
coefficients of the polynomials gij and Si. In §2.3 we show how to find all ρ for
given Ω and g.

2.2. Admissible changes of variables.
A w-admissible change of variables is a bijective polynomial mapping Φ : Rd →

Rd, x 7→ (y1(x), . . . , yd(x)) with deg
w
(yi) = wi, i = 1, . . . , d. If d = 2, then (1, w)-

admissible automorphisms of R2 for w = 1 are affine linear transformations, and
for w > 1, mappings of the form

(x, y) 7→ (αx+ β, γy + p(x)), αγ 6= 0, deg(p) ≤ w. (5)

The following proposition is similar to [3, Prop. 2.5] and we omit its proof.

Proposition 2.5. (a). Let (Ω,L, µ) be a solution of w-DOP (resp. w-SDOP)
problem and Φ be a w-admissible change of variables. Let Ω1 = Φ(Ω), L1(f) =
L(f ◦ Φ) ◦ Φ−1, and µ1(E) = µ(Φ−1(E)). Then (Ω1,L1, µ1) is also a solution of
w-DOP (resp. w-SDOP) problem.

(b). Let (g,Γ) be a solution of the w-AlgDOP Problem over K and let Φ be a
w-admissible change of variables. Then (Φ∗(g),Γ ◦ Φ−1) is also a solution of the
w-AlgDOP Problem over K.

Example 2.6. Let d = 2. For anyw = (w1, w2), the mapping Φ : (x, y) 7→ (x,−y)

is w-admissible. Thus, if (g,Γ) with g =
(

a b

b c

)

is a solution of the w-AlgDOP

Problem over K, then (Φ∗(g),Γ(x,−y)) with

Φ∗(g) =

(

a(x,−y) −b(x,−y)
−b(x,−y) c(x,−y)

)

is also a solution of the w-AlgDOP problem over K.
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Example 2.7. More generally, let still d = 2. Any (1, w)-admissible change
of variables for w > 1 is of the form (5) and it is a composition of the following
variable changes (x, y) 7→ (X, Y ):

T : (x, y) 7→ (x+ β, y), H : (x, y) 7→ (αx, γy), S : (x, y) 7→ (x, y + p(x)).

They transform g =
(

a b

b c

)

as follows (see [3, eq. (2.3)]): T∗(g) = g(X − β, Y − β),

H∗(g) =

(

aα2 bαγ
bαγ cγ2

)

x=X/α

y=Y/γ

S∗(g) =

(

a p′a+ b
p′a+ b (p′)2a+ 2p′b+ c

)

x=X

y=Y−p(X)

2.3. From AlgDOP to DOP/SDOP.
As we told in §2.1, any solution (Ω, g, µ) of the w-SDOP problem gives a solution

(Γ, g) of the w-AlgDOP problem where Γ is a generator of the ideal I(∂Ω). In this
subsection we discuss how to find all possible (Ω, g, µ) from a given (Γ, g).

So, let (Γ, g) be a solution of the w-AlgDOP problem over R. First of all we find
all connected components Ω of Rd \ {Γ = 0} such that g is positive definite on Ω.
Then (see [3, Thm. 2.21]) it remains to find all measure densities ρ such that all
polynomials are integrable and the operator L given by (3) is of the form (1) with
bi ∈ Pw(wi) for each i = 1, . . . , d. By comparing (1) with (3) we obtain

bi =
∑

j

∂jg
ij +

∑

j

gij∂jh, h = log ρ. (6)

Hence
∂jh =

∑

i

gijL
i, Li = bi −

∑

j

∂jg
ij, (7)

where (gij) = g−1. We have bi ∈ Pw(wi) ⇔ Li ∈ Pw(wi). The identities ∂k(∂jh) =
∂j(∂kh) combined with (7) yield

∂k

(

∑

i

gijL
i
)

= ∂j

(

∑

i

gikL
i
)

(8)

which is a system of linear equations for the coefficients of all Li. These observa-
tions lead to the following algorithm of finding all solutions for ρ. We start with
polynomials Li, deg

w
Li = wi, whose coefficients we compute by solving the system

of linear equations coming from (8). The solution may depend on several parame-
ters. Then we find h by integrating the ∂jh’s (expressed in (7) via the Li’s) and set
ρ = exp(h). Finally we choose the values of the parameters such that Q(x)ρ(x), is
integrable over Ω for any polynomial Q (when Ω is bounded, it is enough to demand
that

∫

Ω
ρ dx < ∞).

These observations allow us to prove the following fact.

Proposition 2.8. Let (Ω, g, ρ) be a solution of the w-SDOP problem in Rd such
that g = diag

(

g11(x1), . . . , g
dd(xd)

)

. Then there is a partition of the set of indices
{1, . . . , d} = J1 ⊔ · · · ⊔ Jm, Jk = {jk(1), . . . , jk(dk)}, such that:

• ρ = ρ1(x1) . . . ρm(xm), where xk = (xjk(1), . . . , xjk(dk)), k = 1, . . . , m;

• if dk > 1, then wi = wj and gii is constant for any i, j ∈ Jk.
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Proof. We consider only the case d = 2. It is not difficult to derive from it the
general case. Let h = log ρ. It is enough to prove that either g is constant, or
∂12h = 0 and then h = h1(x1) + h2(x2) whence ρ = ρ1(x1)ρ2(x2). Indeed, the
inverse matrix of g is diag(g11, g22) where gii = 1/gii. Then by (8) we have

∂12h =
∂2L

1(x1, x2)

g11(x1)
=

∂1L
2(x1, x2)

g22(x2)
, deg

w
Li ≤ wi.

Therefore ∂12h is a polynomial, hence gii divides ∂jL
i for i 6= j. Thus, if ∂12h

is nonzero, we have 0 ≤ deg
w
g11 ≤ deg

w
∂2L

1 = deg
w
L1 − w2 ≤ w1 − w2 and,

symmetrically, 0 ≤ deg
w
g22 ≤ w2 − w1, which implies w1 = w2 and deg

w
g = 0,

i.e., g is constant. �

To conclude this subsection, we give some conditions (necessary or sufficient) on
ρ to be compatible with given g and Ω. They are proven in [3] for the usual degree
but the proofs can be easily adapted for any weighted degree.

Proposition 2.9. (See [3, Thm. 2.21].) Let (g,Γ), Γ = Γ1 . . .Γs, be a solution of
w-AlgDOP problem over R (recall that then Γ is squarefree). Let Ω be a bounded
domain such that ∂Ω ⊂ {Γ = 0} and g is positive definite in Ω. Let a1, . . . , as be
real numbers such that µ(Ω) < ∞ where µ is the measure with density ρ =

∏

ν Γ
aν
ν

(for example, aν ≥ 0 for each ν). Then (Ω,L, µ) is a solution of w-DOP problem,
where L is given by (3).

Definition 2.10. A solution (g,Γ) of the w-AlgDOP problem is called maximal
(and in this case Γ is called a maximal boundary for g) if Γ1 divides Γ for any
solution (g,Γ1). By Proposition 2.4, a maximal solution is unique for any given g.

Proposition 2.11. (See [3, Props. 2.15, 2.17].) Let (Ω, g, ρ) be a solution of w-
SDOP problem in R

d and ∆ = det(g). Let Γ be the maximal boundary for g and let
Γ1, . . . ,Γs be its irreducible (over C) factors. Suppose that each factor Γk occurs in
∆ with multiplicity 1, i.e., Γ2

k does not divide ∆. Then (see Remark 2.12)

ρ = Γp1

1 . . .Γps

s exp(Q) (9)

for some p1, . . . , ps ∈ C and a polynomial Q such that, for each j = 1, . . . , d,

wj degxj
(Q∆) ≤ 2w1 + · · ·+ 2wd. (10)

Remark 2.12. In Proposition 2.11, if λΓk, λ ∈ C, is real for some k, we always
assume that Γk is real and positive on Ω; in this case pk is real. Otherwise Γ̄k is
also a factor of Γ and it must occur in ρ with the power p̄k because ρ is real. In this
case Γpk

k Γ̄p̄k

k is understood as a single-valued branch of this function on Ω. Notice
that choosing another single-valued branch we just change the constant term of Q.

Remark 2.13. Proposition 2.11 admits the following refinement. We still have (9)
and (10) for a variable xj even when there are multiple factors Γk of ∆ but they
are polynomials in variables (xi)i∈I not including xj , that is j 6∈ I. In this case Q
is a polynomial in (xi)i6∈I whose coefficients are rational functions in (xi)i∈I .
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Corollary 2.14. Under the hypothesis of Proposition 2.11, assume that mwd =
2(w1+· · ·+wd) and wd = wini, i = 1, . . . , d, for some m, n1, . . . , nd ∈ Z (e.g. d = 2
and (w1, w2) = (1, 2)). Suppose that degxd

∆ = m. Then Q = const in (9).

Proof. By an admissible change of variables yd = xd +
∑d−1

i=1 aix
ni

i and yj = xj for
j < d, we may achieve that wj degyj

∆ = 2
∑

wi for each j. �

Recall that (gij) = g−1, hence gij = ĝij/ det g with a polynomial ĝij .

Proposition 2.15. (See [3, Cor. 2.19].) Let U = R× B
d−1 = {x2

2 + · · ·+ x2
d < 1}

and U+ = R+ × Bd−1 = U ∩ {x1 > 0}. Let M1 = maxj
(

⌊wj/w1⌋+ degx1
ĝ1j
)

. Let
(Ω, g, ρ) be a solution of the w-SDOP problem, ∆ = det g. Suppose that U ⊂ Ω
(resp. U+ ⊂ Ω). Then degx1

∆ < M1 (resp. degx1
∆ < 1 +M1).

3. Weighted AlgDOP Problem in C2

3.1. Notation. In §§3–5 we study the w-AlgDOP Problem over C in dimension 2
for any pair of weights w. It is clear that a multiplication of w by a positive number
does not change the problem. Therefore we assume throughout this section that
(g,Γ), is a solution of the w-AlgDOP Problem over C for w = (1, w) with a real
w > 1 (the case w = 1 is already done in [3]).

We denote variables by (x, y) and we set g =
(

a b

b c

)

. We denote the coefficient

of ym in a(x, y) by am(x) and the coefficient of xkym by akm and we use similar
notation for b and c. Sometimes we write (a, b, c; Γ) instead of (g,Γ) when speaking
of a solution of the w-AlgDOP Problem.

As usual, given a polynomial P (x, y) =
∑

pkmxkym, we define its Newton poly-
gon N (P ) as the convex hull in R2 of the finite set {(k,m) | akm 6= 0}. Condition
(A1) of Definition 2.2 means that the Newton polygons of a, b, c, and ∆ are con-
tained in the polygons shown in Figures 1–2.

a b c ∆

Figure 1. Polygons containing N (a), N (b), N (c), N (∆) for 1 < w ≤ 2.

1+w 2w 2+2w

a b c ∆

Figure 2. Polygons containing N (a), N (b), N (c), N (∆) for w > 2.

3.2. Change of the weights and the (1,∞)-AlgDOP Problem.
According to Proposition 2.3, any solution of (1, w)-AlgDOP Problem with

1 < w ≤ 2 is a solution of (1, 2)-AlgDOP Problem (see Figure 1). Similarly
(see Figure 2) any solution of (1, w)-AlgDOP Problem with w > 2 is a solution
of (1, w′)-AlgDOP problem for any w′ > w.
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So, we say that (g,Γ) is a solution of the (1,∞)-AlgDOP Problem, if it is a
solution of the (1, w)-AlgDOP Problem for some w > 2, and a coordinate change
(5) with an arbitrary polynomial p(x) will be called (1,∞)-admissible.

In the next two sections we find all solutions of the (1,∞)- and (1, 2)-AlgDOP
Problems up to (1,∞)- and (1, 2)-admissible coordinate change.

3.3. Local branches of the curve Γ = 0.
Let P (x, y) be a squarefree polynomial. A local branch of P (or, equivalently,

of the curve P = 0) is a pair γ = (ξ, η) of germs at 0 of meromorphic functions
such that P (ξ(t), η(t)) is identically zero. Any meromorphic germ t 7→ γ(t) =
(ξ(t), η(t)) defines a valuation vγ : C[x, y] → Z ∪ {∞}, vγ(Q) = ordt Q(ξ(t), η(t))
where ordt(0) = ∞ and ordt f(t) = m if f(t) =

∑

k≥m pkt
k and pm 6= 0.

Let (a, b, c; Γ) be a solution of the w-AlgDOP problem over C for some w =
(1, w). Condition (A3) of Definition 2.2 reads

aΓ′
x + bΓ′

y = L1Γ, bΓ′
x + cΓ′

y = L2Γ. (11)

It is easy to check that this condition is equivalent to

b(ξ, η)ξ̇ = a(ξ, η)η̇, c(ξ, η)ξ̇ = b(ξ, η)η̇ (12)

for any local branch of Γ. Condition (12) implies that

vγ(a)− vγ(b) = vγ(b)− vγ(c) = ordt(ξ̇)− ordt(η̇) (13)

if both ξ(t) and η(t) are non-constant (see [3, Lemma 3.3]).
The following fact is well-known and immediately follows from the definitions.

Lemma 3.1. Let F be a polynomial in (x, y) and let (p, q) ∈ Z2 \ {(0, 0)}. A local
branch γ of F such that ordt(γ) = (p, q) exists if and only if the vector (p, q) is
orthogonal to some edge of N (F ) and points from this edge inward N (Γ). �

Lemma 3.2. Let (a, b, c; Γ) is a solution of (1, w)-AlgDOP Problem with w > 1.
Suppose that Γ is divisible by x. Then a and b are divisible by x, hence degy a = 0
and (a, b, c; Γ) is a solution of the (1,∞)-AlgDOP Problem.

Proof. We have a(0, t) = b(0, t) = 0 by (12), hence x is a factor of a and b whence
degy a = 0 (see Figure 1). �

Lemma 3.3. Let w > 1. Suppose that Γ has a branch γ = (ξ(t), η(t)) such that
vγ(x, y) = ordt γ = (p, q) with q < 0 < p. Then b1 = b11x and a = a20x

2, hence
(g; Γ) is a solution of (1,∞)-AlgDOP Problem.

Proof. We have ordt ξ̇− ordt η̇ = p− q, hence vγ(a)− vγ(b) = vγ(b)− vγ(c) = p− q
by (13). On the other hand we have vγ(c) ≥ vγ(y

2) = 2q, hence

vγ(b) = vγ(c) + p− q ≥ p+ q. (14)

If b01 were non-zero, then we would have vγ(b) = vγ(y) = q which contradicts (14)
because p > 0. Hence b1 = b11x (as required), and this fact implies that

vγ(b) ≥ min(vγ(1), vγ(xy)) = min(0, p+ q),

thus vγ(a) = vγ(b) + p− q ≥ min(0, p+ q) + p− q = p+min(−q, p) > p. Since the
only monomials which may occur in a are (y, 1, x, x2) and their γ-valuations are
(q, 0, p, 2p), we see that a = a20x

2. �
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Lemma 3.4. Let 1 < w ≤ 2. Let γ = (ξ(t), η(t)) be a local branch of Γ, and
(p, q) = ordt γ = vγ(x, y).

(a). If (p, q) = (2, 1) then a00 = a01 = b00 = 0, and hence degy ∆ ≤ 2 and
(a, b, c; Γ) is a solution of the (1,∞)-AlgDOP problem.

(b). If q > 0, then p 6= 3.

(c). If p = −3 and −4 ≤ q ≤ −1, then deg b0 ≤ 2, deg c0 ≤ 2, and deg c1 ≤ 1,
hence (a, b, c; Γ) is a solution of the (1, 1)-AlgDOP problem.

(d). If q < 2p < 0, then a01 = 0, hence (a, b, c; Γ) is a solution of the (1,∞)-
AlgDOP problem.

Proof. (a). If (p, q) = (2, 1), then ordt(ξ̇, η̇) = (1, 0), hence by (13) we have vγ(b) =
vγ(c) + 1 ≥ 1 and vγ(a) = vγ(b) + 1 = vγ(c) + 2 ≥ 2, and the result follows from
the fact that 1 (resp. y) is the only monomial of a and b of the γ-valuation equal
to 0 (resp. to 1). The condition a01 = 0 implies that (a, b, c; Γ) is a solution of the
(1,∞)-AlgDOP problem (see Figure 2).

(b). Suppose that p = 3 and q > 0. Then by the arguments similar to those in
(a), we are going to show that degy a ≤ 0 and hence degy ∆ ≤ 2 which contradicts
the condition ordt ξ = 3. Notice that q ≤ degx ∆ ≤ 6.

If q = 1, the proof is the same as in (a).
If q = 2, then by (13) we have vγ(a) = vγ(b)+ 1. Since vγ(a) 6= 1 and vγ(b) 6= 1,

this is possible only when vγ(a) ≥ 3. By combining this fact with vγ(1, y, x, x
2) =

(0, 2, 3, 6), we obtain a00 = a01 = 0 whence degy a ≤ 0.
The case q = 3 is reduced to q > 3 by a change of variables (x, y) 7→ (x, y+ λx).
If q = 4, then vγ(a) ∈ {0, 3, 4, 6}, vγ(b) ∈ {0, 3, 4, 6, 7, 9}, vγ(c) ∈ {0, 3, 4, 6, . . .}.

Then one can check that vγ(c)− vγ(b) = vγ(b)− vγ(a) = 1 (this is (13)) is possible
only when vγ(a) = 6, hence degy a ≤ 0.

If q = 5, then vγ(a) ∈ {0, 3, 5, 6}, vγ(b) ∈ {0, 3, 5, 6, 8, 9}, vγ(c) ∈ {0, 3, 5, 6, 8, . . .}.
Then vγ(c)−vγ(b) = vγ(b)−vγ(a) = 2 (this is (13)) is possible only when vγ(a) = 6,
hence degy a ≤ 0.

The case q = 6 is reduced to q > 6 by a change of variables (x, y) 7→ (x, y+λx2).

(c). We need to show that x3, x4, and x2y do not occur in b and in c.
If p = −3 and −3 ≤ q ≤ −1, then (13) implies vγ(c) ≥ vγ(b) ≥ vγ(a) ≥ vγ(x

2) =
−6. On the other hand, vγ(x

2y) = −6 + q ≥ −7, vγ(x
3) = −9, vγ(x

4) = −12, and
these are the only monomials which might occur in b and in c with the respective
γ-valuations.

If (p, q) = (−3,−4), then (13) implies vγ(a) ≥ vγ(x
2) = −6, vγ(b) = vγ(a)− 1 ≥

−7, and vγ(c) = vγ(b)− 1 ≥ −8. On the other hand, vγ(x
2y) = −10, vγ(x

3) = −9,
vγ(x

4) = −12, and these are the only monomials which might occur in b and in c
with the respective γ-valuations.

(d). The condition q < 2p < 0 implies vγ(b) ≥ vγ(xy) = p + q. It implies also
p− q > −p. By (13) we have vγ(a) = vγ(b) + p− q. Hence

vγ(a) = vγ(b) + p− q > vγ(b)− p ≥ (p+ q)− p = q = vγ(y).

Therefore a01 = 0 because y is the only monomial which may occur in a with the
γ-valuation equal to q. The condition a01 = 0 implies that (a, b, c; Γ) is a solution
of the (1,∞)-AlgDOP problem (see Figure 2). �
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4. Solution of the (1, w)-AlgDOP Problem in C2 for w > 2

In this section we give all solutions of the (1,∞)-AlgDOP Problem over C up
to (1,∞)-admissible change of coordinates. As we explained in §3.2, this gives all
solutions of the (1, w)-AlgDOP Problem for all w > 2.

Lemma 4.1. Let (a, b, c; Γ) be a solution of the (1, w)-AlgDOP problem over C with
w > 1. Suppose that degy Γ = 2 and that Γ is not divisible by any non-constant

polynomial in x. Then Γ is monic with respect to y, i.e., y2 is the only monomial
of Γ whose y-degree is 2.

Proof. First, remark that a 6= 0. Indeed, otherwise ∆ = b2, hence Γ would be a
square-free factor of b which contradicts the condition degy Γ = 2. Suppose that the

coefficient of y2 in Γ is a non-constant polynomial in x. Without loss of generality
we may assume that one of its roots is 0. Then Γ has a branch γ = (ξ(t), η(t))
such that ordt η < 0 < ordt ξ. Then, by Lemma 3.3, we have a = a20x

2 and
b = b11xy + b0(x). Since a 6= 0, we may assume that a = x2.

If b00 = 0, then x2 is a factor of ac and of b2, hence x2 is a factor of ∆. Since ∆
may not have have monomials y2xk with k > 2, it follows that Γ is monic in y.

Now consider the case b00 6= 0. Then the constant term of ∆ is −b200 6= 0. We
have a = x2 and b1 = b11x, hence x2y2 is the only monomial of y-degree 2 which
may occur in ∆. Therefore ∆ cannot be divisible by any non-constant polynomial
in x, i.e., Γ = ∆.

The coefficients of y2 in ∆ and in a∆′
x + b∆′

y are d22x
2 and 2d22(1 + b11)x

3

respectively where d22 = c02 − b211. Then (11) implies L1 = 2(1 + b11)x. By
plugging this back into (11), we obtain a contradiction. Indeed, we have:

∆ = −b2 +O(x2) = −b200 − 2b00(b10 + b11y)x+O(x2),

b∆′
y =

(

b00 +O(x)
)(

− 2b00b11x+O(x2)
)

= −2b200b11x+O(x2),

L1∆ = −2b200(1 + b11)x+O(x2).

Hence a∆′
x + b∆′

y − L1∆ = 2b200x+O(x2) 6= 0. �

Lemma 4.2. Let Γ = y2 − p(x) and let (a, b, c; Γ) be a solution of the (1, w)-
AlgDOP problem with w > 2. Then b0 = c1 = 0, i.e., a and c are even with respect
to y, and b is odd with respect to y (this means that the corresponding metric is
invariant under the symmetry y 7→ −y).

Proof. Let us set â = a, b̂(x, y) = −b(x,−y), ĉ(x, y) = c(x,−y), and ĝ = (â, b̂, ĉ).
Since Γ is symmetric, Proposition 2.5 implies that (ĝ; Γ) is also a solution to the
(1, w)-AlgDOP problem (see Example 2.6). Hence both (g; Γ) and (ĝ; Γ) satisfy the
equations (11) and, by linearity,

(

1
2(g − ĝ); Γ

)

satisfies it as well. Since 1
2(g − ĝ) =

(0, b0, c1y), this means 2yb0 = (y2 − p(x))L1 and −b0p
′(x)+2y2c1 = (y2− p(x))L2.

The first equation implies b0 = 0. Plugging this into the second equation, we obtain
2y2c1 = (y2 − p(x))L2. Note that p 6= 0 because Γ cannot have multiple factors.
Hence the last equations implies c1 = 0, i.e., g − ĝ = 0. �

Proposition 4.3. The following is a complete list of solutions (g; Γ) of the (1,∞)-
AlgDOP problem over C up to (1,∞)-admissible change of variables under condition
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that degy Γ = 2:

(i) Γ = (1− x)m(1 + x)n − y2, m,n ≥ 1,

g =

(

1− x2 b1y

∗ b21(1− x)m−1(1 + x)n−1 − c02Γ

)

, b1 =
n−m

2
− n+m

2
x;

(ii) Γ = xn − y2, n ≥ 1,

g =

(

x 1
2
ny

1
2
ny 1

4
n2xn−1 − c02Γ

)

;

(iii) Γ = Γ2x
k where Γ2 = (x0−x)n − y2, n ≥ 0; k, x0 ∈ {0, 1}, (n, c02) 6= (0, 0),

g =

(

x(x0 − x) −1
2nxy

−1
2nxy

1
4n

2x(x0 − x)n−1 − c02Γ2

)

;

(iv) Γ = xk(1− y2), g = diag(xk,−c02(1− y2)), k ∈ {0, 1}, c02 6= 0;
(v) Γ = (1− x2)(1− y2), g = diag(1− x2,−c02(1− y2)), c02 6= 0.

Proof. Let Γ = Γ0Γ2 where degy Γ0 = 0, degy Γ2 = 2, and Γ2 is not divisible by
any non-constant polynomial in x. Then Γ2 is monic in y by Lemma 4.1 combined
with Proposition 2.4, hence it can be reduced to the form Γ2 = y2 + p(x) by a
(1,∞)-admissible change of coordinates. Since Γ cannot have any multiple factor,
p is not identically zero. Moreover, by rescaling the y-coordinate, we may set the
leading coefficient of p to any prescribed nonzero complex number. By Lemma 4.2,
we have a = a(x), b = b1(x)y, and c = c2y

2 + c0(x) (with c2 = c02 = const). Also
a 6= 0 (see the beginning of the proof of Lemma 4.1). By (11) we have

a(Γ2)
′
x + b(Γ2)

′
y = ap′ + 2b1y

2 = (y2 + p)L1.

Hence L1 = 2b1 and then
ap′ = 2pb1. (15)

The second equation in (11) reads

b(Γ2)
′
x + c(Γ2)

′
y = b1yp

′ + 2y(c2y
2 + c0) = (y2 + p)L2

whence L2 = 2c2y and hence c0 = c2p− 1
2b1p

′, i.e., c = c2Γ2− 1
2b1p

′. By combining
this fact with (15), we see that

c = c2Γ2 − b21p/a. (16)

If b = 0, we have c = c02Γ2 by (16) and p = const by (15). Then we may set
p = −1 and we arrive to (iii)–(v) with n = 0 in (iii).

Now let b 6= 0. The equation (15) can be rewritten as (log p)′ = 2b1/a. Since p,
a, and b1 are polynomials and deg(a) ≤ 2, we conclude that, up to translation and
rescaling the variable x, one of the following three cases occurs.

Case 1. a = 1− x2.

2b1
a

=
p′

p
=

n

1 + x
− m

1− x
, p = −(1− x)m(1 + x)n, m, n > 0
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(recall that the leading coefficient of p can be chosen arbitrarily). Therefore b1 =
1
2
(n−m) − 1

2
(n+m)x. By combining this fact with (16) we obtain (i) as soon as

Γ = −Γ2. So, it remains to show that Γ coincides with Γ2 up to a constant factor,
that is Γ0 = const. Indeed, if Γ0 were non-constant, by Lemma 3.2 it would be a
common factor of a and b, but this is impossible for our explicit form of a and b.

Case 2. a = x, p′/p = 2b1/a = n/x, p = xn, n ≥ 0, hence b1 = n/2. Since a and
b are coprime, Γ = Γ2 and we arrive to (ii) similarly to Case 1.

Case 3. a = x(x0 − x), p′/p = 2b1/a = −n/(x0 − x), p = −(x0 − x)n, n ≥ 0,
hence b1 = −nx/2. This yields (iii). �

Proposition 4.4. The following is a complete list of solutions (a, b, c; Γ) of the
(1,∞)-AlgDOP problem over C up to (1,∞)-admissible change of variables under
condition that degy Γ = 1. Here a10, a20, b11, c02 are constants and a0, b1, c0, c1
are polynomials in x; deg a0 ≤ 2, deg b1 ≤ 1.

(i) (x2, −nxy, n2y2−c0Γ1; x
kΓ1), Γ1 = xny−1, n≥1, k = 0,1, ∆ = −x2c0Γ1;

(ii) (x2, b11Γ−1, y2− c0Γ; Γ), Γ = xy−1, ∆ = (xy+1−x2c0− b211Γ+2b11)Γ;
(iii) (a0, b1y, c02y

2 + c1y; y);
(iv) (a10x+ a20x

2, b11xy, c02y
2 + c1y; xy);

(v) (1− x2, 0, c02y
2 + c1y; (1− x2)y);

(vi) (0, 1− xy, (1− xy)c0; 1− xy).

We shall see in §6 that only (iii)–(v) provide a solution of the w-SDOP prob-
lem. Moreover, this appears only when (a, b, c) is (a00, 0, c01y), (a10x, 0, c01y), or
(1− x2, 0, c01y) which corresponds to a product of one-dimensional solutions.

Proof. Let Γ1 be the irreducible factor of Γ of y-degree 1, i.e., of the form Γ1 =
γ1y − γ0 where γ0 and γ1 are polynomials in x and γ1 6= 0.

Case 1. a 6= 0 and γ1 is not a constant. By Lemma 3.3, if x0 is a root of γ1,
it is also a root of b1 and a double root of a. Since a is a non-zero polynomial in
x of degree at most 2, it has only one double root, hence γ also has only one root
(maybe multiple) at x0, hence we may assume that x0 = 0 and a = x2, b1 = b11x,
and γ1 = xn, n ≥ 1. Then γ0/γ1 is a Laurent polynomial, let us denote it by p(x) =
∑

k pkx
k. By a change of variable y = y1+p0+p1x+p2x

2+ . . . we may kill all the
coefficients of non-negative powers of x. Thus we have p = p−nx

−n + · · ·+ p−1x
−1.

The assumption that Γ1 is irreducible implies γ0(0) 6= 0, hence p−n 6= 0, i.e.,
ordx p = −n. By rescaling the variable y we may assume p−n = 1. The curve
Γ1 = 0 is parametrized by x = x, y = p(x). Hence (12) yields

b(x, p) = x2p′, c(x, p) = b(x, p)p′, and thus c(x, p) = (xp′)2. (17)

Since b = b11xy + b0(x), the first equation in (17) reads

b11
(

x−n+1 + · · ·+ p−2x
−1 + p−1

)

+ b0 = −nx−n+1 − · · · − 2p−2x
−1 − p−1. (18)

Case 1.1. n ≥ 2. Since b0 is a polynomial, we derive from (18) that b11 = −n,
b0 = −p−1 − b11p−1 = (n − 1)p−1 (a constant), and p−n+1 = · · · = p−2 = 0, i.e.,
p = x−n + p−1x

−1. Then the last equation in (17) reads

c02
(

x−n + p−1x
−1
)2

+ (x−n + p−1)c1 + c0 =
(

nx−n + p−1x
−1
)2
. (19)
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By comparing the coefficients of x−2n and then those of x−n−1, we obtain c02 = n2

and then p−1 = 0. Hence p = x−n and b0 = 0. By putting p−1 = 0 into (19), we get
n2x−2n+x−nc1+c0 = n2x−2n, i.e., c1 = −xnc0. Thus (a, b, c) = (x2, −nxy, n2y2−
xnc0y + c0) which corresponds to (i) with k = 0 when Γ = Γ1. If Γ has another
non-constant factor Γ0 (a polynomial in x), the condition (11) implies that Γ0 is a
factor of a and b which corresponds to (i) with k = 1.

Case 1.2. n = 1 (thus p = x−1). Then (18) reads b11 + b0 = −1 and the last
equation in (17) reads c02x

−2 + x−1c1 + c0 = x−2 whence b0 = −b11 − 1, c02 = 1,
and c1 = −xc0. Hence b = b11xy+ b0 = b11xy− b11 − 1 and c = c02y

2 + c1y+ c0 =
y2 − xyc0 + c0 which corresponds to (ii) when Γ = Γ1. Once again, any additional
non-constant factor Γ0 of Γ should be a factor of a and b. Then Γ0 = x and it
divides b = b11(xy − 1) − 1. Therefore b11 = −1, thus b = −xy. This corresponds
to (i) with n = k = 1.

Case 2. γ1 = const. Then, up to an admissible change of variables, we may
assume that Γ1 = y. If Γ = Γ1, this corresponds to (iii). Otherwise, as in the
previous cases Γ/Γ1 is a polynomial in x which divides a and b which corresponds
to (iv) and (v).

Case 3. a = 0. Then Γ is a factor of ∆ = −b2. By an admissible change of
variables we can reduce b to y, xy, or xy − 1. This leads to (iii), (iv), or (vi). �

5. Solution of the (1, w)-AlgDOP Problem in C2 for 1 < w ≤ 2

In this section we find all solutions of the (1, 2)-AlgDOP Problem in C2. They
include all solutions of the (1, w)-AlgDOP Problem for any w in the range 1 < w ≤ 2
(see §3.2).
5.1. Compactification of C2.

Let (a, b, c; Γ) be a solution of the (1, 2)-AlgDOP Problem in C2, and let ∆ =
ac − b2. The Newton polygon of ∆ (and hence of Γ) is contained in the triangle
[(0, 0), (6, 0), (0, 3)] (see Figure 1). Therefore it is natural to consider C2 as the affine
chart Z 6= 0 (with coordinates x = X/Z, y = Y/Z2) of the weighted projective
plane P2

1,2,1 which is the quotient of C3 \ {(0, 0, 0)} by the equivalence relation

(X, Y, Z) ∼ (λX, λ2Y, λZ), λ 6= 0 (we denote the class of (X, Y, Z) by [X :Y :Z]).
This variety is smooth except at the point [0 :1: 0].

A generic polynomial P (x, y) with N (P ) = [(0, 0), (6, 0), (0, 3)] defines an affine
curve {P = 0} in C2 whose closure in P2

1,2,1 is a smooth curve not passing through
the singular point [0 :1: 0], and the linear projection from this point

P
2
1,2,1 \ {[0 :1: 0]} → P

1, [X :Y :Z] 7→ (X :Z), (20)

is a 3-fold branched covering of {P = 0} onto P1. This is why P2
1:2:1 is an appro-

priate compactification of C2 in our setting. However the coefficients of ∆ are not
necessarily generic and the closure of {Γ = 0} may have singularities and it may
pass through [0 :1: 0]. To deal with such curves it is convenient to blow up the point
[0 :1: 0]. This means that we consider C2 as an affine chart (x, y) of F2 – the Hirze-
bruch surface of degree 2 which is the smooth complex surface obtained by gluing
together four copies of C2 with coordinates (xk, yk), k = 0, . . . , 3, (where x0 = x,
y0 = y are the coordinates on C

2 we started with). The transition functions are:

x1 = 1/x, x2 = x, x3 = x1 = 1/x,

y1 = y/x2, y2 = 1/y, y3 = 1/y1 = x2/y.
(21)
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The set of real points of F2 is diffeomorphic to a torus. In Figure 3 we represent it
as a rectangle with opposite edges identified. As an illustration of the chart gluing,
we also show in Figure 3 how the closures of some two curves in F2 look like.

x

y

x

y

x
y

x
y

E

L

1

1

2
2

3
3

88

y =1

y =    x
14

Figure 3. Coordinate axes for all the four charts on F2 and the curves
{y = 1} = {y1 = x2

1} and {y = −x4 − 1} = {y3 = −x2
3/(1 + x4

3)}.

The projection (20) extends to the projection π : F2 → P1 given in the affine
charts by (xk, yk) 7→ (xk : 1) for k = 0, 2 and (xk, yk) 7→ (1 : xk) for k = 1, 3. It
is a fibration with fiber P1. Its restriction to the closure of a curve {P (x, y) = 0}
is a branched covering of degree degy P . The strict transform of [0 :1: 0] under the
blowup (we denote it by E) is given by y2 = 0 or y3 = 0 in the respective charts.
Its self-intersection is −2.

The set of (1, 2)-admissible changes of variables coincides with the set of biregular
automorphisms of F2 preserving C2.

5.2. The case when ∆ is irreducible and degy ∆ = 3.

Let (a, b, c; Γ) be a solution of the (1, 2)-AlgDOP Problem such that Γ = ∆ =
ac − b2, Γ is irreducible, and degy Γ = 3. We assume that (a, b, c; Γ) cannot be
reduced to a solution of the (1, 1)-AlgDOP Problem by a (1, 2)-admissible change
of coordinates. Let C be the closure of {Γ = 0} in F2. We identify C2 (where
the affine curve Γ = 0 sits) with the affine chart corresponding to the coordinate
system (x, y). We shall call it the main chart. We denote the fiber {x1 = 0} by L∞

(see Figure 3). The condition degy Γ = 3 implies that C is disjoint from E, and π|C
is a 3-fold branched covering. Let ν : C̃ → C be the normalization (non-singular

model) of C. This means C̃ is a smooth compact Riemann surface of genus g and ν
a holomorphic mapping which is injective outside a finite number of points. There
is a 1-to-1 correspondence between points of C̃ and local branches of C.

The genus formula for C reads

g = 1 + 1
2
C(C +KF2

)−
∑

P∈C

δP = 4−
∑

P∈C

δP (22)

where δP = δP (C) is the delta-invariant of (C, P ), i.e. 2δP =
∑

mi(mi − 1) where
m1, m2, . . . are the multiplicities of the infinitely near points of C at P (note that
the “4” in (22) can be computed as the number of integral points in the interior
of the triangle [(0, 0), (6, 0), (0, 3)]). It is convenient to rewrite (22) in terms of
local branches of C as it is done in [3, §3.2]. Namely, for a point P ∈ C with local
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branches γ1, . . . , γr we set nP =
∑

1≤i<j≤r γ1 ·γj. Then we have δP = nP +
∑

δ(γi),

hence the genus formula (22) takes the form

g = 4− n−
∑

γ

δ(γ), n =
∑

P∈C

nP (23)

where the first sum is over all local branches of C.
For a local branch t 7→ γ(t) = (ξ(t), η(t)) we denote the ramification index

of π ◦ γ by mπ(γ). The number mπ(γ) can be also defined as the intersection
number of γ with the fiber of π passing through the center of γ. If ord ξ ≥ 0 then
mπ(γ) = ordt(ξ(t) − ξ(0)). If ord ξ < 0, then mπ(γ) = − ordt ξ. By Riemann-
Hurwitz formula we have

2− 2g = 6−
∑

γ

(mπ(γ)− 1). (24)

Lemma 5.1.
(a). Let γ be a local branch of C at a point P . Then mπ(γ) ≤ 3 and we have:

• if mπ(γ) = 3, then P ∈ L∞ and γ is smooth
(we denote the number of such branches by β3);

• if mπ(γ) = 2 and γ is smooth, then P ∈ L∞

(we denote the number of such branches by β2; it is clear that β2 +β3 ≤ 1);
• if γ is singular, then it is a singularity of type A2k and mπ(γ) = 2

(we denote the number of such branches by α2k);

(b). The curve C is rational (i.e., g = 0) and one of the following cases occurs
(among the numbers n, αk, βk, we list only the non-zero ones):

(i) α2 = α4 = β3 = n = 1;
(ii) α2 = 4;
(iii) α2 = 3 and β2 = n = 1;
(iv) α2 = n = 2 and β3 = 1.
(v) α4 = 2 and β3 = 1;
(vi) α2 = α6 = β3 = 1;
(vii) α2 = 2 and α4 = β2 = 1.

Proof. (a). Follows from Lemma 3.4. The only point which maybe needs some
comments is the smoothness of γ in the case when mπ(γ) = 3, and hence P ∈ L∞.
Up to an admissible change of coordinates we may assume that P is at (x1, y1) =
(0, 0) (see Figure 3). Then vγ(y1) > 0 and the condition mπ(γ) = 3 means that
vγ(x1) = 3, i.e., vγ(x) = −3. Hence Lemma 3.4(c) implies that vγ(y) 6∈ [−4,−1].
By (21) we have vγ(y1) = vγ(y)−2vγ(x) = vγ(y)+6, thus vγ(y1) 6∈ [2, 5]. It is easy
to see that vγ(y1) < 6. Hence vγ(y1) = 1 whence the result.

(b). We have β2 + β3 ≤ 1 and the equations (23) and (24) imply

4 = g + n+
∑

k≥1

kα2k, 2g + 4 = β2 + 2β3 +
∑

k≥1

α2k.

The only non-negative solutions are (i)–(vii). �

Notice that if a curve in P2 is parametrized by t 7→
(

ξ(t) : η(t) : ζ(t)
)

, then the
projectively dual curve is parametrized by

t 7→ (η̇ζ − ζ̇η : ζ̇ξ − ξ̇ζ : ξ̇η − η̇ξ). (25)
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Lemma 5.2. The cases (v)–(vii) in Lemma 5.1 are unrealizable. In the other cases
the curve C admits one of the following parametrizations t 7→ [X : Y : Z] in the
weighted homogeneous coordinates introduced in §5.1:

(i) [ 32 (t+ 1) : 256 (5t+ 3)(t+ 3) : (t+ 3)3 ], thus

Γ = y3 − 20xy2 + 16y2 + 45x3y − 40x2y − 27x5 + 25x4; (26)

(ii) [ t2(t+ 1) : t2(2t+ 1) : 3t+ 1 + αt2(t+ 1) ], where α3 − 9α2 + 27α 6= 0;

(iii) [ (t−1)2(t−α) : (t−1)3(2t3+t2−αt2+t−αt−2α) : (t+α)2(αt+2t−2α−1) ],
where α(α2 − 1)(α2 + 4α + 1) 6= 0.

(iv) [ (t− 2)2(t+ 1) : (t− 2)3(3t2 + 3αt+ 2α) : 1 ], where α 6∈ {−3/2, 7/2}.

blowup

Figure 4

Proof. In each of the cases (i)–(vii) we may assume that C is singular at the origin
of the main chart. Then we blow up this point and blow down the strict transform
of the lines x = 0 and E. In coordinates this means that we consider the curve
C1 on P2 which is the projective closure of the affine curve Γ(x, xy)/x2 = 0. We
consider the homogeneous coordinates (X1 : Y1 : Z1) on P2 such that x = X1/Z1,
y = Y1/Z1.

Then C1 is a quartic curve tangent to the line X1 = 0 at (0:1:0) (see Figure 4).
If C has the A2k singularity at the origin, then C1 has the A2k−2 singularity some-
where on the line X1 = 0 (when k > 1) or a simple tangency with this line (when
k = 1). The line Z1 = 0 is the strict transform of L∞, thus C1 has the tangency
with it of the same nature as C has with L∞. Up to a (1, 2)-admissible change
of coordinates, the curve C is determined by C1 ∪ {X1Z1 = 0}. The weighted
homogeneous coordinates (see §5.1) are expressed via (X1 : Y1 : Z1) as follows:

[X : Y : Z] = [X1 : X1Y1 : Z1]. (27)

Now we separately consider the cases of Lemma 5.1.

Case (i). We assume that the node is at the origin. In this case the curve C1

has singularities A2 and A4. An irreducible quartic curve with such singularities is
unique up to an automorphism of CP2 and it is autodual (see e.g. [3, Cor. 3.10(iii)]).
Such a curve has a single flex point P (because the dual has a single cusp) and the
line Z1 = 0 is the tangent to C1 at P . Let Q be the other intersection point of
C1 with {Z1 = 0} (see Figure 5). Then Q = (0:1:0) and the line {X1 = 0} is
tangent to C1 at Q. This means that C1 ∪ {X1Z1 = 0} is uniquely determined up
to automorphism of P2 whence the uniqueness of C. Thus it remains to check that
the curve given in the statement of the lemma has the required properties. Indeed,
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88L

A4 A2

P
Q

Figure 5. A quartic curve with A2 and A4.

it has a cusp at [ 32
27

: 256
81

: 1] (t = 0), an A4 singulariry at [0:0:1] (t = ∞), a node

at [1:1:1] (t = −5± 2
√
5), and a flex point with tangent L∞ at [1:0:0] (t = −3).

Case (ii). In this case the curve C1 has three cusps A2. The line X1 = 0 is its
bitangent. It is well known that such a curve (tricuspidal quartic) is unique up to
automorphism of CP2, it has only one bitangent line, and the tangency points P
and Q are interchangeable by an automorphism of (P2, C1). Thus C is determined
by a choice of a line Z1 = 0 passing through P . So, it depends on one parameter.

The curve C1 is projectively dual to a nodal cubic, hence it has two real forms.
We choose the one with the real bitangent (and hence with two complex conjugate
cusps). In some homogeneous coordinates (X2 : Y2 : Z2), it has a parametrization

X2 = t2(t+ 1)2, Y2 = 2t+ 1, Z2 = (t+ 1)(3t+ 1).

Here the line X2 = 0 is bitangent, the cusps correspond to t = (−3 ± i
√
3)/6 and

t = ∞. According to the above discussion, we may choose X1 = X2, Y1 = Y2, and
Z1 = Z2 +αX2. Plugging this into (27), we conclude. The roots of α3 − 9α2 +27α
are excluded because they correspond to the cases when the line L∞ passes through
a cusp which contradicts our assumptions (see Lemma 5.1(a)).

Case (iii). In this case C1 has two cusps and one node. We assume that one of
the cusps is at the origin. Then the line X1 = 0 is bitangent. Let C2 = Č1 be the
curve projectively dual to C1. Using Plücker’s formulas (in the form given in [3,
§3.2] or in [4]), one can check that the class of curves with two cusps, one node,
and at least one bitangent is stable under the projective duality. Hence C2 has two
cusps and one node. Therefore, in some homogeneous coordinates (X3 : Y3 : Z3),
it has a parametrization

X3 = t2, Y3 = (t− 1)(t− α), Z3 = t2(t− 1)(t− α). (28)

The cusps correspond to t = 0 and t = ∞. The node corresponds to t = 1 and
t = α. Being dual to C2, the curve C1 is parametrized in some coordinates by

t 7→ ϕ(t) = (X2 : Y2 : Z2) =
(

2(t− 1)2(t− α)2 : α+ 1− 2t : (α+ 1)t− 2α
)

(see (25)). The points where C2 touches the bitangent line correspond to the local
branches of C3 at the node, which are at ϕ(1) and ϕ(α), thus X1 = X2. In the
coordinates (X1:Y1:Z1), the tangency points are at (0:0:1) and at (0:1:0). Up to
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rescaling the coordinate t, we may assume that ϕ(1) = (0:1:0). Then the line
Z1 = 0 is uniquely determined by the condition that it passes through (0:1:0) and
is tangent to C1 which gives

Z1 = α
2
X2 + (α+ 1)Y2 + α2(α+ 1)Z2.

The line Y1 = 0 should pass through (0:0:1). Then we may set Y1 = Y2 + Z2 and
using (27) we obtain the required parametrization of C.

The condition α 6∈ {0, 1} is clear from the construction. If α = −1, then C2 is a
double conic because X3, Y3, and Z3 are functions of t2 (see (28)). If α is a root of
α2 + 4α+ 1, then one of the cusps is on L∞ which contradicts Lemma 5.1.

Case (iv). The condition n = 2 can be attained in three different ways.

Y2= 0

Z
1 = 0

Z
2 = 0 X

1
=

 0

X
2
= 

0

X
3
= 

0

0t =

t = t1
t = t2

t = 2

Z
3 = 0

Y3= 0

8 8t =

−1t =

0L

L 8

Figure 6. Case (iv1) of Lemma 5.2.

Case (iv1): 2A2 + 2A1. The curve C has two cusps and two nodes. We assume
that one of the cusps is at the origin. Then C1 has one cusp and two nodes. The line
X1 = 0 is bitangent and the line Z1 = 0 is tangent at a flex point. We choose the
line Y1 = 0 to pass through the both tangency points. Next we choose coordinates
(X2 : Y2 : Z2) as shown on the left hand side of Figure 6 and perform the Cremona
transformation (X2 : Y2 : Z2) 7→ (X3 : Y3 : Z3) = (Y2Z2 : Z2X2 : X2Y2). Then
the lines X1 = 0 and Z1 = 0 are transformed into lines that we denote by L0 and
L∞. The transform of C1 is a cuspidal cubic C3 shown on the right hand side of
Figure 6 (two complex conjugate crossings with Z3 = 0 are not shown). The lines
X2 = 0 and Z2 = 0 cannot be tangent to the local branches of C1 at the nodes
because otherwise C3 would have too many tangents in the pencil of lines through
(0 : 1 : 0) (see Figure 7).

(0:1:0)

Figure 7. Unrealizable tangency at A1 in Case (iv1).
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Let (X4 : Y4 : Z4) be coordinates such that C3 is parametrized by t 7→ ϕ(t) =
(t2 : t3 : 1). Up to rescaling we may assume that the point of tangency of C3

with L0 is ϕ(2) = (4 : 8 : 1). Then C3 ∩ L0 = ϕ(−1) = (1 : −1 : 1) (see
Figure 6) and the whole configuration is determined by a choice of the line Y3 = 0
passing through ϕ(−1), i.e., it is determined by a single parameter α such that
Y3 = (Y4 + Z4) − α(X4 − Z4). Let ϕ(t1) and ϕ(t2) be the other two points of
C3 ∩ {X3 = 0}. Then t1 and t2 are the roots of (t3 + 1) = α(t2 − 1) different
from −1, i.e., the roots of t2 − (α + 1)(t − 1) = 0. Hence t2 = t1/(t1 − 1) and
α = (t31 + 1)/(t21 − 1). The parametrization of C3 is

(X3:Y3:Z3) =
(

t3 − t31 − 3(t2 − t21) : (t+ 1)(t− t1)(t− t2) : t
3 − t32 − 3(t2 − t22)

)

and after routine computations we obtain the required parametrization of C. If
α ∈ {−3/2, 7/2}, this parametrization defines a curve covered by Case (i).

Case (iv2): A2 +D5. The curve C has one cusp and a singular point of type D5

(given by u(u2+v3) = 0 is some local curvilinear coordinates). We assume that the
D5 singularity is at the origin. We may also assume that the line Y = 0 is tangent
to its cuspidal local branch and passes through the point of tangency of C with the
line Z = 0. Then N (Γ) = [(4, 0), (5, 0), (0, 3), (1, 2)]. Hence after blowing up the
origin we obtain a curve in P

2 with the Newton polygon [(1, 0), (2, 0), (0, 3), (0, 2)]
(cf. Figure 4). This is a cuspidal cubic which has a simple (quadratic) tangency
with the line X1 = 0 and a cubic tangency with the line Z1 = 0. One easily checks
that these conditions uniquely determine C ∪ {X1Z1 = 0} up to automorphism of
P2. Hence the curve C is unique up to an admissible change of coordinates. It
remains to observe that the parametrization in the statement of the lemma gives
the required curve when α = −1. It has a cusp at [0 : 0 : 1] and the D5 singularity
at [4 : 16 : 1].

Case (iv3): 2A2 + A3. The curve C has two cusps A2 and one tacnode A3

(ordinary tangency of two smooth branches). We assume that one of the cusps is
at the origin. Then the curve C1 has one cusp A2, one tacnode A3 and at least
one bitangent (the line X1 = 0). Let us show that this combination is impossible
for quartic curves in P2. It is convenient to apply Plücker’s equations in the form
given in [4, Thm. 1.3]. In the notation of [4] we have d = 4, g = 0, nv = 2, cv = 1,

hence d̂ = 5 by [4, Eq. (1.6)]. Then the equations [4, (1.8)–(1.9)] read n̂ + ĉ = 6
and 2n̂+ 3ĉ = 16 whence n̂ = 2.

It is easy to check that the dual branches of a tacnode form a tacnode of the
dual curve and it contributes 2 to n̂. Hence the dual curve does not have nodes,
i.e., C1 does not have bitangents. A contradiction.

Case (v). In this case C1 has singularities A2 (on the line X1 = 0) and A4. An
irreducible quartic curve with such singularities is unique up to an automorphism
of CP2 and it is autodual (cf. Case (i)). Hence it has a unique flex point because
the dual curve has one cusp A2. By the uniqueness, we may assume that C1 is a
small real perturbation of real double conic as explained in the remark in the proof
of [3, Cor. 3.10] (see Figure 5). The line Z1 = 0 is the tangent at the flex point
P . The line X1 = 0 is the tangent at the transverse crossing Q of Z1 = 0 with C1

and it must pass through the cusp A2. We see in Figure 5 that this is impossible
because the arc A2QA4 is convex.
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Case (vi). We assume that the singularity of C at the origin is A6. Then C1 has
A2 and A4 as singularities and the proof is the same as in Case (v) but with A2

and A4 exchanged.

Case (vii). We assume that the singularity of C at the origin is A2. Then X1 = 0
is a bitangent and C1 has singular points A2 and A4. As we mentioned in Case (v),
such a curve is autodual, hence it cannot have a bitangent because the dual curve
does not have nodes. A contradiction. �

Proposition 5.3. Let (g; Γ) be a solution of the (1, 2)-AlgDOP problem over R

such that Γ is irreducible and degy Γ = 3. Then, up to a (1, 2)-admissible change
of variables, either (g; Γ) is a solution of the (1, 1)-AlgDOP problem, or Γ is given
by (26) and

g =

(

y + 8x− 9x2 5(4y − 3xy − x2)

5(4y − 3xy − x2) −25(y2 − 4xy + 3x3)

)

. (29)

Proof. Given a parametrization (X(t), Y (t), Z(t)) in the weighted homogeneous
coordinates introduced in §5.1, the relation (12) applied to ξ(t) = X(t)/Z(t), η(t) =
Y (t)/Z(t)2 yields a system of homogeneous linear equations for the coefficients aij ,
bij , cij of the entries of the cometric g in each of the cases (i)–(iv) of Lemma 5.2.
Up to a constant factor, the only non-zero solution in Case (i) is (29).

In Cases (ii)–(iv) the system of equations polynomially depends on α. It has a
non-zero solution if and only if the gcd of the determinants of the maximal minors
vanishes. A straightforward computation shows that this gcd is a polynomial in α
all whose roots are excluded in Lemma 5.2. For example, in Case (ii), the gcd is a
power of α multiplied by a power of α2 − 9α+ 27. �

Remark 5.4. The solution of the (1, 2)-DOP Problem given in [1, §8] transforms
(up to a constant factor) into our solution given in Proposition 5.3 by the change
of variables

θ1 =
2 +

√
5

5
(x− 1), θ2 = −

√
5

125
(4y − 5x+ 1).

5.3. The case when Γ has a factor of y-degree 2.

Proposition 5.5. Let (g; Γ) be a solution of the (1, 2)-AlgDOP Problem such that
degy Γ = 2. Suppose that it is not a solution of the (1,∞)-AlgDOP problem. Then,
by a (1, 2)-admissible change of variables, (g; Γ) can be reduced either to a solution
of the (1, 1)-AlgDOP problem or to one of the following three cases:

(i) Γ = y2 − x3 and

g =

(

4y 6x2

6x2 9xy + αΓ

)

+ (βx+ µ)

(

4x 6y
6y 9x2

)

. (30)

Rescaling the coordinates, one can replace (α, β, µ) by (λα, λβ, λ−1µ) for
any non-zero λ.

(ii) Γ = y(y − x2), g = g(α,β,µ) with (α, β − β2, µ) 6= (0, 0, 0), µ ∈ {0, 1}, where

g(α,β,µ) = (y − x2)

(

1 0
0 αy

)

+ (βx+ µ)

(

x 2y
2y 4xy

)

.
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(iii) Γ = y(y − x2 + 1) and g = g(α,β) with (α, β − β2) 6= (0, 0), where

g(α,β) = (y − x2 + 1)

(

1 0
0 αy

)

+ β

(

x2 − 1 2xy
2xy 4x2y

)

. (31)

Proof. Lemmas 3.2 and 3.3 imply that Γ does not have monomials of the form xky2

with k > 0. Local branches of Γ correspond to edges of N (Γ) (see Lemma 3.1).
Hence Lemma 3.4(d) implies that the slope of any upper edge is steeper than 1:2,
hence N (Γ) is contained in the triangle [(0, 0), (4, 0), (0, 2)]. This fact combined
with Lemma 3.3 (which means that the affine curve Γ = 0 has no vertical tangent)
leaves only five possibilities for Γ up to admissible change of coordinates: the three
cases (i)–(iii) and also y(y − x) and y2 − 1.

In each case, the condition (12) yields a system homogeneous linear equations
for the coefficients of a, b, and c (the entries of g). By solving these systems we
obtain the result. In the last two cases we obtain a1 = 0, thus these are solutions
of the (1,∞)-AlgDOP problem (see Figure 2). In the other cases we normalize
the solutions so that a1 = 1. The parameter µ in Case (ii) can be set to 0 or 1 by
rescaling the coordinates (see Example 2.7). The conditions (α, β−β2, µ) 6= (0, 0, 0)
(in Case (ii)) and (α, β−β2) 6= (0, 0) (in Case (iii)) are equivalent to det g 6= 0. �

Lemma 5.6. Let (g; Γ) be a solution of (1, 2)-AlgDOP problem which cannot be
reduced to a solution of (1, 1)-AlgDOP problem. Let Γ = y(y − p1(x))(y − p2(x)).
Then the polynomial p1p2 has at most two roots (maybe multiple).

Proof. Proposition 5.5 applied to (g, y(y − pk)) implies that a0 vanishes at the
roots of pk (recall that g11 = a01y + a0(x)). It remains to prove that a0 cannot
be identically zero. Indeed, if it is, then y would divide each entry of g, hence y2

would divide det g which is impossible because det g = Γ in our case (see Figure 1)
and Γ is squarefree.

Proposition 5.7. Let (g; Γ) be a solution of the (1, 2)-AlgDOP problem over C

such that Γ is reducible and degy Γ = 3. Then, up to a (1, 2)-admissible change of
variables, either (g; Γ) is a solution of the (1, 1)-AlgDOP problem, or g is given by
(30) with (α, β, µ) = (−18,−3/2, 1/2) and hence Γ = Γ1Γ2 where Γ2 = y2−x3 and
Γ1 = 8y − 3x2 − 6x+ 1.

In the latter case the curve Γ = 0 has singularities of the types A1, A2, and A5

at ( 1
9
,− 1

27
), (0, 0), and (1, 1) respectively.

Proof. We have Γ = Γ1Γ2 with degy Γk = k. By Proposition 2.4, (g,Γ2) is also a
solution of the (1, 2)-AlgDOP problem. Moreover, (g,Γ) reduces to a solution of
a (1, w)-AlgDOP problem by a (1, 2)-admissible change if and only if the same is
true for (g,Γ2). Hence we may assume that (g,Γ2), is as in Proposition 5.5.

Case 1. Γ2 is irreducible. Then (g,Γ2) is as in Proposition 5.5(i). A computation
shows that det g = Γ1Γ2 with Γ1 = αy − f(x), hence α 6= 0. Then, for the
parametrization ξ = t, η = f(t)/α of {Γ1 = 0}, the equations (12) take the form

a(ξ, η)η̇ − b(ξ, η)ξ̇ = 6FG/α2 = 0, b(ξ, η)η̇ − c(ξ, η)ξ̇ = FGH/α2 = 0,

where F = At−3B, A = (α−12β)(α−9β), B = 18+5αµ−36βµ, G = (βt+µ)2−t,
and H = (9β − α)t+ 9µ. Since G cannot vanish identically, we have A = B = 0.
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If α = 9β, then B = −27(2+βµ), and we obtain a solution of the (1, 1)-AlgDOP
problem (the one discussed in [3, §4.10]).

If α = 12β, then B = −18(3 + 4βµ), and we obtain the announced solution.

Case 2. Γ2 is reducible. In this case {Γ = 0} = L1 ∪ L2 ∪ L3 where Lk = {y =
pk(x)}, k = 1, 2, 3. Let P1 = L1 ∩ (L2 ∪ L3), P2 = L2 ∩ (L3 ∪ L1), and P3 =
L3 ∩ (L1 ∪ L2). Then Lemma 5.6 implies that each Pk has at most two points. By
Proposition 5.5, if k 6= m, then Lk and Lm either are tangent, or cross at two points.
Hence, up to a (1, 2)-admissible change of coordinates, Γ = y(y − p(x))(y − λp(x))
where λ 6∈ {0, 1} and p(x) is x2 or x2 − 1. In this case g is as in Proposition 5.5 (ii)
or (iii). Then one easily checks that (12) is not satisfied for the parametrization
ξ(t) = t, η(t) = λp(t) of the curve y = λp(x). �

6. Solution of the weighted DOP/SDOP problem in R
2

6.1. Compact solutions.
In what follows we give the measure density ρ without the normalizing constant

which is always assumed to be equal to 1/
∫

Ω
ρ dx.

Theorem 6.1. Let (Ω, g, ρ) be a solution of the (1, 2)-DOP problem in R2 which
is not a solution of the (1,∞)-DOP problem and such that Ω is bounded. Then, up
to a (1, 2)-admissible change of variables, either it is a solution of the (1, 1)-DOP
problem, or one of the following cases occurs (see Figure 8):

(B1) (dodecahedral quotient) g is given by (29), Γ = − 1
25 det g is given by (26),

Ω is the bounded component of R2 \ {Γ = 0}, and ρ = Γp−1 with p > 3
10 ;

(B2) (cuspidal cubic with cubically tangent parabola) g is as in Prop. 5.7, i.e.,

g = g(−18,− 3

2
, 1
2
) =

(

4(2y − 3x2 + x) 6(y − 3xy + 2x2)
6(y − 3xy + 2x2) 9(x2 + x3 + 2xy − 4y2)

)

,

1
36

det g = Γ = Γ1Γ2 with Γ1 = 8y− 3x2 − 6x+1, Γ2 = x3 − y2, the domain

Ω is the bounded component of R2 \ {Γ = 0}, and ρ = Γp−1
1 Γq−1

2 with p > 0,
q > 1

6
, p+ q > 2

3
;

(B3) (parabolic biangle) g = g(α,β) is given by (31) with α < 0 and β ≤ 0;

Ω = {x2 − 1 < y < 0}, and ρ = (−y)p−1(y − x2 + 1)q−1 with p, q > 0.

The solution (B3) reduces to a solution of the (1, 1)-problem by a (1, 2)-admissible
change if and only if either α = 4β (then it is already so), or α = 4β − 4. In the
latter case, the variable change is (x, y) 7→ (x, x2−y−1) which transforms g(4β−4,β)

into −g(4−4β,1−β). We have g(4β,β) = −βG′
−1/β in the notation of [3, §4.5].

Proof. According to Propositions 5.3, 5.5, and 5.7, these are the only solutions of
the (1, 2)-AlgDOP problem with bounded components of R2 \ {Γ = 0} which are
not solutions of the (1,∞)-AlgDOP problem. A direct computation (as explained
in §2.3) shows that starting from any solutions of the (1, 2)-AlgDOP being solution
of the (1, 1)-AlgDOP problem, we can obtain only those solutions of the (1, 2)-DOP
problem which are solutions of the (1, 1)-DOP problem.

The imposed restrictions on α and β in Case (B3) are equivalent to the positive
definiteness of g. Indeed, we have g(0, y) = diag

(

y − β + 1, αy(1 + y)
)

, thus the
positivity of g on Ω ∩ {x = 0} implies α < 0 and β ≤ 0. Conversely, let α < 0 and
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(0, 0)

(1, 1)

(

32
27 ,

256
81

)

(0, 0)
(

1
9 ,− 1

27

)

(1, 1)

Dodecahedral quotient Cubic y2 = x3 and a parabola

Figure 8. The first two domains in Theorem 6.1.

β ≤ 0. Then g > 0 at (0,−1
2 ), hence it is enough to show that ∆ does not vanish

in Ω. We have Γ = yΓ1 and ∆ := det(g) = yΓ0Γ1 where

Γ0 = αy + (4β − α)(1− β)x2 + α(1− β), Γ1 = y − x2 + 1. (32)

Thus it is enough to show that {Γ0 = 0} ∩Ω = ∅. If β = 0, then Γ0 = αΓ1 and we
are done. If β > 0, it is easy to check that the curve Γ0 = 0 does not cross ∂Ω.

The form of the measure density follows from Proposition 2.11 unless ∆ has a
multiple factor. This may happen only in Case (B3) and, as one can see from (32),
only when β = 0 (then ∆ = αyΓ2

1) or β = 1 (then ∆ = αy2Γ1). In these two cases
one can perform the computations described in the beginning of §2.3 (in fact, one
case is reduced to the other one by the variable change indicated in the statement
of this theorem). The inequalities for p and q are the integrability conditions (see
[3, Remark 2.28]). �

Theorem 6.2. Let (Ω, g, ρ) be a solution of the (1,∞)-DOP problem in R2 such
that Ω is bounded. Then one of the following cases occurs up to a (1,∞)-admissible
change of variables.

(B4) (g,Γ) is as in Proposition 4.3(i) with c02 < 0, Ω = {Γ > 0} ∩ {x2 < 1}
which is the only bounded component of R2 \ {Γ = 0}, and ρ is as follows:

• if one of m,n is odd, then ρ = Γp−1 with p > max
(

1
2 − 1

n ,
1
2 − 1

m

)

;

• if m and n are both even, then

ρ =
(

(1− x)
m
2 (1 + x)

n
2 + y

)p−1(
(1− x)

m
2 (1 + x)

n
2 − y

)q−1

with positive p and q such that p+ q > max
(

1− 2
n
, 1− 2

m

)

.

(B5) (g,Γ) is as in Proposition 4.3(iii) with k = x0 = 1, n ≥ 1, and c02 ≤ 0,
(i.e., Γ = xΓ2, Γ2 = (1 − x)n − y2), Ω is {Γ > 0} ∩ {0 < x < 1} which is
the only bounded component of R2 \ {Γ = 0}, and ρ is as follows:
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• if n is odd, then ρ = xr−1Γp−1
2 with r > 0 and p > max

(

0, 1
2 − 1

n

)

;

• if n even, then ρ = xr−1
(

(1− x)n/2 + y
)p−1(

(1− x)n/2 − y
)q−1

with

positive p, q, and r such that p+ q > 1− 2
n .

Proof. According to Proposition 4.3, the only solutions of the (1,∞)-AlgDOP prob-
lem with bounded components of R2 \ {Γ = 0} are the indicated ones.

Case (B4). We have

∆ := det(g) = Γ0Γ, Γ0 = 1
4

(

(n−m) − (n+m)x
)2

− c02(1− x2).

The condition c02 < 0 is equivalent to the fact that g is positive definite. Indeed,
suppose that c02 ≥ 0. Then

Γ0(x0) = − 4c02(c02 +mn)

4c02 + (m+ n)2
≤ 0 for x0 =

n2 −m2

4c02 + (m+ n)2
.

Since |x0| < 1, we have (x0, 0) ∈ Ω and hence Γ(x0, 0) > 0. Therefore ∆(x0, 0) =
Γ0(x0)Γ(x0, 0) ≤ 0, thus g is not positive definite on Ω. Conversely, if c02 < 0, then
Γ0(x) ≥ −c02(1− x2) > 0 when |x| < 1, whence ∆|Ω > 0 which implies g|Ω > 0 by
Sylvester’s criterion because a|Ω > 0.

The required form of ρ can be derived from Proposition 2.11. Indeed, Γ is
maximal for g (by Proposition 4.3) and ∆ is squarefree. Hence, by Proposition 2.11,
ρ is as required but with an additional factor exph. We have degy h = 0 by (10), i.e.,
h′
y = 0. Then (7) implies deg(1,w) bh

′
x ≤ w whence h′

x = 0 because deg(1,w) b > w.

Thus h′
x = h′

y = 0, i.e., h is constant, hence ρ is of the required form. The
inequalities for p and q are the integrability conditions (see [3, Remark 2.28]).

Case (B5). The proof is almost the same as in Case (B4). We have ∆ := deg g =
Γ0Γ where Γ0 = 1

4n
2x − c02(1 − x). The condition c02 ≤ 0 is equivalent to g > 0.

Indeed, if c02 > 0, then Γ(x0) = 0 and 0 < x0 < 1 for x0 = c02/(c02 +
1
4
n2), which

implies that ∆(x0, 0) = 0 whence g|Ω is not positive definite. Conversely, if c02 ≤ 0,
then Γ0(x) > 0 when 0 < x < 1, hence ∆|Ω > 0 whence g|Ω > 0 (because a|Ω > 0).

The form of ρ is established by the same arguments as in Case (B4). �

6.2. Non-compact solutions.

Theorem 6.3. Any solution (Ω, g, ρ) of the (1, 2)-SDOP problem with an un-
bounded domain Ω can be reduced to a solution the (1, 1)- or (1,∞)-SDOP problem
by a (1, 2)-admissible change of variables.

Proof. Let ∆ = deg g and Γ be the maximal boundary for g (see Definition 2.10).
We assume that (g,Γ) does not reduce to a solution of the (1, 1)-AlgDOP problem.
Otherwise, using the classification [3] (see also §6.3), one can check (Ω, g, ρ) re-
duces to a solution of the (1, 1)-SDOP problem. The integrability condition for the
measure implies that the term exp(Q) in Proposition 2.11 is non-constant, hence
degy Γ ≤ degy ∆ ≤ 2 by Corollary 2.14.

Case 1. degy Γ = 2. Then g is as in Proposition 5.5. The condition degy ∆ < 3
implies α = 0 in all the three cases (i)–(iii). Then, using the algorithm of §2.3, we
find that there is no exponential term in ρ.
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Case 2. degy Γ = 1. Then degy a = 1 and Γ = y up to a (1, 2)-admissible
coordinate change, because otherwise we have a solution of the (1,∞)-AlgDOP
problem (see Lemmas 3.2–3.3 and Figure 2) and one can check that it yields a
solution of the (1,∞)-SDOP problem. The fact that Γ = y combined with (12)
implies that y divides b and c. Since degy a = 1 and degy b ≤ 1, the condition

degy(ac − b2) < 3 implies degy c = 1, hence (a, b, c) = (y + a0, yb1, yc1) and ∆ =

(c1− b21)y
2+a0c1y. If deg c1 ≤ 1, we obtain a solution of the (1, 1)-SDOP problem.

Let then deg c1 = 2.

Case 2.1. a0 6= 0. Then y2 does not divide ∆, hence, by Proposition 2.11,
ρ = ehyα for a polynomial h such that degy h ≤ 1, thus h = yh1(x) + h0(x). By

(7) we have Lk ∈ Pw(wk), w = (1, 2), where

L1 = (y + a0)(yh
′
1 + h′

0) + yb1h1, L2 = yb1(yh
′
1 + h′

0) + yc1h1.

The condition L1 ∈ Pw(w1) means that degy L
1 = 0, degx L

1 ≤ 1. Hence h′
1 = 0

(thus h1 is a constant) and h′
0 = −h1b1. The integrability condition implies that

h1 < 0 (we assume here that Ω = {y > 0}). Up to rescaling y we may assume
that h1 = −1, hence h′

0 = b1. Then we have L1 = a0b1 and L2 = (b21 − c1)y. The
condition L2 ∈ Pw(w2) implies that b21 − c1 is a constant and hence deg b1 = 1
(recall that we have assumed that deg c1 = 2). Since L1 = a0b1 and degx L

1 ≤ 1,
we conclude that a0 is constant. Translating x, we may achieve b01 = 0 and we
obtain (a, b, c) = (y + α, βxy, β2x2y + γy) for some constants α, β, γ. The change
(x, y) 7→ (x, y− 1

2βx
2) transforms it into (y+ 1

2βx
2+α,−αβx, (αβ2+ 1

2βγ)x
2+γy),

which gives a solution of the (1, 1)-SDOP problem (cf. [3, §6(2ii)]).
Case 2.2. a0 = 0. Then ∆ = y2∆0, ∆0 = c1−b21. We proceed as in the beginning

of §2.3. Let
L1 = p(x) = p0 + p1x, L2 = q1y + q(x) (33)

(p0, p1, q1 are constants). Then the equation (8) takes the form e2y
2+e1y+e0 = 0

where e2 = q1∆
′
0. The equation e2 = 0 yields c1 − b21 = const. Then we reduce to

the (1, 1)-problem by the same variable change as in Case 2.1 (cf. [3, §6(2iii)]).
Case 3. degy Γ = 0. Then Ω contains a vertical strip Ω0. We have degy a ≤ 1. If

degy a = 0, then this gives a solution of the (1,∞)-SDOP problem (see Figure 2).
If degy a = 1, then a vanishes at some point P ∈ Ω0, thus g cannot be positive
definite in P . �

Theorem 6.4. Let (Ω, g, ρ) be a solution of the (1,∞)-SDOP problem in R2 with
an unbounded Ω. Then one of the following cases occurs up to a (1,∞)-admissible
change of variables.

(U1) (g,Γ) is as in Proposition 4.3(ii) with Ω = {x > 0} ∩ {xn > y2}, n ≥ 1,
c02 ≤ 0, and ρ is as follows:

• if n is odd, ρ = (xn − y2)p−1e−λx, λ > 0, p > max(0, 12 − 1
n );

• if n is even, ρ = (x
n
2 + y)p−1(x

n
2 − y)q−1e−λx, λ > 0, p+ q > 1− 2

n
.

(U2) (Ω, g, ρ) is a product of two one-dimensional solutions, i.e., Ω = Ω1 × Ω2,
g = diag

(

αg1(x), βg2(y)
)

, (α, β) 6= (0, 0), and ρ = ρ1(x)ρ2(y) where each of
(Ωk, gk, ρk) is one of the three one-dimensional solutions mentioned in Re-
mark 1.1 (which correspond to Hermite, Laguerre, and Jacobi polynomials);
see also §6.3.
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Proof. Let wmin be the minimal number w such that w ≥ 1 and (Ω, g, ρ) is a
solution of the (1, w)-AlgDOP problem. If wmin = 1, the result can be derived
from the classification in [3, §§5–6] (see also §6.3). So, we assume that wmin > 1.
Let ∆ = deg g and Γ be the maximal boundary for g (see Definition 2.10). Then
∂Ω ⊂ {Γ = 0}. We have degy Γ ≤ degy ∆ ≤ 2 (see Figure 2).

Case 1. degy Γ = 2. Then (Γ, g) realizes one of Cases (i)–(v) of Proposition 4.3.
In Case (iii) with n = 0 and in Cases (iv)–(v) we obtain (U2) by Proposition 2.8.
In Case (i), the same arguments as in the proof of Theorem 6.2 show the absence
of the exponential factor in ρ, as well as in Case (iii) with x0 = 1, n > 0.

In Case (iii) of Proposition 4.3 with x0 = 0, n > 0, the above arguments (based
on Proposition 2.11) do not apply literally, because ∆ is no longer squarefree, but
they give the result being combined with [3, Corollary 2.19].

The unrealizability of this case can be also proven as follows. We follow the
algorithm from §2.3. Let h = log ρ. Rewrite g replacing x by −x and changing the
sign:

g =

(

x2 1
2
nxy

1
2
nxy 1

4
n2xn − c02Γ2

)

, Γ2 = xn − y2, ∆ =
(

1
4n

2 − c02
)

x2Γ2.

Let Li be as in (33). Then (8) reads np0y − nxq(x) + 2x2q′(x) = 0. Hence p0 = 0
and q(x) = Cxn/2 (C = 0 when n is odd). Plugging the obtained solution into
(7) and integrating h′

x and h′
y , we obtain ρ = C1x

α(xn − y2)β when n is odd, and

ρ = C1x
α(xn/2 + y)β1(xn/2 − y)β2 when n is even, with some constants C1, α, β,

β1, β2. Thus ρ is not integrable on any component of R2 \ {Γ = 0}.
In Case (ii) of Proposition 4.3, we obtain (U1). Indeed, we have (a, b, c) =

(x, 12ny,
1
4n

2xn−1 − c02Γ) and ∆ = Γ0Γ where Γ0 = 1
4n

2 − c02x and Γ = xn − y2.
It is clear that n > 0 because if n = 0, then ∆ has zeros in each component of
R2 \ {Γ = 0} which implies that g cannot be positive definite in Ω. The same
argument leads to our choice of the real form of Γ and to the choice of Ω (up to the
variable change x 7→ −x). By Proposition 2.11, ρ is given by (9) and degy Q = 0.
Hence degx(aQ) ≤ 2 by (6) and then degxQ ≤ 1. The inequalities for p, q, and λ
are the integrability conditions (see [3, Remark 2.28]), and c02 ≤ 0 is equivalent to
Γ0|Ω > 0 and hence to g|Ω > 0. Thus we obtain (U1).

Case 2. degy Γ = 1. Then (Γ, g) realizes one of Cases (i)–(vi) of Proposition 4.4.

Case 2(i). Then k = 1 because otherwise Γ is not g-maximal. We have Γ = xΓ1,
Γ1 = xny − 1, ∆ = −x2c0(x)Γ1, thus c0 6= 0. As above, we follow §2.3 to find ρ.
Let Li be as in (33). Then (8) takes the form

(

(np+ q1x)xc
′
0 + (p0 + 2np+ 2q1x)nc0

)

y + nxqc0 + x2(qc′0 − q′c0) = 0,

Equating the coefficient of y0 to zero, we obtain q = C1x
nc0 (here and below

α, β, C1, C2, C3 are some constants). Equating the coefficient of y1 to zero, we
obtain two solutions: the first one is p0 = 0, q1 = −np1 (then c0 is an arbitrary
function); the second one is c0 = C2(np + q1x)/x

2n+1. The first solution yields

ρ = C3x
αΓβ

1 which contradicts the integrability condition. The second solution is
irrelevant because it cannot be a nonzero polynomial.
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Case 2(ii). We have Γ = xy − 1 and ∆ = (xy + 1− x2c0 − b211Γ + 2b11)Γ. Then
c0 6= 0 (otherwise wmin = 1) and b11 6= −1 (otherwise g is as in 2(i), hence Γ is not
g-maximal). Hence Γ2 does not divide ∆, thus we can apply Proposition 2.11 and
write ρ in the form (9). We have degy Q = 0 by (10), i.e., Q′

y = 0. Then (7) implies
deg(1,w) bh

′
x ≤ w whence Q′

x = 0 because deg(1,w) b > w. Thus Q is constant, hence
ρ is not integrable.

Case 2(iii). We have (a, b, c; Γ) = (a0, b1y, c2y
2 + c1y; y), ∆ = (a0c2 − b21)y

2 +
a0c1y. If deg c1 < 2, then wmin = 1, thus deg c1 ≥ 2. Suppose that deg a ≥ 1. Then
degx ac ≥ 3 > degx b

2 whence degx ∆ = degx ac and we obtain a contradiction with
Proposition 2.15 for w = deg c1. Thus 0 6= a = const and we may set a = 1.

We have ac1 6= 0, hence y2 does not divide ∆. Then Proposition 2.11 with
w = (1, w), w ≫ 0, implies that ρ = ypeh with degy h ≤ 2− degy ∆. If degy ∆ = 2,

this contradicts the integrability condition, hence degy ∆ = 1. Then c2 = b21,

in particular b1 = const, thus (a, b, c) = (1, βy, β2y2 + c1y), β ∈ R. Let h =
h1(x)y+ h0(x). Then degy L

1 = 0 for L1 = ah′
x + bh′

y = h′
1y+ h′

0 + βyh1 (see (7)),
hence h′

1 = βh1. If β 6= 0, we obtain h1 = 0 (since h1 is a polynomial). If β = 0,
the condition deg(1,w)L

2 ≤ w for L2 = bh′
x + ch′

y = yc1h1 again implies h1 = 0
because deg c1 > 0. Thus degy h = 0 which contradicts the integrability condition.

Case 2(iv). Then (a, b, c; Γ) = (xã0, b11xy, c2y
2+c1y; xy), ∆ = (ã0c2−b11x)xy

2+
ac1y. As in Case 2(iii), we obtain deg c1 ≥ 2, ã0 = 1, y does not divide ∆,
hence (see Remark 2.13) degy ∆ = 1, that is c2 = b211x. Thus we arrive to

(a, b, c) = (x, βxy, βy2 + c1y). Then ρ = xpyqeh with h = h1y + h0 where hk

are rational functions of x. The rest of the proof is as in Case 2(iii).

Case 2(v). We obtain (U2) by Proposition 2.8.
Case 2(vi). a = 0 is impossible for a positive definite g.

Case 3. degy Γ = 0, i.e., Γ = Γ(x) is a polynomial in x only. Then Ω = I × R

for a finite or infinite (from either side) interval I. Further, ρ is of the form (9) (see
Remark 2.12) where degy Q ≥ 2 by the integrability condition, hence degy Q = 2

and degy ∆ = 0 by (10); we write Q = h2y
2 + h1y + h0 where hk are rational

functions of x and h2 6= 0. Then (see (7))

deg
w
L1 = 1 for L1 = a(h′

2y
2 + h′

1y + h′
0) + b(2h2y + h1),

deg
w
L2 = w for L2 = b(h′

2y
2 + h′

1y + h′
0) + c(2h2y + h1).

(34)

Since degy Γ = 0, (12) implies that Γ divides a and b, thus degx Γ ≤ 2. Since
Ω ⊂ {Γ = 0}, Proposition 2.15 implies

degx∆ ≤ degx Γ− 1 +max
(

⌊wmin⌋+ degx b, 1 + degx c
)

. (35)

Case 3.1. degx Γ = 2. Then, up to rescaling, a = Γ and b = b0 = b̃(x)Γ for some

polynomial b̃. Then the variable change y 7→ y−p(x) with p′ = b̃ (see Example 2.7)
makes b = 0. Then degy ∆ = 0 implies c = c0. Then (34) yields h′

2 = 0 and
2h2c0 = const. Since h2 6= 0, we conclude that c0 = const, hence we obtain (U2).

Case 3.2. Γ = x. Then a = xã and b = xb̃ = x(βy + b̃0(x)) (β = b11) by
(12), hence the coefficient of y2 in ∆ is ac2 − x2β. Since degy ∆ = 0, a 6= 0, and

c2 = const, we have either a = a20x
2 (then we may assume a20 = 1) or β = 0.
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Case 3.2.1. a = x2. We have ∆ = x2d(x) for some polynomial d = d(x), so we

may write c = b̃2 + d. If deg b̃0 ≤ 1, then either (35) fails or wmin = 1. Thus we

assume that deg b̃0 ≥ 2. The change of variables y 7→ y + λxn transforms b into
b+ λ(n− β)xn+1 (see Example 2.7). Hence we may kill all coefficients of b0 unless

β = n ∈ N in which case we kill all of them except bn+1,0. Since deg b̃0 ≥ 2, we

then assume that b̃ = ny + αxn, n ≥ 2.
Then (see (34)) the coefficient of y2 in L1 is x2h′

2 +2nxh2, hence h′
2 = −2nh2/x

whence h2 = Cx−2n which contradict the facts that h2 6= 0 and h2 is a rational
function with denominator at most x (see [3, Prop. 2.15]).

Case 3.2.2. β = 0. Then the condition degy ∆ = 0 implies c2 = c1 = 0, i.e., g
does not depend on y. By the change of variables y 7→ y+p(x) we may achieve that

degx b̃ < degx ã. If deg ã = 0, then b = 0 and the proof is the same as in Case 3.1.
If deg ã = 1 and b 6= 0, we obtain a contradiction with (35).

Case 3.3. Γ is constant. Then Ω = R2. Since a|Ω > 0, we have up to translation
a = x2 + 1 or a = 1.

Case 3.3.1. a = x2 + 1. Recall that degy ∆ = 0, hence (x2 + 1)c2 = b21 and
ac1 = 2b1b0 whence b1 = c2 = c1 = 0. By a variable change y 7→ y − p(x) we may
achieve that deg b ≤ 1 (see Example 2.7) and we obtain a contradiction with (35).

Case 3.3.2. a = 1. If b1 = 0, the proof is as in Case 3.1. If b1 6= 0, then (34) for
L1 implies h′

2 = −b1h2 which is impossible for nonzero polynomials. �

6.3. Coorections to the paper [3].

(1). It is erroneously claimed in [3, §4.2] that each cometric solution on the
square [−1, 1]2 is proportional to diag(1 − x2, 1 − y2). The correct answer is g =
diag

(

α(1 − x2), β(1− y2)
)

, 0 < α ≤ β. All the corresponding riemannian metrics

(gij) = g−1 are pairwise non-isometric.

(2). It is erroneously claimed in [3, §6(2iii)] that if ∂Ω = {y = x2} and
deg(det g) = 2, then the only cometric for which there exists a measure solution is
(

1 2x

2x 4y

)

. In fact, a solution exists for any g of the form [3, Prop. 3.21(3)], i.e.,

g =

(

1 2x
2x 4y + γ(y − x2)

)

, γ 6= −4.

The admissible measure densities are |y−x2|p−1 exp
(

αx−β(4y+γx2)
)

with p > 0
and β(4 + γ) > 0. By a linear change of variables preserving g, one can always
reduce to α = 0. If γ + 4 > 0 (resp. γ + 4 < 0), this is a solution of the (1, 1)-
SDOP problem on the convex domain Ω+ = {y > x2} (resp. on the non-convex
domain Ω− = {y < x2}). In particular, one should add Ω− to the list of unbounded
domains admitting a solution of the (1, 1)-SDOP problem.

All these solutions can be transformed to a direct product of two one-dimensional
solutions by the (1, 2)-admissible change of variables (x, y) 7→ (x, y − x2).

(3). The following solution for Ω = R
2 is lost in [3, Thm. 5.1]:1

g =

(

1 −2λx
−2λx 4λ2x2 + 2

)

, ρ =
1

π
exp

(

− x2 − (y + λx2)2
)

. (36)

1There is also a misprint in this theorem: X2 and Y 2 should be exchanged in G.
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This solution transforms to g = diag(1, 2), πρ = exp(−x2 − y2) by the (1, 2)-
admissible change (x, y) 7→ (x, y − λx2). The error in the proof of [3, Thm. 5.1] is
in the assertion “this also requires that (∂X + ∂Y )P3 = 0” (p. 1060, l. 18).

Let us prove that affine linear transformations reduce any solution (R2, g, ρ) of
the (1, 1)-SDOP problem to (36) or to the solution in [3, Thm. 5.1]. Let ∆ = det g.
Due to [3, §5.1], it is enough to prove that any solution with ∆ = 1 and non-constant
g reduces to (36). By [3, §5.2, p. 1060] we may assume that (g11, g12, g22) =
(ν2l2 + p1, νl

2 + p2, l
2 + p3) where l is a linear form in x, y and pk = akl + bk

with ν, ak, bk ∈ R. By the change (x, y) 7→ (x − νy, y) we reduce to ν = 0 (see
Example 2.7) and eventually to b2 = 0 by a translation. Then ∆ = 1 implies

a1 = a3 = 0, a22 = b1 = b−1
3 . Rescaling x, l, and g we arrive to g =

(

1 l

l l2+1

)

.

We have ρ = eh where h is a polynomial, deg h ≤ 4 [3, Prop. 2.15]. Write
h = h0 + · · ·+ h4 where hk is a form of degree k. Then (7) reads

(

h′
x

h′
y

)

=

(

l2 + 1 −l
−l 1

)(

l1 + c1
l2 + c2

)

(37)

for some linear forms lk and constants ck. Hence (h4)
′
y = 0 and (h4)

′
x = l1l

2.
Suppose l1 = 0. Then (37) gives (h4)

′
y = (h4)

′
x = 0 whence h4 = 0. Then

the integrability condition implies h3 = 0 and hence (37) implies l2 = c1l whence
h′
y = c2, i.e., h = c2y+f(x) which contradicts the integrability. Thus l1 6= 0. Then

(h4)
′
y = 0 and (h4)

′
x = l1l

2 imply l = αx, α 6= 0. Solving the equations (8) and
rescaling the coordinates, we obtain (36).

6.4. All solutions up to (1, w)-admissible changes for any fixed w.
For w = 1, all solutions up to affine linear changes are given in [3] and Re-

mark 6.5. For w > 1, a complete list up to (1, w)-admissible change is the following
(here p and q are positive numbers, λ is any number):

• all direct products of one-dimensional solutions;

• the images of
(

R2, diag(1, n), e−x2−y2)

and
(

R×R+, diag(1, ny), y
q−1ex

2−2y
)

through (x, y) 7→ (x, y+λxn), n = ⌊w⌋+1, and, if w ≥ n− 1
2 , also the images

of
(

R+ × R, diag(x, n), xp−1e−2x−y2)

,
(

R
2
+, diag(x, ny), x

p−1yq−1e−2x−2y
)

;
• if w ≤ 2, the solutions in [3, §4.7, §4.10–11, §6(2ii)], (B3) (with α = 4β

when w < 2), and the image of
(

R × R+, diag(1, y), y
p−1e−x2−2y

)

through
(x, y) 7→ (x+ λy, y);

• if 3/2 ≤ w ≤ 2, (B1) and (B2);
• (B4) with m+ n ≤ 2w (cf. [3, §4.3]) and (B5), (U1) with n ≤ 2w;
• (B4) with m+ n ≤ 2w + 1 and 4c02 = −(m+ n)2 (cf. [3, §4.8]);
• the image of (B4) through (x, y) 7→ (x, y+λxk), k ∈ Z, with c02 = −k2 and

either w < k = m = n ≤ w+1 (cf. [3, §4.5]) or 2w < 2k = m+ n ≤ 2w+1;
• the image of (B4) through (x, y) 7→

(

x, 1
2(y + (1 − x2)k)

)

, k ∈ Z, with

m = n = 2k ≤ w + 2 and c02 = −n2; in this case we have

g =

(

1− x2 −nxy

−nxy n2y
(

(1− x2)k−1 − y
)

)

, det g = n2y
(

(1− x2)k − y
)

;

• (B5) (resp. (U1)) with n ≤ 2w + 1 and 4c02 = −n2 (resp. c02 = 0);
• the image of (B5) (resp. of (U1)) through (x, y) 7→ (x, y+λxk), k ∈ Z, with

2w < n = 2k ≤ 2w + 1 and c02 = −k2 (resp. c02 = 0);
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• the image of (B5) (resp. (U1)) through (x, y) 7→
(

x, 12 (y + (1− x)k)
)

(resp.

(x, y) 7→ (x, 1
2
(y + xk))), k ∈ Z, with n = 2k ≤ 2w + 2 and c02 = −k2

(resp. c02 = 0); in these cases (cf. (Ω6,Γ6) in [1]) we have

g =

(

x(1− x) −kxy

−kxy k2y
(

(1− x)k−1 − y
)

)

and g =

(

x ky

ky k2xk−1y

)

respectively, and det g = k2xy((1− x)k − y) (resp. det g = k2y(xk − y)).

7. Realization of solutions as images of the Laplace operator

Let M1 and M2 be smooth manifolds and Φ : M1 → M2 be a smooth mapping
which is a submersion at a generic point of M1. Let L1 and L2 be differential
operators on M1 and on Ω = Φ(M1) respectively. We say that L2 is the image of
L1 through Φ if L2(f) = L1(f ◦Φ). Notice that the image of L1 through Φ may or
may not exist, moreover, it does not exist for generic L1 and Φ unless Φ is injective.
However it does exist when L1 and Φ are invariant under an action of a group G
on M1, and then Φ identifies Ω with the orbit space M1/G.

For example, for half-integer p and q, the Jacobi operator Jp,q on the interval
(−1, 1) (see Remark 1.1) is the image of the Laplace operator ∆Sn on the sphere
S
n, n = 2p+ 2q − 1, through the mapping

(x1, . . . , x2p, y1, . . . , y2q) 7→ 2(x2
1 + · · ·+ x2

2p)− 1

(see [3, §2.1], the end of [3, §4.1], and references therein).
In [3, §4] similar interpretations are given for many values of parameters of each

compact solution of (1, 1)-DOP problem. They are interpreted as images of the
Laplace (Casimir) operators on Sn, Rn, SO(n), or SU(n).

Each quotient of S2 or R2 by a reflection group can be identified with a compact
domain Ω, ∂Ω ⊂ {Γ(x, y) = 0} ⊂ R2, so that (Ω,L,Γ−1/2dx) is a solution of (1, w)-
DOP problem where L is the image of∆S2 or∆R2 through the quotient map. Under
this identification, the vertices of the fundamental polygon of the group action are
in bijection with singular points of ∂Ω so that the angle π/n corresponds to the
singularity An−1 (given by u2 = vn in some local coordinates). Explicit formulas
for the mappings S2 → R2 and R2 → R2 which realize the operators L as images
of the Laplace operator are given in [3] and [1]; see detailed references in Table 1.

If L lifts to ∆S2 or ∆R2 , then the corresponding metric is of constant non-
negative curvature. Moreover, the classification obtained in [3] implies that the
curvature is constant and non-negative for all solutions with det(g) of maximal
degree. For maximal degree solutions, Lev Soukhanov [5], [6] proved the constancy
of curvature (but not its non-negativity) not using the classification. He also proved
this fact for any weighted degree (which well agrees with the classification in the
present paper) as well as some its generalizations to an arbitrary dimension.

The curvature in solution (B4) in Theorem 6.2 is constant if and only if m = n
and c02 = −n2. In (B5) it is constant if and only if c02 = −1

4
n2. If m 6= n in

(B4), the curvature cannot be constant because there are no biangles of constant
curvature with different angles. For m = n in (B4) and for (B5), the curvature is

−λn2
(

2(n2 + α)xk + α
)

(

(n2 + α)xk − α
)2 , (k, λ, α) =

{

(2, 2, c02), (B4), m = n,

(1, 12 , 4c02), (B5),
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Angles Boundary of Ω w Reference

2,2,2,2 Rectangle (see also Remark 6.5) 1 [3,§4.2]
R2 2,4,4 Parabola with two tangents 1 [3,§4.7]

3,3,3 Deltoid: x = 2 cos θ + cos 2θ, y = 2 sin θ − sin 2θ 1 [3,§4.12]
2,3,6 Cubic y2 = x3 with a cubically tangent parabola 2 [3, end of §4.12]
— Circle 1 [3,§4.3]
2,2 Coaxial parabolas: y2 = (1− x2)2 1 [3,§4.5]
n, n y2 = (1− x2)n, n ≥ 2 n [1,§6]: Ω(n)

1

2,2,2 Triangle 1 [3,§4.4]
S2

2,2,3 (y2 − x3)(x− 1) = 0 1 [3,§4.9]
2,2,4 y(y − x2)(x− 1) = 0 1 [3,§4.6]
2,2,n (y2 − xn)(x− 1) = 0, n ≥ 2 n [1,§6]: Ω(n)

3 ,Ω
(n
2
)

6

2,3,3 Swallow tail: discrimt(t
4 − t2 + xt+ y) = 0 1 [3,§4.11]

2,3,4 Cubic y2 = x3 with a tangent line 1 [3,§4.10]
2,3,5 Dodecahedral quotient, see Theorem 6.1(B1) 2 [1,§8]: Ω21

Table 1. Quotients of R2 and S
2 by reflection groups; a, b, . . . in the

“Angles” cell means: the angles of the fundamental domain are π
a
, π
b
, . . .

which is evidently non-constant when α 6= −n2 (cf. [3, §4.5]). The similarity
between the formulas for the curvature of (B4) and (B5) is not occasional: up to
adjusting the constants, (B5) is the image of (B4) through (x, y) 7→ (x2, y).

According to our classification, the only bounded domains which admit solutions
but are not covered by Table 1 are those in Theorem 6.2(B4) for m 6= n. The
simplest one is the nodal cubic y2 = x2 − x3 which corresponds to (m,n) = (1, 2).
This solution is realized in [3, §4.8] as the image of ∆S3c , c = 1, 2, 4, 8. The
realization for c = 1 immediately extends to any (m,n) as follows (it could be
interesting to do the same for c = 2, 4, 8). We consider S3 as the unit sphere in C2

with coordinates (z1, z2). Then the image of 1
4∆S3 through

(z1, z2) 7→ (X, Y ) =
(

|z1|2, Re(zn1 z̄m2 )
)

is an operator on the domain bounded by the curve (1 − X)mXn − Y 2 = 0. Its
image through the affine change (X, Y ) 7→ (x, y) = ( 2X − 1, 2(m+n)/2Y ) is the
operator corresponding to (B4) with p = q = 1

2 and c02 = −1
4 (m+ n)2.
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