Projective M-cubics and M-quartics in general

position with a maximally intersecting pair of ovals

S.YU.OrREVKOV, G.M.POLOTOVSKII

An isotopy classification of curves mentioned in the title is obtained. A new aproach
to construction of curves is suggested. The theory of complex orientations and the
link theory (Murasugi-Tristram inequality) is used to prove the prohibitions.

INTRODUCTION

Increasing of the number of known examples of plane algebraic curves with a
known topology usually induces a general progress in topics related to the first part
of the 16-th Hilbert’s problem. In particular, obtained in [1], [2], the classification of
plane real curves of degree 6 decomposing into a product of two transversal factors
has found various applications, main of them being listed in [3] (now this list can be
updated by construction of curves of degree 6 on a cubic surface in a recent paper
[4]). The nature of the mentioned applications allows to hope that an analogous
classification of decomposing curves of degree 7 will be useful as well. However, one
has ”7 > 6” in this problem: even not speaking that much more topological types
is to be studied, the technique of [1], [2] certainly is not enough. The latter is clear
after a rather detailed ”preleminary” study of decomposing curves made by the
second author; part of the results is published in [3], [5]. Let us remark that even
more powerful methods were not sufficient for the classification of arrangements of
an M-curve of degree 6 and a line which meets it transversally [6], [7]. Recently,
some progress in this problem was acheived by the first author involving methods of
the link theory (see [8], [9]; in particular, a classification of flexible affine M-curves
of degree 6 was obtained). In the present paper, we obtain an isotopic classification
of curves mentioned in the title, using the methods of link theory. The methods
used here are applyable also to other classes of curves — for instance, to conics and
quintics in general position — and one may hope that they will allow to complete
the classification of decomposing curves of degree 7 (under natural assumptions of
maximality and transversality).

1. STATEMENT OF THE PROBLEM AND THE RESULT

From now on, C,, denotes the set of points of an M-curve of degree n in the real
projective plane RP?. Recall that C3 (an M-cubic) in RP? consists of two disjoint
topological circles one of which divides RP? and the other does not. The former is
called the oval and we denote it by O3. The latter is called the odd branch and we
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denote it by J3. An M-quartic Cy in RP? consists of four ovals, each being outside
another. We assume that one of these ovals — denote it by Oy — meets O3 at 12
distinct real points. The other three ovals of the quartic and the branch J3 will be
called free (of intersection points). The main result of this paper is a topological
classification of triples

(RP?,C5| | C4,C3), (1.1)

where | | denotes the union under the above assumptions (transversality of the
intersections, maximality of the number of common real points, freedom of the
three ovals of the quartic and of J3) can be formulated as follows

Theorem 1. Any triple (RP?,C3| | Cy, C3) is homeomorphic to one of the 31 topo-
logical models presented in Fig. 1 where standard circles are models of Os, odd
branches Js are not depicted, and the components of the complement of O3 U Oy
with the symbols o and B contains respectively a and B = 3 — a free ovals of the
quartic for the values of a listed under the pictures.

As usually in such problems, the general scheme of the proof is naturally divided
into three steps: (i) enumerating of admissible topological models; (ii) construc-
tions; (iii) prohibitions. Here ”admissible models” mean arrangements of sets A
and B consisting of disjoint circles in RP? such that A, B, and A U B satisfy the
same combinatorial conditions as C3, C4, and C3 U C4 in (1.1) including the re-
strictions on the mutual arrangement of ovals provided by Bezout theorem for the
intersections with lines.

The step (i) is described in details in [5]. Namely, an enumerating algorithm for
admissible models for Oz | | Oy is presented there. It gives a list of 20 arrangements
shown in Fig. 1; Then, using Brusotti theorem (see, e.g. [10]) on independent
smoothing of non-degenerated double points, one can prove that each of the ar-
rangements admits a unique (up to symmetry) region « inside the oval Oz (see
Fig. 1) where « free ovals of C4y may occure, a € {0,1,2,3}. Thus, the total number
of admissible models for triples (1.1) is 20 x 4 = 80.

The sections 2 and 3 are devoted to the steps (ii) and (iii) respectively.

2. CONSTRUCTIONS

Let us describe the encoding of admissible models used below. A word (a se-
quence of symbols) w = <s182...8,>, s € {+,-}, will codify the mutual arrange-
ment of the ovals O3 and O4 composed of the blocks B(s1),. .., B(sy) according to
Fig. 2.1; the blocks B(+) and B(-) are shown in Fig. 2.2. We shall use a convention
that the symbols ”<” and ”>” are also included into the word w; the corresponding
blocks B(<) and B(>) being the most left and the most right blocks in Fig. 2.1.

Remark. Tt is clear that 32 different words w are possible. Identifying the words
which coincide after reversing the order of reading — obviously, such words cod-
ify isotopic arrangements — we obtain 20 words written under the corresponding
models in Fig. 1.

To encode the arrangements Cs | | Cy, we shall equip the word w by the parameter
« in the braces after w.

Tt is written erroneously ?16” instead of ?20” and ”64” instead of ”80” in Sect. VIIIa) [3].
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2.1. Elementary constructions using the method of a small parame-
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ter. The model <+++++>{0} is realized by the curve C3 U Cy where Cy is an M-
quartic which has 6 flex points on the oval O4 (such a quartic was constructed in
[11]) and C5 is an M-cubic obtained by a small perturbation of the union of three
sections of this oval, sufficiently close to the three its bitangents, such that each
section meets the oval at four points.

To realize the model <++-++>{0}, let us consider an M-quartic C4 obtained by
a perturbation of the union of two ellipses. Let L = 0 be the bitangent to O4, and
E = 0 an ellips touching O4 at three points as it is depicted in Fig. 3.1. Suppose
that L < 0 on O4 and E < 0 inside the ellips. Then C4 U{EL =¢} for 0 <e « 1
yields the required arrangement (see Fig. 3.2).

Fic. 3.1 Fia. 3.2

Remarks. 1. Starting with the union of a conic and a quartic appearing in the
method of Harnack (see, e.g., [10]), analogous elementary constructions allow to
realize also the models <+-+-+>{0} and <-+-+->{3}. We omit the details because
these two models will be realized below by the same method as the others. 2. The
realization of the model <++-++>{0} and all the constructions of the next subsection
were obtained by the first author.

2.2. Constructions using smoothing of cusps.

Constructions of singular curves. Let one curve be non-singular at a point p
and another one have a singularity As, at this point. Let us say that these curves
have the maximal tangency at the point p if they can be defined respectively by
the equations y = 0 and y? = 22™+! at some local analytic coordinates. Similarly
to the encoding of the mutual arrangements of ovals, we shall denote by a word
w = Agp|s1...8k|A2m, the mutual arrangement of an oval and an even singular
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branch which has the singularities As,,, Az, obtained from Fig. 2a by replacing the
blocks B(<) and B(>) with the block B(As,|) and B(]As,,) depicted in Fig. 2.3.
This notation assumes the maximal tangency at the singular points (this follows
from the picture). Put also B(Ag|) = B(<), B(|Ao) = B(>). As it was in the
non-singular case, w{a} will denote the mutual arrngement of an M-cubic and a
quartic where a free ovals of the quartic are inside O3 and 8 =3 —a —n — m are
outside. Since only @ = 8 = 0 is possible when m + n = 3, we shall omit ”{0}” in
this case.

Lemma 2.2.1. There exist the following arrangements of a non-singular cubic and
singular quartic:

Agl+->; Ag|-+>; Agl|+-|Az; Asl-+|As; As|-—-[A2{0}; Ag|+++>{0}. (2.1)

Proof. Let (z :y : 2z) be homogeneous coordinated in RP? and Cs be an M-cubic
whose oval O3 is tangent to the axis y = 0 at the point (0 : 0 : 1) having the
curvature k at this point (i.e. Os is defined near this point by an equation of the
form y = kz? + ...) and whose odd branch J; meets this axis at (0: —1:1). Let
a conic Cy be tangent to the axis y = 0 at this point and has five more distinct
common points with J3. There are two possibilities for such an arrangement of C3
and Cy shown in Fig. 4.1, 4.2. Easy to check that the image fi(C3) of C3 under the
quadratic transformation fi(z :y : 2) = (zy : y? : yz — kz?) is a cubic with the
oval fi(J3) and the odd branch f(O3) and fi(C3 U Cs), and fi.(C5 U Cs) realizes
the arrangement Ag|-+> in the case of Fig. 4.1 and Ag|+-> in the case of Fig. 4.2.

X
O3 ‘

> (0:0:0)

Fic. 4.1 Fic. 4.2

Now let C3 be an M-cubic arranged with respect to the coordinate axes as it is
shown in Fig. 5.1 (the axis y = 0 is a flex tangent to the odd branch at the point
(0:0:1)). Let us define a new cubic C§ by the equation (yz—kz?)(z—ez)+dy> = 0.
For 0 < § € € € k < 1, we obtain the arrangement of C3 and C} depicted in
Fig. 5.2. The arrangement A4|+++>{0} is obtained as f(C3) U f(C}).

Two more arrangements of (2.1) can be constructed applying the hyperbolism
— the quadratic transformation hy(z : y : z) = (2% : 2y : yz). Let the oval of a
cubic C3 be tangent to the axis y = 0 at (0 : 0 : 1) and pass through (0 : 1 : 0).
Then A4|+-|Az and A4|-+|As are realized as hy(Cs) U hy(C3) where Cs is a conic
which meets the odd branch of Cs at six distinct real points, Cs being tangent to
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y=0 /\ y=0 T

Fiag. 5.1 Fic. 5.2

the axes z = 0 and y = 0 at two of them. As above, Cy can be chosen in two
different ways.

Finally, let us construct the curve As| — — — |As. Let us consider ellipses E,
C' meeting each other at points p, p’ and touching each other at a point q. Let
us trace the line L, tangent to C’ at p. Let r be the other intersection point of L
and E and let L' be the line tangent to E passing through r (see Fig. 6.1). Put
C =C'+¢eL? H=L?+5LL"; here we use the same notation for a curve and a
polynomial which defines it, we assume also that LL' is positive and C' is negative
at the point marked by the asterisk in Fig. 6.2. Cutting RP? along L, we obtain
the disk depicted in Fig. 6.3.

Fic. 6.1 Fic. 6.2 Fic. 6.3

Let us blow up RP? at the point r (denote the pasted line by R) and then we
blow up the common point of R and L (denote the second pasted line by F'). The
obtained surface is glued from the octagon in Fig. 6.4 according to the arrows on
the boundary (F; and F» are the pieces into which F' is divided by R and L). The
self-intersection number of L in the complexification of this surface is —1. Blowing
down L, we obtain a (minimal rational) ruled surface X2 (see Fig. 6.5) where F'is a
fiber and R, H are sections of the fibration X5 — P?; the self-intersection numbers
are R? = —2, H? = 2. Consider the double covering ¢ : ¥; — Y5 branched along
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Fic. 6.4 FiG. 6.5 FiG. 6.6

H U R. Then X is the ruled surface with the self-intersections of the sections
R? = -1, H?> = 1. The complex conjugation can be lifted from ¥, to ¥; in
two different ways. We chose the lifting whose fixed points set is RY; := £ 1(A)
where A is the upper (according to Fig. 6.5) component of RYy \ (R U H). The
surface RY; is depicted in Fig. 6.6 (we use the same notation for curves on R,
and their transforms on RY; ). Blowing down R, we obtain RP? with the required
arrangement of the quartic C' and the cubic E.

The last two operations (the double covering and the blow down) in terms of
equations, mean the following. One can choose affine coordinates (z,y) on U :=
RS, \ (RU F) = R? such that H has form y = 0 and the fibers of the fibration
¥» — RP? have form = = const. Let us choose the sign of the coordinate y so that
y > 0 above H in Fig. 6.5. Then the equations of the required curves are obtained
from the equations of the curves on U (Fig. 6.5) by the substitution y = 22 followed
by the projectivization. For example, if f(z,y) = 0 is the equation of C on U then
the Newton polygon of f is the triangle with vertices (0,0), (4,0), (2,0) and f(=z,22%)
is the equation of the quartic involved in the arrangement As| — — — |4,. O

Construction of perturbations. Now let us construct perturbations of singular-
ities A, taking into account there position with respect to a maximally tangent
smooth branch. Let (z,y) be local coordinates such that this branch has form
y = 0. According to our encoding system, let us denote by Asy| (resp. by Asy|)
the singularity y?> = z"*! (resp. y? = —z"*1), and let <s;...s,{a} denote the
sequence of blocks B(<), B(s1),...,B(sn) attached consequently one to the other
along the axis y = 0, outside of them being a ovals in the lower half-plane and
B = n — a ovals in the upper half-plane. We are going to describe only pertuba-
tions of Aa,| because those of | Az, are obtained from them by the reflection in the
vertical axis.

Proposition. For any sequence of signs si,...,Sp, there exists a perturbation

Agp| = <s1...sp{a} where a is the number of pluses in the sequence —s1, 82, —S3, . ..

Proof. The required perturbations can be constructen by the Viro T-curves method
(see [12]). Let A be the triangle whose vertices are (0,0), (0,2), (2n +1,0). Divide
it into triangles by the segments [(0,2), (2k + 1,0)], k = 1,...,n and continue this
subdivision up to a primitive triangulation arbitrarily. Define the distribution of
signs s : AN Z2 — {£1} by the formulas s(k,0) = (—=1)*, s(k,1) = s, 5(0,2) =
1. O
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Remark. Tt is proven in the paper of the first author [9] that one can obtain in this
way all the M-arrangements of the singularity As,, with respect to the horizontal
axis up to ”semi-rigid” isotopies, i.e. isotopies such that the curve has at most
2 intersections with any vertical line at any moment (less formally speaking, the
isotopy classification taking into account the order of interchanging of the ovals).
Similar results are obtained for M-curves on ruled surfaces which have intersection
three with the fibers distinguishing their different arrangements with respect to the
exceptional section.

Corollary 2.2.2. The singularities As, Ay, Ag admit the following perturbations:

As| — <+{0} A4 — <+H{1} Ag| — <+++{1} <-++{2}
<{1} <+-{0} <H-{2}  <-+-{3}
<-+{2} <+-+{0} <--+{1}

<--{1} <h={1} <---{2}

Construction of arrangements Cs | | Cs4. All the realizable models from Theorem
1 besides <+++++>{0} and <++-++>{0} (which were constructed in 2.1) can be
obtained by perturbations of the singular quartics in the arrangements (2.1) using
all the possibilities listed in Corollary 2.2.2. Concerning the proof of the fact that
any perturbation of the list in Corollary 2.2.2 can be applied to any singularity in
(2.1), see the remark in the end of the paper [13].

Using our encoding system, these constructions can be described just as formal
replacing of expressions A4,| and |A,, in the codes from (2.1) according to the table
in Corollary 2.2.2 followed by the addition of numbers appearing in the braces. For
example, the singular arrangement As|---|A42{0} yields <+-——+>{0}, <+---->{1},
<=——=+>{1}, <==-—- >{2} where the two middle arrangements are equivalent be-
cause they are symmetric to each other. All the results of the constructions (up to
such equivalencies) are collected in Table 7 — see a reformulation of Theorem 1 in
the end of the paper.

3. PROHIBITIONS

3.1. Application of the theory of complex orientations.

Let us recall necessary notions and facts (see details in [14]). If the set A of
real points of a non-singular real curve of degree n separates the set of complex
points of the curve then A separates it into two symmetric halfs. These halfs
induce two opposite orientations on A as on the common boundary. They are
called the complex orientations. A pair of ovals one of which surrounds the other
is called an injective pair. An injective pair of oriented ovals is called positive if
their orientations are induced by some orientation of the annulus in RP? bounded
by them, and negative otherwise. If n is odd then an oval O is called positive if
[0] = —2[J] € H1(RP? \ Int O) where J is the odd component of the curve, and
negative otherwise. For a curve of degree n = 2k there is the following Rokhlin’s
formula

2t —T17) =1 — k2, (3.1)
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If n = 2k + 1 then the following Rokhlin-Mishachev formula takes place:
AT — AT 42T —TO7) =1 — k(k +1). (3.2)

Here IIT(IT7) and A*(A™) denote the number of positive (negative) injective pairs
and ovals of the curve, and [ is the total number of ovals of the curve.

The theory of complex orientations allows one to prohibit certain values of («, 3)
for each of the admissible models in Fig. 1. Let, for instance, the model <+++++>{a}
be realized by a curve C5 U C4y. The cubic C3 and the quartic C4y have complex
orientations because they are M-curves, the oval Oz being negative by (3.2) for
k =1=1. Let us fix a complex orientation of O4 — for instance, as it is shown in
Fig. 7. Suppose that among the o and 3 free ovals of the quartic, o™ and ST are
positive with respect to the odd branch J3, and the other a~ and 8~ are negative.
Let us construct a non-singular curve of degree 7 as the result of a small perturbation
of C3 U Cy removing all the 12 double points according to the chosen orientations
(see the dashed lines in Fig. 7). This can be done in virtue of Brusotti theorem. By
Fiedler’s theorem (see [15] or [14]), the induced orientation of the obtained curve
is its complex orientation, hence, it must satisfy (3.2) for K = 3. We have [ = 15 in
our example (12 ovals appeared after removing the double points, and three coming
from the free ovals of the quartic), At = at +3t+6, A= =a~ +3~ +6,1It =a™,
II- = o, and the formula (3.2) together with the condition that the total number
of free ovals is equal to three, yields us the following simultaneous equations

{ 3at—a )+ (BT —B7) =3,

at +a” +p+p7 =3 (3:3)

J3

Fic. 7

It remains to find integral non-negative solutions of (3.3).

Now let us note that the form of the left hand side of the first equation in (3.3)
is the same for all the models from the list of Fig. 1. The right hand side of this
equation depends in general on the mutual arrangement of the ovals O3 and O4 and
on the choice of the orientation of Oy, however, it is not difficult to check that if
one reverse the orientation then only the sign of the right hand side is changed but
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Table 1.
no. |a |at |a= Bt |37 |[Lhs. |no. |a |aT |a= |BT [B~ |lLhs.
113 |3 0 0 |0 9 11 |1 |1 0 2 0 5
2 13 |2 1 0 0 3 12 |1 |1 0 1 1 3
3 13 |1 2 0 |0 -3 13 |1 |1 0 0 2 1
4 13 |0 3 0 |0 -9 14 |1 |0 1 2 0 -1
5 (2 |2 0 1 0 7 15 |1 |0 1 1 1 -3
6 (2 |2 0 0 1 5 16 |1 |0 1 0 2 -5
7 12 |1 1 1 0 1 17 |10 |0 0 3 0 3
8 2 |1 1 0 1 -1 18 |0 | O 0 2 1 1
9 (2 |0 2 1 0 -5 19 |0 |0 0 1 2 -1
1012 |0 2 0 1 -7 20 |0 | O 0 0 3 -3

the absolute value is not.2 Table 1 contains all the logically possible combinations
of no-negative integers a™, a~, 8%, B~ satisfying the second equation of (3.3),
and the corresponding values of the left hand side (L.h.s.”) of the first equation.
Comparing them with possible values of the right hand side ("r.h.s.”) of the first
equation for each model in Fig. 1 (see Table 2), we obtain the prohibitions listed
in the last column of this table. In particular, the model <+++++>{2} can not be
realized by a curve of degree 7.

Table 2.
Codes of arrangements O3 | | Oy r.h.s. [Prohibition |
D> Kbt =D Cmm b — D> b= = =D b=t => <= —=> <h=——4> | +3 a#2 |
et ==> K== => Lhmm =D +5 a#0;3 |
<—-——= > +7 [a#0;1;3 |
The rest of the list in Fig. 1 +1 a#3 |

3.2. Application of the link theory.

3.2.1. Arrangement of a curve with respect to a pencil of lines. Let C' C RP? be
a model of a real curve of degree m all whose singulariies are simple double points.
Let us fix a point p € RP? \ C and denote by £, the pencil of lines through this
point. Let us choose the affine coordinates (z,y) so that (i) £, = {l;} where I; is
the line defined by z = t; (ii) C' has m distinct common points with the infinite
line; (iii) C is in general position with respect to L, i.e., £, contains a finite
number of critical lines lg,,...,l;,, 71 < --- < x, and each of them has one
double intersection point with C' (i.e., each of these lines either is tangent to C' or
cuts C at its double point without tangency).

Like in [9], we shall encode the scheme of the arrangement of a curve C' with
respect to the pencil £, by a word s ...u, where each symbol u; characterizes
the arrangement of C near the line I,,, and takes the value Dy, Cg, or %, (k €
{1,...,m — 1}) according to Fig. 8; a pair of successive characters Cy D will be
replaced with a single character oy (”free oval in the k-th strip”).

2Therefore, the reversing the original orientation does not provide new prohibitions.
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m — — m m — m
k+2 — ——  k+2 k+2 ——— k+2
k+1 k+1 k+1 k+1 el
k-1 ——— — k-1 k-1 —— k-1 —
1 1 1 1
Dk Ck X O
Fic. 8

Example. Suppose that the model <+-+-+>{2} is realizable by a curve C = C5 U
Cy. Let O}, be one of the two free ovals of this curve lying in the region a, and p a
point inside O%. Then one can choose affine coordinates (z,y) satisfying the above
conditions and such that C' is arranged as in Fig. 9. By Bezout theorem the other
two free ovals, O, in the region a and Og in the region g3, should be contained in
the vertical strip D = {z7 < < z12}, where [, and [,,, are critical lines tangent
to the oval O4. The set J3 U O3 U OF divide D into six horizontal strips. We
numerate them from 1 to 6 in the order of increasing the y-coordinate. By Bezout
theorem, no line from £, (vertical line in Fig. 9) can meet the both ovals O, and
Og. Let the left of these two ovals lye in the i-th strip and the right of them in the
j-th strip. Then the scheme of arrangement of the curve C with respect to £, is
encoded by the word

X3 X9 Xa X3 X3 X2 D3 05 0 Cy X5 X4 X4 X5 X5 X4. (3.4)

Since the strips numbered by 2 and 5 (resp. 3 and 4) belong to the same region
a (resp. f3), taking into account the evident symmetry, we see that it suffices to
regard only the cases (¢,7) € {(2,3),(2,4), (5,3),(5,4)}.

Remark. To shorten the length of the codes in Table 3, we shall write the index &
instead of ;. For instance, (3.4) will take the form 3223%2 D30,0; C45425%4.

3.2.2. The braid of a real algebraic curve. Recall that a braid on m strings is
the graph of an m-valued function F : [0,1] — C taking pairwise distinct values
at every point and considered up to a fiberwise isotopy being F(0) = F(1) =
{y1,.-yYm}, Reyr < -+ < Reym. The braid group B,, on m strings has the
standard presentation

(01,...,0m=1] 0i0; = 0j0; for |i — j| > 1, 0y0j0; = 0j0,0; for |i — j| = 1),

where the generator o, is shown in Fig. 8 and the orientation is chosen so that the
two-valued function F(t) = e**™ ¢ € [0, 1], represents the braid o; € Bs.

The closure of a braid b € B,, is the link in R®, obtained by connecting the ends
of b with its beginnings using m arcs whose projections onto the plane are disjoint.
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X1 X2 X3 X4 X5 Xg X7 D X12X13X14X15X16X17X18

Fic. 9

Following [9], we associate a braid b(¢,,) € Bn to a curve C of degree m and a
point p € RP2? \ C as follows. Let y = F(z) be an m-valued function whose graph
is the complexification of the curve C' and let z = v(t), ¢t € [0, 1] be a simple closed
curve in the upper half-plane of the complexification of the axis Oz surrounding
all the values z with Imz > 0 such that [, is a critical line of the pencil £,.
Then b(cp) is the braid corresponding to the graph of y = F(y(¢)). This braid,
in general, depends on the start point of the path v but its conjugacy class and,
hence, the closure do not. Put m4; = Hi:k o; (the index 7 run from ¢ = k to i = 1),
Thl = 7rl_,191,17rk7l+1 and 71 = T,;ll fork>1 =1, Ay = T m—1Ti,m—2 ... T1,1.
Then b,y = brA,, where br € By, is obtained from the encoding word u; ... ug
(see 3.2.1) by applying the following subword replacing rules:

() Dk C1 — o ' T

(il) Dg X4y Xy Xi, C1 — 0,6_151 ...0pTr, where

o ! fori; <k—1

(53': 0’;3_2 forij>k—1

1 .
Thk+10, 1 Tht1,k fori; =k —1

(iii) Each character x; not replaced by the rule (ii) is replaced with o ".

Example. For the word (3.4) with (4,7) = (2, 3) we obtain

2 -2 -1 ~1 1 -2 -2 -1
O, 05 04 .

br =03 0,05 20y " 05 N0y 03) 05 (05 02) - 05 (0 Mos) o5

~ / ~ /

~" ~"

~~ ~~ ~~
X3 X2 X2 X3 X3 X2 D3Ca2 D2C3 D3Ca X5 X4 Xa X5 X5 X4

3.2.8. Murasugi-Tristram inequality. Recall some definitions. Let A be a real
symmetric matrix and B = QAQ? its diagonalization. The signature o(A) and
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nullity n(A) of A are defined as the sum of signs of the diagonal entries and the
number of zeros on the diagonal of B.

A Seifert surface of an oriented link L in the 3-sphere S* is a conncted oriented
surface X C S% whose boundary (taking into account the orientation) is L. Let
Zi,...,Z, be a base in Hy(X,Z). A Seifert matriz is the matrix of the linking
numbers lk(z;, xj) where xj is the result of a small shift of the cycle z; along the
positive normal field to X. The signature o(L) and the nullity n(L) of L are defined
by o(L) =o(V + V), n(L) =1+ n(V + V?) where V is a Seifert matrix.

We define the signature o(b) and the nullity n(b) of a braid b as the signature
and the nullity of its closure and for b = [] 0¥ we put e(b) = 3 k;.

It is shown in [9] that Murasugi-Tristram inequality is a necessary condition for
a scheme of the arrangement of a curve with respect to £, to be realizable by a
real algebraic curve of degree m. In this case Murasugi-Tristram inequality can be
written in the form

lo(b)] +m — e(b) —n(b) <0, b="bcp) € Bn. (3.5)

To compute the Seifert matrix of a given braid b, we used a simple computer
program which were written by the first author for computations in [9]. This
program is based on the standard algorithm of construction of a Seifert surface using
so-called Seifert circles obtained by smoothing double points on the link diagram;
see details in [9]. This algorithm produces a matrix s x s where s = e(b) + m — 1.

3.2.4. Results of computations.

Here we present the results of computations of the amounts involved into the
inequality (3.5) and the prohibitions obtained in this way. All the models prohibited
with use of the link theory are listed in the second and the third columns of the
Table 3. The column "N” contains the number of the row; below, the reference to
the k-th row of Table 3 has form "Nk&”. The column ”p” indicates the choise of the
point p (the center of the pencil of lines) as follows:

I — inside a free oval of C4 in the region «;

IT — inside the intersection of the intriorities of non-free ovals O3 and Og;
IIT — in the region «, outside the ovals of Cy, but in the convex hull of Oy;
IV — in the region pointed by the asterisk on the third model in Fig. 1 (this

choise of p is used only for this model).

The next column of Table 3 contains the codes of mutual arrangements of the
pencil £, and the curve C3 UC4. Note that the choice of the place for p determines
the code up to the following subword replacements:

XjDj+1 € Xj+1 D5, Ci+1 Xj G5 X415 XUg <> U Xj; (3.6)

CjDj+1 & 9 (3.7

where |k — j| > 1 and u is any of X, C, D. The replacements (3.6) do not affect
the result of the computations. In the case (3.7) we shall always choose ”@” (see
Proposition 5.3.1[9]). Then e(b) = 9 — #(0) — #(O where #(-) is the number of
entries of this character in the code (see the last column in Table 3).
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Table 3.

N| Model a |p Code of arrangement e(b)
l<+++++>{a} | 3 |II 20202112 C5 6
o<+—+-+>{a} [12]1 322322 D30,0; C454%5%4 6
3|<—+-+->{a} 0,1 [IV |2312° D30,0j05 C32°132D3C4 | 4
4|<-++++>{a} | 0 |II 22 :)30i0j0k184 Cs6 o
S|<++-++>{a} [ 2 [III 5% D60;0;0£2°1°2% Cg5° 5
6[<+++-+>{a} [ 2 |III 6 D50;0;04221225 C56 5
7|<=+++->{a} [0,1 [TTT 62 D50;0;05,12°1 C567 3
8|<—+-++>{a} (0,1 |III 6 D5040,0;2°172712 C56 5
9l<—++-+>{a} [ 1 [MI 6 D50,070527172%1% C56 3
10|<--+++>{a} | 0 |IIT 6 D5040,0£2°1% C56 5
Tlf<+—++>{a} [ 1 [T 6 250;0,0;,2*1"22 C56 5
12[<—-+-->{a} [ 1 [II 6% D50,0,051°2%1% C56° 5
13[<—=+-+>{a} [0,3|TIT | 6250;0;0,2°12221% C56 5
14|<++--->{a} |0,3 |III 6 D5040,0;1°2% C56 5
15[<+——+=>{a} [0 |IIT | 6D50;0;0,12221%22 C56 5
16|<-++-->{a} | 0 |III 6 250i0;0,1*2412 ;6 5
17|<+---+>{a} [ 3 [IIT 5% 960,005,212 C65” 5
18]<-+--->{a} [ 1 |II 6 05040,0;1°2%1% C56 5

We have m = 7 in this paper. Denote by h the left hand side of (3.5). Performing
the computations for the row N1 we obtainn = 1, 0 = 2, hence, h = 24+7—6—1= 2.

This contradicts inequality (3.5), i.e.

<++++4+>{3}.

proves the non-realizability of the model

Table 4 contains all values of the parameters ¢ and j which must be considered
(i.e. all possible distributions of free ovals up to the symmetry — cp. the example
in 3.2.1) for the row N2; Table 5 contains the values of (4, 4, k) for the rows N4-N18;
the possibilities for the row N3 are contained in Table 6.

Table 4.
Row N2
ali |j |o |h
1(3 (3 ]-2 2
1(3 (4 ]-2 |2
1{4 (3|4 |4
212 (3|4 |4
212 14 (-2 |2
2|5 13 [-2]2
2|5 14 (-2 |2

Table 5.
Row Considered values of (ijk)
N4 (333)(334)(343)(344)(433)(434)(443)(444)
N5 (665)(664)(656)(646)
N6 (665)(664)(656)(646)(566)(466)
N7 (555)(554)(545)(544)(444)

N8,N10,N13-N16

(555)(554) (545) (544) (455) (454) (445) (444)

N7,N12

(655)(654)(645) (644) (565)(564) (464)

N8,N9,N11,N18

(655)(654)(645) (644)(565)(564)
(556)(546) (465) (464) (456) (446)

N13,N14,N17

IR EERNERYEE

(666)

The computations performed for the row N2 yeild n = 1 and the values of o
presented in Table 4. In all the cases we again obtain h > 0. For the rows N3-N18
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Table 6.
Row |a |i |7 |k |n|o |h| |Row |a |7 |j |k |n |0 |h
N3 |01(3(3(3|2|-1]2 N3 (11(3]2(3 (2|34
N3 |01(3|3(4(2(-3]4 N3 (113214234
N3 |0(3|4(3(2(-3]|4 N3 (114]2]413|-2|2
N3 |0(3|41(4 (2|34 N8 (041415122 |2
N3 |0(4(3|4(2(-3]|4 N8 (11641512 |-2|2
N3 |0 (41414 (3 |-2]2 N8 (1156|412 -2 |2
N3 |11]2(3(3|2|-1]2 N8 [11]5]|4]6 |2 |-2 |2
N3 |11(2(3|4(2(-3]|4 N8 (114165 (2 |-2 |2
N3 |11(21(4(3|2|-3|4||N15(0|5|5|412 -2 |2
N3 |1(2(4(4|3|-2|2| |N18 |1 |4|5|612|-2 |2

we have e(b) < 6, hence, if n = 1 then (3.5) prohibites all these rows independent
of the value of the signature o. The results of computations for the cases where
n > 1 are collected in Table 6.

Thus, in all the cases included into Table 3 we have h > 0. This completes the
proof of Theorem 1.

Remarks. 1. A "lucky” choice of the region (component of RP? \ C) for the point
p was essential for our proofs: The computations show that not any choice leads
to a contradiction with (3.5). On the other hand, the ”lucky” choice is not unique:
for example, the model <-+-+->{1} (see the row N3 in Table 3) can be prohibited
using the projection of the type "I” as well.

2. The models non-realizable by Sect. 3.1 can be prohibited also by the methods
of Sect. 3.2. We presented in Sect. 3.1 the proofs based on the complex orientations
because they are considerably simpler and do not require any computer.

In conclusion, we give an equivalent formulation of Theorem 1 including refer-
ences to the methods of proofs.

Table 7.
for {1} | {2} | {3} foy | {1} | {2} {3}
<+++++> | de 36 | c.o. <H-—++> 34 32 [co.
<+-+-+>|3e,2,3 c.o. <--+-->|c.o0. 33 |c.o.
<—+—+-> co. |Jeld||[<-—+-+> 32,3 co.
<HHH-> 31 | 36 | c.o. <Ht=—==> d4 | c.o.
<t+-++>| de 44 c.o. <H——+-> 414 | co. |32
<H++-+>| 36 323 c.o. <—+4--> 31 |co. |33
<—+t++-> 1 c.o. <+--—+>|35| 42 | c.o.
<—+—++> 314 c.o. <-+--->|c.o0. 314 |c.o.
<H-++->| 31 32,3 | c.o. <+---->|c.o. | 45 | 2 |c.o.
<——F+++> 36 3 c.o. <-———= > [c.0. | c.0. 35 |c.o.

Theorem 1'. The topological classification of triples (RP%,C3||Cy,C3) can be
described by Table 7 where the realizable models and only they are pointed by the
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” 9
e

near which indicating an elementary construction

(see Sect. 2.1) and a digit indicating the number of the curve being perturbed when
the constructions of Sect. 2.2 are applied. The models prohibited by complex orien-

tations (see Table 2) are pointed by "c.o.

”. The other models (see empty squares)

are prohibited in Sect. 3.2.

10.

11.

12.

13.
14.

15.
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