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Abstract. The following problem is studied: describe the triplets (Ω, g, µ), µ =

ρ dx, where g = (gij(x)) is the (co)metric associated with the symmetric second

order differential operator L(f) = 1

ρ

∑
ij ∂i(g

ijρ ∂jf) defined on a domain Ω of Rn

and such that there exists an orthonormal basis of L2(µ) made of polynomials which

are eigenvectors of L, and the basis is compatible with the filtration of the space of

polynomials with respect to some weighted degree.
In a joint paper with D. Bakry and M. Zani this problem was solved in dimension

2 for the usual degree. In the author’s subsequent paper this problem was solved in

dimension 2 for any weighted degree. In the present paper this problem is solved in
dimension 3 for the usual degree under the condition that ∂Ω contains a piece of a

tangent developable surface. The proof is based on Plücker-like formulas in the form
given by Ragni Piene. All the found solutions are generalized for any dimension.

1. Introduction

This paper continues the study of the diffusion orthogonal polynomials started
in [3] (see also [1], [7], [11], [12]). It is devoted to the following problem posed by
Dominique Bakry (we refer to [1] and to the introduction of [3] for the motivation):
describe all triples (Ω,L, µ) where Ω is a domain in Rn such that Ω = IntΩ, L is a
diffusion operator, that is an elliptic second order operator of the form

L(f) =
∑

i,j

gij(x)∂ijf +
∑

i

bi(x)∂if (1)

with gij and bi continuous in Ω, and µ = ρ dx a probability measure on Ω with
C1-smooth density ρ, and such that there exists a polynomial orthogonal basis of
L2(Ω, µ) formed by eigenvectors of L, which is also a basis (in the algebraic sense)
of R[x], x = (x1, . . . , xn), and which is compatible with the filtration of R[x] by the
degree (a variant: by a weighted degree, see [1], [7]). The latter condition means
that the space Pm of polynomials of degree ≤ m is L-invariant for any m. We
say that such a triple (Ω,L, µ) is a solution of the Diffusion Orthogonal Polynomial
problem (DOP problem for short). If in addition

∫
Ω
f1Lf2 dµ =

∫
Ω
f2Lf1 dµ for any

pair of compactly supported functions (for bounded domains this condition follows
from the other ones), we say that (Ω,L, µ) is a solution of the strong DOP problem
(SDOP problem for short). In this case

L(f) =
1

ρ

∑

i,j

∂i

(
gijρ ∂jf

)
, (2)
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thus L is determined by g = (gij) and ρ, and we therefore talk about (Ω, g, ρ) as
a solution of the SDOP problem. If ρ = (det g)−1/2, then L given by (2) is the
Laplace-Beltrami operator for the metric (gij) = g−1.

As shown in [3, Thm. 2.21], (Ω, g, ρ) is a solution of the SDOP problem (and
hence of the DOP problem when Ω is bounded) if and only if there exists a squarefree
polynomial Γ such that:

(A1) gij ∈ P2 for each i, j = 1, . . . , n;
(A2) Γ divides det g;
(A3) Γ divides

∑
j g

ij∂iΓ for each i = 1, . . . , n;

(A4) ∂Ω ⊂ {Γ = 0} and g|Ω is positive definite;
(A5)

∑
j g

ij∂i log ρ ∈ P1 for each i = 1, . . . , n;

(A6) polynomials are dense in L2(Ω, ρ dx).

Condition (A3) is equivalent to the fact that for any germ ξ : (Rn−1, 0) → (Rn, x)
of rank n− 1 such that Γ ◦ ξ = 0, one has

ξ∗(ωi) = 0, ωi =
∑

j

(−1)jgij dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn, i = 1, . . . , n. (3)

Note that Conditions (A1)–(A3) are purely algebraic and they make sense for poly-
nomials with coefficient in any field K. If they are satisfied for a field K, we say
that (g,Γ) is a solution of the algebraic counterpart of the DOP problem over K

(AlgDOP/K problem for short).
In dimension 2, all solutions of the DOP problem are found in [3] for the usual

degree and in [7] for any weighted degree. In the present paper we attack the
classification of the solutions in dimension 3 for the usual degree. By (A3), ∂Ω sits
on an algebraic hypersurface of degree at most 2n, thus on a quartic curve when
n = 2. The arguments in [3] essentially rely on the Plücker-like formulas relating
the singularities of this curve and those of its projectively dual curve. It seems that
this approach can be also applied at least in dimension 3. Here we take the first
step in this direction. Namely, we describe all irreducible surfaces Σ in R3 whose
projective dual has dimension 1 (i.e., is a curve, which we denote by Č) and such
that a relatively open piece of Σ appears in ∂Ω for some solution (Ω, g, ρ) of the
SDOP problem. Moreover, in the case when Č is not contained in any plane (in this
case Σ is the tangent developable of another curve C called the dual curve of Č),
we describe all such solutions (Ω, g, ρ) (Theorems 5.1 and 5.2). If Č is contained
in some plane, then Σ is a cylinder or a cone over some planar curve A. If Σ is
a cylinder, then it is easy to show that a piece of A occurs in the boundary of a
two-dimensional solution. If Σ is a cone, we prove in Theorem 7.1 that degA = 2,
thus Σ is a standard quadratic cone. In the conical case there indeed exist some
solutions (see Remark 7.2) but we do not know if this list is exhaustive.

To prove Theorems 5.1 and 5.2, we follow the strategy similar to that in [3, §3].
Condition (3) yields equations for the coefficients of the polynomials gij and those
of local parametrizations of the curve C. By solving them we obtain in §3 rather
strong restrictions on a priori possible types of local branches (real and complex)
of C. Then in §4, using Plücker-like formulas due to Ragni Piene [8] (introduced in
§2), we find all solutions of the AlgDOP problem over C, and then (in §5) we find
Ω, ρ, and the real form of g satisfying the remaining conditions (A4)–(A6).

In §6, for each bounded domain in Theorem 5.1, we show that the Laplace-
Beltrami solution is the image of Euclidean or spherical Laplace operator through
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on an appropriate realization of quotient of R3 or S3 by a Coxeter group, and we
generalize this construction to any dimension. In §7 we prove the aforementioned
result about conical surfaces.

2. Tangent developables.

Let C = ν(C̃) be an irreducible algebraic curve in P3 of genus g which is not

contained in a plane (here C̃ is a smooth compact Riemann surface and ν : C̃ → P3

an analytic mapping). Let Σ be the tangent developable surface of C, i.e., Σ is the
union of all lines tangent to C.

Following [8], we introduce the following notation. For any point p ∈ C̃ there
exists a local affine chart of P3 centered at ν(p) such that the corresponding local
branch of C is parametrized by t 7→ (tm0 , tm1 , tm2) with

(m0, m1, m2) = (1 + l0, 2 + l0 + l1, 3 + l0 + l1 + l2), lj = lj(p) ≥ 0.

Then we say that p is a point of type (m0, m1, m2) and we set kj = kj(C) =∑
p∈C̃ lj(p), j = 0, 1, 2. We also denote the osculating plane at p by Op. In the

above coordinates, this is the plane spanned by (1, 0, 0) and (0, 1, 0).

The curve Č in the dual projective space P̌3 parametrized by ν̌ : C̃ → P̌3, p 7→ Op

is called the dual curve of C. Let r0, r1, r2 be the degrees of C, Σ, Č respectively
(see [8] for a more uniform definition). It is immediate to check that the dual of Č is
C and kj(Č) = k2−j(C), rj(Č) = r2−j(C), j = 0, 1, 2. The classical Plücker–Cayley
equations in the form given by Ragni Piene in [8], [9, Eq. (1)] read as follows:

r1 = 2r0 + 2g − 2− k0, r1 = 2r2 + 2g − 2− k2,
r2 = 3(r0 + 2g − 2)− 2k0 − k1, r0 = 3(r2 + 2g − 2)− 2k2 − k1,
k2 = 4(r0 + 3g − 3)− 3k0 − 2k1, k0 = 4(r2 + 3g − 3)− 3k2 − 2k1.

(4)

Any three of these equations imply the others.

Proposition 2.1. If r1 ≤ 6, then one of the cases listed in Table 1 takes place.

Proof. If r0 ≤ 3 (recall that r0 = degC), then the only non-planar curve (up to
automorphism of P3) is the rational cubic parametrized by t 7→ (1 : t : t2 : t3). It
corresponds to Case 1◦. Then assume that r0 ≥ 4 and (by the duality) r2 ≥ 4.

We assume for simplicity that l0(p)+ l1(p)+ l2(p) ≤ 1 for each point p of C, i. e.,
each point of C contributes at most 1 to k0 + k1 + k2. It is not difficult to adapt
the proof for the general case.

The degree of the cuspidal edge of Σ is r0 + k1 (see [9, p. 112, l. 15 ff]), hence
the genus formula for a generic plane section of Σ yields

r0 + k1 ≤ (r1 − 1)(r1 − 2)/2. (5)

If k0 > 0, then we consider the plane projection of C from one of its cusps. Its
degree is r0 − 2 and it has k0 − 1 cusps. Hence, by the genus formula,

k0 > 0 ⇒ g + k0 − 1 ≤ (r0 − 3)(r0 − 4)/2. (6)

One can easily check that in Table 1 there listed all non-negative integer solutions
(g, k0, k1, k1, r0, r1, r2) of the equations (4) combined with the inequalities (5), (6),
r0 ≥ 4, r2 ≥ 4, and 3 ≤ r1 ≤ 6. �
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no. g k0 k1 k2 r0 r1 r2

1◦ Twisted cubic 0 0 0 0 3 4 3
2◦ Cuspidal quartic 0 1 0 1 4 5 4

3◦ Once inflected quartic 0 0 1 2 4 6 5
4◦ Twice inflected quartic 0 0 2 0 4 6 4
5◦ Inflected bicuspidal quintic 0 2 1 0 5 6 4

6◦ Generic quartic 0 0 0 4 4 6 6
7◦ Non-inflected bicuspidal quintic 0 2 0 2 5 6 5
8◦ Four-cuspidal sextic 0 4 0 0 6 6 4

Table 1. Curves whose tangent developables have degree at most 6

Lemma 2.2. Suppose that C is rational. Let p, q ∈ C̃, p 6= q, be points of the types
(m0, m1, m2) and (m′

0, m
′
1, m

′
2). Recall that r0 = degC.

(a). If m′
2 ≤ m′

1 +m0 = m′
0 +m1 = m2 = r0, then C has parametrization t 7→(∑r0−m′

2

j=0 ajt
j : tm0 : tm1 : tm2

)
, a0ar0−m′

2
6= 0, in some homogeneous coordinates.

(b). If r0 = 4 and ν(p) = ν(q), then C has parametrization t 7→
(
1+t4 : t : t2 : t3

)

in some homogeneous coordinates.

Proof. We have C̃ = P
1 and we may assume that p = (0 : 1), q = (1 : 0), and the

mapping ν is given by (t : s) 7→ (f0(t, s) : · · · : f3(t, s)), where fj are homogeneous
polynomials of degree r0 and ordt(f0, . . . , f3) = (0, m0, m1, m2).

(a). The condition m2 = r0 implies that f3 = tm2 up to rescaling. By a
coordinate change fj → fj − cjf3, j = 0, 1, 2, we may attain ords fj ≥ m′

0 for

j ≥ 2. Then the condition m′
0 +m1 = r0 implies that f2 = tm1sm

′

0 up to rescaling.
Proceeding in this way we arrive to the required parametrization.

(b). The condition ν(p) = ν(q) implies f1(q) = f2(q) = f3(q) = 0, i.e., degt fj ≤
3 for j = 1, 2, 3. Then by coordinate changes fi → fi − cijfj, i < j, we arrive to
the required parametrization. �

3. Restrictions on local branches

Let the notation be as in §2 but we fix an affine chart in P3 with coordinates
(x, y, z). We denote the plane at infinity by P∞. Let Γ(x, y, z) = 0 be the equation
of Σ. Suppose that there exists a cometric g = (gij) such that (g,Γ) is a solution

of the SDOP problem. We denote the coefficient of xkylzm in gij by gijklm. Let

t 7→ γ(t) = (ξ1(t), ξ2(t), ξ3(t))

be a local meromorphic branch of C at a finite or infinite point. Then Σ admits
parametrization

(t, u) 7→
(
ξ̂1(t, u), ξ̂2(t, u), ξ̂3(t, u)

)
, ξ̂j = ξj + uξ̇j ,

at a neighbourhood of the line tangent to C at γ(0). Then the equations (3) take
the form E1 = E2 = E3 = 0 where

Ei =

3∑

j=1

∂(ξ̂j+1, ξ̂j−1)

∂(t, u)
gij(ξ̂1, ξ̂2, ξ̂3) = u

3∑

j=1

(
ξ̈j+1ξ̇j−1 − ξ̈j−1ξ̇j+1

)
gij(ξ̂1, ξ̂2, ξ̂3)
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(here the indices are considered mod 3). We have Ei =
∑∞

α=α0
tα
∑3

β=1Eα,β,iu
β

where the Eα,β,i are linear forms in gijklm whose coefficients are polynomial functions
of the coefficients of the ξi’s.

In the following Lemmas 3.1–3.12, for several a priori possible values of ordt(γ),
we either exclude them or (in Lemma 3.3) show that the given value implies a
certain explicit form of C. In all the proofs (except those of Lemmas 3.1–3.2) we
assume that γ is parametrized by t 7→ (x, y, z),

x = tj1 , y = tj2 +
∑

j>j2

bjt
j , z = tj3 +

∑

j>j3

cjt
j , j1 > j2 > j3,

and, moreover, b0 = bj1 = c0 = cj1 = cj2 = 0. The latter condition can be
easily achieved by the change of variables (y, z) → (y1, z1), y1 = y − b0 − bj1x,
z1 = z − c0 − cj2y1 − cj1x. Then we solve a system of some n linear equations

Eα,β,i = 0 for some n unknowns gijklm whose determinant is a nonzero constant.
The number n and the choice of the equations and unknowns is indicated in each
proof. In most cases the solution plugged into g implies that x2 divides det g
which contradicts the condition deg Γ ≥ 5. In other cases we then solve some few
additional equations.

Lemma 3.1. If deg Γ ≥ 5, then ordt(γ) 6= (1, 3, 4).

Proof. We choose a parametrization of the form x = t, y = t3 +
∑

ν≥4 bνt
ν , z =

t4 +
∑

ν≥5 cνt
ν . By the change of variables y → y − b4z we make b4 = 0.

All variables gijklm except g11klm with k+ l+m = 2, g120lm with l+m = 2, g13002, and
g13101 (thus 49 variables) can be found by solving the following system of 49 equations:
E1,β,i (all β, i); E3,2,i, E3,3,i, E4,2,i, E4,3,i, E5,3,i (i = 1, 2, 3); E2,1,i, E2,2,i, E2,3,i,
E5,1,i, E5,2,i, E6,1,i, E6,2,i, E7,1,i (i = 1, 2); E6,3,i, E7,3,i (i = 2, 3); E4,1,1, E7,2,2,
E8,2,2, E8,3,2, E9,3,2. The determinant of this system is a non-zero constant. By
plugging the solution to E8,3,3 we obtain the equation 36c5g

13
101 = 0. This equation

implies that z2 divides det g which contradicts the condition deg Γ ≥ 5. �

Lemma 3.2. If deg Γ ≥ 5, then ordt(γ) 6= (1, 2, 4).

Proof. We choose a parametrization of the form x = t, y = t2 +
∑

ν≥3 bνt
ν , z =

t4 +
∑

ν≥5 cνt
ν . By the change of variables y → y − b4z we make b4 = 0. We solve

40 equations for 40 unknowns. The equations: E0,β,i (all β, i); E1,2,i, E1,3,i, E2,3,i,
E3,2,i, E3,3,i, E4,3,i (i = 1, 2, 3); E2,1,i, E2,2,i, E4,1,i, E4,2,i, E5,1,i (i = 1, 2, 3); E3,1,1,

E5,2,3, E5,3,3. The unknowns: gijkl0 (1 ≤ i ≤ j ≤ 2, k, l 6= 2), g12200, g
22
200, and all the

gi3klm except g13011, g
13
002, g

23
002, g

33
002. The determinant is a nonzero constant. Plugging

the solution to g, we obtain that z2 divides det g which contradicts deg Γ ≥ 5. �

Lemma 3.3. If deg Γ ≥ 5 and ordt(γ) = (−1, 1, 2) (i.e., γ is a generic branch
transverse to P∞), then C is parametrized by

t 7→ (t−1 + t, 3t− t3, 2t2 − t4) (7)

in some affine coordinates.

Proof. n = 58. The equations: E−3,β,i, E−1,β,i, E0,β,i (all β, i); E−7,3,i, E−5,2,i,
E−5,3,i, E−4,3,i, E−2,3,i, E1,2,i (i = 1, 2, 3); E−6,3,i, E−4,2,i, E−2,1,i, E1,1,i, E1,3,i,
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E2,1,i (i = 2, 3); E2,3,3. The unknowns are all the gijklm except g33002 and g22011 which
we denote by h and h1 respectively. Plugging the solution into g, we see that x2

divides det g when h1 = 0. This contradicts deg Γ ≥ 5, hence we may set h1 = 1.
Then E−2,2,3 yields b4 = 0. Putting this into E1,3,1, E2,2,1, E2,2,2, E2,3,1 we obtain
a linear system with constant coefficients for c3, c4, b5, b6 which yields

c3 = 16b3h− 3
2b

2
3, b5 = −8

3b3h− 1
2b

2
3, c4 = b6 = 0.

Plugging this solution into E2,3,2 and E3,2,2, we obtain a linear system with constant
coefficients for the unknowns c5 and b7 which yields

c5 = b33 − 728
5
b23h+ 1648

45
b3h

2, b7 = 1
2
b33 + 40b23h− 80

9
b3h

2.

Putting this into E3,2,3, we obtain the equation b3h
2(3b3 − 2h) = 0. If h = 0, then

det g = 0. If b3 = 0, then x2 divides det g. Hence b3 6= 0 and we may set b3 = 2 by
rescaling the parameter t. Then h = 3 and this gives us all coefficients of g.

Thus the curve C is uniquely determined up to an affine linear change of vari-
ables. It remains to observe that (7) has the required branch at t = 0, and to check
that (7) gives a solution of the AlgDOP problem. �

Lemma 3.4. If deg Γ ≥ 5, then ordt(γ) 6= (−1, 2, 3), i.e., γ cannot be of type
(1, 3, 4) (flex) with γ · P∞ = 1.

Proof. n = 45. The equations: E−6,3,i, E−4,2,i, E−3,3,i, E−2,1,i, E−2,3,i, E−1,2,i,
E−1,3,i, E0,2,i, E0,3,i (i = 1, 2, 3); E−5,3,i, E−3,2,i, E−1,1,i, E1,3,i, E2,3,i, E3,3,i

(i = 2, 3); E0,1,3, E1,1,2, E2,2,2, E3,2,2. The unknowns: gijklm (1 ≤ i ≤ j ≤ 2), g13klm
with (k, l,m) 6∈ {200, 110}, and g23klm with (k, l,m) 6∈ {020, 110, 200}. Plugging the
solution into E4,2,2 and E4,3,1, we obtain the equations (58b4 + 23c1)g

33
002 = 0 and

(8b4 + c1)g
33
002 = 0. If g33002 = 0 or b4 = c1 = 0, then x2 divides det g. �

Lemma 3.5. If deg Γ ≥ 5, then ordt(γ) 6= (−1, 1, 3), i.e., γ cannot be of type
(1, 2, 4) (flat branch) with γ · P∞ = 1.

Proof. n = 42. The equations: E−3,β,i (all β, i); E−7,3,i, E−5,2,i, E−5,3,i, E−2,2,i,
E−1,2,i (i = 1, 2, 3); E−4,2,i, E−2,1,i, E−1,1,i, E0,1,i (i = 2, 3); E−1,3,i, E0,2,i, E1,3,i

(i = 1, 2); E1,1,2, E1,2,2, E2,1,2, E2,2,1. The unknowns: g33002, g
33
001, and gijklm with

(i, j) 6= (3, 3) except g12200, g
13
200, g

13
110, g

22
200, g

22
110, g

23
200, g

23
110, g

23
011, g

23
101, g

23
100. The

solution implies that x2 divides det g. �

Lemma 3.6. If deg Γ ≥ 5, then ordt(γ) 6= (−1, 1, 4), i.e., γ cannot be of type
(1, 2, 5) (doubly flat branch) with γ · P∞ = 1.

Proof. n = 31. The equations: E−3,β,i (all β, i); E−7,3,i, E−5,2,i, E−5,3,i, E−2,3,i

(i = 1, 2, 3); E−4,3,i, E−2,2,i, E−1,2,i, E0,1,i (i = 2, 3); E0,2,1, E0,3,1. The unknowns:

g11100, g
11
110, g

1j
101 (j = 1, 2, 3), g2j000, g

2j
001, g

2j
011, g

2j
002 (j = 2, 3), and all the g1j0lm. The

solution implies that x2 divides det g. �

Lemma 3.7. If deg Γ ≥ 5, then ordt(γ) 6= (−2,−1, 1), i.e., γ cannot be of type
(1, 2, 3) (generic branch) with γ · P∞ = 2.

Proof. n = 43. The equations: E−12,3,i, E−11,3,i, E−10,3,i, E−9,2,i, E−9,3,i, E−8,2,i,
E−8,3,i, E−6,1,i, E−6,2,i, E−6,3,i (i = 1, 2, 3), E−8,1,i, E−7,1,i, E−7,2,i, E−7,3,i, E−5,1,i

(i = 2, 3), E−5,2,1, E−5,3,1, E−4,2,1. The unknowns: g1jklm (j = 1, 2, 3), gj3001, g
j3
011,

gj3002, g
j3
020 (j = 2, 3), g22001, g

22
010, g

22
101, g

22
011, g

22
002. We obtain that x2 divides det g. �
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Lemma 3.8. If deg Γ ≥ 5, then ordt(γ) 6= (−2,−1, 2), i.e., γ cannot be of type
(1, 2, 4) (flat branch) with γ · P∞ = 2.

Proof. n = 29. The equations: E−12,3,i, E−11,3,i, E−10,3,i, E−9,2,i, E−8,3,i, E−8,2,i,
E−7,3,i, E−6,1,i (i = 1, 2, 3); E−9,3,i, E−7,2,i (i = 2, 3); E−5,2,1. The unknowns:

g1j101, g
1j
110 (j = 1, 2, 3), g2j002, g

2j
011 (j = 2, 3), g11100, and all the g1j0lm. The solution

implies that x2 divides det g. �

Lemma 3.9. If deg Γ ≥ 5, then ordt(γ) 6= (−2,−1, 3), i.e., γ cannot be of type
(1, 2, 5) (doubly flat branch) with γ · P∞ = 2.

Proof. n = 43. The equations: E−12,3,i, E−11,3,i, E−10,3,i, E−9,2,i, E−8,2,i, E−7,3,i,
E−6,1,i, E−6,3,i, E−4,2,i (i = 1, 2, 3); E−8,3,i, E−6,2,i, E−5,2,i, E−5,3,i, E−4,1,i,

E−3,β,i (i = 2, 3). The unknowns: gij001, g
ij
010, g

ij
011, g

ij
002 (2 ≤ i ≤ j ≤ 3); gi3020,

g2i101 (i = 2, 3); and all the g1jklm with k 6= 2. We obtain that x2 divides det g. �

Lemma 3.10. If deg Γ ≥ 5, then ordt(γ) 6= (−2, 1, 2), i.e., γ cannot be of type
(2, 3, 4) (cusp) with γ · P∞ = 2.

Proof. n = 43. The equations: E−4,β,i (all β, i), E−10,3,i, E−7,2,i, E−7,3,i, E−6,3,i

(i = 1, 2, 3), E−9,3,i, E−6,2,i, E−5,2,i, E−5,3,i, E−3,1,i (i = 2, 3), E−3,2,i, E−3,3,i

(i = 1, 2), E−2,β,2, E−1,β,2 (β = 1, 2, 3), E−2,3,1, E0,2,2. The unknowns: gijklm
(1 ≤ i ≤ j ≤ 2), g13klm with (k, l,m) 6∈ {001, 011, 002}, and g23klm with (k, l,m) 6∈
{100, 110, 020, 200}. Plugging the solution into E−1,3,1, we obtain the equation
c−1g

33
002 = 0. If g33002 = 0, then det g = 0. Hence c−1 = 0 and we may set g33002 = 1.

Putting this into E0,3,1, we obtain b3 = 0. Then x2 divides det g. �

Lemma 3.11. If deg Γ ≥ 5, then ordt(γ) 6= (−2, 1, 3), i.e., γ cannot be of type
(2, 3, 5) (flat cusp) with γ · P∞ = 2.

Proof. n = 36. The equations: E−4,β,i (all β, i), E−10,3,i, E−7,2,i, E−7,3,i, E−5,3,i

(i = 1, 2, 3); E−8,3,i, E−5,2,i, E−3,1,i, E−2,1,i (i = 2, 3); E−2,2,i, E−2,3,i (i = 1, 2);

E−3,3,2, E−1,1,2, E−1,2,2. The unknowns: g1j101 (j = 1, 2, 3), g1j100, g
1j
110 (j = 1, 2),

g2j000, g
2j
001, g

2j
011, g

2j
002 (j = 2, 3), g22010, g

22
020, g

22
101, and all the g1j0lm. Plugging the

solution into E−3,2,3 and E−1,3,2, we obtain the equations (40b2 − 7c−1)g
33
002 = 0

and (10b2 − c−1)g
33
002 = 0. If g33002 = 0 or b4 = c−1 = 0, then x2 divides det g. �

Lemma 3.12. If deg Γ ≥ 5, then ordt(γ) 6= (−3,−1, 1), i.e., γ cannot be of type
(2, 3, 4) (cusp) with γ · P∞ = 3.

Proof. n = 42. The equations: E−15,3,i, E−13,3,i, E−11,2,i, E−11,3,i, E−10,2,i,
E−9,2,i, E−9,3,i, E−7,1,i (i = 1, 2, 3); E−12,2,i, E−9,1,i, E−8,1,i, E−8,2,i (i = 2, 3);
E−7,2,i, E−7,3,i, E−6,2,i (i = 1, 2); E−6,1,2, E−5,1,2, E−6,3,1, E−4,2,1. The un-

knowns: gijklm with 1 ≤ i ≤ j ≤ 2 (except g22100 and g22200); g
13
klm (except g13100 and

g13200); g
23
001, g

23
002, g

23
020, g

23
011, g

23
101, g

33
011. Plugging the solution into E−6,3,1, we obtain

c−2g
33
002 = 0. Then x2 divides det g. �

4. Tangent developables which admit

solutions of the AlgDOP problem

Let the notation be as in §3. Thus C is an irreducible curve in C3 not lying in
any plane, and Γ(x, y, z) = 0 is the equation of its tangent developable.
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Proposition 4.1. Suppose that there exists g = (gij) such that (g,Γ) is a solution
of the AlgDOP problem over C. Then C admits one of the following parametriza-
tions in some affine coordinates in C3:

(i) t 7→ (t, t2, t3);
(ii) t 7→ (t−1, t, t2);
(iii) t 7→ (t2, 2t3, 3t4); cusp at t = 0;
(iv) t 7→ (t−1 + t, 3t− t3, 2t2 − t4) (cf. Lemma 3.3); cusps at t = ±1;
(v) t 7→ (3t− t3, 4t2 − 2t4, 5t3 − 3t5); cusps at t = ±1;
(vi) θ 7→ (3 cos θ + cos 3θ, 3 sin θ − sin 3θ, 6 cos 2θ); cusps at θ = 0, π,±π/2.

They correspond respectively to Cases 1◦, 1◦, 2◦, 5◦, 7◦, 8◦ of Table 1.

Proof. By Proposition 2.1 one of the cases in Table 1 takes place.
If degC = 3, then C is the rational normal curve, i.e., it admits a parametrization

t 7→ (1 : t : t2 : t3) in some projective coordinates. In these coordinates, H∞ is
uniquely determined by the divisor D which it cuts on C. Thus there are only three
possibilities: D = 3p1 (then Case (i) occurs); D = p1 +2p2 (then Case (ii) occurs);
D = p1 + p2 + p3 and then there is no solution (we compute g by solving a linear
system (3), and see that det g = 0).

Let degC ≥ 4 and then deg Γ ≥ 5 (see Table 1). We assume also that Case
(iv) does not occur. We see in Table 1 that either C or Č has degree at most 5.
Hence each branch of C has type (m1, m2, m3) with m3 ≤ 5 (i.e. contributes at
most 2 into k0+k1+k2) and m3 = 5 (i.e. the contribution 2) is possible in Case 7◦

only. Then Lemmas 3.3–3.11 imply that C does not have any branch γ such that
γ · P∞ = 1 or 2. Thus one of the following three cases occurs.

Case 1. degC = 4 and C has a branch γ such that γ · P∞ = 4. Cases 6◦, 3◦,
and 4◦ of Table 1 are impossible because C cannot have branches of type (1, 3, 4)
or (1, 2, 4) (flex or flat branch) in C3 by Lemmas 3.1 and 3.2. In Case 2◦ we obtain
(iii) by Lemma 2.2(a).

Case 2. degC = 5 and C has a branch γ such that γ ·P∞ = 5. As above, Case 5◦

of Table 1 is impossible by Lemmas 3.1 and 3.2, thus Case 7◦ takes place. Then
γ is of the type (3, 4, 5), (2, 3, 5), or (1, 2, 5) which corresponds to (l0, l2) = (2, 0),
(1, 1), or (0, 2) respectively. If there is an affine branch with l0+ l2 = 2, i.e., of type
(m1, m2, m3) = (1, 2, 5), (2, 3, 5), or (3, 4, 5), then Lemma 2.2(a) implies that C is
parametrized by t 7→ (tm1 , tm2 , tm3). Solving the corresponding linear systems (3),
we obtain that det g = 0 in all the three cases.

Thus C has two affine branches γ1 and γ2, each contributing 1 to k0 + k2. By
Lemma 3.2, C does not have any ordinary flat branch in C3, hence γ is of type
(1, 2, 5), and γ1, γ2 are of type (2, 3, 4). Then the dual branches γ̌, γ̌1, γ̌2 of Č are
of type (3, 4, 5), (1, 2, 4), (1, 2, 4). By Lemma 2.2(a) applied to γ̌ and γ̌1, the dual
curve Č is parametrized by t 7→ (1+t : t3 : t4 : t5) in some homogeneous coordinates.
Thus Č (and hence C as well) is uniquely determined up to automorphism of P3.
The choice of P∞ is also unique because it is the osculating plane at γ. It remains
to check that the curve in (v) gives a solution of the AlgDOP problem and its
non-generic branches are of the required types.

Case 3. degC = 6 and C has branches γ1, γ2 such that γ1 · P∞ = γ2 · P∞ = 3.
Then C is a 4-cuspidal sextic (see. Table 1). Since deg Č = 4, all cusps are ordinary.
Then Lemma 3.12 implies that γ1 and γ2 are of type (1, 2, 3) and P∞ is the the
osculating plane for each of them. Hence Č has a point with two local branches.
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Then Lemma 2.2(b) implies that Č is uniquely determined, and we obtain (vi) by
the same argument as in Case 2. �

Proposition 4.2. Suppose that C is real and there exists g = (gij) such that (g,Γ)
is a solution of the AlgDOP problem over R. Then C admits one of the following
parametrizations in some affine coordinates in R

3: (i)–(vi) of Proposition 4.1 or

(iv′) t 7→ (t−1 − t, 3t+ t3, 2t2 + t4); cusps at t = ±i;
(v′) t 7→ (3t+ t3, 4t2 + 2t4, 5t3 + 3t5); cusps at t = ±i;
(vi′) t 7→ (3t−1 + t3, 3t−2 + 3t2, t−3 + 3t); cusps at t = ±1,±i;
(vi′′) t 7→ (3t−1 − t3, 3t−2 − 3t2, t−3 − 3t); cusps at the roots of t4 + 1.

Proof. It is easy to see that the real form of C is determined by the involution

of complex conjugation on C̃. The latter must preserve the set of points of each

type and the divisor ν∗(P∞) on C̃. This implies that the list is exhaustive. A
computation shows that all the cases are realizable. �

The tangent developable of the twisted cubic t 7→ (t, t2, t3) is given by the equa-
tion Γ4 = 0 where Γ4 is the discriminant of P (u) = u3 + 3xu2 + 3yu+ z, i.e.,

Γ4 = 3x2y2 − 4y3 − 4x3z + 6xyz − z2. (8)

Lemma 4.3. (cf. Prop. 4.1(i)) Let (g,Γ) be a solution of the AlgDOP problem
over R such that the surface Γ = 0 contains the tangent developable of the curve C
parametrized by t 7→ (t, t2, t3). Then

g = a

(
0 0 0
∗ 2(x2−y) 3(xy−z)

∗ ∗ 18(y2−xz)

)
+ b

(
1 2x 3y
∗ 4x2 6xy
∗ ∗ 9y2

)
+ c

(
x 2x2 3xy
∗ 5xy−z 6y2

∗ ∗ 9yz

)

+ d
( x 2y 3z

∗ 3xy+z 6xz
∗ ∗ 9yz

)
+ e

(
x2 2xy 3xz
∗ 4y2 6yz
∗ ∗ 9z2

)
+ f

(
2(x2−y) xy−z 0

∗ 2(y2−xz) 0
∗ ∗ 0

)
,

det g = Γ4Γ2 where Γ4 is as in (8) and

Γ2=a2b+a2cx−2abcx+a2dx+2abdx−2ac2x2+a2ex2+2abex2+2a2fx2+4abfx2+bc2y−2bcdy+2ad2y

+bd2y−2abey−2a2fy−2abfy+c3xy−c2dxy−2acexy−bcexy+2adexy+bdexy+2acfxy−2bcfxy

+4adfxy+2bdfxy−2c2fy2+4aefy2+2befy2+2af2y2+bf2y2−cd2z+d3z+bcez−bdez−2adfz+c2exz

−2cdexz+d2exz+2d2fxz−2aefxz−2befxz−2af2xz−2cefyz+2defyz+cf2yz+df2yz+ef2z2

and one of the following cases occurs up to affine linear change of coordinates:

(i1) Γ = Γ4 and (a, c− d, f) 6= (0, 0, 0), (b, c+ d, e, af − d2) 6= (0, 0, 0, 0); in this
case Γ2 is a non-zero constant if and only if c = d = e = f = 0 and ab 6= 0;

(i2) b = d = f = 0, (c, ae) 6= (0, 0), and Γ = xΓ4, then we have Γ2 = xΓ1 where
Γ1 = a2c+ a(ae− 2c2)x+ c(c2 − 2ae)y + c2ez; in this case Γ1 cannot be a
nonzero constant, and we have Γ1 = x if and only if c = 0 and ae 6= 0;

(i3) a = b = c = 0, (d, ef) 6= (0, 0), and Γ = zΓ4, then we have Γ2 = zΓ1 where
Γ1 = d3 + d2(e + 2f)x + df(2e + f)y + ef2z; in this case Γ1 is a nonzero
constant if and only if e = f = 0 and d 6= 0; we have Γ1 = z if and only if
d = 0 and ef 6= 0;

(i4) (a, . . . , f) = (0, 0, 0, 1, −1, 0), Γ = (x− 1)zΓ4;
(i5) (a, . . . , f) = (1, 1, 0, 0,−1,−1), Γ = P (1)P (−1)Γ4, therefore {Γ2 = 0} is

the union of two osculating planes of C; recall that Γ4 = discruP (u);
(i6) (a, . . . , f) = (2α, 1, 0, 0,±1, 0), α 6= 0, Γ = (α+ 1)x2 − y ± α.
(i7) (a, . . . , f) = (1, 0, 1, 1, 0, 0), Γ = (x− x2 + y)Γ4;
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Proof. Step 1. We find g by solving the system of linear equations (3). If Γ = Γ4, we
arrive to (i1) where the indicated condition on (a, . . . , f) is equivalent to det g 6= 0.
We have

Γ2(t, t
2, t3) = (b+ ct+ dt+ et2)(a− ct+ dt+ ft2)2.

Hence {Γ2 = 0} is disjoint from the curve C (in C3) if and only if c = d = e = f = 0,
i.e., if and only if Γ2 is a non-zero constant.

Step 2. The variable changes ϕµ : (x, y, z) 7→ (x, y + 2µx, z + 3µy + 3µ2x) and
ψλ : (x, y, z) 7→ (λx, λ2y, λ3z) preserve {Γ4 = 0} and replace (a, . . . , f) with

(
a+ µ(c− d) + µ2f, b− µ(c+ d) + µ2e, c+ µ(f − e), d− µ(f + e), e, f

)
(9)

and (λ2a, λ2b, λc, λd, e, f) respectively. Thus, if f 6= 0 or c− d 6= 0, we may assume
that a = 0; if e 6= 0 or c+ d 6= 0, we may assume that b = 0.

Step 3. Here we suppose that Γ = Γ4Γ1 with deg Γ1 = 1. Any affine plane cuts
the curve C. Hence, up to affine change of coordinates, we may assume that the
plane P = {Γ1 = 0} passes through the origin.

Case 3.1. P is transverse to C at the origin, i.e., P is parametrized by (t, u) 7→
(x, y, z) = (At+Bu, t, u). Then (3) has three solutions:

• A = B = b = d = f = 0 (this is (i2));
• b = e = 0, c = −d = aA, f = aA2, B = −1

3A
2 (then det g = 0);

• b = f = B = 0, c = d = −aA, e = 2aA2.

In the latter case we have Γ2 = 2a3A(x−Ay), thus A 6= 0, and the variable change
ϕµ followed by ψλ, λ = µ = −1/(2A) (see Step 2) gives (i6) with α = −1.

Case 3.2. P has an ordinary tangency with C at the origin, i.e., up to rescaling
of the coordinates, Γ1 = z − y. Then (3) does not have any non-zero solution.

Case 3.3. P is the osculating plane of C at the origin, i.e., Γ1 = z. Then the
only non-zero solution of (3) is (i3).

Step 4. Suppose that deg Γ = 6 and Γ2 = Γ1Γ̃1 with deg Γ1 = deg Γ̃1 = 1.
According to the result of Step 3, each of the planes {Γ1 = 0}, {Γ̃1 = 0} is either
an osculating plane for C (Case (i3)) or a plane of the form {x = x0} (Case (i2)).
Any two distinct points on C can be mapped to any fixed positions by an affine
linear automorphism which preserves C (see Step 2). Thus Γ2 is as in (i4) or
(i5) unless Γ2 = x2 − 1 or Γ2 = xz. In the latter two cases the system (3) does
not have any nonzero solution. Notice that this fact can be checked without any
computations. Indeed, Γ2 = x2 − 1 would imply that the gi1 are divisible by x2 − 1
and Γ2 = xz would imply that the gi1 (resp. gi3) are divisible by x (resp. by z). It
is immediately seen from the form of g that this is impossible.

Step 5. Suppose that deg Γ2 = 2 and Γ2 is irreducible.

Case 5.1. ef 6= 0. Then degz Γ2 = 2 and its coefficient of z2 is ef2 (a nonzero
constant). By the result of Step 2 we may assume that a = 0. Then we compute the
remainders of the division of g11∂xΓ1 + g

12∂yΓ1 + g
13∂zΓ1 (viewed as a polynomial

in z) by Γ2 and equate its coefficients to zero (see (A3) in §1). The obtained system
of equations has only two solutions with ef 6= 0. These are: (S1) b = c = 0, e = f
and (S2) b = c = d = 0. In both cases Γ2 reducible.

Case 5.2. ef = a = 0. Then Γ2 = p0(y, z) + p1(y, z)x.
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Case 5.2.1. p1(y, z) = 0. If f = 0, then p1 = ((d− c)((c2 − be)y+ (c− d)ez)). If
it is zero, then d = c (then Γ2 = 0) or c = e = 0 (then deg Γ2 < 2). If e = 0 and
f 6= 0, then p1 = (d− c)(c2−2bf)y−2d2fz. If it is zero, then cd = 0 which implies

that Γ2 = Γ
(1)
1 Γ

(2)
1 , deg Γ

(k)
1 ≤ 1.

Case 5.2.2. p1(y, z) 6= 0. Then we solve the system (3) for the parametrization
(t, u) 7→

(
p0(t, u)/p1(t, u), t, u

)
of {Γ2 = 0}. If f = 0, the solutions are: (S1) d = c;

(S2) b 6= 0, e = cd/b; (S3) b = c = 0; (S4) b = d = 0. If e = 0, the solutions are:
(S5) c = d = 0; (S6) c = f = 0; (S7) d = 0, f 6= 0, b = c2/(2f); (S8) f = d− c = 0;

(S9) d = f = 0. In all these cases we have Γ2 = Γ
(1)
1 Γ

(2)
1 , deg Γ

(k)
1 ≤ 1.

Case 5.3. ef = 0 and a 6= 0. By the result of Step 1 we know that C and
{Γ2 = 0} have a common point in C3. Suppose first that there is a real common
point. By an affine linear change of coordinates in R3 we can achieve that this is the
origin. Since Γ2(0, 0, 0) = a2b, we then have b = 0. By the result of Step 2 we may
assume that f = 0 and d = c (otherwise we reduce to Case 5.2). Then c 6= 0 because
otherwise Γ2 = x2. Thus we have b = f = 0 and d = c 6= 0. One can check that this
is a solution of AlgDOP problem. If e = 0 we obtain (i7) by the coordinate change
ψλ (see Step 2) with λ = c/a. If e 6= 0, the coordinate change ϕµ with µ = c/e
followed by ψλ with λ = e/c, we obtain (i6) with (a, . . . , f) = (−ae/c2, 1, 0, 0,−1, 0).
In the case when C and {Γ2 = 0} do not have common real points, one can show
that (a, . . . , f) = (2α, 1, 0, 0, 1, 0), α ∈ R (we omit the details). In both cases we
have α 6= 0 (otherwise Γ2 = 0). �

The following lemma is a direct computation.

Lemma 4.4. (cf. Prop. 4.1(ii)) Let (g,Γ) be a solution of the AlgDOP problem
over R such that the surface Γ = 0 contains the tangent developable of the curve
t 7→ (t−1, t, t2). Then

g = a

(
0 0 0

∗ 2(1−xy) 3(y−xz)

∗ ∗ 18(y2−z)

)
+ b

(
x2 −xy −2xz

∗ y2 2yz

∗ ∗ 4z2

)
, ab 6= 0,

det g = 9a2b x2(3y2 − 4xy3 − 4z + 6xyz− x2z2). The coordinate change (x, y, z) 7→
(λ−1x, λy, λ2z) preserves det g and transforms (a, b) into (a, λ2b). Thus we can
reduce to (a, b) = (1,±1). �

The tangent developable of the cuspidal quartic curve t 7→ (t2, 2t3, 3t4) is given
by the equation Γ5 = 0 where Γ5 is the discriminant of P (u) = u4−6xu2−4yu−z,
i.e.,

Γ5 = −54x3y2 + 27y4 + 81x4z − 54xy2z + 18x2z2 + z3. (10)

Lemma 4.5. (cf. Prop. 4.1(iii)) Let (g,Γ) be a solution of the AlgDOP problem
over R such that the surface Γ = 0 contains the tangent developable of the curve
t 7→ (t2, 2t3, 3t4), i.e., Γ5 a factor of Γ. Then

g = a

(
4x 6y 8z

∗ 3(9x2+z) 36xy

∗ ∗ 144(y2−xz)

)
+ b

(
4y 2(9x2+z) 24xy

∗ 36xy 36y2

∗ ∗ 48yz

)
+ c

(
4x2 6xy 8xz

∗ 9y2 12yz

∗ ∗ 16z2

)
,

det g = Γ5Γ1 where Γ1 = 3a3+3(a2c− 3ab2)x+3(b3 −abc)y+ b2cz, and one of the
following cases occurs up to rescaling of the coordinates:

(iii1) (a, b) 6= (0, 0), Γ = Γ5, in this case Γ1 is a nonzero constant if and only if
a 6= 0 and b = c = 0;
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(iii2) (a, b, c) = (3, 1,−1), Γ = Γ1Γ5, in this case {Γ1 = 0} is the osculating plane
at t = 3, and we have Γ1 = P (3) (recall that P (u) = u4 − 6xu2 − 4yu− z);

(iii3) (a, b, c) = (1, 0,±1), Γ = (x± 1)Γ5.

Proof. We find g by solving the linear system of equations (3). Then det g is as
stated. It vanishes identically if and only if a = b = 0. Since Γ5 divides Γ and
Γ divides det g, we have either Γ = Γ5 or Γ = det g = Γ5Γ1. In the former case
everything is done. So, we suppose that Γ = Γ5Γ1.

The change (x, y, z) 7→ (λ2x, λ3y, λ4z) transforms (a, b, c) to (a, λb, λ2c). Thus,
if abc 6= 0, we may assume that (a, b) = (3, 1). Then the remainder of the division
of g11∂xΓ1 + g12∂yΓ1 + g13∂zΓ1 (viewed as a polynomial in z) by Γ1 is equal to
(c + 1)q(x, y) where q(x, y) is a polynomial in x, y such that q(0, 0) 6= 0, and we
arrive to solution (iii2).

If abc = 0, we may rescale the coordinates so that each of a, b, c is 0 or ±1. In
each case we check if (3) is satisfied. �

The following lemma is a direct computation based on Proposition 4.2. In Cases
(v), (v′) instead of C we consider its image under (x, y, z) 7→ (x, 32y, 2z).

Lemma 4.6. Let (g,Γ) be a solution of the AlgDOP problem over R such that the
surface Γ = 0 contains the tangent developable of the curves in Props. 4.1(iv)–(vi)
and 4.2(iv′)–(vi′′). Then Γ = det g and one of the following cases takes place:

(iv) g is given by (11) with ε = 1:

(
x2 3xy−12 4xz−4y

∗ 9y2−12z 12yz

∗ ∗ 16z2

)
+ ε

(
−4 0 0

∗ 72−24xy 24y−36xz

∗ ∗ 32y2−144z

)
; (11)

(iv′) g is given by (11) with ε = −1;
(v) g is given by (12) with ε = 1:

(
4y−9x2 2z−12xy −15xz

∗ −16y2 −20yz

∗ ∗ −25z2

)
+ ε

(
24 32x 40y

∗ 16(6x2−5y) 120(xy−z)

∗ ∗ 400(y2−xz)

)
, (12)

1
4 det(5g) is the discriminant of u5 − 10u3 − 10xu2 − 5yu− z;

(v′) g is given by (12) with ε = −1;
(vi)

g =

(
8+y2+4z−2x2 −3xy 12x−2xz

∗ 8−4z+x2−2y2 −12y−2yz

∗ ∗ 16+8x2+8y2−4z2

)
,

1
4 det g is the discriminant of u4 − su3 + zu2 − s̄u+ 1, s = x+ iy;

(vi′) g is given by (13) with ε = −1:

(
3x2−8y 2xy−12z xz

∗ 4y2−8xz 2yz

∗ ∗ 3z2

)
+ ε

(
0 0 16

0 16 12x

16 12x 8y

)
; (13)

(vi′′) g is given by (13) with ε = 1.
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5. Solutions of SDOP problem bounded by tangent developables

5.1. Bounded solutions.

Theorem 5.1. Up to affine linear change of coordinates, the following is a com-
plete list of solutions (Ω, g, ρ) of DOP problem in R3 such that Ω is a bounded
domain whose boundary ∂Ω contains a piece of a tangent developable surface. In
each case g is as in the corresponding case of Lemmas 4.3, 4.5, 4.6 (sometimes with
additional restrictions on the parameters) and Ω is the only bounded component of
the complement of {det g = 0}; see Figures 1–5 and comments on them in §5.3.

(i4) ρ = Γp−1
4 zq−1(1− x)r−1, 6p > 1, q > 0, r > 0, 2p+ q > 1;

(i5) ρ = Γp−1
4 P (1)q−1P (−1)r−1, 6p > 1, q > 0, r > 0, 2p+ q > 1, 2p+ r > 1;

(i6) α > 0 and e = −1, ρ = Γp−1
4 Γq−1

2 , 6p > 1, q > 0 (see Remark 5.3);

(iii2) ρ = Γp−1
5 Γq−1

1 , 4p > 1, q > 0, 2p+ q > 1;

(iii3) c = −1, ρ = Γp−1
5 (1− x)q−1, 4p > 1, q > 0;

(v,vi) ρ = (det g)p−1, 4p > 1;

x

y

z

2

22 2

33

x

y

z

2

2 2

4

2

3

Figure 1. (iii3) and (i4): the quotients of S3 by the reflection groups
A1 +A3 (the truncated swallow tail) and A1 +B3.

3

2,2

x

y

z

2

2

3

Figure 2. (i6): the quotient of S3 by the reflection group A1 +A2

(the projection on the xy-plane is on the left hand side).

Proof. Boundedness of Ω. Let us show that R
3 \ Σ where Σ = {Γ = 0} does not

have any bounded component in all other cases of Lemmas 4.3–4.6. For (i1), (i2),
(i3), (iii1) this fact is evident because Γ is quasihomogeneous. In other cases we
consider the projection π : (x, y, z) 7→ (x, y) and find the regions on the xy-plane
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2

2

3

3

3

3

Figure 3. (vi): the quotient of R3 by the affine reflection group Ã3.

4

4

3

2

22
4 4

A

B C

D

Figure 4. (i5): the quotient of R3 by the affine reflection group C̃3.
The faces ABC and BCD are on the osculating planes at A and D resp.

3

2

2 2
3 3

3

3

2

2 4

2
A

B

C

D

2

2

2

3

3

3

Figure 5. (v), (iii2), §6.5: the quotients of S3 by the reflection groups
A4, B4, D4. The face BCD belongs to the osculating plane at D.

over which Σ is a disjoint union of graphs of smooth functions (i.e. over which π|Σ
is a covering). This is the complement of the real curve R = {Dz(x, y)Cz(x, y) = 0}
where Dz is the discriminant of Γ with respect to z, and Cz is the coefficient of
the highest power of z in Γ. This curve is depicted in Figure 6 in the respective
cases. The dashed line represents π(B−) where B− is the part of the curve of self-
intersection of (the complexification of) Σ such that two non-real local branches of
Σ cross at points of B− (that is Σ has the equation u2 + v2 = 0 in some local real
analytic coordinates (u, v, w) near each point of B−). We see in Figure 6 that all
components of R2 \ (R \ π(B−)) are unbounded. Hence so are all components of
R3 \ Σ. It remains to exclude Case (i6) when α < 0 or e = 1. In this case we have
Dz = y−x2 and Cz = (α+1)x2− y+ eα, e = ±1. If e = 1, then all components of
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R2 \ R are unbounded. If e = −1 and α < 0, then there is a bounded component
Ω, but π−1(Ω) ∩ Σ is empty.

3

3

3
2

3

3

2

3

3

2 3 2

3

(i7) (ii) (iv) (iv′)

2 2

3 3

2

2

3 3

33
3 3

(v′) (vi′) (vi′′)

Figure 6. Irrelevant solutions of the AlgDOP problem.

Integrability of ρ. In Case (i4), the integrability conditions at the origin, at
cuspidal edge, and at the x-axes (the line of tangency) are, respectively, 2p+ q > 1,
p > 1/6, and p+ q > 1/2 but the last condition follows from the first one because
q > 0. Let us prove the first condition. Let Ω1 = {(y, z) | (1, y, z) ∈ Ω}. We
have Γ4(x, y, z) = x6Γ4(1, y/x

2, z/x3), hence, using the variable change y = x2η,
z = x3ζ, we obtain

∫

Ω∩{x<ε}

zq−1Γp−1
4 dx dy dz =

∫ ε

0

dx

∫

Ω1

(x3ζ)q−1
(
x6Γ4(1, η, ζ)

)p−1
x5dη dζ,

which is finite if and only if 6(p − 1) + 3(q − 1) + 5 > −1 (i.e., 2p + q > 1) and∫
Ω1

ζq−1Γ4(1, η, ζ)
p−1dη dζ is finite. The integrability conditions in dimension 2 are

obtained in the same way (in [3, Remark 2.28] they are stated as an evident fact).
In our case they are 6p > 1 and 2p+ 2q > 1. The same or similar arguments work
in Cases (i5), (i6), (iii3) as well. In the remaining three cases the surface is not
quasihomogeneous, however, one can show that the restrictions are the same as in
the quasihomogeneous case (we omit the proof). �

5.2. Unbounded solutions.

Theorem 5.2. Up to affine linear change of coordinates, the following is a com-
plete list of solutions (Ω, g, ρ) of SDOP problem in R3 such that Ω is an unbounded
domain whose boundary ∂Ω contains a piece of a tangent developable surface. In
each case g is as in the corresponding case of Lemmas 4.3, 4.5 with additional
restrictions on the parameters.

(i1) (a, . . . , f) = (2α, 1, 0, 0, 0, 0), α > 0; Ω is the component of R3 \ {det g = 0}
containing (0,−1, 0) (i.e., the domain in Figure 2 is Ω∩{y ≥ (α+1)x2−α}),
ρ = Γp−1

4 exp
(
λy − λ(1 + α)x2

)
, p > 1/6, λ > 0;
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(i3) (a, . . . , f) = (0, 0, 0, 1, 0, 0); Ω is the only component of R3 \ {det g = 0}
such that Ω ∩ {x = 1} is bounded (i.e., Ω ∩ {x ≤ 1} is the right domain in

Figure 1), ρ = Γp−1
4 zq−1 exp(−λx), p > 1/6, q > 0, 2p+ q > 1, λ > 0;

(iii1) (a, b, c) = (1, 0, 0); Ω is the only component of R3 \ {det g = 0} such that
Ω ∩ {x = 1} is bounded (i.e., Ω ∩ {x ≤ 1} is the left domain in Figure 1),

ρ = Γp−1
5 exp(−λx), p > 1/4, λ > 0.

Proof. Let Γ be the minimal polynomial vanishing on ∂Ω. Then (g,Γ) is a solution
of the AlgDOP problem. Set ∆ = det g and Σ = {Γ = 0}. If Ω is unbounded and
∆ does not have multiple components, then deg∆ < 6. This fact excludes all the
cases of Lemmas 4.3–4.6 for (g,Γ) except those considered below.

(i1). Then ∂Ω ⊂ Σ4 = {Γ4 = 0} (recall that Γ4 is given in (8)). Let π be
the projection R

3 → R
2, (x, y, z) 7→ (x, y). Then Σ4 cuts R

3 into two unbounded
components Ω+, Ω−. One of them (let it be Ω+) is projected by π onto the non-
convex set {y < x2}, and π−1(π(p)) is a finite interval for any p ∈ Ω+ (see Figure 2).
Since Ω is one of Ω+, Ω−, we have ∂Ω = Σ4.

Let us show that any affine plane P intersects each of Ω+, Ω−. The curve C
(whose tangent developable is Σ4) has only one point at infinity: the infinite point
of the z-axis. If the projective closure of P does not pass through this point, then
P cuts C in some finite real point because the degree of C is odd. Otherwise
P = π−1(L) where L is a line in R2, hence P cuts Σ because π(Σ) = {y < x2}.
In both cases P cuts each of Ω±. This fact implies that ∆ = Γ4 (up to a scalar
factor). Indeed, recall that either ∆ has a multiple component, or deg∆ < 6.
Thus, if deg∆ > 4, then in both cases ∆ would vanishes on some plane P . This is
impossible because ∆|Ω 6= 0 and P ∩ Ω 6= ∅.

By solving the system of linear equations (3), we obtain the required form of ρ,
maybe, multiplied by eλ1x, however, this factor can be killed by the transformation
ϕµ with a suitable µ; see (9). We have Ω = Ω+ because Ω− contains cylinders
parallel to the z-axis, which contradicts the integrability condition for the measure
of this form. The positive definiteness of g in Ω implies that a > 0 and b > 0. Then
we may set b = 1, a = 2α, α > 0. The integrability conditions near C and at the
infinity are, respectively, p > 1/6 (see [3, Remark 2.28]) and λ > 0.

(i2). Then deg∆ = 6, and ∆ has multiple factors of ∆ if and only if and
b = c = d = f = 0, ae 6= 0. In this case ∆ = x2Γ4. No exponential factor of ρ.

(i3) with a = b = c = e = f = 0, d 6= 0. The solution is antisymmetric under
the rotation (x, y, z) 7→ (−x, y,−z), hence we may set d = 1. Then g is positive
definite only in the indicated domain. Solving the linear equations, we obtain that
the measure is of the required form. The integrability condition at the infinity is
λ > 0. The others are the same as in Theorem 5.1(i4).

(i3) with a = b = c = d = 0, ef 6= 0. Solving the linear equations, we obtain
that ρ has an exponential factor only when e = f , and it is exp(λy/z). Since
Γ4(λx, λ

2y, λ3z) = λ6Γ4(x, y, z), using the variable change y1 = y/x2, z1 = z/x3,
one can easily show that the integrability condition fails for any choice of Ω.

(i6) with α = −1. No exponential factor of ρ.

(iii1) with b = c = 0. Straightforward; see the bound for p in Theorem 5.1(iii3). �

Remark 5.3. The solutions (i1) and (i6) with different values of the parameter
α (and in the latter case even the underlying domains) cannot be transformed to



DIFFUSION ORTHOGONAL POLYNOMIALS IN 3-DIMENSIONAL DOMAINS 17

each other by any affine linear transformation. However, these solutions are also
solutions of the weighted DOP problem (see [1], [7]) with weights (1, 2, 3) and the
(1, 2, 3)-admissible change of variables (see the definition in [7, §2.2])

(x, y, z) 7→
(
x, (x2 − y)/α, (2x3 − 3xy + z)/(2α3/2)

)

transforms (i1) and (i6) into, respectively,

(i∗1) Ω = {y3 > z2}, g = g0 (see below), and ρ = (y3 − z2)p−1e−λα(x2+y);
(i∗6) Ω is the only bounded component of R3 \ {(y3 − z2)(1 − x2 − y) = 0},

g = g0 − g1, ρ = (y3 − z2)p−1(1− x2 − y)q−1, where

g0 =




1 0 0
0 4y 6z
0 6z 9y2


 , g1 =




x2 2xy 3xz
2xy 4y2 6yz
3xz 6yz 9z2




(g1 is the coefficient of e in the matrix in Lemma 4.3). Thus we have one-parameter
families of pairwise non-equivalent solutions of the DOP problem such that the
members of each family become equivalent to each other when they are consid-
ered as solutions of the weighted DOP problem with suitable weights. The same
phenomenon was observed in dimension 2 in [3, §4.5], [7, Remark 6.5].

5.3. Comments on the figures. In Figures 1–5 we show the bounded domains
appearing in Theorem 5.1 and the domain discussed in §6.5. All the domains are
curvilinear polyhedra (all but one being tetrahedra), so we present them by the
planar projections of their edges. When the axes are not shown, the projection is
assumed to be (x, y, z) 7→ (x, y) (or (x, y, z) 7→ (x, z) in Figure 5 on the right). The
number n near an edge means that the surface is given by the equation v2 = un

in some local curvilinear coordinates (u, v, w) in a neighbourhood of this edge. In
all the cases the metric (gij) = g−1 is of constant non-negative curvature and the
boundary of Ω is totally geodesic (which well agrees with Soukhanov’s results [11],
[12]). Thus Ω can be identified with the quotient of R3 or S3 by a group generated
by reflections (a Coxeter group) and L is the image of the Laplace operator. The
types of the groups are indicated in the figure captions. The explicit formulas for
these identifications are given in §6. Note that if an edge of Ω is marked by a
number n, then the angle at the corresponding edge of the fundamental polyhedron
in R3 or S3 is π/n. For affine Coxeter groups (Figures 3 and 4) we also present the
fundamental tetrahedra and the corresponding Coxeter graphs. Notice also that the
curves on the right hand sides of Figures 3 and 5 are (4, 1)- and (3, 1)-hypocycloids.

6. Higher dimensional solutions of the DOP problem

on the quotients of Sn or Rn by Coxeter groups

Using the approach from [3, §4], in this section we realize each solution from
Theorem 5.1 as an image of the Laplace operator on S3 or R3 through the quotient
by a discrete group generated by reflections (a Coxeter group). Moreover, we include
each of these solutions into an infinite series of solutions in all dimensions.

6.1. Generalities. With a second order differential operator L with no 0-order
term on a manifold M , is associated the operator “carré du champ”

ΓL(f1, f2) =
1

2

(
L(f1f2)− f1L(f2)− f2L(f1)

)
.
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(see [2]). Notice that the operator Γ∆ (for the Laplace operator on Rn) plays
a key rôle in [10] where it is denoted by 〈df1, df2〉. If L is given by (1) in some
coordinates (x1, . . . , xn), then gij = ΓL(xi, xj) and bi = L(xi). Let f : M → Rn,
p 7→ (f1(p), . . . , fn(p)) be a mapping such that ΓL(fi, fj) = Gij◦f and L(fi) = Bi◦f
for some functions Gij and Bi defined on f(M). Then a direct computation shows
that the operator

f∗(L) =
∑

i,j

Gij∂ij +
∑

i

Bi∂i

is such that f∗(L)(ϕ) = L(ϕ ◦ f) for any smooth ϕ : f(M) → R. We say that L∗(f)
is the image of L through f .

Let G be a discrete group generated by orthogonal reflections acting on R
n

(see [4] for a general introduction to the subject). We discuss here only bounded
solutions of the DOP problem. Therefore, when G is finite (a spherical Coxeter
group or just Coxeter group), we assume that the origin is a fixed point and we
restrict the action form Rn to the unit sphere Sn−1. If G is infinite (an affine
Coxeter group), we assume that it contains a full rank subgroup of translations.
So, in both cases the orbit space M/G is compact (M is Rn or Sn−1).

If G is finite, it is known (see [5], [4, Ch. V, §§5–6]) that the ring of invariant
polynomials is freely generated by some invariant homogeneous forms I1, . . . , In.
The choice of the invariants Ij ’s is not unique (see, e.g., [6], [10] for different con-
crete choices) but their degrees d1, . . . , dn are uniquely determined. These numbers
(called exponents in [4]) for each Coxeter group can be found in Tables (Planches)
I–X in [4]. One of the basic invariants is (if the action is irreducible) or can be
chosen to be x21 + · · ·+ x2n. Let it be I1. Then [3, Eq. (4.5)] implies that the image
of the Laplace operator ∆Sn−1 for f : Sn−1 → Rn−1, p 7→ (I2(p), . . . , In(p)), is a
solution of the weighted DOP problem (see [1], [7] for the definition) with weights
(d2, . . . , dn) on f(Sn−1). However, in §§6.2–6.8 we show that for the Coxeter groups
of types An, Bn, and their direct products, as well as for D4, one can choose the
basic invariants so that the image of the Laplace operator is a solution of the DOP
problem (with weights (1, . . . , 1)).

Consider now the case when G is an affine Coxeter group acting on E = R
n.

It is shown in [4, Ch. VI, §3.4] that the ring of invariant Fourier polynomials is
freely generated by certain elements f1, . . . , fn which are explicitly described via
the fundamental weights ω1, . . . , ωn corresponding to some Weyl chamber C. One
can check that the image of ∆E through p 7→ (f1(p), . . . , fn(p)) is a solution of the
weighted DOP problem with the weights α(ω1), . . . , α(ωn) where α is any linear
function positive on C. In §§6.9–6.11 we show that these are also solutions of the
DOP problem (with weights (1, . . . , 1)) for the affine Coxeter groups of types Ãn

and C̃n. It seems plausible that the quotients by other spherical or affine Coxeter
groups never give a solution of the DOP problem. In dimension 2 this fact follows
from the classification in [3].

For each solution (Ω, g, ρ) obtained as the image of a Laplace operator through
the quotient by a Coxeter group, L is the Laplace-Beltrami operator for the metric
g−1, hence ρ = (det g)−1/2.

6.2. Quotient of Sn−2 by the Coxeter group An−1.
Let E = Rn with coordinates x1, . . . , xn, let H ⊂ E be the hyperplane x1+ · · ·+

xn = 0, and Sn−2 be the unit sphere in H. The Coxeter group An−1 acting on Sn−2

is generated by the orthogonal reflections in the hyperplanes xi = xj . The ring of
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invariants is freely generated by the elementary symmetric polynomials s2, . . . , sn.
So, we consider the mapping Φ : Sn−2 → Rn−2, (x1, . . . , xn) 7→ (s3, . . . , sn) where
P (u) = (u+x1) . . . (u+xn) =

∑n
k=0 sku

n−k. Note that (s0, s1, s2)|Sn−2 = (1, 0,−1
2 )

and we set sk = 0 for k 6∈ [0, n]. Then Ω = Φ(Sn−2) is bounded by the hypersurface

discru(u
n − 1

2u
n−2 +X3u

n−3 + · · ·+Xn−1u+Xn) = 0.

(cf. Thm. 5.1(v)). Here (X3, . . . , Xn) are the coordinates in the target space Rn−2.
Let ∆ = ∆Sn−2 and let Γ be the corresponding carré du champ. We are going to
check that Φ∗(∆) is a Laplace-Beltrami solution of the DOP problem on Ω. We
have Γ(sk, sm) = ΓH(sk, sm) − kmsksm (see [3, Eq. (4.5)]) and ΓH(sk, sm) is the
coefficient of un−kvn−m in ΓH(P (u), P (v)). We have

∆E = ∆H + 1
n∂

2
0 where ∂0 =

∑
∂i. (14)

Hence ΓH(f1, f2) = ΓE(f1, f2)− 1
n
(∂0f1)(∂0f2). It is clear that

∂0P (u) =
∑

i

P (u)

u+ xi
= P ′(u), (15)

thus ΓH(P (u), P (v)) = ΓE(P (u), P (v))− 1
nP

′(u)P ′(v). Finally, by [3, p. 1033],

ΓE(P (u), P (v)) =
∑

i,j

(
∂iP (u)

)(
∂jP (v)

)
ΓE(xi, xj) =

∑

i

(
∂iP (u)

)(
∂iP (v)

)

=
∑

i

P (u)P (v)

(u+ xi)(v + xi)
=
P (u)P (v)

v − u

∑

i

( 1

u+ xi
− 1

v + xi

)

(15)
=

P ′(u)P (v)− P ′(v)P (u)

v − u
=
∑

k,m

(n− k)sksm
un−k−1vn−m − vn−k−1un−m

v − u

=
∑

k,m

(n− k)sksm

(
k−m∑

l=0

un−k+l−1vn−m−l−1 −
m−k−1∑

l=1

un−k−l−1vn−m+l−1

)
,

hence for a ≤ b we have

Γ(sa, sb) = (a− 1)(1− b−1
n

)sa−1sb−1 − absasb +
∑

l≥1

(a− b− 2l)sa−l−1sb+l−1.

Thus the coefficients gab, a ≤ b, of Φ∗(∆) are given by the same expression where
s0, s1, . . . , sn are replaced by 1, 0,−1

2 , X3, . . . , Xn and sk is set to zero when k 6∈
[0, n]. Here X3, . . . , Xn are coordinates in the target space Rn−2.

By [3, Eq. (4.5)] we have ∆(sa) = ∆H(sa)−a(n+a−3)sa. Counting the number
of monomials, one obtains

∂0(sa) = (n− a+ 1)sa−1. (16)

These formulae combined with (14) and with ∆E(sa) = 0 yield

∆(sa) = − 1
n
(n− a+ 1)(n− a+ 2)sa−2 − a(n+ a− 3)sa. (17)
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6.3. Quotient of Sn−1 by the Coxeter group Bn.

Let E be Rn with coordinates x1, . . . , xn and Sn−1 be the unit sphere in E. The
Coxeter group Bn acting on E is generated by the reflections in the hyperplanes
xi = xj and xi = 0. The ring of polynomial invariants is generated by the elemen-
tary symmetric polynomials in x2i . We consider the mapping Φ : Sn−1 → Rn−1,
(x1, . . . , xn) 7→ (s2, . . . , sn) where P (u) = (u + t1) . . . (u + tn) =

∑n
k=0 sku

n−k,
ti = x2i . We have (s0, s1)|Sn−1 = (1, 1) and we set sk = 0 for k 6∈ [0, n]. Then
Φ(Sn−1) is bounded by the hypersurface

Xn discru(u
n + un−1 +X2u

n−2 + · · ·+Xn−1u+Xn) = 0

(cf. Thm. 5.1(iii2) and Figure 5). Its component Xn = 0 is the image of the
hyperplanes xi = 0 and the other component is the image of the planes xi = xj .

Let ∆ = ∆Sn−1 and let Γ be the corresponding carré du champ. Γ(sk, sm) is
the coefficient of un−kvn−m in Γ(P (u), P (v)). The sk are homogeneous of degree
2k, hence (see [3, Eq. (4.5)]) Γ(sk, sm) = ΓE(sk, sm)− 4kmsksm and

ΓE(ti, tj) = ΓE(x
2
i , x

2
j) = 4xixjΓE(xi, xj) = 4tiδij .

Then (cf. [10, Prop. 2.2.2])

1

4
ΓE

(
P (u), P (v)

)
=

1

4

∑

i,j

(
∂tiP (u)

)(
∂tjP (v)

)
ΓE(ti, tj) =

∑

i

tiP (u)P (v)

(u+ ti)(v + ti)

=
P (u)P (v)

u− v

∑

i

( u

u+ ti
− v

v + ti

)
=
uP ′(u)P (v)− vP ′(v)P (u)

u− v

=
∑

k,m

(n− k)sksm
un−kvn−m − vn−kun−m

u− v

=
∑

k,m

(n− k)sksm

(
m−k∑

l=1

un−k−lvn−m+l−1 −
k−m∑

l=1

un−k+l−1vn−m−l

)

Hence for a ≤ b we have

Γ(sa, sb) = −4ab sasb +
∑

l≥1

4(b− a+ 2l − 1)sa−lsb+l−1. (18)

The coefficients gab, a ≤ b, of Φ∗(∆) are given by the same expression where
s0, s1, . . . , sn are replaced by 1, 1, X2, . . . , Xn and sk is set to zero when k 6∈ [0, n].

We have ∆(sa) = ∆E(sa) − 2a(n + 2a − 2)sa (see [3, Eq. (4.5)]). Similarly to
(16) one obtains ∆E(sa) = 2(n− a+ 1)sa−1, hence

∆(sa) = 2(n− a+ 1)sa−1 − 2a(n+ 2a− 2)sa. (19)
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6.4. Quotient of Sn−1 by the Coxeter group Bn (another mapping).
In this subsection we compute Φ∗(∆Sn−1) for another polynomial mapping Φ

invariant under the action of Bn. This time Ω = Φ(Sn−1) is bounded by

{X = (X2, . . . , Xn) | PX(1) discruPX(u) = 0}, PX(u) = un +

n∑

k=2

Xku
n−k.

Up to rescaling of the coordinates, we obtain the solution in Thm. 5.1(iii2) (see
Figure 5) when n = 4, and the solution in [3, §4.10] when n = 3.

The mapping Φ : Sn−1 → Rn−1 is given by (x1, . . . , xn) 7→ (s2, . . . , sn) where
P (u) = (u + t1) . . . (u + tn) =

∑n
k=0 sku

n−k, ti = nx2i − 1. It factors through
Φ1 : (x2, . . . , xn) 7→ (t2, . . . , tn) and Φ1(S

n−1) is the (n − 1)-simplex σ given by∑
ti = 0, ti ≥ −1. The image of ∂σ is the hyperplane PX(1) = 0, and the image of

the (n− 2)-planes σ ∩ {ti = tj} is the discriminantal hypersurface. This solution is
obtained from the one in §6.3 by the change of variable u 7→ u− 1

n which corresponds
to an evident affine linear transformation in the coefficient space. It seems, however,
that it is easier to recompute Φ∗(∆) rather than to perform this change of variables.
Let us do it. By linearity, Γ(sk, sm) is the coefficient of un−kvn−m in Γ(P (u), P (v)).
We have (see [3, Eq. (4.2)])

Γ(ti, tj) = Γ(nx2i , nx
2
j) = 4n2xixj(δij − xixj) = 4n2δijx

2
i − 4n2x2ix

2
j .

Hence
Γ(P (u), P (v))

4n2
=
∑

i,j

(
∂tiP (u)

)(
∂tjP (v)

)Γ(ti, tj)
4n2

=
∑

i,j

P (u)P (v)Γ(ti, tj)

4n2(u+ ti)(v + tj)
=
∑

i

P (u)P (v)x2i
(u+ ti)(v + ti)

−
∑

i,j

P (u)P (v)x2ix
2
j

(u+ ti)(v + tj)

=
P (u)P (v)x2i

v − u

∑

i

( 1

u+ ti
− 1

v + ti

)
−
∑

i,j

P (u)x2iP (v)x
2
j

(u+ ti)(v + tj)

=
Q(u)P (v)−Q(v)P (u)

v − u
−Q(u)Q(v)

where

Q(u) =
∑

i

P (u)x2i
u+ ti

=
1

n

∑

i

P (u)(ti + 1)

u+ ti
=

1

n

∑

i

(
P (u)− (u− 1)P (u)

u+ ti

)

= P (u)− 1

n
(u− 1)P ′(u) =

1

n

∑

k

sk

(
kun−k + (n− k)un−k−1

)

Thus
(
Q(u)P (v)−Q(v)P (u)

)
/(v − u) is equal to

∑

k,m

sksm
n

(
k
un−kvn−m − vn−kun−m

v − u
+ (n− k)

un−k−1vn−m − vn−k−1un−m

v − u

)

=
∑

k,m

sksm
n

{
k

(
k−m∑

l=1

un−k+l−1vn−m−l −
m−k∑

l=1

un−k−lvn−m+l−1

)

+ (n− k)

(
k−m∑

l=0

un−k+l−1vn−m−l−1 −
m−k−1∑

l=1

un−k−l−1vn−m+l−1

)}
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If a ≤ b, then

1
4
Γ(sa, sb) =

∑

l≥1

n(a− b− 2l)sa−l−1sb+l−1 +
∑

l≥1

n(b− a+ 2l − 1)sa−lsb+l−1

+ n(n− b+ 1)sa−1sb−1 −
(
asa + (n− a+ 1)sa−1

)(
bsb + (n− b+ 1)sb−1

)
.

The coefficients gab, a ≤ b, of Φ∗(∆) are given by the same expression where
s0, s1, . . . , sn are replaced by 1, 0, X2, . . . , Xn and sk is set to zero when k 6∈ [0, n].

We have ∆ = ∆E − (r∂r)
2 − (n− 2)r∂r where r∂r =

∑
xi∂xi

(see [3, Eq. (4.4)])
and ∆EP = 2nP ′, r∂rP = 2nP + 2(1− u)P ′, hence

(r∂r)
2P = 4n2P + 4(2n− 1)(1− u)P ′ + 4(1− u)2P ′′,

∆P = 2nP ′ − 2(3n2 − n)P − 2(5n− 3)(1− u)P ′ − 4(1− u)2P ′′,

and we obtain

∆sa = 2a(2− 2a− n)sa + 8(n− a+ 1)(1− a)sa−1 − 4(n− a+ 1)(n− a+ 2)sa−2.

6.5. Quotient of Sn−1 by the Coxeter group Dn. Let the notation be as
in §6.3. The Coxeter group Dn acting on E is generated by the reflections in
the hyperplanes xi ± xj = 0. The ring of polynomial invariants is generated by
s1, . . . , sn−1 and ŝn =

√
sn = x1 . . . xn. The values of Γ(sa, sb) and ∆(sa) are

already computed in §6.3, and we have (recall that (s0, s1)|Sn−1 = (1, 1))

Γ(sa, ŝn) = Γ(sa, s
1/2
n ) = 1

2
s−1/2
n Γ(sa, sn)

(18)
= −2ansaŝn + 2(n− a+ 1)sa−1ŝn,

Γ(ŝn, ŝn) = Γ(s1/2n , s1/2n ) = 1
4
s−1
n Γ(sn, sn)

(18)
= −n2ŝ2n + sn−1,

∆(ŝn) = ∆E(ŝn)− 2n(n− 1)ŝn = −2n(n− 1)ŝn (by [3, Eq. (4.5)]).

Thus, for a given n, the image of ∆ is a solution of the DOP problem if and only
if, for any a, b < n, Γ(sa, sb) does not contain any monomial of the form sksn with
2 ≤ k ≤ n. This is the case for n = 4. The corresponding matrix g is




−16x2 + 4x+ 12y −24xy + 8y + 16z2 −16xz + 6z
−24xy + 8y + 16z2 −36y2 + 4xy + 12z2 −24yz + 4xz

−16xz + 6z −24yz + 4xz −16z2 + y




The projection of the cuspidal edge of the surface deg g = 0 onto the xz-plane is
the deltoid (see Figure 5 and [3, §4.12]) up to affine transformation of R2.

If n ≥ 5, then Φ∗(∆) is not a solution of the DOP problem because, for example,

Γ(s4, sn−1) = −16(n− 1)s4sn−1 + 4(n− 4)s3sn−1 + 4(n− 2)s2ŝ
2
n

has a monomial of degree 3. However, for any n, it is, evidently, a solution of the
weighted DOP problem with weights (1, . . . , 1, 1

2
).
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6.6. Direct products of Coxeter groups.
Let finite Coxeter groups Gα, α = 1, . . . , m, act on vector spaces Eα, dimEα =

nα. We assume that these representations are irreducible or trivial. Consider the
diagonal action of G = G1 × · · ·×Gm on E =

⊕
αEα. Let n =

∑
α nα. We denote

the Laplace operator and the corresponding “carré du champ” on the unit sphere
in E (resp. in Eα) by ∆ and Γ (resp. by ∆α and Γα). Let Iα,k, k = 1, . . . , nα, be
sets of basic invariant homogeneous polynomials for the respective group actions,
dα,k = deg Iα,k. We assume that dα,1 is minimal among the dα,k’s. Then dα,1 = 2
unless Gα is trivial.

Let gijα
(
xα,1, . . . , xα,nα

)
and biα

(
xα,1, . . . , xα,nα

)
be the polynomials such that

Γα(Iα,i, Iα,j) = gijα
(
Iα,1, . . . , Iα,nα

)
, ∆α(Iα,i) = biα

(
Iα,1, . . . , Iα,nα

)
.

We assume that deg gijα ≤ 2 and biα ≤ 1 for any i, j, α ≥ 1 (notice that this condition
is fulfilled for An and Bn, but not for D4; see §§6.2–6.5).

First construction. Suppose that d1,1 = · · · = dm,1 = 2, i.e. all the Iα,1 are
positive definite quadratic forms. Let Sn−1 be the sphere in E given by the equa-
tion

∑
α Iα,1 = 0 and let Φ : Sn−1 → Rn−1 be the mapping defined by p 7→(

Ĩ1(p), I2(p), . . . , Im(p)
)
, where Iα = (Iα,1, . . . , Iα,nα

) and Ĩ1 = (I1,2, . . . , I1,n1
).

It is easy to see that the image of ∆ through Φ is a solution of the DOP prob-
lem. Denote the coordinates in the target space R

n−1 by (x̃1,x2, . . . ,xm) where
xα = (xα,1, . . . , xα,nα

) and x̃α = (xα,2, . . . , xα,nα
). Then the corresponding matrix

g is the block matrix (gαβ)
m
α,β=1 with the block dimensions (n1−1, n2, . . . , nm) and

the blocks gαβ =
(
gijαβ(x̃1,x2, . . . ,xm)

)
i,j

defined by

gijαβ =





gij1 (1− x2,1 − · · · − xm,1, x̃1), α = β = 1,

gijα (xα), α = β ≥ 2,

−dα,i dβ,j xα,i xα,j, α 6= β.

Up to affine linear change of coordinates, Φ∗(∆) does not depend on the order of
the summands. For example, if we exchange E1 and E2, then the resulting solution
is obtained from the initial one by the affine linear change of coordinates

(x̃1,x2, . . . ,xm) 7→ (x̃2, 1− x2,1 − · · · − xm,1, x̃1, x3, . . . ,xm).

Second construction. Suppose now that G1 is trivial, d2,1 = · · · = dm,1 =
2, and dimEm = 1. Then I1,1, . . . , I1,n1

are just linear coordinates on E1 and
d1,1 = · · · = d1,n1

= 1. Let Sn−1 be the sphere in E given by the equation∑
i I

2
1,i +

∑
α≥2 Iα,1 = 0 and let Φ : Sn−1 → Rn−1 be the mapping defined by p 7→(

I1(p), . . . , Im−1(p)
)
, where Iα = (Iα,1, . . . , Iα,nα

). Then Φ∗(∆) is a solution of the

DOP problem. Denote the coordinates in the target space Rn−1 by (x1, . . . ,xm−1)
where xα = (xα,1, . . . , xα,nα

). Then the corresponding matrix g is the block matrix(
g(α, β)

)m
α,β=1

with the block dimensions (n1, n2, . . . , nm−1) and with the blocks

g(α, β) =
(
gijαβ
)
i,j

defined by

gijαβ =





δij − x1,i x1,j, α = β = 1,

gijα (xα), 2 ≤ α = β ≤ m− 1,

−dα,i dβ,j xα,i xα,j , α 6= β.
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6.7. Quotient of Sn−1 and Sn by the Coxeter group A1 +An−1.
Let the notation be as in §6.2. Let Sn−1 be the unit sphere in H+ = R⊕H ⊂

R ⊕ E (we denote the coordinate on R by x0). Let ∆+ be the Laplace operator
on Sn−1. Consider the product G of the Coxeter groups A1 and An−1 diagonally
acting on H+. According to §6.6 (first construction), the image of ∆+ through the
mapping Φ+ : Sn−1 → R

n−1, (x0, x1, . . . , xn) 7→ (s2, . . . , sn), provides a solution of
the DOP problem on the domain Φ+(S

n−1), which is bounded by the hypersurface

(1 + 2X2)F = 0, F = discru
(
un +X2u

n−2 + · · ·+Xn−1u+Xn

)
= 0. (20)

Its component 1+2X2 = 0 is the image of H ∩S
n−1. For n = 4, this is the solution

in Thm. 5.1(iii3) (see Figure 1) up to rescaling of the coordinates. The entries
of the matrix g are given by the formulas in §6.3 with s0, s1, . . . , sn replaced by
1, 0, X2, . . . , Xn. We have ∆+(sa) = ∆(sa)− asa with ∆(sa) as in (17).

Let Sn be the unit sphere in R ⊕ H+. We denote the newly added coordinate
by x̂0. Extend the above action of G to R ⊕ H+ assuming that it acts trivially
on the first component. Consider the image of ∆Sn through (x̂0, x0, x1, . . . , xn) 7→
(x̂0, s2, . . . , sn). According to §6.6 (second construction), it gives a solution of the
DOP problem in the domain in R

n with coordinates (X1, . . . , Xn) bounded by the
hypersurface (1 + 2X2 − X2

1 )F = 0; see (20). We have g1b = δ1b − bX1Xb, g
ab

for 2 ≤ a ≤ b are as above, ∆Sn(sa) = ∆(sa) − 2asa (∆(sa) is as in (17)), and
∆Sn(x̂0) = −nx̂0 For n = 3 we obtain (i∗6) in Remark 5.3 up to rescaling.

The solution (i6) in Theorem 5.1 and its generalization for higher dimensions can
be obtained as the image of ∆Sn through a quotient by A1 + An−1 using a more
direct (and somewhat more natural) construction as follows. Let the notation still
be as in §6.2. Let Sn be the unit sphere in R⊕E. Consider the mapping S

n → R
n,

(x0, x1, . . . , xn) 7→ (s1, . . . , sn). Its image is bounded by the hypersurface

(1 + 2X2 −X2
1 ) discru

(
un +X1u

n−1 + · · ·+Xn−1u+Xn

)
= 0.

Using the computations in §6.2, for 1 ≤ a ≤ b ≤ n, we obtain

gab = (n− b+ 1)sa−1sb−1 − absasb +
∑

l≥1

(a− b− 2l)sa−l−1sb+l−1

with s0, . . . , sn replaced by 1, X1, . . . , Xn and sk = 0 for k 6∈ [0, n]. We have
∆Sn(sa) = −a(n+a−1)sa. When n = 3, we obtain the solution in Theorem 5.1(i6)
with α = 1/2 (see Figure 2) after rescaling (x, y, z) = (3−1/2X1, X2, 3

3/2X3).

6.8. Quotient of Sn by the Coxeter group A1 +Bn.
Let the notation be as in §6.3. Let Sn be the unit sphere in E+ = R⊕E and let

∆+ be the Laplace operator on Sn. We denote the coordinate on R by x0 (recall
that the coordinates on E are x1, . . . , xn). Consider the product of the Coxeter
groups A1 and Bn diagonally acting on E+. It is generated by the reflections in
the hyperplanes xi = 0 (0 ≤ i ≤ n) and xi = xj (1 ≤ i < j ≤ n).

According to §6.6 (first construction), the image of ∆+ through the mapping
Φ+ : Sn → Rn, (x0, x1, . . . , xn) 7→ (s1, . . . , sn), provides a solution of the DOP
problem on the domain Φ+(S

n), which is bounded by the hypersurface

Xn(1−X1) discru
(
un +X1u

n−1 + · · ·+Xn−1u+Xn

)
= 0.

Its component X1 = 1 is the image of E∩S
n. The other components are as in §6.3.

In the case n = 3, this is the solution in Thm. 5.1(i4) (see Figure 1) up to rescaling
of the coordinates. The entries of g are as in §6.3, but with s0, s1, . . . , sn replaced
by 1, X1, . . . , Xn; ∆+(sa) = ∆(sa)− 2asa (with ∆(sa) as in (19)).
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6.9. Quotient of Rn by the affine Coxeter group C̃n.
Let E = Rn with coordinates θ1, . . . , θn. The ring of invariant Fourier poly-

nomials for the affine Coxeter group B̃n−1 is freely generated by s1, . . . , sn where
P (u) = (u+ t1) . . . (u+ tn) =

∑n
k=0 sku

n−k, ti = cos θi. We consider the mapping
Φ : Rn → Rn, (θ1, . . . , θn) 7→ (s1, . . . , sn). Its image Ω is the set of all n-tuples
X = (X1, . . . , Xn) such that all roots of the polynomial PX(u) = un+

∑n
k=1Xku

n−k

are real and belong to the interval [−1, 1]. Therefore Ω is bounded by the union of
the hypersurface {X | discruPX(u) = 0} and two hyperplanes {X | PX(±1) = 0}.
When the point X moves from Ω crossing the discriminantal hypersurface, two real
roots disappears. When it crosses the hyperplane X = ±1, one of the roots gets out
from the interval [−1, 1]. One easily checks that Ω is the only bounded component
of the complement (cf. Thm. 5.1(i5), Figure 4, §5.3; for n = 2 see [3, §4.7]).

By linearity, Γ(sk, sm) is the coefficient of un−kvn−m in Γ(P (u), P (v)). We have

Γ(ti, tj) = Γ(cos θi, cos θj) = δij sin θi sin θj = δij(1− t2i ).

Hence

Γ
(
P (u), P (v)

)
=
∑

i,j

(
∂tiP (u)

)(
∂tjP (v)

)
Γ(ti, tj) =

∑

i

P (u)P (v)(1− t2i )

(u+ ti)(v + ti)

=
P (u)P (v)

v − u

∑

i

(1 + uti
u+ ti

− 1 + vti
v + ti

)
=
Q(u)P (v)−Q(v)P (u)

v − u

where

Q(u) =
∑

i

P (u)(1 + uti)

u+ ti
=
∑

i

P (u)
(
u+

1− u2

u+ ti

)

= nuP (u) + (1− u2)P ′(u) =
∑

k

sk

(
kun−k+1 + (n− k)un−k−1

)
,

thus Γ
(
P (u), P (v)

)
is equal to

∑

k,m

sksm

(
k
un−k+1vn−m − vn−k+1un−m

v − u
+ (n− k)

un−k−1vn−m − vn−k−1un−m

v − u

)

=
∑

k,m

sksm

{
k

(
k−m−1∑

l=1

un−k+lvn−m−l −
m−k∑

l=0

un−k−lvn−m+l

)

+ (n− k)

(
k−m∑

l=0

un−k+l−1vn−m−l−1 −
m−k−1∑

l=1

un−k−l−1vn−m+l−1

)}
.

Hence, for a ≤ b, we have

Γ(sa, sb) = (n− b+ 1)sa−1sb−1 − asasb +
∑

l≥1

(b− a+ 2l)(sa−lsb+l − sa−l−1sb+l−1)

It is easy to see that ∆(sa) = −asa.
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6.10. Quotients of Rn by the affine Coxeter groups B̃n and D̃n.
Let the notation be as in §6.9. The ring of invariant Fourier polynomials for the

affine Coxeter group B̃n is freely generated by s1, . . . , sn−1 and

ŝn =

n∏

i=1

√
2 cos(θi/2) =

n∏

i=1

√
1 + cos θi = P (1)1/2.

Γ(sa, sb) for a ≤ b ≤ n− 1 are as in §6.9 with the substitution sn = ŝ2n −
∑n−1

k=0 sk
(recall that s0 = 1). Using the computations in §6.9 we obtain

2Γ(P, ŝn) =
Γ(P (u), P (1))

P (1)1/2
=
Q(u)P (1)−Q(1)P (u)

P (1)1/2(1− u)
= ŝn

(
(1 + u)P ′ − nP

)
,

hence 2Γ(sa, ŝn) = ((n− a+ 1)sa−1 − asa)ŝn and

4Γ(ŝn, ŝn) =
Γ(P (1), P (1))

P (1)
=

1

P (1)

∑

i

P (1)2(1− t2i )

(1 + ti)2
=
∑

i

(
2P (1)

1 + ti
− P (1)

)

= 2P ′(1)− nP (1) = −nŝ2n +
n−1∑

k=0

(n− k)sk.

We have ∆(sa) = −asa and ∆(ŝn) = −1
4nŝn.

The image of ∆ through Φ : Rn → Rn, (θ1, . . . , θn) 7→ (s1, . . . , sn−1, ŝn) is not

a solution of the DOP problem when n ≥ 3 (and B̃2 is the same as C̃2). Indeed,
Γ(s2, sn−1) has monomial (n− 1)s1ŝ

2
n of degree 3. However, Φ∗(∆) is a solution of

the weighted DOP problem with weights (1, . . . , 1, 12).

For the affine group D̃n, all the computations are almost the same and we omit
the details. The ring of invariant Fourier polynomials is generated by s1, . . . , sn−2,

ŝn, and ŝn−1 =
∏n

i=1

√
2 sin(θ/2) =

√
(−1)nP (−1). For a ≤ b ≤ n − 2, Γ(sa, sb),

Γ(sa, ŝn), and Γ(ŝn, ŝn) are the same as above but with the substitutions

sn = 1
2

(
ŝ2n + (−1)nŝ2n−1

)
−
∑

k≥1

sn−2k, sn−1 = 1
2

(
ŝ2n + (−1)nŝ2n−1

)
−
∑

k≥1

sn−2k−1.

The values of Γ(ŝn−1, ∗) are computed similarly and we arrive to the same conclu-

sion as above: the quotient by D̃n, n ≥ 4, does not provide a solution of the DOP
problem, but it provides a solution of the weighted DOP problem with weights
(1, . . . , 1, 1

2
, 1
2
).

6.11. Quotient of Rn−1 by the affine Coxeter group Ãn−1.
Let E be R

n with coordinates θ1, . . . , θn and H = {θ1 + · · · + θn = 0}. The

affine Coxeter group Ãn−1 acting on H is generated by the orthogonal reflections
in the hyperplanes xi = xj and a suitable translation. The ring of invariant Fourier
polynomials is freely generated by s1, . . . , sn−1 where P (u) = (u+ t1) . . . (u+ tn) =∑n

k=0 sku
n−k, ti = exp(i θi), i =

√
−1. Notice that s̄k|H = sn−k|H , in particular

sn|H = 1 and sn/2|H is real when n is even. We consider the mapping Φ : H →
Rn−1, (θ1, . . . , θn) 7→ s = (s1, . . . , s⌊n/2⌋) where we identify Rn−1 with C(n−1)/2
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(which we define as C(n−2)/2 × R when n is even). Then Φ(H) is bounded by the
hypersurface discruP (u, Z) = 0, Z = (Z1, . . . , Z⌊n/2⌋) ∈ C(n−1)/2,

P (u, Z) =

{
u2k + Z1u

2k−1 + · · ·+ Zku
k + Z̄k−1u

k−1 + · · ·+ Z̄1u+ 1, n = 2k,

u2k+1 + Z1u
2k + · · ·+ Zku

k + Z̄ku
k+1 + · · ·+ Z̄1u+ 1, n = 2k + 1

(cf. Thm. 5.1(vi) and Figure 3; for n = 2 see [3, §4.12]). Let ∆ = ∆H and let Γ
be the associated carré du champ. Then Γ(sk, sm) is the coefficient of un−kvn−m

in Γ(P (u), P (v)). For any functions f , g we have Γ(f, g) = ΓE(f, g)− 1
n
(∂0f)(∂0g)

where ∂0 =
∑n

i=1
∂

∂θi
(see (14)). Denote ∂

∂ti
by ∂i. We have

∂0P (u) =
∑

i

i ti∂iP = i
∑

i

tiP

u+ ti
= i
∑

i

(
1− u

u+ ti

)
P = i

(
nP (u)− uP ′(u)

)
,

thus Γ
(
P (u), P (v)

)
= ΓE

(
P (u), P (v)

)
+ 1

n

(
nP (u)− uP ′(u)

)(
nP (v)− vP ′(v)

)
. We

also have ΓE(ti, tj) = (dti/dθi)(dtj/dθj)ΓE(θi, θj) = −δijt2i . Then

−ΓE

(
P (u), P (v)

)
= −

∑

i,j

(
∂iP (u)

)(
∂jP (v)

)
ΓE(ti, tj) =

∑

i

P (u)P (v)t2i
(u+ ti)(v + ti)

=
P (u)P (v)

v − u

∑

i

(
v−u+ u2

u+ ti
− v2

v + ti

)
= nP (u)P (v)+

u2P ′(u)P (v)− v2P ′(v)P (u)

v − u

= nP (u)P (v) +
∑

k,m

(n− k)sksm
un−k+1vn−m − vn−k+1vn−m

v − u

= nP (u)P (v) +
∑

k,m

(n− k)sksm

(
k−m−1∑

l=1

un−k+lvn−m−l −
m−k∑

l=0

un−k−lvn−m+l

)

Hence, for a ≤ b, we have

Γ(sa, sb) =
a(b− n)

n
sasb +

∑

l≥1

(b− a+ 2l)sa−lsb+l.

Setting sk = xk + iyk, Γ(sa, sb) = A + iB, and Γ(sa, s̄b) = C + iD, we obtain for
a ≤ b ≤ n/2:

2Γ(xa, xb) = A+C, 2Γ(xa, yb) = B−D, 2Γ(ya, xb) = B+D, 2Γ(ya, yb) = C −A,

A =
a(b− n)

n
(xaxb − yayb) +

∑

l≥1

(b− a+ 2l)(xa−lxb+l − ya−lyb+l),

B =
a(b− n)

n
(xayb + yaxb) +

∑

l≥1

(b− a+ 2l)(xa−lyb+l + ya−lxb+l),

C = −ab
n
(xaxb + yayb) +

∑

l≥1

(n− a− b+ 2l)(xa−lxb−l + ya−lyb−l),

D =
ab

n
(xayb − yaxb)−

∑

l≥1

(n− a− b+ 2l)(xa−lyb−l − ya−lxb−l).

For a ≤ n/2 we have ∆(xa) = λaxa, ∆(ya) = λaya, λa = a(a− n)/n.
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7. Conical surfaces

Theorem 7.1. Let (Ω, g, ρ) be a solution of the SDOP problem in C3 such that
∂Ω contains a relatively open subset of an irreducible conical surface Σ, i.e. of a
surface Σ = {Γ(x, y, z) = 0} where Γ is an irreducible homogeneous polynomial.
Then deg Γ ≤ 2.

Remark 7.2. There exist solutions of the DOP problem in bounded domains
whose boundaries contain a piece of the quadratic cone. For example, the solutions
(1b), (1e), (3e), (3i), (5g), (6f) in [3, §7.2] (see Figure 7).

(1b) (1e) (3e) (3i) (5g) (6f)

Figure 7. Bounded domains Ω from [3, §7.2] admitting solutions of
the DOP problem, such that ∂Ω contains a piece of the quadratic cone.

Proposition 7.3. Let (g,Γ) be a solution of the AlgDOP problem in C3 such
that Γ is an irreducible homogeneous polynomial and det g is not a homogeneous
polynomial of degree 6. Then deg Γ ≤ 2.

One can easily derive Theorem 7.1 from Proposition 7.3. Indeed, if det g (in the
setting of Theorem 7.1) were a homogeneous polynomial of degree 6, then affine
coordinates (x, y, z) could be chosen so that degx det g = 6 and Ω contains a half-
cylinder {x > 0, y2 + z2 < 1}, which contradicts [3, Cor. 2.19].

The rest of this section is devoted to the proof of Proposition 7.3. Let Γ be as
in Proposition 7.3. Let Σ be the surface in C3 defined by the equation Γ = 0, and
let C be the curve in P2 = P(C3) defined by the same equation. Any local branch
γ of C has a parametrization of the form t 7→ (tp, tq + o(tq)), 1 ≤ p < q, in some
affine coordinates. We then say that γ is of type (p, q).

Lemma 7.4. Any local branch of C is of type (1, 2) or (2, 4).

Proof. The arguments are as in §3 but simpler. Let π : C3 \ {(0, 0, 0)} → P2 be
the quotient map (then Σ = π−1(C)). Let γ be a local branch of C at p ∈ CP

2

parametrized by t 7→ γ(t) = (ξ1(t) : ξ2(t) : ξ3(t)). Then Σ near the line π−1(p)
is parametrized by (t, u) 7→ (uξ1(t), uξ2(t), uξ3(t)). Similarly to §3, we rewrite the
equations (3) in the form E1 = E2 = E3 = 0 where

Ei = u
3∑

j=1

(ξ̇j+1ξj−1 − ξ̇j−1ξj+1)g
ij(uξ1, uξ2, uξ3) =

∞∑

α=0

tα
3∑

β=1

Eα,β,i u
β

(the indices j ± 1 are considered mod 3) and the Eα,β,i are linear forms in gijklm
whose coefficients are polynomial functions of the coefficients of the ξi’s.

We have degC ≤ 5 because otherwise det g would be homogeneous of degree 6.
Hence C may have only local branches of type (p, q) with q ≤ 5. For each pair (p, q),
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1 ≤ p < q ≤ 5, except (1, 2) and (2, 4) (thus for 8 pairs) we consider a branch γ of
type (p, q) of the form t 7→ (1 : tp : tq +

∑
k>q akt

k) with indeterminate coefficients
ak and solve the maximal triangular subsystem of the system of equations Eα,β,i = 0

for the unknowns gijklm. This means that we find an equation implying that some
unknown is zero, replace this unknown by zero in all other equations, and repeat
this process as long as we can do. For all pairs (p, q) except (1, 4), (1, 5) we obtain
that deg g is homogeneous of degree 6. In the two exceptional cases we obtain that
z2 divides det g. Since q ≤ deg Γ, this implies deg(z2Γ) ≥ 6, hence det g = z2Γ up
to a scalar factor. This means that det g is homogeneous of degree 6. �

Let d and g be the degree and the genus of C respectively. Let a2k, k ≥ 2,
be the number of local branches of type (2, 4) which admit a parametrization t 7→
(t2, t2k+1) in some local curvilinear coordinates (the A2k-singularity). Let ď be the
degree of the projectively dual curve Č. Let n =

∑
γ δ(γ)+

∑
γ1,γ2

(γ1 · γ2) where γ
runs over all local branches of C, δ(γ) is the delta-invariant of γ, and (γ1, γ2) runs
over all unordered pairs of local branches (see [3, §3.2] for more details). Due to
Lemma 7.4, the Plücker-like equations [3, Eqs. (3.13)–(3.15)] take the form

g + n+
∑

ka2k = (d− 1)(d− 2)/2,

ď = d(d− 1)− 2n−
∑

(2k + 1)a2k,

2− 2g = 2ď− d−
∑

a2k

(all the summations run over k ≥ 2). One easily checks that these equations do not
have any integer non-negative solution with 3 ≤ d ≤ 5. Proposition 7.3 is proven.
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