AGNIHOTRI-WOODWARD-BELKALE POLYTOPE AND THE INTERSECTION OF KLYACHKO CONES

S.Yu. Orevkov, Yu.P. Orevkov

Abstract

Agnihotri-Woodward-Belkale polytope Δ (resp. Klyachko cone \mathcal{K}) is the set of solutions of the multiplicative (resp. additive) Horn's problem, i.e., the set of triples of spectra of special unitary (resp. traceless Hermitian) $n \times n$ matrices satisfying $A B=C$ (resp. $A+B=C) . \mathcal{K}$ is the tangent cone of Δ at the origin. The group $G=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ acts naturally on Δ.

In this note, we report on a computer calculation which shows that Δ coincides with the intersection of $g \mathcal{K}, g \in G$, for $n \leq 14$ but does not coincide for $n=15$.

Our motivation was an attempt to understand how to solve the multiplicative Horn problem in practice for given conjugacy classes in $S U(n)$.

Introduction

For a special unitary matrix $A \in S U(n)$, let us denote by $\lambda(A)$ its spectrum i.e. the vector $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ which is uniquely defined by the conditions

$$
\begin{equation*}
\lambda_{1}+\cdots+\lambda_{n}=0, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n} \geq \lambda_{1}-1, \tag{1}
\end{equation*}
$$

and $\exp \left(2 \pi i \lambda_{1}\right), \ldots, \exp \left(2 \pi i \lambda_{n}\right)$ are the eigenvalues of A. The mapping $\lambda: S U(n) \rightarrow$ \mathbb{R}^{n} identifies conjugacy classes of $S U(n)$ with points of the $(n-1)$-simplex \mathfrak{A} given by (1). This simplex is called Weyl alcove of $S U(n)$. It sits in the Weyl chamber \mathfrak{t}_{+}defined by (1) with the last inequality excluded.

Agnihotri-Woodward [1] and Belkale [2] obtained necessary and sufficient conditions on three vectors α, β, γ for the existence of matrices $A, B, C \in S U(n)$ such that $\alpha=\lambda(A), \beta=\lambda(B), \gamma=\lambda(C)$, and $A B=C$. They have shown that the image of the mapping $\Lambda: S U(n)^{2} \rightarrow \mathfrak{A}^{3},(A, B) \mapsto(\lambda(A), \lambda(B), \lambda(A B))$, is a polytope $\Delta \subset \mathfrak{A}^{3}$ explicitely described in terms of quantum Schubert calculus (see $\S 1$).

This result is a generalization of Klyachko's solution [8] of Horn's problem (see an excellent survey [7]). Namely, Klyachko have described the set \mathcal{K} of all triples of n-vectors realizable by spectra of traceless Hermitian matrices A, B, and $A+B$. Of course, \mathcal{K} is the tangent cone of Δ at the origin O of $\mathbb{R}^{3 n}$. Its facets are described in terms of the classical Schubert calculus. We call Δ and \mathcal{K} the Agnihotri-WoodwardBelkale polytope and the Klyachko cone respectively.

How to apply these results in practice? Suppose, we have a concrete unitary matrix C and we ask if it is realizable as a product of matrices of given conjugacy classes (see [12] for an example of applications). Though there exists a finite set of inequalities to check, the number of them grows exponentially and, for matrices, say, 30×30 there is no chance to generate all inequalities in a reasonable time. This concerns both additive and multiplicative problems. However, for the additive
problem, the honeycomb description of \mathcal{K} due to Knutson and Tao [9, 10] allows to reduce the problem to the existence of a solution of $3\binom{n}{2}$ simultaneous linear inequalities on $\binom{n-1}{2}$ variables (see also [6]). The same problem for k matrices is reduced to the existence of a solution of $3(k-2)\binom{n}{2}$ inequalities on $(k-2)\binom{n-1}{2}+$ $(k-3)(n-1)$ variables. For the multiplicative problem, such a reduction seems to be unknown (see [14]). This is why we study when the multiplicative problem can be reduced to the additive problem.

Let I be the identity $n \times n$ matrix and let $\omega=\exp (2 \pi i / n)$. Easy to see that \mathfrak{A} is the convex hull of $\lambda(Z)$ where $Z=\left\{\omega^{k} I\right\}$ is the center of $S U(n)$. Moreover, the action of Z on $S U(n)$ by multiplication induces affine linear actions of Z on \mathfrak{A} and of $G=Z \times Z$ on Δ. This yields natural lower and upper estimates for Δ :

$$
\begin{equation*}
\operatorname{conv}(G O) \subset \Delta \subset \Delta_{\mathcal{K}} \quad \text { where } \quad \Delta_{\mathcal{K}}=\bigcap_{g \in G} g \mathcal{K} \tag{2}
\end{equation*}
$$

("conv" stands for the convex hull; $G O=\{g O \mid g \in G\}=\Lambda(G)$). Are these estimates sharp? For the lower estimate, this question was asked and answered in [2; Sect. 7]. The answer is: the equality $\operatorname{conv}(G O)=\Delta$ holds for $n \leq 3$ and it fails for $n=4$. For the upper estimate, we ask and answer this question in this note. The answer is: the equality $\Delta=\Delta_{\mathcal{K}}$ holds for $n \leq 14$ and it fails for $n=15$.

Agnihotri and Woodward $[1 ;$ Sect. 8$]$ discuss the action of G on Δ and its relation with a hidden symmetry of Gromov-Witten invariants. In particular, they point out that the action of G allows to reduce degree d invariants to degree zero invariants for small values of n (which implies $\Delta=\Delta_{\mathcal{K}}$ for those n), but, for $n=10$, they give an example where the reduction is impossible. In terms of the polyhedra Δ and $\Delta_{\mathcal{K}}$, this means that for $n=10$, among the inequalities which are used in [1] for Δ, there is at least one which cannot be reduced by G to a homogeneous inequality. However, this inequality does not belong to a smaller system of inequalities for Δ which is given by Belkale in [2]. For the smaller system of inequalities, such examples occur only for $n \geq 15$.

1. Description of Δ and \mathcal{K} in terms of (quantum) Schubert calculus

Fix positive integers r, k such that $r+k=n$. Let $Q H^{*}\left(G_{r}\left(\mathbb{C}^{n}\right)\right)$ be the quantum cohomology ring of the Grassmanian of r-planes in \mathbb{C}^{n}. It is an algebra over $\mathbb{Z}[q](q$ is an indeterminate) which is generated as a $\mathbb{Z}[q]$-module by the elements $\left\{\sigma_{a}\right\}$ where a runs over the set of partitions $\mathcal{P}_{r, k}=\left\{\left(a_{1}, \ldots, a_{r}\right) \mid k \geq a_{1} \geq \cdots \geq a_{r} \geq 0\right\}$. Let $N_{a b}^{c}(r, k)=\sum_{d=0}^{\infty} N_{a b}^{c, d}(r, k) q^{d}$ be the structure constants of this algebra, i.e.

$$
\sigma_{a} \cdot \sigma_{b}=\sum_{c \in \mathcal{P}_{r, k}} \sum_{d=0}^{\infty} N_{a b}^{c, d}(r, k) \sigma_{c} q^{d} .
$$

The quantum multiplication is homogeneous if we set $\operatorname{deg} q=n, \operatorname{deg} \sigma_{a}=|a|:=$ $a_{1}+\cdots+a_{r}$, i.e. $N_{a b}^{c, d}(r, k)$ is nonzero only if $n d=|a|+|b|-|c|$. If $d=0$ then $N_{a b}^{c, d}(r, k)$ coincides with the classical Littlewood-Richardson coefficient $N_{a b}^{c}$ (in particular, it does not depend on r and k). An algorithm of computation of $N_{a b}^{c, d}(r, k)$ is given in [4]. It is implemented in [5].

Let $\overline{\mathcal{I}}=\left\{(r, k ; a, b, c ; d) \mid r+k=n,(a, b, c) \in \mathcal{P}_{r, k}^{3}\right\}$. For $t=(r, k ; a, b, c ; d) \in$ \mathcal{I} we also denote $N_{a b}^{c, d}(r, k)$ by N_{t}. Let $\mathcal{I}=\left\{t \in \overline{\mathcal{I}} \mid N_{t}=1\right\}$ and let \mathcal{I}_{0} be the subset of \mathcal{I} defined by $d=0$.

For $t=(r, k ; a, b, c ; d) \in \mathcal{I}$, we define $H_{t}=H_{a b}^{c, d}(r, k)$ as the half-space of $\mathbb{R}^{3 n}$ given by the inequality $h_{t}(\alpha, \beta, \gamma) \geq 0$ where

$$
h_{t}(\alpha, \beta, \gamma)=d+\sum_{i=1}^{r} \gamma_{k+i-c_{i}}-\sum_{i=1}^{r} \alpha_{k+i-a_{i}}-\sum_{i=1}^{r} \beta_{k+i-b_{i}}
$$

As usually, we regard an elements $a=\left(a_{1}, \ldots, a_{r}\right)$ of $\mathcal{P}_{r, k}$ as a Young diagram inscribed in the rectangle $r \times k$ which has r rows (numbered from the top to the bottom) and k columns (numbered from the left to the right). The Young diagram of a is the union of a_{1} leftmost squares of the first row, a_{2} leftmost squares of the second row etc. So, its area is $|a|$.

Let $\lambda: S U(n) \rightarrow \mathfrak{A}, \Lambda: S U(n)^{2} \rightarrow \Delta, \mathfrak{t}^{+}$, and \mathcal{K} be as in Introduction. The results of Klyachko and Agnihotri-Woodward-Belkale discussed in Introduction state that

$$
\mathcal{K}=\mathfrak{t}_{+}^{3} \cap\left(\bigcap_{t \in \mathcal{I}_{0}} H_{t}\right), \quad \Delta=\mathfrak{A}^{3} \cap\left(\bigcap_{t \in \mathcal{I}} H_{t}\right)
$$

2. The action of G

Recall that $G=Z \times Z$ where Z is the center of $S U(n)$. Let $\Omega: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the affine linear mapping defined by

$$
\Omega\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}-1\right)+(1 / n, \ldots, 1 / n)
$$

It is easy to check that $\mathfrak{A}=\bigcap_{j=0}^{n-1} \Omega^{j}\left(\mathfrak{t}_{+}\right)=\operatorname{conv}\left\{\Omega^{j}(\overrightarrow{0}) \mid 0 \leq j<n\right\}$. The action of G we spoke about in Introduction, is

$$
g(\alpha, \beta, \gamma)=\left(\Omega^{i}(\alpha), \Omega^{j}(\beta), \Omega^{i+j}(\gamma)\right) \quad \text { for } \quad g=\left(\omega^{i}, \omega^{j}\right)
$$

Obviously, Δ is invariant under G. Indeed, $A B=C$ iff $\left(\omega^{i} A\right)\left(\omega^{j} B\right)=\omega^{i+j} C$.
It is shown in $[1 ;$ Sect. 8$]$ that the action of G on Δ corresponds to the action of G on \mathcal{I} defined as follows. Quantum Pierri formula (see [3]) implies that

$$
\sigma_{k} \sigma_{a}= \begin{cases}\sigma_{k, a_{1}, \ldots, a_{r-1}}, & a_{r}=0 \\ q \sigma_{a_{1}-1, \ldots, a_{r}-1}, & a_{r} \neq 0\end{cases}
$$

Hence, for any $a, b, c \in \mathcal{P}_{r, k}$ and $i, j \in \mathbb{Z}$, we have

$$
\sigma_{k}^{i} \sigma_{a}=\sigma_{a^{\prime}} q^{d_{a}^{\prime}}, \quad \sigma_{k}^{j} \sigma_{b}=\sigma_{b^{\prime}} q^{d_{b}^{\prime}}, \quad \sigma_{k}^{i+j} \sigma_{c}=\sigma_{c^{\prime}} q^{d_{c}^{\prime}}
$$

for certain $d_{a}^{\prime}, d_{b}^{\prime}, d_{c}^{\prime} \geq 0$ and $a^{\prime}, b^{\prime}, c^{\prime} \in \mathcal{P}_{r, k}$ uniquely determined by a, b, c and i, j. Thus, for $t=(r, k ; a, b, c ; d)$ and $t^{\prime}=\left(r, k ; a^{\prime}, b^{\prime}, c^{\prime} ; d^{\prime}\right)$ where $d^{\prime}=d+d_{c}^{\prime}-d_{a}^{\prime}-d_{b}^{\prime}$, we have $N_{t}=N_{t^{\prime}}$. In other words, the quantum Littlewood-Richardson coefficients are symmetric under the action of G on $\overline{\mathcal{I}}$ defined by $g t=t^{\prime}$ for $g=\left(\omega^{i}, \omega^{j}\right)$ (this action is well defined because $\sigma_{k}^{n}=q^{k}$). In particular, \mathcal{I} is invariant under the action of G. It is shown in [1] that the two actions of G (on \mathcal{I} and on Δ) are coherent, i.e., $g H_{t}=H_{g t}$.

3. Symmetries of Δ LEAVIng \mathcal{K} invariant

The the action of any non-trivial $g \in G$ is such that $g \mathcal{K} \neq \mathcal{K}$. There are also evident symmetries which are common for Δ and \mathcal{K}.

Since $A B=C \Leftrightarrow B^{-1} A^{-1}=C^{-1}$ and $A+B=C \Leftrightarrow(-A)+(-B)=-C$, both Δ and \mathcal{K} are invariant under the involution $(\alpha, \beta, \gamma) \mapsto\left(\alpha^{*}, \beta^{*}, \gamma^{*}\right)$ where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{*}=\left(-\alpha_{n}, \ldots,-\alpha_{1}\right)$. For $t \in \overline{\mathcal{I}}$, we denote the image of H_{t} under the mapping $(\alpha, \beta, \gamma) \mapsto\left(\alpha^{*}, \beta^{*}, \gamma^{*}\right)$ by H_{t}^{*}. This action on the facets of Δ corresponds to the following symmetry of (quantum) Littlewood-Richardson coefficients provided by the isomorphism between the Grassmanians $G_{r}\left(\mathbb{C}^{n}\right)$ and $G_{k}\left(\mathbb{C}^{n}\right)$.

Let $t \mapsto t^{*}$ be the involution $\overline{\mathcal{I}} \rightarrow \overline{\mathcal{I}}$ defined by

$$
(r, k ; a, b, c ; d)^{*}=\left(k, r ; a^{*}, b^{*}, c^{*} ; d\right)
$$

where

$$
\left(a_{1}, \ldots, a_{r}\right)^{*}=\left(a_{1}^{*}, \ldots, a_{k}^{*}\right), \quad a_{i}^{*}=\max \left\{j \mid a_{j} \geq i\right\}
$$

(the Young diagrams of a and a^{*} are symmetric with respect to the main diagonal). For any $t \in \overline{\mathcal{I}}$, we have $N_{t}=N_{t^{*}}$ and $H_{t}^{*}=H_{t^{*}}$.

For $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{P}_{r, k}$, let $\bar{a}=\left(k-a_{r}, \ldots, k-a_{1}\right)$. Then $\overline{\mathcal{I}}$ is invariant under the mappings $t \mapsto(r, k ; b, a, c ; d)$ and $t \mapsto(r, k ; b, \bar{c}, \bar{a} ; d)$ (commutativity and the Poincaré duality). These symmetries correspond to the evident symmetries of Δ provided by $A B \sim B A$ and $A B=C \Leftrightarrow B C^{-1}=A^{-1}$.

Let G_{0} be the group of linear transformations of $\mathbb{R}^{3 n}$ generated by all symmetries discussed in this section and let \tilde{G} be the group of affine transformations generated by G and G_{0}. It is clear that $\left|G_{0}\right|=12$ and $|\tilde{G}|=12 n^{2}$.

4. Statement of the results

Proposition 1. If $n \leq 14$, then $\mathcal{I}=G \mathcal{I}_{0}=\bigcup_{G} g \mathcal{I}_{0}$. In particular, $\Delta=\Delta_{\mathcal{K}}$.
Proposition 2. If $n=15$, then $\mathcal{I}=G \mathcal{I}_{0} \cup \tilde{G} t_{0}$ and $t_{0} \notin G \mathcal{I}_{0}$ where

$$
t_{0}=(6,9 ; 663300,663300,666300 ; 1)
$$

In particular, $\Delta=\Delta_{\mathcal{K}} \cap\left(\bigcap_{\tilde{G}} g H_{t_{0}}\right)$.
Moreover, $\Delta \neq \Delta_{\mathcal{K}}$, in particular $p=(\alpha, \beta, \gamma) \in\left(\Delta_{\mathcal{K}} \backslash H_{t_{0}}\right) \subset\left(\Delta_{\mathcal{K}} \backslash \Delta\right)$ for

$$
\begin{gathered}
\alpha=\beta=\frac{1}{17}(6,6,6,6,6,0,0,0,0,0,-6,-6,-6,-6,-6) \\
\gamma=\frac{1}{17}(8,8,8,1,1,1,1,1,1,-3,-3,-3,-3,-9,-9)
\end{gathered}
$$

The minimum of $h_{t_{0}}$ on $\Delta_{\mathcal{K}}$ is attained at p.
Corollary 3. If $n \leq 15$, then the set of inequalities $h_{t} \geq 0, t \in \mathcal{I}$, defining Δ is minimal, i.e., for any $t^{\prime} \in \mathcal{I}$, we have

$$
\mathfrak{A}^{3} \cap\left(\bigcap_{t \in \mathcal{I} \backslash\left\{t^{\prime}\right\}} H_{t}\right) \neq \Delta
$$

Proof. Follows from Propositions 1 and 2 combined with Knutson-Tao-Woodward's result [11] on the minimality of the system of inequalities $\left\{h_{t} \geq 0\right\}_{t \in \mathcal{I}_{0}}$ defining \mathcal{K}.

Proposition 4. If $n=16$, then $\mathcal{I}=G \mathcal{I}_{0} \cup \tilde{G} \mathcal{I}^{\prime}$ where

$$
\begin{aligned}
& \mathcal{I}^{\prime}=\{(6,10 ; 553300,663300,663300 ; 1), \\
& \quad(7,9 ; 5533000,6633000,6633000 ; 1),(7,9 ; 5533300,6633000,6633300 ; 1), \\
& \quad(7,9 ; 5553000,6443000,6553000 ; 1),(7,9 ; 6433300,6633000,6633300 ; 1), \\
& \quad(8,8 ; 44431000,54441100,54441100 ; 1),(8,8 ; 44431000,54442000,54442000 ; 1), \\
& \quad(8,8 ; 44440000,55441100,55441100 ; 1),(8,8 ; 44441000,54441100,55441100 ; 1), \\
& \quad(8,8 ; 44441100,54431000,54441100 ; 1),(8,8 ; 44441100,54441000,55441100 ; 1), \\
& \quad(8,8 ; 44441100,54441100,55441110 ; 1)\} .
\end{aligned}
$$

We do not know any human readable proof of Propositions 1, 2, and 4. They are obtained on a computer. To check Proposition 1, we used the program lrcalc written by Buch [5]. Namely, using this program, for each $n \leq 14$ we generated all elements $t \in \mathcal{I}$ and, for each t, we checked that its orbit $G t$ (see $\S 2$) contains an element with $d=0$.

Doing the same computations for $n=15$, we found the element t_{0} whose orbit is disjoint from \mathcal{I}_{0}. The only orbit of \tilde{G} disjoint from \mathcal{I}_{0} is $\tilde{G} t_{0}$.

To check that the inequality $h_{t_{0}} \geq 0$ is independent of the others, we minimized (using [13]) $h_{t_{0}}$ under the constraints (1) and $h_{t} \circ g \geq 0, t \in \mathcal{I}_{0}, g \in G$. These are 3135129030 constraints on 30 variables (since $a=b$ in t_{0}, we may set $\alpha=\beta$). The capacity of available computers was not enough for a straight forward solution of this problem. In rest of this section we explain the trick we used to reduce the number of constraints up to 148295.

Consider the following 15×15 diagonal matrices:

$$
\begin{aligned}
A & =\operatorname{diag}(1,1,1,1,1,-1, \ldots,-1) \\
B_{1} & =\operatorname{diag}(1,1,1,-1, \ldots,-1,1,1) \\
B_{2} & =\operatorname{diag}(1,1,-1, \ldots,-1,1,1,1)
\end{aligned}
$$

Then

$$
\begin{gathered}
\lambda(A)=\lambda\left(B_{1}\right)=\lambda\left(B_{2}\right)=\frac{1}{2}(-1,-1,-1,-1,-1,0,0,0,0,0,1,1,1,1,1) \\
\lambda\left(A B_{1}\right)=\frac{1}{2}(-1,-1,0, \ldots, 0,1,1), \text { and } \lambda\left(A B_{2}\right)=\frac{1}{2}(-1,-1,-1,0, \ldots, 0,1,1,1)
\end{gathered}
$$

Let $p_{i}=\Lambda\left(A, B_{i}\right), i=1,2$. By definition, we have $p_{1}, p_{2} \in \Delta$. We have also $h_{t_{0}}\left(p_{1}\right)=h_{t_{0}}\left(p_{2}\right)=0$. Let

$$
\Delta^{\prime}=\cap_{t \in \mathcal{I}^{\prime}} H_{t}, \quad \mathcal{I}^{\prime}=\left\{t \in \mathcal{I} \mid t \neq t_{0}, h_{t}\left(p_{1}\right)=h_{t}\left(p_{2}\right)=0\right\}
$$

Lemma. If $\min _{\Delta^{\prime}} h_{t_{0}}<0$, then $\Delta \neq \Delta_{\mathcal{K}}$.
Proof. Suppose that $\min _{\Delta^{\prime}} h_{t_{0}}<0$. Let $p^{\prime} \in \Delta^{\prime}$ be such that $h_{t_{0}}\left(p^{\prime}\right)<0$. Set $p_{0}=\left(p_{1}+p_{2}\right) / 2$. Let $\mathcal{I}^{\prime \prime}=\mathcal{I} \backslash\left(\mathcal{I}^{\prime} \cup\left\{t_{0}\right\}\right)$ and $Q=\left[p^{\prime}, p_{0}\right] \cap\left(\bigcap_{t \in \mathcal{I}^{\prime \prime}}\left\{h_{t}=0\right\}\right)$. For any $t \in \mathcal{I}^{\prime \prime}$, the values of h_{t} at p_{1} and p_{2} are non-negative and at least one of them is positive, hence $h_{t}\left(p_{0}\right)>0$. Therefore, $p_{0} \notin Q$. Let q be the point of Q closest to p_{0}. Then $h_{t}(q) \geq 0$ for any $t \in \mathcal{I}^{\prime \prime}$. On the other hand, $h_{t}(q) \geq 0$ for any $t \in \mathcal{I}^{\prime}$ because $q \subset \Delta^{\prime}$. Thus, $q \in \Delta_{\mathcal{K}} \backslash \Delta$.

Thus, to show that $\Delta \neq \Delta_{\mathcal{K}}$, it is enough to find the minimum of $h_{t_{0}}$ under the constraints only from \mathcal{I}^{\prime} and this set is more than 30000 times smaller than \mathcal{I}. The minimum is attained at the point $p=(\alpha, \beta, \gamma)$ presented in Proposition 2 and we have $h_{t_{0}}(p)=-\frac{1}{17}<0$. It follows from Lemma that $\Delta \neq \Delta_{\mathcal{K}}$. However, we cannot conclude that $\min _{\Delta_{\mathcal{K}}} h_{t_{0}}=\min _{\Delta} h_{t_{0}}$. To prove this fact and to ensure that floating point computations in [13] did not affect the result, we checked that $p \in \Delta_{\mathcal{K}}$ (using lrcalc, this takes few minutes). Namely, we checked that $h_{t}(p)<0$ only for $t=t_{0}$ and $h_{t}(p)=0$ only in the following cases (up to swapping a and b):
(1) $r=3, a=b=(8,4,0), c=(9,0,0)$;
(2) $r=5, a=(7,7,3,0,0), b=(7,7,4,4,0), c=(8,8,6,1,1)$;
(3) $r=7, a=(5,5,2,2,0,0,0), b=(6,6,6,3,3,0,0), c=(5,5,5,5,3,0,0)$;
(4) $r=7, a=(5,5,3,3,3,0,0), b=(5,5,3,3,3,0,0), c=(5,5,5,5,3,0,0)$;
(5) $r=13, a^{*}=b^{*}=(9,5), c^{*}=(11,2)$;
in all these cases we have $d=1$.

References

1. S. Agnihotri, C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Research Letters 5 (1998), 817-836.
2. P. Belkale, Local systems on $\mathbb{P}^{1}-S$ for S a finite set, Compos. Math. 129 (2001), 67-86.
3. A. Bertram, Quantum Schubert calculus, Adv. Math., 128 (1997), 289-305.
4. A. Bertram, I. Ciocan-Fontanine, W. Fulton, Quantum multiplication of Schur polynomials, J. Algebra 219 (1999), 728-746.
5. A.S. Buch, Ircalc - Littlewood-Richardson Calculator, Software available on http://home.imf.au.dk/abuch/lrcalc and on http://www-math.mit.edu/abuch/lrcalc.
6. V.I. Danilov, G.A. Koshevoy, Discrete convexity and Hermitian matrices, Tr. Mat. Inst. im. Steklova 241 (2003), 68-89 (Russian); English transl., Proc. Steklov Inst. Math. 241 (2003), 58-78.
7. W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), 209-249.
8. A.A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419-445.
9. A. Knutson, T. Tao, The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products I : proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.
10. A. Knutson, T. Tao, Honeycombs and sums of Hermitian matrices, Notices Amer. Math. Soc. 48 (2001), no. 2, 175-186.
11. A. Knutson, T. Tao, C. Woodward, The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products II: puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2003), 19-48.
12. S.Yu. Orevkov, Quasipositivity test via unitary representations of braid groups and its application to real algebraic curves, J. Knot Theory and Ramifications 10 (2001), 1005-1023.
13. S.Yu. Orevkov, Yu.P. Orevkov, Simplex-method (linear programming), Software available on http://picard.ups-tlse.fr/ orevkov/simplex.
14. T. Tao, Open question: What is a quantum honeycomb? http://terrytao.wordpress.com/2007/04/19.

Laboratoire Emile Picard, UFR MIG, Univ. Paul Sabatier, Toulouse, France and Steklov Math. Inst., Moscow Russia

Faculty of Economy, Moscow State Univ., Moscow, Russia

