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Abstract. We prove complex orientation formulas for M -curves in RP
2 of degree

4d + 1 with 4 nests. They generalize the formulas of complex orientations for M -
curves in RP

2 with a deep nest. This is a step towards the isotopy classification of
real M -curves of degree 9.

Introduction.

It was observed in [4], that in the case when a real algebraic M -curve of degree
m in RP

2 has a nest of depth [m/2]− 1 (deep nest), a new complex orientation for-
mula takes place. Here “new” means independent of Rohlin and Rohlin-Mishachev
complex orientation formulas. The condition of deep nest is needed here for the
existence of a pencil of lines such that each line has at most two non-real intersec-

tion points with the curve (satisfies “≤2”-condition). It is clear from the proof in
[4] that similar formulas should take place for a real curve in a ruled surface if each
fiber satisfies “≤2”-condition, in particular, if there is such a pencil of conics for a
curve in RP

2. In this paper we consider three cases when the latter situation occurs
and prove a new complex orientation formula for each case (Propositions 1.1, 2.1,
and 3.1). In Section 4, we discuss applications to the problem of classification of
real M -curves of degree 9 up to isotopy.

Another proof of the complex orientation formula from [4] and a generalization
for any (not necessarily relatively minimal) ruled surface is obtained by Welschinger
[8, 9]. His general formula is not immediate to apply in a concrete situation, but,
of course, the formulas from the present paper can be derived from it. Moreover,
this is done in [9] for the formula of Proposition 1.1 (see below) as an example
of application. Another specialization considered in [8, 9] (and not considered
here) appeared to be very useful for the classification [5] of pseudoholomorphic M -
curves of degree 8 in RP

2 (it twice reduced the number of fiberwise arrangements
to consider).

Here we give direct self-contained proofs using the same tool as in [4]: linking
and ‘self-linking’ numbers of sublinks of L = A ∩ S3 where A is the complexifica-
tion of the curve, and S3 is the boundary of a neighbourhood of the union of the
complexifications of real lines of a certain pencil.

To simplify the exposition, we formulate everything for real algebraic curves, but
all statements hold for real pseudoholomorphic curves as well. The proofs also can
be easily adopted for the pseudoholomorphic context.

I thank the referee for useful remarks.
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Definitions and Notation. If A is a nonsingular real algebraic curve on RP
2, then

the set of its real points is denoted by RA and the set of its complex points is denoted
just by A. A connected component of RA is called an oval if it is contractible in
RP

2 and it is called an odd branch otherwise. The complement of an oval V has two
connected components: D (a disk) and M (a Möbius band). The component D is
called the interior of V and it is denoted by IntV . An oval of A is called empty if
its interior does not contain other ovals. A nest of depth k of a curve A is a union
of pairwise disjoint ovals V1, . . . , Vk such that IntVk ⊂ IntVk−1 ⊂ · · · ⊂ IntV1. A
nest of A is called maximal if it is not a subset of a bigger nest of A.

Throughout this paper, A is a nonsingular real algebraic M -curve in RP
2 of

degree m = 4d+1, d ≥ 2. The odd branch of A is denoted by J . We suppose that A
has four maximal nests N1, . . . , N4 of depths d1, . . . , d4 respectively. Let p1, . . . , p4

be generic points inside the innermost ovals of the nests N1, . . . , N4 respectively.
Let P be the pencil of conics passing through p1, . . . , p4. We say p1, . . . , p4 are in

convex position with respect to J if there exists a convex quadrangle Q with vertices
at p1, . . . , p4 which does not intersect J . It is clear that if p1, . . . , p4 are not in
convex position with respect to J then any conic from P meets J at least at 2
points.

We denote the ovals of Ni by V
(i)
1 , . . . , V

(i)
di

. We number them so that V
(i)
j+1 ⊂

IntV
(i)
j , in particular V

(i)
1 is the outermost oval of Ni. We call the ovals contained

in the nests N1, . . . , N4 big and we call the other ovals small.
We are interested in situations when any conic from P must have at least 2m−2

intersection points with the union of J and all big ovals of A (and hence, by Bezout’s
theorem, all small ovals are empty).

This is so in the following cases (see Figure 1 for d = 3):

(1) The nests N1, . . . , N4 are pairwise disjoint, and d1 = · · · = d4 = d. In this
case the points p1, . . . , p4 are necessarily in convex position with respect to
J , see Figure 1(1).

(2) The nests N1, . . . , N4 are pairwise disjoint, d1 = d2 = d3 = d, and d4 = d−1.
The points p1, . . . , p4 are not in convex position, see Figure 1(2a)–(2b).

(3) The outermost ovals of N2 and N4 coincide (i.e., V
(2)
1 = V

(4)
1 ), but the nests

N1, N
′
2, N3, N

′
4 are pairwise disjoint where N ′

j = Nj \ V
(j)
1 . The depths are

d1 = d2 = d3 = d4 = d. Moreover, the points p1, . . . , p4 are not in convex
position, see Figure 1(3).

N2

N3

N4

N1

N4

N3

N2

N1
N4

N2

N3

N1
N1

N3

N2

N4

(1) (2a) (2b) (3)

Figure 1

We fix a complex orientation on RA. As usually, an oval V is caled positive (resp.
negative) if [V ] = −2[J ] (resp. [V ] = 2[J ]) in the homology group H1(RP

2 \ IntV ).
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For S, s ∈ {+,−} and for i = 1, . . . , 4, let πS
s (Ni) be the number of pairs of ovals

(O, o) of the signs (S, s) respectively such that O is a non-empty oval contained
in the nest Ni and o is an empty oval contained in IntO. Similarly, ΠS

s (Ni) will
denote the number of pairs of ovals (O, o) of the signs (S, s) such that O is a big
oval contained in Ni and o is a small oval contained in IntO.

Let KS(Ni) be the number of ovals of the sign S in the nest Ni, and let kS(Ni)
be the number of non-empty ovals among them.

1. Four disjoint nests of depth d in convex position.

In this section we assume that the nests N1, . . . , N4 are pairwise disjoint and
d1 = · · · = d4 = d. Then Bezout’s theorem for auxiliary conics easily implies that
all small ovals (i.e. those which are not involved in the nests N1, . . . , N4) are empty
and the points p1, . . . , p4 are vertices of a convex quadrangle Q which does not meet
J .

Let us number the points p1, . . . , p4 so that they are placed in this order along
the boundary of Q. Let us set

πi =

{

π−

+(Ni) − π−

−(Ni), i = 1, 3,

π+
−(Ni) − π+

+(Ni), i = 2, 4,
ki =

{

k−(Ni), i = 1, 3,

k+(Ni), i = 2, 4,

and let us define Πi and Ki via ΠS
s (Ni) and KS(Ni) in the same way.

Proposition 1.1. One has

π1 + π2 + π3 + π4 = k2
1 + k2

2 + k2
3 + k2

4 (1)

and

Π1 + Π2 + Π3 + Π4 = (K2
1 − K1) + · · · + (K2

4 − K4). (2)

Remark. The formula (2) is an equivalent version of (1). It does not provide any
additional restriction on the complex scheme of RA.

The rest of this section is devoted to the proof of Proposition 1.1. Let cr : RP
2 →

RP
2 be the standard quadratic Cremona transformation centered at p1, p2, p3. Let

L be the pencil of lines through cr(p4) (this is the image of the pencil of conics
through p1, . . . , p4). Let the lines ℓ1, ℓ2, ℓ3 be the transforms of the points p1, p2,
p3 respectively and let us denote the transforms of the lines p2p3, p3p1, p1p2 by q1,
q2, q3 respectively.

The arrangement of cr(RA) with respect to L is as in Figure 2 up to zigzag
removal (see [6; §5] for a discussion of zigzag removal). Here the pencil L is supposed
to be the pencil of vertical lines. The dashed rectangle R is shown here because we
shall refer to it in the proof of Lemma 1.2.

The image of the nest N2 is shown in more detail in Figure 3.

V
(2)
1

...
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(2)
d

ℓ2

V
(2)
d

...
V

(2)
1

q3

. . .
. . .

1q

. . .

. . .
. . .

. . .

Figure 3. cr(N2).
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V
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...
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. . .
. . .
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Figure 2. Orientations of cr(V
(ν)
1 ) for positive V

(ν)
1

Let us fix the complex orientation on J as shown in Figure 2. Then the complex

orientations of the ovals cr(V
(ν)
1 ) are depicted in Figure 2 under condition that all

the ovals V
(ν)
1 are positive.

Let b be the braid corresponding to the arrangement of cr(RA) with respect to

the pencil of lines L (see [4] or [5]). Let L = b̂ be the link which is the braid closure
of b. Let L+ (resp. L−) be the sublink of L composed of the strings of b oriented
from the left to the right (resp. from the right to the left). When speaking of “left”

and “right”, we refer to Figure 2. Let L̃ be the link corresponding to the reducible
curve cr(A)∪ ℓ1 ∪ ℓ2∪ ℓ3 (then L is a sublink of L̃). We shall use the same notation

ℓ1, ℓ2, ℓ3 for the corresponding components of L̃.
Let b+ be the braid corresponding to L+, and let us denote the exponent sum

(the algebraic length) of b+ by e(b+).

Lemma 1.2. One has

e(b+) + 2(Π1 + · · · + Π4) = (2K2
1 + K1) + · · · + (2K2

4 + K4). (3)

Proof. Let us consider all real (not only algebraic) curves in RP
2 \ {cr(p4)} which

are obtained from cr(RA) by moving small ovals so that they remain to be disjoint
from the set A′ = (ℓ1∪ℓ2∪ℓ3)∪cr(N1∪· · ·∪N4) but, maybe, they are distributed in
other connected components of RP

2 \ A′. When moving small ovals, we keep their
order (from the left to the right) and their orientations coming from the complex
orientation of RA.
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For any such curve B we can define the braid corresponding to B ∪ ℓ1 ∪ ℓ2 ∪ ℓ3,
the sublinks L± and ℓj of the link L̃, and all the quantities involved in the formula
(3). Let us show that the quantity

Φ(B) = e(b+) + 2(Π1 + · · · + Π4) − 4

3
∑

j=1

Kj lk(ℓj , L+)

does not depend on B (here lk stands for the linking number).
Indeed, if a small oval passes through a big oval which contributs to L− (i.e.,

through an oval from Nj of the sign (−1)j+1), then none of the terms of Φ(B)

changes. If a small oval of sign s passes through a big oval cr(V
(j)
i ) which contributs

to L+ moving from RP
2\cr(Int V

(j)
i ) to cr(Int V

(j)
i ), then e(b+) changes by 2(−1)js

and 2Πj changes by −2(−1)js. If a small oval of sign s passes through ℓj , then its
sign reverses and in this case both Πj and 2Kj lk(ℓ, L+) change by (−1)j2sKj.

Thus, to compute Φ(cr(RA)) it is sufficient to compute Φ(B) when all small
ovals of B are, say, in the rectangle R in Figure 2. Let us do it. For this curve B
we have Π1 = · · · = Π4 = 0 and

2 lk(ℓ1, L+) = − (2K1 + 2K2) (contribution of q3)

− (2K1 + 2K3 + 1) (contribution of q2)

+ (2K1 + 2K2 + 2K3 + 2K4 + 1) (contribution of ∆)

= 2K4 − 2K1.

Similarly, lk(ℓ2, L+) = K4 − K2 and lk(ℓ3, L+) = K4 − K3. For the curve B we
have also

e(b+) = − 2K2 (contribution of [q1, q3])

− (K1 + K2)(2K1 + 2K2 − 1) (contribution of q3)

− (K1 + K3)(2K1 + 2K3 + 1) (contribution of q2)

− (K2 + K3)(2K2 + 2K3 − 1) (contribution of q1)

+ (K1 + · · · + K4)(2K2 + · · · + 2K4 + 1) (contribution of ∆)

Summing up all these quantities, we see that Φ(B) is equal to the right hand side
of (3). It remains to note that Φ(cr(RA)) is the left hand side of (3) because
lk(ℓj , L+) = 0 for it. This follows from the fact that all intersection points of cr(A)

and ℓj are real, hence, the corresponding sublinks of L̃ bound disjoint embedded
surfaces in the 4-ball (see [4] for details). �

Lemma 1.3. One has e(b+) = 3(K1 + · · · + K4).

Proof. Being an M -curve, RA has (m− 1)(m− 2)/2 ovals. Among them, there are
d1 + · · ·+ d4 = 4d = m− 1 big ovals. Hence, RA has (m− 1)(m− 4)/2 small ovals.
Hence, we have

e(b) = − 1 − (m − 1)(m − 4)/2 (contribution of J and small ovals)

− 3 × m(m − 1)/2 (contribution of q1, q2, q3)

+ m(2m − 1) (contribution of ∆)

= 12d.
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Let us denote the number of components of the links L and L± by µ(L) and
µ(L±) respectively. We have µ(L) = 4d + 2 (each big oval contributes 1, and J
together with the chain of small ovals contribute 2). Since the curve A is maximal,
the link L bounds a surface F of genus zero in the 4-ball. Let µ(F ) be the number
of components of F . Since the genus of F is zero, we have χ(F ) = 2µ(F ) − µ(L).
On the other hand, we have χ(F ) = deg cr(A) − e(b) = (8d + 2) − 12d = 2 − 4d by
Riemann-Hurwitz formula. Hence, µ(F ) = (χ(F )+µ(L))/2 = (1−2d)+(2d+1) = 2.
This means that F is a union of two connected surfaces F = F+ ∪ F− such that
∂F± = L±.

Let m+ be the number of strings of b+. By the same arguments as above, we
have m+ − e(b+) = χ(F+) = 2 − µ(L+). Since µ(L+) = K1 + · · · + K4 + 1 and
m+ = 2(K1+· · ·+K4)+1, this yields e(b+) = m++µ(L+)−2 = 3(K1+· · ·+K4). �

Proof of Proposition 1.1. The formula (2) is immediate from Lemmas 1.2 and 1.3.
To deduce (1), let us show that πj −k2

j = Πj − (K2
j −Kj). Indeed, if the innermost

big oval from Nj is of the sign (−1)j , then Πj = πj +kj and Kj = kj +1. Otherwise,
Πj = πj − kj and Kj = kj . �

2. Four disjoint nests of depths d, d, d, d − 1 in a non-convex position.

In this section we suppose that the nests N1, . . . , N4 are pairwise disjoint and
(d1, . . . , d4) = (d, d, d, d − 1). We suppose also that the points p1, . . . , p4 are not
in convex position with respect to J . This means that there is a triangle T whose
vertices are three of these points, such that the fourth point is inside T , and T ∩J =
∅, i.e., the nests are arranged either as in Figure 1(2a) or as in Figure 1(2b) (the
triangle T is not depicted in Figures 1(2a)–(2b)!). Let V (T ) be the set of vertices
of T , i.e., V (T ) = {p1, p2, p3} for Figure 1(2a) and V (T ) = {p1, p3, p4} for Figure
1(2b). Let us set

πi =

{

π−

+(Ni) − π−

−(Ni), pi 6∈ V (T ),

π+
−(Ni) − π+

+(Ni), pi ∈ V (T ),
ki =

{

k−(Ni), pi 6∈ V (T ),

k+(Ni), pi ∈ V (T ),

and let us define Πi and Ki via ΠS
s (Ni) and KS(Ni) in the same way.

Proposition 2.1. The identities (1) and (2) hold in this situation (again, (2) is

an equivalent version of (1)).

Proof. The proof repeats almost word-by-word the proof of Proposition 1.1. We
apply the Cremona transformation centered at p1, p2, p3 (recall that d1 = d2 =
d3 = d and d4 = d − 1), and we consider the pencil of lines L through cr(p4). We
numerate the nest N1, N2, N3 as in Figure 1(2a–b). The images of the nests are
arranges with respect to L as in Figures 4(a–b) where, as in Figure 2, we have
depicted the complex orientations of the big ovals under condition that all of them
are positive.

The statement of Lemma 1.2 holds without changes. In its proof, if we place all
small ovals of B into R so that the leftmost one is oriented clockwise (which means
that it is positive for Figure 4(a) and negative for Figure 4(b)), then the values of
lk(ℓj , L+) and e(b+) are as in the proof of Lemma 1.2 (though their computation
is slightly different).

The statement of Lemma 1.3 also holds. Its proof must be modified as follows.
This time there is one more small oval (because one big oval is missing), but since
J does not contribute to e(b), we still have e(b) = 12d. We still have µ(L) = 4d +2
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Figure 4(a) Figure 4(b)

(each of 4d− 1 big ovals and J contribute 1, and the chain of small ovals contibute
2). The rest of the proof repeats word-by-word. �

3. Nests in a non-convex position, two outermost ovals coincide.

In this section we suppose that Case (3) takes place (see Figure 1(3)). Let us

set V = V
(2)
1 = V

(4)
1 (the common outermost oval of N2 and N4). Let T be the

triangle with vertices p1, p2, p3 such that T ∩ J = ∅, and let Int+ V = IntV \ T

and Int− V = IntV ∩ T . We set also Int± V
(j)
i = IntV

(j)
i for V

(j)
i 6= V .

For S, s ∈ {+,−} and for i = 1, . . . , 4, let Π̃S
s (Ni) be the number of pairs of ovals

(O, o) of the signs (S, s) respectively such that O ⊂ Ni is big and o ⊂ IntS O is

small. In particular, we have Π̃S
s (Ni) = ΠS

s (Ni) for i = 1, 3.
Let us set

Πi =

{

Π̃+
−(Ni) − Π̃+

+(Ni), i = 1, 3, 4,

Π̃−

+(Ni) − Π̃−

−(Ni), i = 2,
Ki =

{

K+(Ni), i = 1, 3, 4,

K−(Ni), i = 2,

Proposition 3.1. One has

4
∑

i=1

Πi =
(

4
∑

i=1

(K2
i − Ki)

)

− K2 +

{

0, V is positive

1, V is negative
(4)

Remark. The left hand side of (4) can be rewritten as −
∑

v ϕv sign v. Here the
sum is taken over all small ovals v and ϕv is the value on v of a locally constant
function ϕ defined on RP

2 \
(

N+
1 ∪ N−

2 ∪ N+
3 ∪ N+

4 ∪ ∂(T ∩ IntV )
)

where NS
i is

the union of big ovals of the sign S which are contained in Ni. The values of ϕ are
given in Figures 5(a)–(b). The big ovals (arcs of them) where the function ϕ does
not change the value are depicted by dashed lines.

As in the proofs of Propositions 1.1 and 2.1, let cr be the Cremona transformation
centered at p1, p2, p3, and let us introduce the same notation as above.

Lemma 3.2. One has

e(b+) + 2

4
∑

i=1

Πi = −2K2 +
(

4
∑

i=1

(2K2
i + Ki)

)

+

{

−2, V is positive,

0, V is negative.
(5)
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Figure 5(a) Figure 5(b)

N ′
4

V

J

N1

V

N ′
2

V

N3

J

V

N ′
4

q2

R

q3 1q

T

Figure 6. Orientations of cr(RA) when big ovals are positive

Proof. Since the proof is similar to that of Lemma 1.2, we just sketch it. Again, we
consider the set of curves obrained from cr(RA) by vetrical moving of small ovals.
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For such a curve B, we set

Φ(B) =e(b+) + 2(Π1 + Π2 + Π3 + Π4)

− 4K1 lk(ℓ1, L+) − (4K2 − 2) lk(ℓ2, L+) − 4K3 lk(ℓ3, L+).

This amount does not change when small ovals move from one region to another.
Indeed, suppose that a small oval v of sign s crosses ℓ2 moving from from the
bottom to the top according to Figure 6 (i.e., it leaves T ). Then its contribution
to lk(ℓ2, L+) changes by −s. The sign of the small oval reverses. Hence, if V
is positive, then the contribution of v into Π2 (resp. to Π4) switches from sK2

to −sK2 (resp. from 0 to s). If V is negative, then the contribution of v into Π2

switches from sK2 to −s(K2−1) and its contribution to Π4 does not change. Thus,
in the both cases, the contribution of v into Π2 +Π4 changes by −s(2K2−1), hence
its contribution into Π2 + Π4 − (2K2 − 1) lk(ℓ2, L+) does not change. Other cases
of moving of a small oval from one region to another are considered in the same
way as in the proof of Lemma 1.2.

Let us compute Φ(B) for the curve B all whose small ovals are in the rectangle
R (see Figure 6). Note, that the above discussion implies that Φ(B) = Φ(cr(RA)).
For this curve B we have

Π1 + · · · + Π4 =

{

−1, V is positive,

0, V is negative,

lk(ℓj , L+) = K4 − Kj , j = 1, 2, 3, and

e(b+) = − (K1 + K2)(2K1 + 2K2 − 1) (contribution of q3)

− (K1 + K3)(2K1 + 2K3 − 1) (contribution of q2)

− (K2 + K3)(2K2 + 2K3 − 1) (contribution of q1)

+ (K1 + · · · + K4)(2K2 + · · · + 2K4 − 1) (contribution of ∆)

Thus, Φ(B) is equal to the right hand side of (5). The left hand side of (5) is equal
to Φ(cr(RA)). �

Lemma 3.3. One has e(b+) = 3(K1 + · · · + K4) − 2.

Proof. The proof is similar to that of Lemma 1.3, but now we have one big oval
less, i.e., one small oval more, hence e(b) = 12d − 1. We have µ(L) = 4d + 1
(the contributions of N1, N3, N

′
2, N

′
4, J, V ∪ (small ovals) are d, d, d − 1, d − 1, 1, 2

respectively). Hence χ(F ) = 2µ(F )−µ(L) = 3−4d and µ(F ) = (χ(F )+µ(L))/2 =
2. Therefore, as in Lemma 1.3, we have e(b+) = m+ + µ(L+) − 2. It remains to
note that m+ = 2µ(L+) = 2(K1 + · · · + K4). �

Proposition 3.1 follows from Lemmas 3.2 and 3.3.

4. Towards a classification of M-curves of degree 9.

A preliminary study of M -curves of degree 9 was done by A.B. Korchagin.
Analysing available examples, he formulated [3] the following conjectures about the
parity of the numbers αi in isotopy types of the form J ⊔ α0 ⊔ 1〈α1〉 ⊔ · · · ⊔ 1〈αs〉.

(1) If s = 4, then α0 ≡ 0 mod 4 (proven in [7]);
(2) If s = 4, then all the numbers α1, . . . , α4 are odd (proven in [1]);
(3) If s = 3, then at most one of the numbers α1, α2, α3 is even (still open).
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The proofs of Conjectures (1) and (2) use only the following tools:

(i) Kharlamov-Viro congruence mod 8 for the union of a 9th degree curve and
three lines whose intersection points are in three different nests;

(ii) Bezout’s theorem for auxiliary rational curves;
(iii) Rohlin-Mishachev formula for complex orientations;
(iv) Fiedler’s rule of alternation of orientations in pencils of lines.

I expected that these tools combined with

(v) Propositions 1.1, 2.1, and 3.1 of this paper

would be enough to prove Conjecture (3). I suggested Severine Fiedler-Le Touzé
to try to do it. Recently, using (ii)–(v), she proved a weaker version of Conjecture
(3): if s = 3, then one of the numbers α1, α2, α3 is odd (see [2]). Also she found a
configuration of oriented embedded circles with respect to lines which contradicts
Conjecture (3) but which does not seem to contradict the restrictions (i)–(v).
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