ON OSCULATING FRAMING OF REAL ALGEBRAIC LINKS

Grigory Mikhalkin and Stepan Orevkov

Abstract

For a real algebraic link in $\mathbb{R P}^{3}$, we prove that its encomplexed writhe (an invariant introduced by Viro) is maximal for a given degree and genus if and only if its self-linking number with respect to the framing by the osculating planes is maximal for a given degree.

1. Introduction and statement of the main result

By real algebraic curve in \mathbb{R}^{3} we mean a complex curve in $\mathbb{C P}^{3}$ invariant under complex conjugation. We use the same notation for a real curve and the set of its complex points and, if it is denoted by A, then $\mathbb{R} A$ stands for the set of real points which is called a real algebraic link if it is non-empty and A is smooth. A real algebraic link is called maximally writhed or $M W_{\lambda}-\operatorname{link}$ if $\left|w_{\lambda}(L)\right|$ (a variation of Viro's invariant [7]) attains the maximal possible value $(d-1)(d-2) / 2-g$ where d and g is the degree and genus of A respectively. We refer to [3] for a precise definition of w_{λ}.

In [3, Thm. 2] we proved that several topological and geometric invariants are maximized on $M W_{\lambda}$-links. In this paper we add one more item to this collection: we show that the self-linking number of L with respect to the osculating framing attains its maximal value (for links of a given degree) if and only if L is an $M W_{\lambda^{-}}$ link. The proof is very similar to that of the main theorem of [3]. Let us give precise definitions and statements.

Let L be an oriented link in a rational homology 3 -sphere. A framing of L is a continuous 1-dimensional subbundle of the normal bundle of L or, equivalently, a continuous field (defined on L) of 2-dimensional planes tangent to L. Given a framed oriented link L, its self-linking number is defined as follows. Let F be an embedded annulus or Möbius band with core L, tangent to the framing. Then the self-linking number is $\frac{1}{2} \operatorname{lk}(L, \partial F)$ where the boundary ∂F of F is oriented so that $[\partial F]=2[L]$ in $H_{1}(F)$.

For an oriented link L in $\mathbb{R P}^{3}$, the osculating framing is the framing defined by the field of osculating planes. We denote the self-linking number of L with respect to this framing by $\operatorname{osc}(L)$. If L is a non-oriented link and O an orientation of L, we use the notation $\operatorname{osc}(L, O)$ which is self-explained.

Recall that a smooth irreducible real algebraic curve A is called an M-curve if $\mathbb{R} A$ has $g+1$ connected components where g is the genus of A. In this case $\mathbb{R} A$ divides A into two halves. The boundary orientation on $\mathbb{R} A$ induced by any of

Research is supported in part by the SNSF-grants 159240, 159581, 182111 and the NCCR SwissMAP project (G.M.), and by RFBR grant No 17-01-00592a (S.O.)
these halves is called a complex orientation. The main result of the paper is the following.
Theorem 1. Let $L=\mathbb{R} A$ be an irreducible real algebraic link of degree $d \geq 3$ and O be an orientation of L. Then:
(a) $|\operatorname{osc}(L, O)| \leq d(d-2) / 2$.
(b) $|\operatorname{osc}(L, O)|=d(d-2) / 2$ if and only if L is an $M W_{\lambda}-l i n k$ (by [3, Thm. 2], in this case A is an M-curve of genus at most $d-3$) and O is its complex orientation.

Remark. In the space of real algebraic links of a given degree and genus we can distinguish three kinds of "walls". The walls of the first kind correspond to curves with a double point with real local branches. When crossing such walls, both invariants $w_{\lambda}(L)$ and $\operatorname{osc}(L)$ are changed by ± 2. The walls of the second kind correspond to curves with a real double point with complex conjugate local branches. When crossing such walls, $w_{\lambda}(L)$ does change but $\operatorname{osc}(L)$ does not. The third kind of wall corresponds to curves which have a local branch parametrized by $t \mapsto\left(t, t^{3}+o\left(t^{3}\right), t^{4}+o\left(t^{4}\right)\right)$ in some affine chart. When crossing such a wall, $w_{\lambda}(L)$ does not change but $\operatorname{osc}(L)$ does. So, in general, the invariants $w_{\lambda}(L)$ and $\operatorname{osc}(L)$ are more or less independent. Nevertheless, Theorem 1 implies that the chamber where they have maximal value is bounded only by the walls of the first kind common for the both invariants.

2. A variant of Klein's formula for THE NUMBER OF REAL INFLECTION POINTS

Let $C \in \mathbb{P}^{2}$ be a nodal real irreducible algebraic curve. It may have three types of nodes: real nodes with real local branches of C, real nodes with imaginary local branches of C, or non-real nodes (coming in conjugate pairs). Denote the number of nodes of each type with h, e, and i respectively.

A real flex is a local real branch of C with the order of tangency ω to its tangent line greater than 1 (i.e. the local intersection number is $\omega+1 \geq 3$). The multiplicity of a real flex is $\omega-1$. In an affine chart of \mathbb{P}^{2} a flex corresponds to a critical point of the Gauss map. It is easy to see that the multiplicity of a flex equals the multiplicity of the corresponding critical point. Thus a multiple flex can be thought of as $\omega-1$ ordinary flexes collected at the same point. We denote with F the number of flexes counted with multiplicities.

A solitary real bitangent is a real line $L \subset \mathbb{P}^{2}$ which is tangent to C at a non-real point (and thus also at the complex conjugate point). The multiplicity of L is the sum of the orders ω over all local branches of $C \backslash \mathbb{R P}^{2}$ tangent to L. We denote with B the number of solitary real bitangents counted with multiplicities. Clearly, B is an even number.

Lemma 2.1. (Klein's formula [1] for nodal curves). For a nodal real irreducible curve of degree d in \mathbb{P}^{2} we have

$$
F+B=d(d-2)-2 h-2 i .
$$

Proof. As in [6], we use additivity of the Euler characteristic χ to derive Klein's formula. Let $\nu: \tilde{C} \rightarrow C$ be the normalization. The space of all real lines in \mathbb{P}^{2} is
homeomorphic to $\mathbb{R P}^{2}$, and thus has the Euler characteristic 1. For a real line L the set $\nu^{-1}(L)$ consists of d distinct points unless L is tangent to C. Each tangency decreases the size of this set by ω.

Consider the space $X=\{(p, L) \mid p \in C, L \ni p\}$, where $L \subset \mathbb{R P}^{2}$ is a real line. From the observation above we deduce

$$
\chi(X)+B+F+\chi(\mathbb{R} \tilde{C})=d
$$

Note that $\chi(\mathbb{R} \tilde{C})=0$ and $\chi(X)=\chi\left(\nu^{-1}(C \backslash \mathbb{R} C)\right)=\chi(\tilde{C})-2 e$, as each point of $\mathbb{R} C$ lifts to a circle in X while $\chi\left(S^{1}\right)=0$. The lemma now follows from the adjunction formula $\chi(\tilde{C})=3 d-d^{2}+2 e+2 h+2 i$.

Remark 2.2. Lemma 2.1 can be also obtained as an almost immediate consequence from Schuh's generalization [5] of another Klein's formula

$$
d-\sum_{x \in C \cap \mathbb{R P}^{2}}(m(x)-r(x))=d^{\vee}-\sum_{x \in C^{\vee} \cap \mathbb{R}^{P^{2}}}\left(m^{\vee}(x)-r^{\vee}(x)\right)
$$

(see [6, Thm. 6.D] for a proof via Euler characteristics) combined with the class formula $d^{\vee}=d(d-1)-2 e-2 h-2 i$. Here C^{\vee} is the dual curve, d^{\vee} is its degree, $m(x)$ and $r(x)$ (resp. $m^{\vee}(x)$ and $\left.r^{\vee}(x)\right)$ are the multiplicity and the number of real local branches of C (resp. of C^{\vee}) at x.

3. Proof of the main theorem

Let $L=\mathbb{R} A$ be a smooth irreducible real algebraic link of degree d endowed with an orientation O. Let \mathcal{U} be the set of points p in $\mathbb{R}^{3} \backslash L$ such that the projection of L from p is a nodal curve.

Fix a point $p \in \mathcal{U}$. Let $C_{p}=\pi_{p}(A)$ where $\pi_{p}: \mathbb{P}^{3} \backslash\{p\} \rightarrow \mathbb{P}^{2}$ is the linear projection from p. Consider the field of tangent planes to L passing through p, (so-called blackboard framing). Let $b_{p}(L)$ be the self-linking number with respect to it. We have

$$
\begin{equation*}
b_{p}(L)=\sum_{q} s(q), \quad \text { thus } \quad\left|b_{p}(L)\right| \leq h\left(C_{p}\right) \tag{1}
\end{equation*}
$$

where q runs over the hyperbolic (i. e., with real local branches) double points of $C_{p}, h\left(C_{p}\right)$ is the number of them, and $s(q)$ is the sign of the crossing at q in the sense of knot diagrams. The difference $\left|\operatorname{osc}(L)-b_{p}(L)\right|$ is bounded by one half of the number of those points where the osculating plane passes through p (each such point contributes $\pm 1 / 2$ or 0 to $\operatorname{osc}(L)$). This is the number of real flexes of C_{p} which we denote by $f\left(C_{p}\right)$. We have $f\left(C_{p}\right) \leq d(d-2)-2 h\left(C_{p}\right)$ by Lemma 2.1. Thus

$$
\begin{equation*}
|\operatorname{osc}(L)| \leq\left|\operatorname{osc}(L)-b_{p}(L)\right|+\left|b_{p}(L)\right| \leq \frac{1}{2} f\left(C_{p}\right)+h\left(C_{p}\right) \leq \frac{1}{2} d(d-2) \tag{2}
\end{equation*}
$$

which is Part (a) of Theorem 1.
Now suppose that $|\operatorname{osc}(L)|=d(d-2) / 2$. Then for any choice of $p \in \mathcal{U}$ we have the equality sign everywhere in (2), in particular, we have the equality sign in (1), i.e., all crossings are of the same sign, say, positive:

$$
\begin{equation*}
s(q)=+1 \quad \text { for any hyperbolic crossing } q \text { of } C_{p} . \tag{3}
\end{equation*}
$$

By Lemma 2.1, the equality sign in the last inequality of (2) implies that all flexes of C_{p} are ordinary for any choice of $p \in \mathcal{U}$. This implies that L has nonzero torsion at each point. Indeed, otherwise there exists a real plane P which has tangency with L of order greater than 3 . It is easy to check that \mathcal{U} has non-empty intersection with any plane, thus we can choose a point $p \in \mathcal{U} \cap P$, and then C_{p} would have a k-flex with $k>3$. Moreover, the positivity of all crossings for any generic projection implies that the torsion is everywhere positive (cf. the proof of [2, Prop. 1]).

Similarly to [2, Lem. 7] and [3, Lem. 4.10], we derive from these conditions that the real tangent surface $T L$ (the union of all real lines in $\mathbb{R P}^{3}$ tangent to L) is a union of (non-smooth) embedded tori. Indeed, suppose that two tangent lines cross. Let P be the plane passing through them (any plane passing through them if they coincide) and let ℓ be the line passing through the two tangency points. Let p be a generic real point on ℓ. Then C_{p} has two real local branches at the same point such that each of them is either singular or tangent to the line $\pi_{p}(P)$. Since L has non-zero torsion, all singular branches of C_{p} are ordinary cusps. Then we can find a generic point close to p such that the projection from it does not satisfy (3).

Let K_{1}, \ldots, K_{n} be the connected components of L, and let $T K_{i}$ be the connected component of $T L$ that contains K_{i} (the union of real lines tangent to K_{i}). The same arguments as in [3, Lemma 4.12] show that, for some positive integers a_{1}, \ldots, a_{n}, there exist real lines $\ell_{i}, \ell_{i}^{\prime}, i=1, \ldots, n$, such that (for suitable choice of the orientations) the linking numbers of their real loci $l_{i}=\mathbb{R} \ell_{i}$ and $l_{i}^{\prime}=\mathbb{R} \ell_{i}^{\prime}$ with the components of L are:

$$
\begin{equation*}
2 \operatorname{lk}\left(l_{i}, K_{i}\right)=a_{i}+2, \quad 2 \operatorname{lk}\left(l_{i}^{\prime}, K_{i}\right)=a_{i} \tag{4}
\end{equation*}
$$

Moreover, each $T K_{i}$ splits $\mathbb{R P}^{3}$ into two solid tori U_{i} and V_{i} such that $l_{i} \subset U_{i}, l_{i}^{\prime} \subset$ V_{i}, the homology classes $\left[l_{i}\right]_{U}$ and $\left[l_{i}^{\prime}\right]_{V}$ generate $H_{1}\left(U_{i}\right)$ and $H_{1}\left(V_{i}\right)$ respectively, and we have $\left[K_{i}\right]_{U}=a_{i}\left[l_{i}\right]_{U}$ and $\left[K_{i}\right]_{V}=\left(a_{i}+2\right)\left[l_{i}^{\prime}\right]_{V}$. It follows that

$$
\begin{equation*}
2 \operatorname{osc}\left(K_{i}\right)=a_{i}\left(a_{i}+2\right) \tag{5}
\end{equation*}
$$

(the linking number of K_{i} with its small shift disjoint from $T L$). Indeed, if K_{i} is parametrized by $t \mapsto r(t)$ and the torsion is non-zero, then $T K_{i}$ has a cuspidal edge along K_{i} and a small shift of K_{i} in the direction of the vector field \ddot{r} is disjoint from $T K_{i}$ (see Figure 1). A priori this argument proves (5) up to sign only. However the positivity of the torsion implies that $\operatorname{osc}\left(K_{i}\right)$ is positive.

Figure 1

If L is connected (i. e., $n=1$), it remains to note that then the condition $2 \operatorname{osc}\left(K_{1}\right)=d(d-2)$ implies $\left(a_{1}+2\right) a_{1}=d(d-2)$, hence $a_{1}=d-2$. Thus
L satisfies Condition (v) of [3, Thm. 1] which completes the proof that L is an $M W$-knot.

If L is not necessarily connected, we argue as follows. By Murasugi's result [4, Prop. 7.5] (see also [3, Prop. 1.2]), the number of crossings of any projection of K_{i} is at least $\left(a_{i}+2\right)\left(a_{i}-1\right) / 2$. Hence, for $h=h\left(C_{p}\right)$, we have

$$
\begin{equation*}
2 h \geq \sum_{i=1}^{n}\left(a_{i}+2\right)\left(a_{i}-1\right)+\sum_{i \neq j}\left|\operatorname{lk}\left(K_{i}, K_{j}\right)\right| . \tag{6}
\end{equation*}
$$

On the other hand, if we choose p on a line passing through a pair of complex conjugate points of A, then C_{p} has at least one elliptic double point (i. e., a real double point with complex conjugate local branches), whence by the genus formula we obtain

$$
\begin{equation*}
h \leq(d-1)(d-2) / 2-g-1 \leq(d-1)(d-2) / 2-n \tag{7}
\end{equation*}
$$

(the second inequality in (7) is the Harnack's bound). Hence

$$
\begin{align*}
d(d-2) & =2 \operatorname{osc}(L)=2 \sum_{i=1}^{n} \operatorname{osc}\left(K_{i}\right)+\sum_{i \neq j} \operatorname{lk}\left(K_{i}, K_{j}\right) \\
& \leq \sum_{i=1}^{n} a_{i}\left(a_{i}+2\right)+2 h-\sum_{i=1}^{n}\left(a_{i}+2\right)\left(a_{i}-1\right) \tag{5}\\
& =2 h+2 n+\sum_{i=1}^{n} a_{i} \leq(d-1)(d-2)+\sum_{i=1}^{n} a_{i}
\end{align*}
$$

Thus $\sum a_{i} \geq d-2$ and we conclude that L is an $M W_{\lambda}$-link. This fact follows from [3, Prop. 1.1] (which implies that $\mathrm{ps}(L)=\sum a_{i}$) combined with [3, Thm. 2] (which claims, in particular, that L is an $M W_{\lambda}$-link as soon as $\left.\operatorname{ps}(L) \geq d-2\right)$. Here we denote with $\operatorname{ps}(L)$ the plane section number of L. It is a topological invariant of a link in $\mathbb{R P}^{3}$ defined in [3] as the minimal number of intersection points with a generic plane where the minimum is taken over the isotopy class of the link.

Let us show that O is a complex orientation of L. It is easy to see that the plane section number is at most $d-2$ for any algebraic link of degree d. Indeed, it is enough to consider a small shift of a non-osculating tangent plane in a suitable direction. Thus the inequality in $\operatorname{ps}(L)=\sum a_{i} \geq d-2$ is in fact an equality. It follows that the equality is attained in all the inequalities used in the proof, in particular, we have $\left|\operatorname{lk}\left(K_{i}, K_{j}\right)\right|=\operatorname{lk}\left(K_{i}, K_{j}\right)$ for $i \neq j$. Since all components of an $M W_{\lambda}$-link endowed with a complex orientation are positively linked (see [3]), we are done. This completes the proof of the "only if" part of (b).

To prove the "if" part of (b), we notice that by [3, Thm. 3 and §4.4], any $M W_{\lambda}$-link L of degree d and genus g is a union of $g+1$ knots $K_{0} \cup \cdots \cup K_{g}$ and $\operatorname{lk}\left(K_{i}, K_{j}\right)=a_{i} a_{j}, i \neq j$, for some positive integers a_{0}, \ldots, a_{g} with $a_{0}+\cdots+a_{g}=$ $d-2$. Furthermore, the torsion of L is everywhere positive and each knot K_{i} is arranged on its tangent surface $T K_{i}$ as described above, thus (5) holds for each i, and we obtain

$$
\begin{aligned}
2 \operatorname{osc}(L) & =\sum_{i=0}^{g} \operatorname{osc}\left(K_{i}\right)+\sum_{i \neq j} \operatorname{lk}\left(K_{i}, K_{j}\right)=\sum_{i=0}^{g} a_{i}\left(a_{i}+2\right)+\sum_{i \neq j} a_{i} a_{j} \\
& =\left(\sum a_{i}\right)^{2}+2 \sum a_{i}=(d-2)^{2}+2(d-2)=d(d-2)
\end{aligned}
$$

References

1. F. Klein, Ein neue Relation zwischen den Singularitgten einer algebraischen Curve, Math. Ann. 10 (1876), 199-209.
2. G. B. Mikhalkin, S. Yu. Orevkov, Topology of maximally writhed real algebraic knots, Doklady Akad. Nauk 478 (2018), no. 2, 141-144 (Russian); English transl., Doklady Math. 97 (2018), 28-31.
3. G. Mikhalkin, S. Orevkov, Maximally writhed real algebraic links, Invent. Math. 216 (2019), 125-152.
4. K. Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc. 326:1 (1991), 237-260.
5. F. Schuh, An equation of reality for real and imagninary plane curves with higher singularities, Verslagen van de Gewone Vergaderingen der Wis-en Natuurkundige Koninklijke Akademie van Wetenschappen te Amsterdam 6 (1903-1904), 845-854 (Dutch); English transl., Proc. section of sciences of the Royal Academy of Amsterdam 6 (1903-1904), 764-773.
6. O. Ya. Viro, Some integral calculus based on Euler characteristic, in: Topology and Geometry - Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, 1988, pp. 127-138.
7. O. Viro, Encomplexing the writhe, in: Topology, Ergodic Theory, Real Algebraic Geometry. Rokhlins Memorial, AMS Transl. Ser. 2, 202, AMS, Providence, RI, 2002, pp. 241-256; arxiv:math. 0005162.

Université de Genève, Section de Mathématiques, Battelle Villa, 1227 Carouge, Suisse.

E-mail address: grigory.mikhalkin@unige.ch

Steklov Mathematical Institute, Gubkina 8, 119991, Moscow, Russia;
IMT, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France. E-mail address: orevkov@math.ups-tlse.fr

