
ALGEBRAIC CURVE IN THE UNIT BALL IN C2

PASSING THROUGH THE ORIGIN, ALL OF WHOSE

BOUNDARY COMPONENTS ARE ARBITRARILY SHORT

S.Yu. Orevkov

To the memory of Anatoliy Georgievich Vitushkin

1. Introduction

Let S3 be the unit sphere in C2 centered at the origin. A.G. Vitushkin posed
the following question (see [1], [2; Problem 5.3], [4]):

(1). Does there exist an absolute constant c such that for any complex algebraic
curve A in C2 passing through the origin, there exists a connected component of
the set A ∩ S3 whose length is not less than c?

(2). Is it true that c = 2π?

In this paper, we give negative answers to the both questions.

Theorem 1.1. a). Let Ω be a compact closed domain in an analytic surface, and
let M = ∂Ω be its boundary. Let M0 be the set of those points where M is a
C2-smooth strictly pseudoconvex real hypersurface. Suppose that some Riemannian
metric is fixed on M . Let A be a complex analytic curve in Ω such that ∂A is
contained in M0 and realizes the zero homology class in H1(M0; Z). Let P be any
finite subset of A.

Then for any 2-chain β in M0 such that ∂β = α and for any ε > 0, there exists
a complex analytic curve A′ in Ω which is ε-close to A ∪ suppβ and such that the
length of any of its boundary component is less than ε and P ⊂ A′.

b). If, moreover, Ω ⊂ C2 and, for any point p ∈ M0, the complex line T tangent
to M at p does not meet Ω at other points and the restriction to T of the second
fundamental form of M at p is positive definite (by the strict pseudoconvexity of M
the latter condition is equivalent to the positivity of its sectional curvature at p in
the direction of T ), then one can choose A′ to be an algebraic curve.

This theorem follows immediately from Propositions 2.6 and 3.5. It is proved at
the end of §3. The crucial role in the proof is played by the notion of a Legendrian
net hanged on a transversal cycle in a contact 3-manifold introduced in §2.

A negative answer to Vitushkin’s question is provided by applying Theorem 1.1
b) in the case when Ω is the unit ball, P is its center, and A is an arbitrary curve
(for example, a line) passing through P .

Remark 1.2. The condition of the strict pseudoconvexity in Theorem 1.1 is impor-
tant. Indeed, the answers to both Vitushkin’s questions are positive if one considers
the bidisk instead of the ball (see [1]).
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Remark 1.3. We formulate Theorem 1.1 and Propositions 2.6 and 3.5 in ”minimax
generality”, i.e., we try to give the most general statement that can be proved using
exactly the same argument as in the simplest (known to us) proof for the case of
an algebraic curve in the unit ball.

If one drops this principle, then Theorem 1.1 can be easily generalized as far
as one’s fantasy allows. For instance, the line T in Part b) could be replaced by
an algebraic curve (but then the proof of the corresponding analogue of Lemma
3.1 would become more complicated), or one could take into consideration Shilov
boundaries, polynomial convexity, etc.

Remark 1.4. It is shown in [1] that if one replaces algebraic curves by real surfaces
which have open projections onto (complex) coordinate axes, then the answer to
Question (1) is negative.

Remark 1.5. Recall some terminology from the link theory. A link L ⊂ S3 is called
indecomposable (into a disjoint sum), if there does not exist two balls B1, B2 such
that B1∪B2 = S3, B1∩B2 = ∂B1 = ∂B2, L∩B1 6= ∅ 6= L∩B2, and L∩B1∩B2 =
∅. So, if one considers in Question (1) indecomposable components rather than
connected components, then the answer will be positive. This follows from the fact
(proved in [3]) that the boundary of a connected curve is an indecomposable link.

Remark 1.6. Apparently, Vitushkin’s main motivation for asking this question was
its relation with the problems about polynomial hulls of ”bad” sets. Some links
between these topics are discussed in the recent paper [4].

Remark 1.7. The answer to Question (2) (is it true that c = 2π) is negative even
for curves of degree two. To see this, one can explicitly parametrize the real curve
{ (z, w) ∈ C2 |w2 = az(z − 1) } ∩ S3, then check by numerical integration that its
length is less than 4π for some values of a, and finally, observe that the perturbed
curve {w2 = az(z − 1 + ε)} ∩ S3 for 0 < ε ≪ 1 consists of two equal halves whose
total length is close to the length of the initial curve.

Thus, an absolute constant c does not exist. However if one fixes n — the number
of connected components of A∩ S3, such a constant depending on n certainly does
exist (it is clear that the total length of all the components is greater than 2π).
Let n(ε) denote the minimal number of connected components of A∩ S3 under the
condition that A is an algebraic curve through the origin such that length of any
connected component of A ∩ S3 is less than ε.

It follows from the argument above that n(ε) > 2π/ε. It is not difficult to deduce
from Stokes’ formula that after the projection onto CP 1, the sum of the oriented
areas bounded by the projections of the components of A ∩ S3 is greater than the
area of the whole CP 1, hence n(ε) > const/ε2 (see Proposition 4.9). On the other
hand, a straightforward application of the construction provided by the proof of
Theorem 1.1 yields an upper bound n(ε) < const/ε4.

A natural correction of Vitushkin’s question suggests itself: is it true that the
maximal length of components of A ∩ S3 is essentially greater than the evident
estimates? More precisely, what is the asymptotics of n(ε) as ε → 0? The same
question can be asked about the quantity d(ε) — the minimal degree of an algebraic
curve satisfying the same condition. As we have seen, the order of growth of n(ε)
is between ε−2 and ε−4. It seems plausible that it is ε−3. In §6, we prove an
upper bound for n(ε) of the order ε−3. In §5, we prove that this bound cannot
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be improved by the methods of this paper (i.e. using the construction based on a
perturbation of a Legendrian net). In the end of §5, we propose a new question, a
positive answer to which would imply a lower bound on n(ε) of the order ε−3.

2. Legendrian nets hanged on transverse cycles

All the statements of this section are almost obvious but we shall give their
proofs anyhow.

We shall understand chains, cycles, and boundaries more or less in the sense
of the theory of singular homologies, but we shall consider only piecewise smooth
chains and we shall identify chains obtained from one another by subdivisions and
reparametrizations. In particular, a 1-chain in a smooth manifold M is by definition
an element of the quotient of the free abelian group generated by all piecewise
smooth mappings α : I = [0, 1] → M modulo all relations of the form α = −(α ◦ϕ)
and α = (α ◦ ϕ1) + (α ◦ ϕ2) where ϕ is an orientation reversing piecewise smooth
homeomorphism of the segment I onto itself, and ϕ1, ϕ2 are orientation preserving
piecewise smooth homeomorphisms of the segment I onto the segments [0, 1/2] and
[1/2, 1] respectively. For example, these relations imply that the constant mapping
I → p ∈ M realizes the zero chain. A linear combination

∑

miαi representing a
chain α will be called a minimal realization of α if mi 6= 0 for all i and there do not
exist indices i1, i2, segments I1, I2 ⊂ I, and a homeomorphism ϕ : I1 → I2 such
that αi1 |I1 = αi2 ◦ ϕ.

Let
∑

miαi be some minimal realization of a 1-chain α on a 3-manifold M . Then
the set supp α =

⋃

αi(I) is called the support of α. If, moreover, M is endowed
with a Riemannian metric then the length of α is by definition lenα =

∑ |mi| len αi

where len αi is the length of the path αi. A 1-chain α is called ε-short if lenα < ε.
Similarly, we define the support and the area of a 2-chain. In the sequel, we shall
not distinguish between chains and their minimal realizations. A 1-cycle is called
generic or in general position if it is a union of pairwise disjoint piecewise smoothly
embedded oriented circles taken with multiplicity 1.

Recall that a contact structure on an oriented 3-manifold M is a smooth field
of 2-planes which can be represented as ker η where η is a 1-form such that η ∧ dη
does not vanish. It is known that all contact structures are locally equivalent to
each other.

A 1-chain on a contact 3-manifold (M, η) is called Legendrian if it is C2-smooth
and the restriction of η identically equals zero on its smooth pieces. A 1-chain α is
called positively transverse if it can be represented as α =

∑

miαi where mi > 0
and α∗

i (η) > 0 for all i (such a realization of α is automatically minimal).
Let us denote the standard coordinates in R3 by x, y, z and let us consider the

contact structure defined by the 1-form η = dz − y dx. Let pr : R
3 → R

2 be the
projection (x, y, z) 7→ (x, y).

Lemma 2.1. Let γ : [0, 1] → R2 be a C2-smooth path starting at a point p0 =
(x0, y0). Then for any z0 ∈ R there exists a unique Legendrian path γ̃ : [0, 1] → R3

starting at p̃0 = (x0, y0, z0) such that γ = pr γ̃. Moreover, the length of γ̃ is less

than L
√

1 + (|y0| + L)2 where L is the length of γ.

The path γ̃ is called the Legendrian lift of γ starting at p̃0.

Proof. Let γ(t) = (x(t), y(t)). Set γ̃(t) = (x(t), y(t), z(t)) where z(t) = z0 +
∫

γ([0,t])
y dx. We have |γ̃′|2 = ẋ2+ẏ2+ż2 = ẋ2+ẏ2+(y ẋ)2 ≤ (1+y2)|γ′|2. Hence, the
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length of γ̃ is less than L max
√

1 + y2. It remains to note that max y ≤ |y0|+L. �

Lemma 2.2. Let 0 < ε < 1/2 and let p̃0 = (x0, y0, z0) and p̃1 = (x1, y1, z1) be
points in R3 such that |y0| < 1, |y1| < 1, and ‖p̃1 − p̃0‖ < ε2. Then there exists a
piecewise smooth Legendrian path from p̃0 to p̃1 whose length is less than c1ε for
some absolute constant c1.

Proof. Let γ1 be a straight line segment connecting p0 = pr(p̃0) to p1 = pr(p̃1) and
let γ̃1 be the Legendrian lift of γ1 starting at p̃0. Let p̃′1 = (x1, y1, z

′
1) be the end of

γ̃1. Let γ2 = sign(z1 − z′1)∂D where D is a disk of area |z1 − z′1| such that p1 ∈ ∂D.
Let γ̃2 be the Legendrian lift of γ̃2 starting at p̃′1. Then the end of γ̃2 coincides
with p1 because

∫

γ̃2
dz =

∫

γ2
y dx = ±Area(D). The estimate for the length of γ̃1

is obtained by a straightforward application of Lemma 2.1. �

Lemma 2.3. Let M be a contact C2-smooth 3-manifold endowed with a Riemann-
ian metric. Let α be a Legendrian zero-homologous 1-cycle on M . Then for any
ε > 0 there exist ε-short Legendrian 1-cycles α1, . . . , αn on M such that

∑

αj = α.

Proof. It is known that all contact structures are locally equivalent to each other.
Hence, for any p ∈ M there exist its neighbourhood Up and a smooth embedding
ϕp : Up → R3 taking the given contact structure on M to the contact structure on
R3 defined by the form η = dz − y dx. Replacing Up by a smaller neighbourhood,
if necessary, we may assume that the set ϕp(Up) is convex, contained in the layer
{|z| < 1}, and there exists a constant mp > 0 such that ‖dϕp(v)‖ > mp‖v‖ for
all v ∈ TUp. In each Up, let us choose an open subset Vp such that p ∈ Vp and

V p ⊂ Up.
Let β be a 2-cycle in M whose boundary is α. Let us choose a finite subfam-

ily U = {(Ui, Vi, ϕi)}i=1,...,k ⊂ {(Up, Vp, ϕp)}p∈M such that the support of β is

contained in
⋃k

i=1 Vi , and let m = min(Up,Vp,ϕp)∈U mp.

Let ε1 = mini dist
(

ϕi(V i), R3 \ ϕi(Ui)
)

and let ε2 = min(ε1, mε/3)/c1 (here
c1 is the constant from Lemma 2.2). Let us represent β as a sum of simplices
β = β1 + · · · + βn so that:

(1) each βj is contained in some Vij
and diamϕij

(βj) < ε2
2 far any i = 1, . . . , n;

(2) the lengths (with respect to the metric on M) of those edges of βj ’s which
contribute to α = ∂β are smaller than ε/3.

Let Γ = {γ} be the set of those edges of the simplices βj ’s which do not contribute
to α (for each pair of edges which cancel against each other in ∂

∑

βj , we include
only one of them in Γ). For each γ ∈ Γ, γ ⊂ ∂βj , using Lemma 2.2, we can choose
a piecewise Legendrian path γ′ which joins the ends of ϕij

(γ) and which is shorter

than c1ε2. Since c1ε2 ≤ ε1, we have γ′ ⊂ Uij
, hence γ′′ = ϕ−1

ij
(γ′) is a Legendrian

path in M shorter than ε/3. Let Γ′′ be the set of all such γ′′.
Finally, for each j = 1, . . . , n, we define αj as the cycle obtained from the

boundary of βj by replacing each of its edges γ ∈ Γ with the corresponding path
γ′′ ∈ Γ′′. �

Definition 2.4. Let α be a positively transverse 1-cycle in a contact 3-manifold
M . A finite collection of 1-cycles A = {α1, . . . , αn} in M is called a Legendrian net
hanged on α if

(1) each αi decomposes into the sum of two 1-chains αi = αpt
i + αleg

i (each of

them may be zero) where αpt
i is positively transverse and αleg

i is Legendrian;
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(2) α1 + · · · + αn = αpt
1 + · · · + αpt

n = α;

The cycles α1, . . . , αn will be called the cells of A, and the union of their supports
will be called the support of A.

Definition 2.5. Let α be a generic positively transverse cycle in M . A Legendrian
net A = {α1, . . . , αn} hanged on α is called generic or in general position if there
exists a piecewise smoothly embedded graph Γ with Legendrian edges such that

(1) the multiplicity (i.e. the number of incident edges) of any vertex of Γ is
either 1 or 3;

(2) each end (i.e. vertex of multiplicity 1) of Γ is a smooth point of the support
of α, and the tangents to Γ and to α at this point are distinct;

(3) Γ ∩ suppα coincides with the set of the ends of Γ;

(4) each chain αleg
i is a sum of edges of Γ taken with the coefficients ±1, every

edge contributing to exactly two cells with the opposite signs.

Proposition 2.6. Let M be a contact C2-smooth 3-manifold endowed with a Rie-
mannian metric. Let α be a positively transverse 1-cycle in M which is homologous
to zero. Then for any ε there exists a Legendrian net A = {α1, . . . , αn} hanged on
α all whose cells are ε-short. The support of A can be done arbitrarily close to the
support of any given 2-chain β such that ∂β = α.

If, moreover, α is generic, then A can also be chosen generic.

The proof is the same as that of 2.3, and we omit it. To achieve the genericity
of A, one should apply the following statement.

Proposition 2.7. Let M be a contact C2-smooth 3-manifold endowed with a Rie-
mannian metric. Let α be a generic positively transverse 1-cycle in M , and let
A = {α1, . . . , αn} be a Legendrian net hanged on α.

Then for any δ > 0 there exists a generic Legendrian net A′ = {α′
1, . . . , α

′
n}

hanged on α such that for any i = 1, . . . , n, the cycles α′
i and αi are δ-close in

Hausdorff metric and | len αi − len α′
i| < δ.

Proof. Step 1. Let us show that after an arbitrarily small perturbation of A, one
can find an embedded graph Γ with Legendrian edges such that Condition (4) of
Definition 2.5 is satisfied.

By the definition of 1-chains, there exist piecewise smooth Legendrian paths

γ1, . . . , γk and integer coefficients mij such that αleg
i =

∑

j mijγj . We must achieve

|mij | ≤ 1 for all i, j. To this end we shall successively reduce the quantity
∑

ij max(0, |mij |−1). Suppose that mi0,j0 ≥ 2 for some i0, j0 (the case mi0,j0 ≤ −2

is analogous). Since γj0 does not contribute to
∑

i αi, we have
∑

i mi,j0 = 0. Hence,
there exists an index i1 such that mi1,j0 < 0. Let γ′ be a Legendrian perturbation
of γj0 such that ∂γ′ = ∂γj0 and (supp γ′) ∩ (supp Γ) = supp(∂γ′). Let us replace
αi0 with αi0 − γj0 + γ′ and αi1 with αi1 + γj0 − γ′. It easy to see that this reduces
the quantity

∑

ij max(0, |mij | − 1) at least by one.

Step 2. Suppose that there exists an embedded graph Γ with Legendrian edges
which satisfies Condition (4) of Definition 2.5, and let us show that it can be
perturbed so that (1)–(3) are satisfied.

Let p be a vertex of Γ̂ = Γ ∪ (suppα) of multiplicity k > 3. Let us consider an

auxiliary graph Gp defined as follows. Its vertices are the edges of Γ̂ incident to
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p. Two vertices γ and γ′ of Gp (i.e. edges of Γ̂) are connected by an edge in Gp

when γ ⊂ suppαi and γ′ ⊂ suppαi for some αi. The condition
∑

i αi = α implies
that after removing certain edges from Gp, one obtains a disjoint union of graphs
E1 ⊔ · · · ⊔ Em, moreover, the graphs E2, . . . , Em are combinatorially equivalent to
a circle, and E1 is equivalent either to a circle (when p 6∈ suppα), or to a segment

whose endpoints correspond to the edges of Γ̂ lying on suppα. Denote the vertices
of Ek by γk,1, . . . , γk,ck

so that γk,j is connected to γk,j+1 by an edge in Ek.
Let Up be a sufficiently small neighbourhood of p diffeomorphic to the ball, such

that Γp = Up ∩ Γ =
⋃

k,j(γk,j ∩ Up) and each of γk,j ∩ Up is an embedded segment

transverse to ∂Up. Set Γp,k =
⋃ck

j=1(γk,j ∩ Up) and qk,j = γk,j ∩ ∂Up. Let Γ′
p,k,

k = 1, . . . , m, be an arbitrary plane tree embedded into a disk ∆ such that all of
its vertices have multiplicity 1 or 3, the number of ends (i.e. vertices of multiplicity
1) is equal to ck, and all the ends lie on ∂∆. Let us denote the ends of Γ′

k,j by

q′k,1, . . . , q
′
k,ck

in the cyclic order along ∂∆. When p ∈ suppα, we shall also assume

that there exists a vertex p′ of Γ′
p,1 connected by edges to q′1,1 and q′1,c1

.
To perturb Γ as is required, we replace each tree Γp,k by the image of Γ′

p,k under

an embedding into M which has the following properties. It takes q′k,j to qk,j ,

it maps the union of the edges [p′, q′1,1] ∪ [p′, q′1,c1
] homeomorphically onto the arc

q1,1q1,c1
of α (the vertex p′ being sent to a smooth point of this arc), and the images

of all other edges of Γ′
p,k are Legendrian. �

3. Approximation of a Legendrian net by
the union of boundaries of analytic disks

Let V be a complex analytic surface and M an oriented real hypersurface in
V . Then the field of complex tangents is defined on M . It can be represented as
ker η for some 1-form η. We shall call a curve γ : [0, 1] → M Legendrian (resp.
positively transverse) if γ∗η = 0 (resp. γ∗η > 0). In the case when M is strictly
pseudoconvex, the field of complex tangents is a contact structure on M , hence
these definitions are coherent with the definitions in §2.

Lemma 3.1. Let U be an open subset in C2, and M ⊂ U a real hypersurface
defined by an equation f = 0 where f is a real C2-smooth function in U . Let
γ : [0, t1] → M be a Legendrian C2-smooth path and let p0 = γ(0). Let T be the
complex tangent line to M at p. Suppose that the Hessian H at p0 of the restriction
f |T is positive definite.

Let Lt be the complex line passing through the points p and γ(t). Let S+
t and S−

t

denote the arcs into which the curve Lt ∩M is divided by the points γ(0) and γ(t).
Then we have

lim
t→0

2 len(S±
t )

len
(

γ([0, t])
) =

len(E)

d(E, γ′(0))
< π

√

K1/K2, (1)

where E is the ellipse {H = 1}, d(E, v) is the length of its diameter in the direction
of a vector v, and K1, K2 (K1 ≥ K2) are the principal curvatures of M in the
direction of T .

Proof. Let us denote the coordinates in C2 by (z, w). Without loss of generality we
may assume that p0 is the origin, T is the axis w = 0, and γ′(0) = (1, 0). Then we
have

f ′
z(0, 0) = f ′

z̄(0, 0) = 0 and f ′
w(0, 0) = f ′

w̄(0, 0) = a 6= 0. (2)
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Since f is twice differentiable, we have

f(z, w) = aw + āw̄ + Az2 + 2Bzz̄ + Āz̄2 + w g1 + w̄ g2 + (zz̄ + ww̄) g3, (3)

where
2A = f ′′

zz(0, 0), 2B = f ′′
zz̄(0, 0), lim

(z,w)→(0,0)
g1,2,3(z, w) = 0.

Let us set γ(t) = (z(t), w(t)). The condition that the path γ is Legendrian means
that

f ′
z(γ(t)) z′(t) + f ′

w(γ(t))w′(t) = 0, t ∈ [0, t1]. (4)

For t = 0, by (2), this implies w′(0) = 0. Hence we have

z(t) = t(1 + α1(t)), w(t) = b t2(1 + α2(t)), 2b = w′′(0), lim
t→0

α1,2(t) = 0. (5)

Differentiating (4) at t = 0 and combining with (2), (3), and (5), we obtain

2ab + 2A + 2B = 0. (6)

Consider the parametrization of Lt given by ϕt : C → C2, ζ 7→
(

z(t)ζ, w(t)ζ
)

. Let

us denote the curve ϕ−1
t (Lt ∩ M) by St. It is defined by f(ϕt(ζ)) = 0. Using (3)

and (5), one can rewrite the left hand side of this equation in the form

t2 ·
(

abζ + āb̄ζ̄ + Aζ2 + 2Bζζ̄ + Āζ̄2 + g(t, ζ)
)

(7)

where g(t, ζ) tends to zero as t → 0 uniformly on any bounded subset of C. Note,
that the Hessian of the restriction f |T has the form H(z) = (Az2 +2Bzz̄ + Āz̄2)/2.
Hence, combining (7) with (6) and dividing by 2t2, we obtain St = { ζ |H(ζ−1/2)+
g(t, ζ) = H(1/2) }, and hence, St → E1/2 for t → 0 where E1/2 = { ζ |H(ζ−1/2) =
H(1/2) } is a translate of E. Since the second derivatives of f are continuous, St →
E1/2 implies that len(St) → len(E) and len(S±

t ) → len(E)/2. It remains to note

that the length of ϕ−1
t (γ[0, t]) tends to d(E, 1), because γ is twice differentiable. �

Remark 3.2. a). If we replace the condition that γ is Legendrian in Lemma 3.1 by
the weaker condition that γ′(0) ∈ T , then St will still tend to some translate of E.
However, it may then happen, that the center of the translated ellipse will not be
on the real axis, and hence the arc ϕ−1

t (γ[0, t]) will not tend to a diameter. Thus,
the upper bound for the ratio of the length will fail.

b). The only place in the proof where the continuity of the second derivatives of
f is used, is the implication (St → E1/2) =⇒ (len(St) → len(E)). Therefore, the

assertion of the lemma remains true if we replace the condition that f is of class C2

by the weaker condition that f is just twice differentiable but assume in addition
that M is convex.

Corollary 3.3. Let Ω be a domain in a complex analytic surface whose boundary
M = ∂Ω is C2-smooth. Suppose that M is endowed with a C2-smooth Riemannian
metric g, and let p0 ∈ M . Suppose that M is strictly pseudoconvex in a neighbour-
hood of a point p0. Let γ : [0, t1] → M , γ(0) = p0, be a Legendrian C2-smooth
curve.
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Then, for any δ > 0, there exists a family of analytic disks {Dt}t∈[0,t2], t2 ≤ t1
such that Dt ⊂ Ω, ∂Dt ⊂ M , Dt ∩ γ = {p0, γ(t)}, Dt is transverse to M , and

lim
t→0

len S±
t

len γ([0, t])
, < 1 + δ (8)

where S+
t and S−

t are the arcs into which the curve ∂Dt is divided by the points
γ(0) and γ(t).

Proof. Let us choose the coordinates (z, w) as in the proof of Lemma 3.1. Then
the coordinate change (z, w) → (z, w + cz) transforms H into

(A + ac)z2 + 2Bzz̄ + (Ā + āc̄)z̄2.

Let us choose c so that A + ac = B − δ1 when δ1 ≪ δ, and apply Lemma 3.1. �

Definition 3.4. Let M be a smooth contact manifold. A Positive Transverse Sim-
ple Crossing Curve (PTSC-curve) in M is a union of piecewise smooth embedded
positively transverse oriented closed curves S = S1∪· · ·∪Sm (called the components
of S) which meet each other at most pairwise and so that if Si and Sj intersect at
p then each of these curves is smooth at p and the tangents to Si and to Sj at p
are distinct.

A circuit of a PTSC-curve S is an oriented piecewise smooth embedded circle γ
which is a union of arcs of S such that

(1) on any smooth arc a of γ, the orientation induced from γ coincides with the
orientation induced from S;

(2) if γ passes through the intersection point of two components of S then it
switches from one component to the other one.

It is clear that any two circuits may intersect each other only at intersection
points of components of S, and the sum of all circuits is S.

Proposition 3.5. a). Let Ω be a domain in a complex analytic surface whose
boundary M = ∂Ω is C2-smooth. Suppose that M is endowed with a C2-smooth
Riemannian metric g. Let α be a positively transverse curve which is a union of
disjoint piecewise C2-smoothly embedded circles, and let A = {α1, . . . , αn} be a
generic Legendrian net hanged on α. Suppose that M is strictly pseudoconvex in a
neighbourhood of suppA.

Then, for any δ > 0, there exists a PTSC-curve S = S1 + · · · + SN such that:

(1) each Sj is the boundary of an analytic disk Dj in Ω;
(2) S + α has exactly n circuits β1, . . . , βn;
(3) for any i = 1, . . . , n, the Hausdorff distance between βi and αi is less than

δ, and len(βi) < len(αi) + δ.

b). If, moreover, Ω is a domain in C2 and the sectional curvature of M in the
direction of complex tangents does not vanish in some neighbourhood of M , then the
disks D1, . . . , DN can be chosen so that each of them is the intersection of Ω with
some complex line, but in this case the estimate for the lengths should be replaced
by len(βi) < c3 len(αi) + δ where c3 is a constant depending on M , g, and A (when
Ω is the unit ball and g is induced by the standard metric in C2, one has c3 = π/2).



ALGEBRAIC CURVE IN THE UNIT BALL IN C2 9

αn

α i

α i

α i

1

2

3

α

αn

α i

α i

α i

1

2

3

α

a). The net A. b). (suppA) ∪ (S1 ∪ · · · ∪ S1).

pt

S+

nα

α i

α i

α i

1

2

3

α

c). The circuit βn = αpt
n + S+. d). The net Ã.

Fig. 1

Proof. a). Induction by n. The case n = 0 is trivial. Suppose that we have proved
the required statement for Legendrian nets having n− 1 cells. Let us prove it for a

Legendrian net A which has n cells. Let αpt
i and αleg

i be as in Definition 2.4. The
construction described below is illustrated in Figures 1(a–d).

By Corollary 3.3, for any point p ∈ αleg
n there is a neighbourhood Up such that

for any q ∈ Up ∩ αn there exists an analytic disk Dpq ⊂ Ω satisfying inequality
(8) with an arbitrarily given number δ1 instead of δ. Choosing a finite subcovering
{Up}, we can represent αleg

n as the sum of arcs αleg
n = γ1 + · · ·+ γk so that for any

i = 1, . . . , k there exists an analytic disk Di ⊂ Ω such that ∂Di = Si = S+
i + S−

i ,
∂S±

i = ±∂γi, and len(S±
i )/ len(γi) < 1 + δ1. We may also assume that the length

of each arc γi is less than an arbitrarily given number, and that any edge of Γ (the
graph from Definition 2.4) contributing to αleg

n is the sum of a subset of arcs γi.

Perturbing the disks Di, we can achieve that they are transverse to each other
and hence, the curves Si have distinct tangents at the intersection points. We may
also assume that if an end of γi lies on α then the tangents at this point to α and

to γi are distinct. Let us set S± =
∑k

i=1 S±
i . These are positively transverse chains

such that ∂S+ = ∂αleg
n = −∂S−. Hence α̃ = α − αleg

n + S− is a generic positively
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transverse cycle.
Passing if necessary from the arcs γj to their subdivisions, we may assume that

the collection of arcs γ1, . . . , γk can be completed up to γ1, . . . , γk, γk+1, . . . , γm, so
that αi =

∑m
j=1 aijγj , i = 1, . . . , n, for some matrix of integer coefficients aij such

that aij ∈ {−1, 0, 1} for any i = 1, . . . , n, j = 1, . . . , m. Some of γk+1, . . . , γm being
positively transverse, the others being Legendrian.

Let us denote the set of ends of γ1, . . . , γk not belonging to α by P . In other
words, P = (S ∩ suppαn) \ suppα = (S− ∩ suppαn) \ suppα. For every p ∈ P , let
us define a point p̃ as follows. Let γi, 1 ≤ i ≤ k, be an arc whose end is p (there are
two such arcs but we choose any of them). Then we define p̃ as an interior point
of S−

i which is closer to p than to the other end of S−
i . If p is the end of an arc γi

and p 6∈ P , we set p̃ = p.
For each i = 1, . . . , m, let us define an arc γ̃i as follows. Let ∂γi = q − p, and

let p̃ and q̃ be the points chosen as it is described above starting from p and q
respectively. If 1 ≤ i ≤ k, we define γ̃i as the path on S− connecting p̃ to q̃. If
k < i ≤ m and the arc γi is Legendrian, we define γ̃i as a Legendrian path from p̃
to q̃. If the arc γi is positively transverse, we set γ̃i = γi. In all the cases, we orient
γ̃i so that ∂γ̃i = q̃ − p̃. It follows from Lemma 2.2 that the arc γ̃i can be chosen
arbitrarily close to γi.

Let us set Ã = {α̃1, . . . , α̃n−1} where α̃i =
∑m

j=1 aij γ̃j , i = 1, . . . , n − 1. It is

easy to check that this is a generic Legendrian net hanged on α̃ (see Figure 1 d).

Hence, by the induction hypothesis, we can find a PTSC-curve S̃ = Sk+1 + · · ·+SN

so that the statement of the lemma holds for Ã instead of A and for an arbitrarily
chosen constant instead of δ. Then, for a suitable choice of the constants involved
in the construction of Ã, the curve S = S1 + · · ·+Sk + S̃ will satisfy the conclusion
of the lemma. Indeed, let us denote the circuits of S̃ by β1, . . . , βn−1. Then the
curve S has n circuits, namely, β1, . . . , βn−1, and βn = αpt

n + S+. By the induction
hypothesis, the circuits β1, . . . , βn−1 are close to the circles α̃1, . . . , α̃n−1, hence also
to the cycles α1, . . . , αn−1. The circuit βn is close to the cycle αn by construction
(see Figure 1 c).

b). The proof is more or less the same as in Part a), but the manifold M should
be replaced by a neighbourhood of the support of A where the quantity K1/K2

from (1) is bounded from below by some constant. �

Let us denote R+ = {x ∈ R |x ≥ 0} and R− = {x ∈ R |x ≤ 0}.
Lemma 3.6. Let x, y, z be coordinates in R3 and let f1, f2 : R3 → C2 be the
mappings given by f1(x, y, z) = x + iz, f2(x, y, z) = y + iz. For any complex
number c, let us denote the real curve {p ∈ R

3 | f1(p)f2(p) = c} by Sc. Then, for
c 6∈ R−, the curve Sc has exactly two branches (i.e. two connected components)
S+

c and S−
c such that S+

c ⊂ {x + y > 0}, S−
c ⊂ {x + y < 0}, and the restriction

of the linear function R3 → R, (x, y, z) 7→ x − y, to each of the branches S±
c is a

diffeomorphism.
Moreover, S±

c tends in any reasonable sense to S±
0 as c → 0, c 6∈ R− where

S+
0 = {z = xy = 0, x + y ≥ 0} and S−

0 = {z = xy, x + y ≤ 0}.
Proof. Set a = Re c, b = Im c. Then the curve Sc is given by the system of
simultaneous equations xy − z2 = a, z(x + y) = b. By the change of variables
x − y = 2u, x + y = 2v we transform this system to v2 − u2 − z2 = a, 2zv = b.

If b = 0 and a > 0 then Sc is the hyperbola v2 − u2 = a in the plane z = 0.
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If b 6= 0 then the intersection of Sc with the plane u = u0 can be found by
solving the system of simultaneous equations v2 − u2 − z2 = a, 2zv = b, u = u0.
Eliminating u, z, we obtain the equation v4 − (u2

0 + a)v2 − (b/2)2 = 0 with respect
to the variable v. It is clear that for any value of u0, this equation has exactly two
roots one of them being positive and the other one being negative. �

Remark. For c ∈ R−, the curve Sc is not smooth. It is the union of the hyperbola
v2 −u2 = c in the plane z = 0 and the circle u2 + z2 = −c in the plane v = 0 which
intersect at the two points z = v = 0, u = ±

√
−c.

Lemma 3.7. Let M be a C2-smooth oriented real 3-manifold, and let f1, f2, h be
C2-smooth complex valued functions on M such that f1(p0) = f2(p0) = 0, h(p0) 6=
0, and each of f1, f2 is a submersion in a neighbourhood of some point p0 ∈ M .
Let us denote the real curves f−1

j (0) by γj, j = 1, 2. On each γj near p0, let us
introduce the orientation induced by the submersion fj. Suppose that the tangents
to γ1 and γ2 at p0 are distinct.

Then there exist a number θ0 ∈ [0, 2π[ and a neighbourhood U of p0 such that
each of the curves U ∩ γj, j = 1, 2, is diffeomorphic to an open interval and for
any fixed θ 6≡ θ0 mod 2π there exists r0 = r0(θ) > 0 such that for 0 < r < r0,
the curve Sr,θ = { p ∈ U | f1(p)f2(p) = reiθh(p) } consists of two smooth branches

one of which tending to γ−
1 ∪ γ+

2 and the other one tending to γ−
2 ∪ γ+

1 as r → 0
where γ±

j denotes the preimage of R± under an orientation preserving embedding

(U ∩ γj , p0) → (R, 0).

Proof. It is clear that if the statement of the lemma holds for f1, f2, h, then it
holds (with maybe another number θ0) also for c1f1, c2f2, c3h where c1, c2, c3 are
arbitrary nonzero complex numbers. Therefore, we may assume that h(p0) = 1.
Let us choose a local real coordinate z in a neighbourhood of p0 so that the both
curves γ1, γ2 lie on the surface z = 0. Multiplying f1 and f2 by suitable complex
numbers, we may assume that ∂(Re fj)/∂z(p0) = 0, j = 1, 2. Let us set x = Re f1,
y = Re f2. Then (x, y, z) is a local coordinate system where the functions f1, f2 have
the form f1(x, y, z) = x+ iz +O(x2 +y2 +z2), f2(x, y, z) = y+ iz +O(x2 +y2 +z2).
Therefore, the statement follows from Lemma 3.6 combined with the fact that the
curve Hr(Sr,θ) tends to the curve {(x + iz)(y + iz) = eiθ} as r → 0, θ = const 6≡ π
mod 2π where Hr stands for the homothety (x, y, z) 7→ (x/

√
r, y/

√
r, z/

√
r). �

Proposition 3.8. Let Ω be an arbitrary domain in C2 with a compact C2-smooth
boundary M = ∂Ω, and let A be an algebraic curve in C2 given by f = 0. Suppose
that S = A ∩ M is a PTSC-curve. Let h be a polynomial which does not vanish
at the double points of S. Then there exists a finite set Θ ⊂ [0, 2π[ such that
for any θ ∈ [0, 2π[ \Θ, there is r0 = r0(θ) > 0 such that the real curve Sr,θ =
{ p ∈ M | f(p) = reiθh(p) } for 0 < r < r0 is smooth and its connected components
converge to the circuits of S as r → 0.

Proof. Follows from Lemma 3.7. �

Proof of Theorem 1.1. By Proposition 2.6, we can construct a Legendrian net
hanged on ∂A all of whose cells are small. By Proposition 3.5, it can be ap-
proximated by the boundary of the union D of analytic (resp., linear) disks so that
the circuits of D ∩ M are arbitrarily small. Using Proposition 3.8 in the algebraic
case, and the standard techniques of analytic sheaves on open Riemann surfaces in
the analytic case, we can perturb D so that all of its boundary components become
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close to circuits of S. Moreover, this perturbation can be chosen so that the points
of P do not move (in the algebraic case, we just choose h in Proposition 3.8 so that
it vanishes on P ). �

4. Some elementary facts about the
standard contact structure on S3 ⊂ C2.

For the reader’s convenience, in this section we shall give some well-known facts
about curves on S3 and their projections to P2, and we shall deduce from them a
lower bound for n(ε) of the order 1/ε2.

Let z = x+ iy and w = u+ iv be the standard coordinates in C
2. Let us denote:

ρ = ρ(z, w) = |z|2 + |w|2 = x2 + y2 + u2 + v2,

η = 1/2 dcρ = i/2 (z dz̄ − z̄ dz + w dw̄ − w̄ dw) = xdy − y dx + u dv − v du,

ω = 1/2 dη = i/2 (dz ∧ dz̄ + dw ∧ dw̄) = dx ∧ dy + du ∧ dv.

Let B4 = {ρ ≤ 1}, S3 = ∂B4 = {ρ = 1}, P1 =
(

C2 \ {(0, 0)}
)

/(z,w)∼(λz,λw) and let

pr : C2 \ {(0, 0)} → P1 and prS3 : C2 \ {(0, 0)} → S3 be the standard projections.
The field of real 2-planes ker η|S3 is the field of complex tangents to S3. It defines
the standard (tight) complex structure on S3.

Let ‖ · ‖P1 and ωP1 be the Riemannian Fubini-Studi metric on P
1 and the corre-

sponding volume form which are defined by

‖dζ‖P1 =
|dζ|2

(1 + |ζ|2)2 , ωP1 =
i

2

dζ ∧ dζ̄

(1 + |ζ|2)2 , ζ = z/w.

P1 equipped with this metric is isometric to the standard 2-sphere of radius 1/2, in
particular, we have

∫

P1

ωP1 = π.

Let
η∗ = pr∗

S3(η|S3) and ω∗ = pr∗(ωP1).

It is easy to check that

η∗ =
η

ρ
=

1

2
dc log ρ and dη∗ =

2ω

ρ
− dρ ∧ η

ρ2
= 2ω∗. (10)

Lemma 4.1. Let F be a 2-chain in S3. Then
∫

∂F

η = 2

∫

pr∗ F

ωP1 .

Proof. Follows from Stokes’ theorem and from (10). �

Let ‖ · ‖S3 be the Riemannian metric on S3 induced by the standard metric in
C

2. It is easy to check that

‖v‖2
S3 = |η(v)|2 + ‖ pr∗ v‖2

P1 , v ∈ TS
3. (12)

In particular, if D is the disk which is cut by B4 on a complex line passing through
the origin, then the circle ∂D is orthogonal to the contact structure and

∫

∂D

η = 2π. (13)



ALGEBRAIC CURVE IN THE UNIT BALL IN C2 13

Lemma 4.2. Let A be a smooth complex algebraic curve in C2 passing through the
origin and having there a non-degenerate tangency with a complex line L. Let F be
the closure of prS3(A ∩ B3 \ 0). Then ∂F = ∂(A ∩ B4) − ∂(L ∩ B4). In particular,

∫

∂(A∩B4)

η = 2π + 2

∫

pr∗ F

ωP2 ≥ 2π. (14)

Proof. Apply the real blowup of the origin (identifying C
2 with R

4). �

Definition 4.3. An n-chain β with piecewise smooth boundary on an oriented
n-manifold M is called positive (resp., strictly positive) if each connected compo-
nent of the complement of ∂β contributes to β with a nonnegative (resp., positive)
multiplicity. We shall write in this case β ≥ 0 (resp., β > 0).

Every n-chain β on M can be represented in a unique way as β = β+ − β− so
that β+ ≥ 0, β− ≥ 0, and (suppβ+) ∩ (supp β−) = (supp ∂β+) ∩ (supp ∂β−). The
chains β± are called the positive and the negative parts of β.

If U is a domain in M which has piecewise smooth boundary and if β is an
n-chain, then the restriction of β to U is the n-chain β|U =

∑

mi(βi ∩ U) where
β =

∑

miβi is the representation of β as a linear combination of domains with
piecewise smooth boundaries.

Remark 4.4. Let M be an oriented n-manifold. We shall identify n-chains on M
having piecewise smooth boundaries with integer-valued functions that are linear
combinations of characteristic functions of domains. Namely, if β1, . . . , βk are do-
mains in M having piecewise smooth boundaries, then the chain β =

∑

miβi,
mi ∈ Z, will be identified with the function χβ =

∑

miχβi
where χβi

is the char-
acteristic function of the domain βi (i.e. χβi

|βi
= 1, χβi

|M\βi
= 0).

The integral of a 2-form ξ corresponds under this identification to
∫

M
χβξ. Tak-

ing the restriction of β to U corresponds to the multiplication by χU , etc.

Lemma 4.5. (Isoperimetric inequality for 2-chains on S2.) Let S2 be the sphere
of radius R in R3 endowed with the standard Riemannian metric and the standard
area form dS. Let β be a 2-chain on S2 which has a piecewise smooth boundary
whose length (taking into account the multiplicities if there are multiple segments)
is equal to a, and let b =

∫

β
dS be the oriented area of β. Let β+ (resp. β−) be the

positive (resp. negative) part of β, and let b± =
∫

β± dS.

Suppose that |b| < 2πR2 a < 2πR. Then

|b| ≤ b+ + b− ≤ SR(a) where SR(a) = 2πR2
(

1 −
√

1 − a2/(2πR)2
)

(15)

and if, moreover, the set supp ∂β is connected then

diamS2 suppβ ≤ a/2. (16)

Proof. If β is a domain on the sphere, then (15) is the classical isoperimetric in-
equality.

In the general case, the boundary of β can be represented as a disjoint union of
closed curves whose lengths we denote by a1, . . . , ak. Each of these curves is the
common boundary of two domains in the sphere, and the area of at least one of
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them does not exceed 2πR2. Choosing in a suitable way the signs of these domains,
we obtain a 2-chain whose boundary coincides with ∂β. Adding if necessary several
times ±[S2], we obtain a 2-chain β′ such that β − β′ is a zero-homologous cycle,
∂β′ = ∂β, and β′ has the form β′ = m[S2] + s1β1 + · · · + skβk where m ∈ Z,
si = ±1, and βi is a domain of area bi ≤ 2πR2. For each of these domains, we
have bi ≤ SR(ai). Since the function SR is convex and SR(0) = 0, it follows that
SR(a) = SR(a1 + · · · + ak) ≥ SR(a1) + · · · + SR(ak). Hence,

|b − 4πR2m| =
∣

∣

∣

∑

sibi

∣

∣

∣
≤

∑

bi ≤
∑

SR(ai) ≤ SR(a).

Let us show that m = 0. Indeed, recall that |b| < 2πR2. Combining this inequality
with SR(a) < 2πR2, we obtain 4πR2|m| ≤ |b| + |b − 4mπR2| < 2πR2 + SR(a) <
4πR2, i.e. |m| < 1. But m ∈ Z, hence m = 0.

Let us set β̂± =
∑

si=±1 βi, b̂± =
∑

si=±1 bi. We have proven that b̂+ + b̂− ≤
SR(a) and for deducing (15), it remains to note that b± ≤ b̂±. The latter fact is

evident because the decomposition β+−β− can be obtained from β̂+−β̂− by succes-
sive cancellation of connected components of supp ∂β contributing simultaneously
to β+ and β−.

Now let us suppose that the set supp ∂β is connected and prove (16). First,
let us show that suppβ does not contain pair of antipodal points. Indeed, let us
denote the central symmetry by σ : S2 → S2. The estimate len ∂β < 2πR yields
σ(supp ∂β) ∩ supp ∂β = ∅. Since suppβ is connected, this implies that σ(suppβ)
is contained in a single connected component of the complement of supp ∂β. This
component cannot be contained in suppβ because its area is greater than the
area of σ(suppβ), and hence greater than the area of suppβ. Therefore, we have
σ(supp β) ∩ suppβ = ∅.

Let p, q ∈ suppβ. Let us denote the shortest geodesic from p to σ(q) (resp., from
q to σ(p)) by γp (resp., by γq). Since the points σ(p) and σ(q) do not belong to
suppβ, there exist points p′ ∈ γp ∩ supp ∂β and q′ ∈ γq ∩ supp ∂β. Therefore, we
have distS2(p, q) ≤ distS2(p′, q′) ≤ (len ∂β)/2 = a/2. �

Remark 4.6. The classical isoperimetric inequality (the inequality (15) for a single
domain in the sphere) can be equivalently reformulated as 4πb − b2/R2 ≤ a2. In
this form, it holds without the assumptions b < 2πR2 and a < 2πR. An analogue
of this inequality for 2-chains is

max
m∈Z

(

|b − 4mπR2| − (b − 4mπR2)/R2
)

≤ a2.

It holds also without the assumptions |b| < 2πR2 and a < 2πR. The graph of the
left hand side of the latter inequality (considered as a function of b) is the union of
the upper halves of ellipses centered at the points

(

(2 + 4m)πR2, 0
)

, m ∈ Z. The

ellipses touch each other at the points
(

4mπR2, 0
)

.

Lemma 4.7. Let γ be a positively transverse curve on S3 (e.g. a connected com-
ponent of the intersection of a complex analytic curve with S3). Let us denote:

a = lenP1(pr γ), b =

∫

γ

η, ℓ = lenS2(γ).
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Then we have
max(a, b) ≤ ℓ ≤ a + b (17)

and if, moreover, ℓ < π/2, then we have

b ≤ S1/2(a) =
π

2

(

1 −
√

1 − a2

π2

)

=
a2

4π
+

a4

16π3
+ . . . (18)

Proof. The inequalities (17) follow from (12) combined with the fact that the form
η is positive on γ.

To prove (18), let us consider a 2-chain in S3 whose boundary is the cycle γ
and let us denote its projection to P1 by β. Recall that P1 is isometric to the
sphere of the radius R = 1/2. Hence, ℓ < π/

√
2 combined with (17) implies

a < ℓ < π/2 < π = 2πR and b < ℓ < π/2 = 2πR2, and the result follows from
Lemma 4.5. �

Corollary 4.8. Let γ be a positively transverse curve in S3 and let ℓ and b be as
in Lemma 4.7. If ℓ < π/2 then b ≤ S1/2(ℓ).

Proof. Follows from (17), (18), and the monotonicity of S1/2 �

Combining all the above facts, it is easy to obtain the quadratic estimate for
n(ε) announced in the Introduction:

Proposition 4.9. If ε < π/2, then n(ε) > 2π/S1/2(ε) = 8π2/ε2 − 2 + O(ε2).

Proof. Let A be a complex algebraic curve in C
2 passing through the origin such

that all connected components γ1, . . . , γn of A ∩ S3 are shorter than ε. Perturbing
A, we may assume that the conditions of Lemma 4.2 are satisfied. Thus, by (14)
and Corollary 4.8, we have

2π ≤
∫

∂(A∩B4)

η =

n
∑

i=1

∫

γi

η ≤ nS1/2(ε) =
nε2

4π
·
(

1 +
ε2

4π2
+ O(ε4)

)

. �

5. A lower bound of the order ε−3 for
the number of cells of a Legendrian net

In this section, we shall prove the following result which means that any upper
bound obtained by the method of §§2–3 cannot be better than n(ε) = O(ε−3).
More precisely, we shall prove the following result.

Proposition 5.1. Let A be an algebraic curve in C2 passing through the origin,
and let Γ = A ∩ S3. Let A = {α1, . . . , αn} be a Legendrian net hanged on Γ (see
Definition 2.4). Suppose that every cell of A is shorter than ε. Then

n >
2c0

εS1/2(ε)
=

8c0π

ε3
− 2c0

πε
+ O(ε)

where c0 is a constant depending only on A. In the case when A is a complex line,
one can set c0 = π2/4.

Remark. It seems that a similar statement should hold for any contact 3-manifold.
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Proof. We shall use the notation introduced in §4. We shall assume that ε < π/2.
Let us define a function f : P1 → R+ by setting f(p) = distP1(p, pr Γ). For each cell

αi, let us consider a 2-chain β̃i in S3 such that ∂β̃i = αi, and let us set βi = pr∗ β̃i.
Let βi = β+

i − β−
i be the decomposition of βi into the positive and negative part

(see Definition 4.3). Let us denote

bi =

∫

βi

ωP1, b+
i =

∫

β+

i

ωP1 , b−i =

∫

β−

i

ωP1 , c0 =

∫

P1

f ωP1 .

In the case when A is a complex line, it is not difficult to compute in spherical
coordinates that c0 = π2/4. It follows from (18) that b < π/2, hence, by Lemma
4.5 we have

diamP1(suppβi) < ε/2, i = 1, . . . , n. (19)

Perturbing A if necessary, we may assume that it is non-degenerate. Let F and L
be as in Lemma 4.2. Let β̃0 be a 2-chain in S

3 such that ∂β̃0 = ∂(L ∩ B
4). Then,

according to (14), we have

n
∑

i=1

∂β̃i =

n
∑

i=1

αi = Γ = ∂F + ∂(L ∩ B
4) = ∂F + ∂β̃0.

It follows from (13) and from pr∗ ∂β̃0 = 0, that pr∗ β̃0 = [P1]. Hence
∑n

i=1 βi =

pr∗ F + pr∗ β̃0 = pr∗ F + [P1]. Thus,

c0 =

∫

P1

f ωP1 ≤
∫

pr∗ F

f ωP1 +

∫

P1

f ωP1 =

n
∑

i=1

∫

βi

f ωP1. (20)

Let us set m+
i = maxsupp β+

i
f and m−

i = minsupp β−

i
f . Then

∫

βi

f ωP1 =

∫

β+

i

f ωP1 −
∫

β−

i

f ωP1 ≤ b+
i m+

i − b−i m−
i

= b+
i (m+

i − m−
i ) + (b+

i − b−i )m−
i = b+

i (m+
i − m−

i ) + bim
−
i . (21)

By Lemma 4.5, we have b+
i ≤ S1/2(ε). Since |f(p) − f(q)| ≤ distP1(p, q), it follows

from (19) that m+
i − m−

i < diamP1 suppβi < ε/2, hence

b+
i (m+

i − m−
i ) ≤ S1/2(ε)ε/2. (22)

Let us show that
bim

−
i = 0. (23)

Indeed, let αi = αleg
i +αpt

i be the decomposition from Definition 2.4. Let us consider

two cases: αpt
i = 0 and αpt

i 6= 0. In the former case, the cycle αi is Legendrian,
hence

bi =

∫

βi

ωP1 =

∫

β̃i

ω∗ =

∫

αi

η∗ = 0.
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In the latter case, supp β̃i has a non-empty intersection with Γ, hence f vanishes
in suppβi which implies m−

i = 0. Equality (23) is proved. Combining (20) – (23),
we obtain c0 ≤ nS1/2(ε)ε/2 = O(ε3). �

Remark. In the case when A is a complex line passing through the origin, the
quantity

∫

βi
fωP1 playing the central role in the proof can be interpreted as the

moment of βi (considered as a measure on P1) with respect to the point prA. So,
the proof reduces to the following argument: the measure ωP1 whose moment is
equal to an absolute constant π2/4 is represented as the sum of measures βi whose
moments are of the order ε3.

Finally, let us formulate an open question, an affirmative answer to which would
imply a lower bound for n(ε) of the order ε−3 (by the same method as in the proof
of Proposition 5.1).

Let L be the set of positive functions on P1 satisfying the Lipschitz condition
with the constant 1, i.e. functions f : P1 → R+ such that |f(p)−p(q)| ≤ distP1(p, q)
for all p, q ∈ P1.

Does there exist an absolute constant c such that the inequality

max
f∈L

(

∫

m[P1]+pr∗ F

fωP1 −
∫

A∩S3

(f ◦ pr) · η
)

> c, F = prS3(A ∩ B4 \ {0}),

holds for any algebraic curve A ⊂ C2 whose multiplicity at the origin is m? (As in
(14) and (20), here pr∗ denotes the homomorphism between the groups of 2-chains
induced by pr : S3 → P1; under the identification of 2-chains in P1 with integer-
valued functions discussed in Remark 4.4, the 2-chain m[P1] + pr∗ F corresponds
to the function whose value at the line L through 0 is the number of intersection
points of L and A ∩ B4 counted with multiplicity).

6. Construction of a Legendrian net in S
3 providing

an upper bound for n(ε) of the order 1/ε3

Let us denote the coordinate axis {w = 0} by L. Let Γ = L∩S3. For an integer n,

we denote the rotation (z, w) 7→ (e2πi/nz, w) by R̃n : C2 → C2, and let Rn : P1 → P1

be the correspondent rotation (z : w) 7→ (e2πi/nz : w) = (z : e−2πi/nw). Let us set
p0 = (0 : 1), p∞ = (1 : 0). These are the fixed points of Rn.

Let us fix a small number ε > 0, and let m = [10π/ε] + 1. Let us set

rk =
kπ

2m
, ∆k = { q ∈ P

1 | distP1(p0, q) ≤ rk }, k = 0, . . . , m.

Recall that P1 is isometric to the sphere of radius 1/2, hence

{p0} = ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆m = P
1.

Let us denote the closure of ∆k \ ∆k−1 by Ak, and let us set ak = Area(Ak),
sk = Area(∆k) = a1 + · · · + ak, k = 1, . . . , m. Let ℓk = (len ∂∆k + len ∂∆k−1)/2.
For each k = 1, . . . , m, we set nk = 2νk where νk is chosen so that

ε

40
< ℓ+

k ≤ ε

20
, ℓ+

k =
skℓk

nkak
. (24)
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It is clear that νk is uniquely determined by this condition. Indeed, (24) implies
that νk = [log2(20skℓk/(εak))].

By definition, we have

ℓk =
π

2

(

sin
kπ

m
+ sin

(k − 1)π

m

)

, sk =
π

2

(

1 − cos
kπ

m

)

, ak = sk − sk−1. (25)

It follows easily that

νk ≤ νk+1 ≤ νk + 2, k = 1, . . . , m − 1. (26)

Let us denote

β+
k,0 = Ak ∩

{

|Arg ζ − θk| ≤
πℓ+

k

ℓk

}

, b+
k = Area(β+

k,0), k = 1, . . . , m,

where ζ = z/w is a standard complex coordinate on P1, and the numbers θ1, . . . , θm

will be chosen later. In other words, the angular width of the domain β+
k,0 is equal

to 2πℓ+
k /ℓk = (2πsk)/(nkak). This implies

b+
k =

akℓ+
k

ℓk
=

sk

nk
. (27)

Let us set

β+
k,j = Rj

nk
(β+

k,0), β−
k,j = β+

k,j ∩ β+
k,j+1, k = 1, . . . , m, j = 1, . . . , nk

(here and below, when using the double index (k, j), we assume that j is a residue
mod nk).

The angular width of β+
k,j is equal to (2πsk)/(nkak) which is not less than the

angle of the rotation Rnk
(because sk/ak ≥ 1). Hence β−

k,j 6= ∅ and

b−k := Area(β−
k,j) = b+

k − ak

nk
=

sk

nk
− ak

nk
=

sk−1

nk
. (28)

Let pk,j be the midpoint of the arc (∂∆k) ∩ β−
k,j , and let qk,j be the midpoint of

the arc (∂∆k−1) ∩ β+
k,j . Now let us choose the numbers θk used in the definition

of the domains β+
k,0 so that pk,0 = qk+1,0 for all k. Since pk,j = Rj

nk
(pk,0) and

qk,j = Rj
nk

(qk,0), we have

{pk,j | 0 ≤ j < nk} = {qk+1,j | 0 ≤ j < nk+1} for nk = nk+1,

{pk,j | 0 ≤ j < nk} ⊂ {qk+1,j | 0 ≤ j < nk+1} for nk < nk+1.

Moreover, for all k, j we have

pk,j = qk+1,µkj , where µk =
nk+1

nk
= 2νk+1−νk .

Note that by definition we also have

pm,1 = pm,2 = · · · = pm,nm
= p∞, q1,1 = q1,2 = · · · = q1,n1

= p0.
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Let α+
k,j , k = 1, . . . , m, j = 1, . . . , nk, be the path going from pk,j to pk,j−1 along

the boundary of β+
k,j in the positive direction which passes through any point of

(∂β+
k,j) \ {pk,j} at most once. In the case k = m this definition is ambiguous

(because pm,j = pm,j−1 = p∞), but we assume that α+
m,j is the complete loop

around β+
k,j in the positive direction starting and finishing at p∞. Let γ

(0)
k,j (resp.

γ
(1)
k,j ) be the half of α+

k,j going from pk,j to qk,j (resp. from qk,j to pk,j−1). Finally,

let us set (see Figures 2 and 3)

α−
k,j = γ

(1)
k,j+1 + γ

(0)
k,j , k = 1, . . . , m, j = 1, . . . , nk,

αm,1 = α+
m,1, αk,1 = α+

k,1 −
µk−1
∑

j=0

α−
k+1,j , k = 1, . . . , m − 1,

αk,j+1 = Rnk
(αk,j), k = 1, . . . , m, j = 1, . . . , nk − 1.

βk,j

p
k,j

p
k,j 1

q
k,j

∆ k 1

∆ k γ
k,j
(0)

γ
k,j
(1)

∆ k

βk,j

p
k,j

∆ k 1

q
k,j

γ
k,j
(0)

γ
k,j
(1)

βk,j

β

q
k,j+1

k,j+1

+1

Fig. 2. α+
k,j = γ

(0)
k,j + γ

(1)
k,j . Fig. 3. α−

k,j = γ
(0)
k,j + γ

(1)
k,j+1 .

Let γ : [0, 1] → P1 be a piecewise smooth path and p̃ a point in S3 such that
pr(p̃) = γ(0) (as in §4, here pr denotes the standard projection S

3 → P
1). Then

there exists a unique Legendrian path γ̃ : [0, 1] → S3 such that γ̃(0) = p̃ and
pr ◦γ̃ = γ. This follows from the fact that the fibers of pr : S3 → P1 are transverse
to the field of complex tangents ker(η|S3). The path γ̃ is called the Legendrian lift
of γ starting at p̃.

We shall construct Legendrian lifts α̃±
k,j and α̃k,j of α±

k,j and αk,j and we shall

show that {α̃k,j} is the required Legendrian net.
Let us set

p̃m,j = (e2πij/nm , 0) ∈ C
2, j = 1, . . . , nm.

The points pm,j belong to Γ, and we have R̃nm
(pm,j) = pm,j+1. Let γ̃m,j , j =

1, . . . , nm, be the path [(j − 1)/nm, j/nm] → Γ, t 7→ (eit, 0). It goes along Γ from
p̃m,j−1 to p̃m,j. By (27), we have Area(β+

m,j) = b+
m = sm/nm = π/nm. Thus,

∫

γ̃m,j

η =
1

nm

∫

Γ

η =
2π

nm
= 2b+

m.
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The subsequent construction will be recurrent (successively for k = m, m −
1, . . . , 1). Suppose that for some k ≤ m, we have constructed points p̃k,j and paths
γ̃k,j in S3 such that for any j = 1, . . . , nk the following conditions hold (as we have
seen above, they do hold for k = m).

(i) ∂γ̃k,j = p̃k,j − p̃k,j−1;
(ii) pr(p̃k,j) = pk,j and pr(γ̃k,j) is the arc of ∂∆k going in the positive direction

from pk,j−1 to pk,j and passing any point of ∂∆k at most once.

(iii)
∫

γ̃k,j
η = 2b+

k ;

(iv) R̃nk
(p̃k,j) = p̃k,j+1 and R̃nk

(γ̃k,j) = γ̃k,j+1.

Let α̃+
k,j be the Legendrian lift of α+

k,j starting at p̃k,j . Let us show that the

end of α̃+
k,j is p̃k,j−1. Indeed, let us denote the end of α̃+

k,j by p̃, and let [p̃, p̃k,j−1]

be the arc of the circle pr−1(pk,j−1) from p̃ to p̃k,j−1 chosen so that the cycle
α̃+

k,j + γ̃k,j + [p̃, p̃k,j−1] is zero-homologous in S3. It is clear that the projection of

this cycle to P
1 coincides with ∂β+

k,j . Hence, Lemma 4.1 implies

2b+
k = 2 Area(β+

k,j) =

∫

α̃+

k,j

η +

∫

γ̃k,j

η +

∫

[p̃,p̃k,j−1 ]

η = 0 + 2b+
k +

∫

[p̃,p̃k,j−1 ]

η.

Therefore,
∫

[p̃,p̃k,j−1]
η = 0 and thus, p̃ = p̃k,j−1.

Let us show that R̃nk
(α̃+

k,j) = α̃+
k,j+1. Indeed, let Fk,j be the field of real tangent

lines on the torus Tk,j = pr−1(α+
k,j) which is cut by the field of complex tangents

ker η|S3 . Then α̃+
k,j is the integral curve of Fk,j passing through p̃k,j . It remains

to note that R̃nk
takes pk,j and Tk,j into pk,j+1 and Tk,j+1 respectively. Since,

moreover, R̃∗
nk

(η) = η, it takes Fk,j into Fk,j+1.

Let q̃k,j , j = 1, . . . , nk, be the point on α̃+
k,j such that pr(q̃k,j) = qk,j . Let us

set α̃k =
∑nk

j=1 α̃+
k,j . This is a closed spiral-like Legendrian curve on S

3 passing

through the points p̃k,j and q̃k,j which is invariant under the rotation R̃nk
. Let α̃−

k,j

be the Legendrian lift of α−
k,j starting at q̃k,j+1. Then α̃k =

∑nk

j=1 α̃−
k,j . Moreover,

the curve α̃k is divided by the points p̃k,j into the arcs α̃+
k,j , and it is divided by

the points q̃k,j into the arcs α̃−
k,j .

Let γ−
k,0 be the arc of ∂∆k−1 going in the positive direction from qk,0 to qk,1 and

passing any point of ∂∆k−1 at most once. Let us choose a (non-Legendrian) lift
γ̃−

k,0 of γ−
k,0 from q̃k,0 to q̃k,1 so that the cycle α̃−

k,0 + γ̃−
k,0 is zero-homologous in S3.

Its projection to P1 coincides with ∂β−
k,0, hence, by Lemma 4.1 we have

2b−k = 2 Area(β−
k,0) =

∫

α̃−

k,0

η +

∫

γ̃−

k,0

η = 0 +

∫

γ̃−

k,0

η. (29)

Let us set γ̃−
k,j = R̃j

nk
(γ̃−

k,0), j = 1, . . . , nk, and let

p̃k−1,0 = q̃k,0, γ̃k−1,1 =

µk−1−1
∑

j=0

γ̃−
k,j ,

p̃k−1,j+1 = R̃nk−1
(p̃k−1,j) and γ̃k−1,j+1 = R̃nk−1

(γ̃k−1,j).
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To complete the recurrent construction, it remains to check that Conditions (i)–(iv)
are satisfied for the points p̃k−1,j and for the paths γ̃k−1,j . Indeed, by (29) we have

∫

γ̃k−1,1

η =

µk−1−1
∑

j=0

∫

γ̃−

k,j

η = 2µk−1b
−
k .

Combining this with (28) and µk−1 = nk/nk−1, we obtain (iii) for γ̃k−1,j . The
other conditions are obvious.

Finally, for k = m , let us set

α̃m,j = α̃leg
m,j + α̃pt

m,j , where α̃leg
m,j = α̃+

m,j , α̃pt
m,j = γ̃m,j , j = 1, . . . , nm,

and for k < m , let us set

α̃k,1 = α̃leg
k,1 = α̃+

k,1 −
µk−1
∑

j=0

α̃−
k+1,j ,

α̃k,j+1 = α̃leg
k,j+1 = R̃nk

(α̃k,j), j = 1, . . . , nk − 1.

α̃pt
k,j = 0, j = 1, . . . , nk.

(see Figure 4).
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Fig. 4. supp(α̃1 + · · · + α̃4) for (ν1, . . . , ν4) = (2, 3, 4, 4).



22 S.YU. OREVKOV

Let us denote Aε = {α̃k,j | 1 ≤ k ≤ m, 1 ≤ j ≤ nk }.
Proposition 6.1. Aε is a Legendrian net hanged on Γ.

Proof. It is easy to see that the chains α̃k,j are cycles. Since the chains α̃leg
k,j (resp.

α̃pt
k,j) are Legendrian (resp. positively transverse) by construction, it remains to

check that
∑

α̃k,j = Γ. Indeed, we have

nm
∑

j=1

α̃m,j =

nm
∑

j=1

α̃+
m,j +

nm
∑

j=1

γ̃m,j = α̃m + Γ,

and for k < m, since R̃nk
= R̃µk

nk+1
, we have

R̃j
nk

(α̃−
k+1,j′ ) = R̃µkj

nk+1
(α̃−

k+1,j′ ) = α̃−
k+1,j′+µkj ,

hence,

nk
∑

j=1

α̃k,j =

nk
∑

j=1

α̃+
k,j −

nk
∑

j=1

µk−1
∑

j′=0

R̃j
nk

(α̃−
k+1,j′ ) =

nk
∑

j=1

α̃+
k,j −

nk+1
∑

j=1

α̃−
k+1,j = α̃k − α̃k+1.

Therefore,

∑

k,j

α̃k,j = (α̃1 − α̃2) + (α̃2 − α̃3) + · · · + (α̃m−1 − α̃m) + (α̃m + Γ) = α̃1 + Γ.

It remains to note that α̃1 = 0 (see Figure 4) because β−
1,j is a segment of a geodesic

between p0,j = p0 and p1,j and hence α̃−
1,j = 0 for all j = 1, . . . , n1. �

Proposition 6.2. len α̃k,j < ε for all k, j.

Proof. It follows from (12) that the length of a path on P1 is equal to the length of
its Legendrian lift to S3. Hence,

len α̃k,j =

{

len ∂β+
m,j + len γ̃m,j, k = m,

len ∂β+
k,j + µk len ∂β−

k+1,j′ k < m.

It is clear that

len ∂β±
k,j ≤ 2ℓ±k + 2 · (width of Ak) ≤ 2ℓ±k +

π

m
≤ 2 · ε

20
+

ε

10
=

ε

5
,

and (26) implies that µk ≤ 4 for all k. Hence, for k < m, we have

len α̃k,j ≤ (1 + µk)
ε

5
≤ ε.

It follows from (24) and (25) that

1

nm
≤ εam

20smℓm
=

ε(1 − cos(π/m))

20π sin(π/m)
= ε · O(1/m) = O(ε2).

Thus, len α̃m,j ≤ len ∂β+
m,j + O(ε2) ≤ (ε/5) + O(ε2) ≤ ε. �
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Corollary 6.3. An upper bound n(ε) ≤ CardAε = O(ε−3) holds.

Proof. It follows from (26) that n1 ≤ n2 ≤ · · · ≤ nm, hence CardAε ≤ mnm. It is
clear that m = O(ε), and it easily follows from (25) that nm = O(ε−2). Therefore,
CardAε = O(ε−3).

The estimate n(ε) ≤ CardAε follows from the construction given in §3. �

Remark 6.4. By Proposition 2.7, it is not important for us whether the net Aε

is generic or not. However, it is generic everywhere except at the point p0 (see
Figure 4). If one changes slightly the parameters of the construction of Aε, it is not
difficult to achieve n1 ≤ 3. In this case, Aε will be generic everywhere, including
p0.
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