
MayaPS: Typing Maya with TeX/LaTeX
Reference Manual.Version 1.1b (March 4, 2017)

Stepan Orevkov

M
AYA

I have written the system MayaPS in collaboration with Bruno Delprat (he
formulated the principles of ancient Maya writing and created the Maya fonts
used here). A short presentation of the system is published in [3]. The idea to use
PostScript language for drawing composed glyphs belongs to Ilya Zakharevich.
MayaPS is available at http://picard.ups-tlse.fr/~orevkov/mayaps.html

Table of Contents
1. What is MayaPS for 2

2. Installation and running 5
2.1. How to work without any installation 5
2.2. Installation 6
2.3. Don’t use PdfTEX with MayaPS. Use TEX/Dvips 6

3. Glyph codes and glyph orientations 7
3.1. Glyph codes 7
3.2. Glyph types 7
3.3. Glyph orientations 8
3.4. Modifiers 9

4. Usage of different Maya fonts 10
4.1. Fonts (the macro \mayaFont) 10
4.2. Font map. Macro \mpfmap 10
4.3. The macros \mayaAddGlyph and \mayaImport 12

5. Ligatures and substitutions 14
5.1. Ligatures (\mayaAddLigature, \mayaDeleteLigature) 14
5.2. Different encodings (catalogs) and phonetic notation 15
5.3. Substitutions 15
5.4. Definition/canceling (\mayaDefine, \mayaUndefine) 16
5.5. Red numerals (\mayaRed, \mayaBW, \codexBW) 16
5.6. Macro \mayaDebug 17

6. Colors (\mayaRGB, \mayaIgnoreRGB) 17

7. Glyph showing and paragraph formatting 18
7.1. Macro \mayaGlyph (cartouche) 18
7.2. Macro \mayaGlyphInLine (\mayahspace, \mayavspace,

\mayavcorrection) 19
7.3. Macro \mayaSize 20
7.4. Macro \maya (also \mayahskip) 20

1

http://picard.ups-tlse.fr/~orevkov/mayaps.html

7.5. Glyphs with captions 21
7.5.1. \mayaGlyphC, \mayaGlyphInLineC, \mayaC, \mayaGlyphCC 21
7.5.2. Captions of fixed width (\mayaCFWtrue, \mayaCFWfalse) 21
7.5.3. Parameters (\mayavspaceC) 22
7.5.4. Font in captions (\mayaCfive \mayaCsix, . . . \mayaCeighteen;
\mayaCaptionFont). 22 etc. and \mayaCaptionFont) 22

7.5.5. Text in captions (\mayaGlyphC*, \mayaGlyphInLineC*, etc.) 23
7.6. Local and global action of commands 23
7.7. Maya glyphs in tables of contents (\mayaTOC) 24

8. Error diagnostics. Capacity restrictions (\mayaNoVMtrick) 25

9. How MayaPS works (interaction TEX/Dvips) 26
9.1. Dvips features used in MayaPS 26
9.2. Rough structure of MPF files 26
9.3. How MayaPS works in the standard mode 27
9.4. Work in absence of some files 28

10. MPF format description 28
10.1. More about glyph names and types 28
10.2. General structure. Comments 28
10.3. Font header 29
10.4. Glyph description section 30
10.5. Examples 31

11. How to make a Maya font out of EPS files 33
11.1. Restrictions on EPS files 33
11.2. On the structure of EPS files 33
11.3. The simplest (not the best) way to make an MPF 34
11.4. Case of EPS files created in a uniform way 35
11.5. MPF files created using cotrace 36
11.6. Case of EPS files of different origins 36

12. Vectorizer CoTrace 37
12.1. cotrace 37
12.2. Creating a MayaPS font using cotrace and makefont 38

13. How to make a Maya font out of an Adobe Type 1 font 39

References 40

! !
1. What is MayaPS for

The package MayaPS is designed for doing the paleography of ancient Maya
texts using TEX or LATEX and Dvips. This text is typeset in LATEX using this
package and you see the result. For example, to get the above glyph, I typed

“\centerline{\mayaSize{2cm}\mayaGlyph{422.422}}”

2

and to get
$
"# ", I just typed

“and to get \maya{(023.153.023):220}, I just typed”.

Note, that this is a really existing glyph.
Ancient Maya glyphs are composed by attaching together primitive (inde-

composable) glyphs. Some specialists think that they correspond to syllables,
some other argue with them. MayaPS does not care of any grammatical or
linguistical meaning of primitive glyphs. They are just graphical images which
are elementary bricks of Maya typesetting, like letters for European languages.
Each complete glyph (composed of primitive ones) is rescaled so that it fills a
rectangle of a fixed size called cartouche in this document. The cartouches are
placed in a regular way on a page.

The glyphs !/ (non-existing) and
$
"# "that we used above, are composed

of primitive glyphs ! / " # $ (by the way, to get this, I typed

“. . . glyphs \maya{422 001 023 153 220}”).

A more interesting example – page 7b of the Dresden Codex:

-(
451.452

* ''
026.314/(314)

,4
111.274

+)5
047.276/010

6
913

7
810

-(
451.452

* ''
026.314/(314)

.3 %
570/014.267.024

, ,

1
111.+176/111

6
913

7
810

-(
451.452

* ''
026.314/(314)

&2
245.234

* "0
026.172/023

6
913

7
810

(the paleography is due to Bruno Delprat). To obtain it, I typed

\noindent\mayaC{ % \mayaC = glyphs with captions

451.452 026.314/(314) 111.274 047.276/010 913 810

451.452 026.314/(314) 570/014.267.024 111.+176/111 913 810

451.452 026.314/(314) 245.234 026.172/023 913 810}

As it should be clear already, each primitive glyph is referred to by its name
(called further the glyph name). So, the glyph names used above are “422”,
“001”, “023”, “153”, and “220”. In general, a glyph name is any sequence
of digits 0. . . 9 and letters a. . . z, A. . . Z. The encoding system is rather flexi-
ble. For example, after the command \mayaDefine{A9z}{442} you can type

“\maya{A9z}” to get ! . MayaPS supports several Maya fonts. For example,
the beginning of the above citation from the Dresden Codex printed in the font

3

‘gates’ looks as

'"
451.452

$!!

026.314/(314)

&(
111.274

% #)
047.276/010

*
913

etc.

(I typed \gates and then, just copied the above codes). This is a font designed
(and made in plumb!) by William Gates in the 30’s and adapted for MayaPS
by Bruno Delprat. In this document we use mostly the font ‘codex’ created by
Bruno Delprat with use of the tools described in §12.

If A and B are two glyphs (primitive or not), then A.B and A:B

encode the glyphs A B and B

A

. To control the order of composition, one
can use parentheses in the same way as in mathematical formulas. For example,

the both A.B:C and A.(B:C) stand for A
C

B

but (A.B):C stands for C

A B

(in

glyph codes, ‘/’ means the same as ‘:’). Any formula of this kind is admitted,
even something like this

:::::::
:

:
:

:
:

The picture on the right hand side (I don’t say “glyph” because there are no
such glyphs in ancient Maya language) is printed by the command

\maya{322.322:(322.322:(322.322:(322.322:(322.322:(322.322)))))}

Let us discuss again the glyph
$
"# ". We see that the primitive glyph 023

occurs here in two different ways: " and ". Moreover, in 8
""

1
9 it occurs twice

like this: " . MayaPS automatically chooses the orientation of each primitive
glyph according to “grammar rules” formulated by Bruno Delprat after a careful
analysis of ancient manuscripts. Of course, these rules may have exceptions. It
is very easy to handle them. For example, if you type \maya{422.001}, you

obtain !/ (the default orientation), but if you type \maya{|422.001}, you

obtain !/. The rules (and possibilities to avoid them) are described in §3.

Different colors may be used (see §6).
MayaPS provides a tool to add or replace glyphs in existing fonts (this is

very easy). In §§11–13 we explain also how to create a new font.

A new feature appeared in Version 1.1 is the infixation support. This means
that a glyph can be inserted into another one as an infix. Namely, A means
that B is put into A, for example, the commnd \maya{369<023:023>} inserts

the composed glyph "" (023:023) into ; (121) and the result is < .

MayaPS produces a PostScript (ps) file whose length is optimized. Suppose,
you have already a ps file (produced by TEX/Dvips) in a European language,
and you include ancient Maya glyphs into it. Then MayaPS adds to ps only:

4

• MayaPS header (8 Kb);

• definitions of primitive glyphs (0.5 – 3 Kb per glyph for ‘codex’);

• about 60 bytes for each composed glyph.

MayaPS includes the definitions of only those primitive glyphs which are really
used in the text. Each definition is included only once even if the primitive
glyph is used many times.

PostScript files can be printed out, converted to pdf, or viewed on the screen
using, e.g., ghostview, gv, ps2pdf (Unix/Linux-X11), GSview (Windows), etc.
The font ‘codex’ is designed so that the resulting pdf file becomes even shorter
than ps.

Maximal portability is one of main principles of MayaPS. Even if nobody
continues supporting it (which may happen), it will work on all future platforms
as long as TEX, Dvips, and PostScript are supported.

Another attempt to adapt TEX/LATEX for Native-American languages (in-
cluding Olmec) was done in [8]. Our approach is very different from that.

2. Installation and running

MayaPS is available at http://picard.ups-tlse.fr/~orevkov/mayaps.html

2.1. How to work without any installation. Just copy the files
mayaps.tex, mayaps.pro, codex.mpf, red89.tex (if needed), and mpfmap.tex

(if needed) to the current directory (folder) and work. By current directory we
mean the directory containing the tex file you are writing. If you use MayaPS
fonts other than codex.mpf or if you add glyphs using \mayaAddGlyph, then
place the corresponding mpf and/or eps files to the current directory also.

Be sure that the Dvips program is installed on your computer. Otherwise
install it using the documentation for your TEX installation (of course, TEX also
should be installed).

To use MayaPS macros, place the line

\input mayaps

somewhere near the beginning of your tex file If you use LATEX, place it some-
where between \documentclass and \begin{document} commands.

When you have prepared a tex file (say, foo.tex), compile it by the com-
mand ‘tex foo’ issued from the command line (or ‘latex foo’ if you use LATEX).
You will obtain a file foo.dvi in the current directory. Then type the command
‘dvips foo’ (or, maybe, ‘dvips foo -o’, because sometimes dvips without
‘-o’ sends the output to a printer) and you will obtain a file foo.ps. This is a
PostScript file which can be viewed, printed, or converted to PDF.

If your TEX is integrated into a graphic interface environment, you should
tune it so that it calls TEX or LATEX and Dvips.

5

http://picard.ups-tlse.fr/~orevkov/mayaps.html

2.2. Installation. If you use MayaPS in several directories (folders), it is
convenient to put all MayaPS files discussed in §2.1 in a fixed place. It should be
a directory recognized as ‘TeX source’ by your TEX installation. See [9] or ask
your system administrator how to choose it. Usually, it is a new subdirectory
(say, mayaps, but you may use any name) of root/tex/generic where root is
either texmf or a directory whose name contains ‘texmf’. Sometimes you need
explicitely make TEX ‘see’ this directory. For example, in MiKTeX (Windows),
you run ‘MiKTeX Options’ in Start menu, click ‘Roots’, select your root direc-
tory, and click ‘Refresh FNDB’; in typical UNIX/Linux installation you run the
command ‘texhash root’, for example, ‘texhash /usr/share/texmf’.

2.3. Don’t use PdfTEX with MayaPS. Use TEX/Dvips.
TEX, Dvips, and PdfTEX. TEX is a program written by Donald Knuth (see
[5]). It reads a source file (which usually has the extension .tex) and produces
a file in the format Dvi (DeVice Independent; file extension .dvi). The Dvi file
describes how the output document must look like. To print out the document
on a specific printer (or to see it on a screen), one needs a Dvi driver. In the 80th
and 90th, numerous Dvi drivers were developed for different printers, display
viewers etc.

Dvips is a program written by Tomas Rokicki, which converts a Dvi file into
a PS file (a file in Adobe’s PostScript Language). In 90th PostScript Language
became de facto an international standard of printer interface. Dvips also be-
came the most popular Dvi driver at that time. Besides the conversion dvi →
ps, Dvips provides some tools to include PostScript graphics into a document
prepared with TEX. These tools are used in MayaPS.

Since the turn of the century PostScript is being replaced by PDF (new
Adobe’s format). It is better adapted for modern realities. For example, you
can see PDF files directly from Internet browsers, it is the basic graphical format
for Mac, etc. Today everybody knows what is PDF, but only some TEX users
still remember what is PostScript.

Of course, a three step conversion tex→ dvi→ ps→ pdf is always possible,
but Han The Thanh made a shortcut. He has written PdfTEX – a programwhich
produces a PDF file directly from tex source. Many modern TEX installations
call PdfTEX instead of TEX by default.

PdfTEX is 99% compatible with TEX but, unfortunately, MayaPS falls into
the remaining 1%, because it is heavily based on the interface of Dvips. The
reason is very serious: all algorithms of assembling a composed glyph are im-
plemented on the PostScript programming language.

LATEX is an extension of TEX written by Leslie Lamport (see [6]) and further
developed by the LATEX3 project team. Any modern installation of TEX includes
it. MayaPS is compatible with most of LATEX features (this text is prepared with
LATEX). Some known incompatibilities and ways to avoid them are discussed in
§7.7.

Can one write MayaPDF? Yes, but I won’t. By the following reasons.
1). I don’t believe that MayaPS will ever have more than 100 users (even

6

this is a very optimistic estimate).
2). The interaction between TEX and Dvips is used not only in MayaPS.

There are no principal obstacles to incorporate Dvips’ interface into PdfTEX
and I hope that sooner or later somebody will do it.

3. Glyph codes and glyph orientations

3.1. Glyph codes. A first idea what is a glyph code, is given in §1. It is an
expression like A.B:C or B:(A.C:D) where A, B,. . . are glyph names (i.e., names
of primitive glyphs), maybe preceded by modifiers (‘|’, for example) which allow
to change the orientation. Glyph codes (and parts of them) may be supplied by
color indicators (see §6). Let us give formal definitions.

Glyph Name (called also primitive glyph code) is a sequence of digits 0. . .9
and letters a. . . z, A. . . Z. Glyph names are defined in font files. They can also be
defined by \mayaAddGlyph or \mayaImport command (see §4.2). All the glyph
names available in the fonts codex and gates can be found in the documents
codex-map.pdf and gates-map.pdf (see §4.2 for more details).

Modifier Character is one of the characters: | ’ - + ? = * A a C c R r

Modifier is any sequence of modifier characters and brackets []. Brackets
must be balanced. Modifier characters which are letters (i.e., A, a, C, c, R, or
r) should be enclosed in brackets. Example: *, [r[]], |[a][R+] are modifiers
but *R[+] is not, because R is not in the brackets.

Glyph Code is either a glyph name or one of the expressions (A), mA, A.B,
A:B, A/B, A where A and B are glyph codes (not necessarily primitive)
and m is a modifier Example: |(1A.[r]123):T1 is a glyph code.

The meaning of the operations ‘.’ ‘:’, and ‘< >’ is already explained in Section
2. The symbol ‘/’ means always the same as ‘:’. The meaning of the modifiers
will be explained in §3.4.

3.2. Glyph types. From MayaPS’ point of view, there are two types of
primitive glyphs: central elements and affixes . Affixes are further subdivided
into numerals and non-numeral affixes.

Usually, the both dimensions (width and height) of central elements are
close to each other: they look like a square slightly deformed. In contrary, one
side of an affix is usually longer than the other. However, there are no formal
restrictions on the proportions of primitive glyphs of any type.

For example, in the font ‘codex’, the primitive glyphs >(124), ?(173),

@(222) are central elements, " (023), = (063) are non-numeral affixes, and

A (991),
B
(813) are numerals.

The property to be an affix or a central element is attributed to each prim-
itive glyph. This information is kept in the font file together with the natural
orientation, natural proportions, and the graphical image of each glyph.

7

3.3. Glyph orientations. Here we describe the default rules for the
choice of orientations of primitive glyphs. Here ‘default rule’ means a rule
which is applied when a glyph code has no modifiers. These rules are proposed
by Bruno Delprat after a careful analysis of ancient Maya manuscripts.

This subsection can be skipped on the first reading. Moreover, it is not
necessary to read it at all for using MayaPS. If you want to type a composed
glyph, just type it as it is (without any modifiers), look at the result, and if
you are not satisfied by the orientation of some primitive glyphs, correct it by
modifiers as explained in §3.4.

Default rules for the orientations of primitive glyphs.

1). Any central element always appears in the same orientation. We call it
the natural orientation.

2). Five standard orientations are attributed to each affix. We shall denote
them L (left), U (up), R (right), D (down), and S (single). If A is an affix and
C a central element, then A appears in these orientations in the glyphs A.C, A:C,
C.A, C:A, A respectively. The S-orientation of an affix we shall also call natural.
The standard orientations of each affix are defined in the font file. For the most
of non-numeral affixes of the font ‘codex’ these orientations are related to each
other as in the following example (affix 504):

L = C/ U = /
C

R = / C D = C/ S = C
However, there are some cases when this is not so, for example, affix 422:

L = !/ U =
/

!
R = /! D = !/ S = !

3). Suppose that several glyphs are attached together horizontally. Suppose
that there is at least one central element among them (composed glyphs are also
considered here as central elements). Let C be the rightmost central element.
Then all affixes which are to the left of C take the L-orientation and all affixes
which are to the right of C take the R-orientation.

4). (Similar to the previous rule). Suppose that several glyphs are attached
together vertically. Suppose that there is at least one central element among
them (composed glyphs are also considered here as central elements). Let C
be the lowermost central element. Then all affixes which are below C take the
D-orientation and all affixes which are above C take the U -orientation.

Examples (non-existing): "/"/ "
023.001.023.001.023

"/
"/
"

023:001:023:001:023

5). (This rule has no analog for horizontal attachment). Suppose that only
affixes are attached together vertically. Suppose also that one of the following
cases takes place:

• 5.1). There are two consecutive identical non-numeral affixes.

• 5.2). There are two consecutive (not necessarily identical) numerals.

8

Then the two affixes (the uppermost pair of them if the choice is ambiguous) are
places both in the D-orientation in Case 5.1 and in the U -orientation in Case
5.2. The combination of these two affixes is declared a central element and the
rule 3 is applied.

Example (a really existing glyph): 8
""

1
9

023:023:415.130:176

6). Suppose that only affixes are attached together horizontally. Then the
leftmost one takes the L-orientation and all the others take the R-orientation.

7). Suppose that only affixes are attached together vertically. Suppose
also that the rule 5) is not applicable. Then the uppermost affix takes the
U -orientation and all the others take the D-orientation.

Example (non-existing):

" """"
023.023.023.023.023

"C"C

"
023:504:023:504:023

Note that \maya{023.(023.023).023.023} gives "" """because the com-

posed glyph (023.023) is interpreted here as a central element by rule 3).

3.4. Modifiers. The modifiers |, ’, -, +, ?, *, R, and r change the orien-
tation of a primitive glyph starting from the default orientation determined by
the glyph’s position:

| or ’ Symmetry (the axis is ‘|’)
'
→

'

- Symmetry (the axis is ‘—’)
'
→ '

R or ? Rotation by 90◦
'
→

'

+ Rotation by 180◦
'
→ '

r or * Rotation by 270◦
'
→ '

(‘+’ is chosen for 180◦-rotation, because it is the same as ‘|’ and then ‘-’).
The modifiers A, a, C, c, and = switch the type of a primitive glyph:

A or a transform central elements to affixes;

C, c, or = transform affixes to central elements;

When several modifiers are applied to a glyph, they are applied one by one from
the right to the left. For example, if you want to apply the symmetry ‘|’ to

the glyph \maya{[R]314} which is
'

, you add ‘|’ like this \maya{[|R]314}

and you obtain

'

.

9

4. Usage of different Maya fonts
4.1. Fonts. MayaPS supports several Maya fonts. At each moment of
a tex file processing (since the command \input mayaps is executed) one of
Maya fonts is current. It means that it is used as the current Maya font by the
commands (macros) of MayaPS. Before the first usage, each Maya font must be
declared (loaded) by the command

\mayaFont\cs=fontfile

where \cs is any control sequence (backslash ‘\’ followed by a chain of letters
a...z or A...Z) and fontfile is the name without extension of a Maya font file.
The file name must be followed by a space (end-of-line and tabulation are also
treated by TEX as a space).

This command loads the font from the file fontfile.mpf and associates it to
the control sequence \cs. The file fontfile.mpf must be ‘visible’ by TEX (for
example, it can be placed in the current directory, see also §2.2). After this
command, the loaded font can be made current by the command \cs more or
less like for usual TEX fonts. Also similarly to usual TEX fonts, the action of
\cs (which changes the current Maya font) is local, i.e. it acts till the end of
the group (a group is, roughly speaking, a part of the tex file enclosed in braces
{ }). See §7.6 for more details about local and global action of commands.

The font ‘codex’ is already loaded and is current from the very beginning
(i.e., after the command \input mayaps). It is associated to the control se-
quence \codex. To disable the automatic preloading of the font ‘codex’, write
\def\mayaNoPreloadedFont{} just before \input mayaps.

Example. Suppose that no font changes were done before (thus, the current
font is ‘codex’). Then the commands

\mayaFont\th=thompson

\mayaFont\ga=gates

\maya{T520} \th \maya{T520} \maya{T520} \codex \maya{T520}

{ \ga \maya{T520} \maya{T520} } \maya{T520}

will produce the output: ? ! ! ? + + ?
Compare this with the following example with usual TEX fonts:

Roman, \it Italic, \rm Roman, {\bf Bold Face,} again Roman

Roman, Italic, Roman, Bold Face, again Roman

4.2. Font map. Macro \mpfmap.
The macro \mpfmap{font} generates a list of all primitive glyphs of a font
font.mpf (the font map) as well as a list of all substitutions (ligatures; see §5).
This macro is defined in the file mpfmap.tex, thus, to make it available, use the
command

\input mpfmap

10

(it is not necessary to write ‘\input mayaps’ in this case because the file
mayaps.tex is loaded from the file mpfmap.tex in the case when it was not
loaded before).

The macro \mpfmap also creates two text files map.tmp (the font map) and
mapsubs.tmp (the substitution table) which can be manually edited.

Example: Suppose that the file codex-map.tex contains only three commands

\input mpfmap \mpfmap{codex} \end

Then the command line

tex codex-map

creates three files: codex-map.dvi, map.tmp, and mapsubs.tmp. Further pro-
cessing codex-map.dvi by Dvips, we obtain the file codex-map.ps which is

Map of Maya Font codex.mpf version 0.35 (Oct 27, 2012)
Primitive Glyphs
Irregular Affixes

D

016

E

018

%
024

F
031

G
056

H
060

I
065

J
067

K
074

L
108

M
109

N
118

O
120

P

144

.

Substitutions (ligatures)

Ligature Glyphs

D

033.032

016

Q
076.234.076

100

R
901.099

102

T
126<908>

132

U
198<133>

138

V
144:316

141

W
411:146

148

X
198<176>

152

Y
210:154

155

Z
314:314

157

[
154:316

158

\
119<153>

159

]
245:314

170

S
708:212

182

.

The text file map.tmp is

% map.tmp - map of codex.mpf

% file generated by mpfmap v 1.0

\medskip \centerline {\bf Irregular Affixes}\nobreak \medskip

\mayaC {

016

...

065

}\par \noindent \mayaC {

067

.

11

and the text file mapsubs.tmp is

% mapsubs.tmp - substitution table of codex.mpf

% file generated by mpfmap v 1.0

\medskip \centerline {\bf Ligature Glyphs}\nobreak \medskip

\noindent

\mayaGlyphCC {033.032}\hs

\mayaGlyphCC {076.234.076}\hs

\mayaGlyphCC {901.099}\hs

.

4.3. Macros \mayaAddGlyph and \mayaImport.

4.3.1. Macro \mayaAddGlyph[(L)(U)(R)(D)(S)]{name}type{file}

defines a new glyph (or replaces an existing one) in the current font. The last
argument must be followed by a space (or end-of-line, or tabulation).

Arguments:

• [(L)(U)(R)(D)(S)] (optional, i.e., may be omitted): the array of de-
fault orientations (only for affixes). Each of L, U , R, D, S is a string
(maybe empty) of the modifiers | ’ - + * ? R r (see §3.4). The default
value (when the argument is omitted) is [()(|r)(|)(R)()].

• name: the glyph name.

• type: the glyph type: one of the symbols A, a (both for affix), C, or c

(both for central element).

• file (optional): the name of an eps file with the glyph image. The default
value is name.eps (note, that if this argument is used, the file name must
be written with the extension; no extension is added automatically).

If a central element is defined by \mayaAddGlyph, then its natural orientation
always coincides with that from the eps file.

Example 1. The command

\mayaAddGlyph{abc}c

creates (or replaces) a glyph in the current Maya font. Its name is abc, it is a
central element, and its graphical image is loaded from the file abc.eps.

Example 2. The command

\mayaAddGlyph[(r)()(R)()()]{123}A{a.eps}

loads the affix 123 from the file a.eps. The U , D, and S orientations of this
glyph coincide with the orientation from the eps file. The L orientation is
obtained from it by turning the image from the file clockwise (respectively,
counterclockwise for the R orientation).

Example 3. Assume that the file empty.mpf is the empty Maya font (see
Example 1 in §10.5). Then the commands

12

\mayaFont\a=empty \mayaFont\b=empty

\a\mayaAddGlyph{001}c{a.eps} \b\mayaAddGlyph{001}c{b.eps}

load two Maya fonts \a and \b and then declare the glyph 001 in each of these
fonts. The glyph 001 of the font \a is loaded from the file a.eps and the glyph
001 of the font \b is loaded from the file b.eps.

Restrictions on the EPS file. The file used in the \mayaAddGlyph must
be an Encapsulated PostScript (eps) file, but not any eps file is allowed. It
cannot contain ‘currentfile’ command. Usually this command appears in eps

files when bitmaps (rasterized images) are included there. I checked that eps
files produced by xfig are good for \mayaAddGlyph if bitmaps are not inserted
into them. Files produced by autotrace and cotrace are also good.

If colors are explicitely defined in the eps file, then the color mechanism
described in §6 will not work for the corresponding glyph.

If you want to include a glyph which you have in a bitmap format (bmp, tiff,
etc.) or a jpeg file, for example, if you scanned a hand-made picture, then you
can vectorize it. The recommended vectorizer is cotrace which is supplied with
the package MayaPS (see §12). The font ‘codex’ used here is prepared with it.
Any other vectorizer can be used as well.

The macro \mayaAddGlyph is retroactive. This means that if you use
it to redefine an existing glyph name which was already used on earlier pages,
then the new graphical image of the glyph (loaded from the eps file) will appear
on the earlier pages also. If the glyph was used on the same page, but before
\mayaAddGlyph, then it will not be redefined. This is why it is better to place
all your \mayaAddGlyph commands at the beginning of the file just after the
command \input mayaps.

4.3.2. Macro \mayaImport[(L)(U)(R)(D)(S)]{gnew}\cs{gold}type

is similar to \mayaAddGlyph. It (re)defines the glyph gnew of the current font
to be equal to an existing glyph gold of the font associated to \cs. The font
\cs may or may not coincide with the current font. The last argument must be
followed by a space (or end-of-line, or tabulation).

Arguments:

• [(L)(U)(R)(D)(S)] (optional): same as for \mayaAddGlyph. The de-
fault value is inherited from gold

• gnew: the glyph name to define in the current font.

• \cs: a control sequence defined earlier by \mayaFont\cs=fontfile.

• gold: the name of the glyph to be imported from the font \cs.

• type (optional): the type (A, a, C or c). The type of gold is used by default.

Example 1. Affixes (in MayaPS’ sense) are not defined in the font thompson.
However, they can be borrowed from the font thompson2:

13

\mayaFont\th=thompson \mayaFont\thtwo=thompson2

\th \mayaImport[()(|r)(|)(R)()]{T1i}\thtwo{T1}

% \th \mayaImport{T1i}\thtwo{T1} gives the same result

Compare \th\mayaC{T1i.T671:T671}

with \codex\mayaC{026.314:(314)} and \gates\mayaC{026.314:(314)}

Compare !"
"

T1i.T671:T671

with * ''
026.314:(314)

and $!!

026.314:(314)

font ‘thompson’ font ‘codex’ font ‘gates’
with imported glyphs

Remark 1. If you write \codex\mayaImport{001}\codex{001}, then you get
a warning message from MayaPS and the command has no effect. However
two-step and deeper self-importing is not detected and it leads to a corrupted
ps file. Be careful for not to do it.

Remark 2. The macro \mayaImport is retroactive (see the end of §4.3.1).

5. Ligatures and substitutions

5.1. Ligatures. Each Maya font may contain (and the font ‘codex’ does
contain) ligatures . Recall that a ligature in the Latin alphabet means that a

publishing system (TEX, for example) prints ffi (a single glyph) instead of ffi
when you type ffi.

A ligature table is defined in the font file. EachMaya font has its own ligature
table. For example, in the font ‘codex’ when you type \maya{070/349}, you

get c instead of b
^
. The ligature mechanism of MayaPS just replaces

‘070/349’ by ‘353’ in glyph codes before interpreting them. So, if you type

directly \maya{353}, you obtain the same result c . Other examples are:

173 = ? inside 321 = ` gives 321<173> = 327 = a ;

204 = _ inside 369 = ; gives 369<204> = 367 = d .

A complete list of all ligatures is given any given font can be viewed as
explained in §4.2; see also the files *-map.pdf.

If you want to get b
^
instead of c , you may type \maya{(070)/349}.

There is also a more permanent solution: the command

\mayaDeleteLigature{070/349}

cancels this ligature. Note that \maya{{070}.349} gives nonetheless c
though f{f}i gives ffi .

A new ligature may be created by the command \mayaAddLigature which
is just another name of the command \mayaDefine explained in §5.4.

14

5.2. Different encodings (catalogs) and phonetic notation
The glyph names in the font ‘codex’ are given according to the catalog of Maya
glyphs composed by Bruno Delprat on the base of the catalog from the book [4].
However, many specialists in ancient Maya are more familiar with Thompson’s
catalog [10]. The codes from Thompson’s catalog are also included into the
font ‘codex’ using absolutely the same mechanism as is used for ligatures. For

example, if you type \maya{T1.001}, you obtain */ (‘T1’ is replaced with
‘026’ before interpreting the glyph code). It is easy to define other encodings
using the command \mayaDefine discussed in the next subsection.

Many glyphs in the font ‘codex’ also may be referred to by their pho-
netic names and/or translations. For example, the font codex has a substi-

tutions u→ 026 (the phonetic value of the affix *), death→ 047 and muerte→

047 (English and Spanish translations of +). So, typing any of \maya{026},

\maya{T1}, \maya{u} you obtain * and typing any of \maya{047}, \maya{T15},

\maya{death}, \maya{muerte} you obtain +.
Note, that from MayaPS’ point of view there is no difference between liga-

tures, phonetic names, and different encodings. All of them are just substitution
rules (see the next subsection) and they are treated by the same algorithms. A
complete list of all substitution rules for any given font can be viewed as ex-
plained in §4.2; see also the files *-map.pdf.

5.3. Substitutions. Each Maya font may have substitution rules. Some of
them may be predefined in the font file. For example, in ‘codex’, the predefined
substitution rules are ligatures, Thompson codes, and phonetic names which
are discussed above. A complete list of all predefined substitution rules for any
given font can be viewed as explained in §4.2; see also the files *-map.pdf. It
can be seen also directly in the font file (the lines starting with %L@).

In this text we shall denote substitution rules by s1 → s2 where s1 and s2
are two strings (chains of characters) which do not contain spaces. For example,
in the previous two subsections we discussed the following substitution rules in
the font codex:

070/349→ 353 321<173>→ 327 T1→ 026 369<204>→ 367

All substitution rules of the current font are applied to an argument of
the command \maya (and of other commands dealing with glyph codes) before
passing the argument to the command. It is not necessary that the argument
itself is a valid glyph code in the sense of §3.1. It is important only that the
result of substitutions is a valid glyph code.

Substitutions are applied only once (i.e., non-recursively). For example,

\maya{T64/349} gives b
^
, but not c . This means that the substitution

T64 → 070 is applied but the substitution (ligature) 070/349 → 353 is not
applied to the result.

Substitutions are applied to a string by the following algorithm. First, we
try to apply substitution rules to the longest possible initial substring. Then
we find the first occurence of one of] (. : / ’ | - + ? * = < in the

15

rest of the string and try to apply substitution rules to the longest substring
starting from the next character etc. For example, if the substitution rules

xx. → 1, .x → 2, x. → 3, xx → 4

are defined for a current font, then \maya{xx.xx.xx.xx} will produce the same
result as \maya{1xx.1xx}.

5.4. Definition/canceling of substitutions rules.
A substitution s1 → s2 for a current Maya font can be defined/canceled by the
commands \mayaDefine{s1}{s2} and \mayaUndefine{s1}.

\mayaAddLigature{s1}{s2} and \mayaDeleteLigature{s1}{s2} are equivalent
versions of these commands.

Of course, all characters mentioned in §3.1 may be used in s1 and in s2. Also
‘<’ and ‘>’ are allowed in s1. I do not recommend to use other characters. Even
if you find experimentally that some of them give a reasonable result, this can
be changed in future versions of MayaPS.

The action of the commands \mayaDefine and \mayaUndefine is local (see
§7.6). For example, if you type

\maya{422} { \mayaDefine{422}{001} \maya{422} } \maya{422}

then you obtain ! / ! (the substitution acts only inside the
braces). The global versions of these commands are:

\mayaGlobalDefine{s1}{s2} \mayaGlobalAddLigature{s1}{s2}
\mayaGlobalUndefine{s1} \mayaGlobalDeleteLigature{s1}

5.5. Red numerals.
The red color of numerals has a semantic meaning in ancient Maya scripts.

Red numerals can be typed in red as explained in §6. In monochrome texts,
they can be represented by outlines:

Black numerals:
e

900

f
901

g
902

h
903

i
904

j
905

etc.

Red numerals (B/W):
k

800

l
801

m
802

n
803

o
804

p
805

etc.

Red numerals (colored):
e

900r

f
901r

g
902r

h
903r

i
904r

j
905r

etc.

The macro \mayaRed declares the substitutions 800 → 900r, 801 → 901r,
etc. in the current font and the macro \mayaBW cancels them. Example:

\mayaRed\maya{803:805 001:803} \mayaBW\maya{803:805 001:803}

yields: jh h/ pn n/

16

The macro \codexBW is defined by

\def\codexBW{\mayaIgnoreRGB \codex \mayaBW}

It is convenient to use the macros \mayaRed and \mayaBW if you want to
prepare a document which can be printed on a black-and-white printer, but
shown in colors on a screen. In this case, you can use only the codes 800, 801,
etc. for red numerals. If you want to get a colored version of the text, put the
line \mayaRed just after \input mayaps. If you want to get a black-and-white
version, replace it by \mayaBW.

The macros \mayaRed and \mayaBW make sense only for fonts containing
black-and-white versions of red numerals. At the present time only the fonts
‘codex’ and ‘gates’ contain them. Moreover, these macros work properly only
if the numerals are encoded in the same way as in the font ‘codex’. This is why
the macros \mayaRed and \mayaBW are defined in a separate file red89.tex which
is easy to adapt for future fonts based on other encodings. The file red89.tex

is loaded however automatically from mayaps.tex.

5.6. Macro \mayaDebug. (see also \mayaGlyphCC in §7.5.1).

If many substitution rules are defined, it may occur that some of them is applied
when you do not expect it (maybe, you do not know even that such substitu-
tion exists). To understand what happens, you can use the macro \mayaDebug

which applies the substitutions to its argument (as if it were the argument of
\mayaGlyph macro), but instead of drawing the glyph, it just prints the glyph
code obtained after the substitutions. This macro does not checks if the obtained
glyph code is valid. Neither it checks if primitive glyph names are defined. For
example, \mayaDebug{369<204>xyz} yields 367xyz.

6. Colors

By default any glyph is black but its color can be changed by adding a color
indicator to the the end of its code. It can be added to the glyph name either
immediately or after the left quote ‘. A color indicator is a chain of letters or
digits ind declared in a command \mayaRGB{r g b}{ind}. The meaning of the
color components r, g, b (numbers between 0 and 1) is standard, e. g., (1 0 0) is
red, (0 1 0) is green, (1 1 0) is yellow etc. If ind is a single character, the braces
around it can be removed. The indicator ‘r’ is predefined for the red.

If a color indicator is attached to a group of glyphs enclosed in parentheses,
then the whole group is colored.

Example.

\mayaRGB{0 0 0.8}c \mayaRGB{0.9 0.6 0}{orange}

\maya{451.452orange 026.(314/314)c (570/014‘r.267.024)c}

yields -(* '' .3 %. In the last glyph, the color indicator ‘r’ (red) has a
higher priority than ‘c’ (blue) because ‘r’ is inside the parentheses. The glyph
570/014 is colored in red entirely due to the ligature 570/014 → 571.

17

The command \mayaRGB is retroactive, so, it is recommended to put it near
the beginning of your tex file.

When MayaPS interprets a glyph code, first it applies the substitutions and
then it tries to extract the color indicator. For example, \maya{T1c 070:340r}

is interpreted as \maya{026c 353r} and yields * c .
A more delicate example: the font codex has a Thompson code substitutions

T756c → 454. Suppose, we define a color indicator c as above by the command
\mayaRGB{0 0 0.8}c. Then c at the end of the Thompson code T756c is not
interpreted as the color indicator. So, the command \maya{T756c T756cc}

yields q q .
When you use the glyph T756c in the font thompson, then T756c is the glyph

name, not a substitution. If c is defined as a color indicator, then the commands
\maya{T756c} would provoke an attempt to load a glyph T756 which does not
exist. To avoid this problem one can write \maya{T756c‘}.

Remark. Standard LATEX packages for text coloring do not change the
colors of Maya glyphs.

The macro \mayaIgnoreRGB (retroactive) cancels the coloring throughout

the document. If it is used, then \mayaRGB{0 0 1}c\maya{026c} yields * .
Attention: if the color indicator ‘c’ is not defined at all, then \maya{026c} leads
to an error ‘glyph not found’.

7. Glyph showing and paragraph formatting

7.1. Macro \mayaGlyph{GlyphCode}

Writes the composed glyph described by GlyphCode using the current Maya
font of the current font size. Spaces are not allowed between the braces and
the glyph code! This command just creates an hbox (see [5; Ch. 11]) with the
glyph. For example, if you type something \mayaGlyph{422.001}\dots, you
obtain:

something !/. . .

There is a standard problem in TEX with hboxes (it does not appear for the
macro ‘\maya’; see §7.4). If you start a paragraph with several hboxes (for
example, with several \mayaGlyph{. . .} commands), then TEX puts the boxes
one beneath another. To force TEX to leave the vertical mode, you can start
the paragraph, for example, with \hskip0pt (see [5; Exercise 13.1] for more
details).

To be more precise, the argument of \mayaGlyph macro is not a glyph code,
but a string (chain of characters) which transforms into a glyph code after
application of the substitutions and the ligatures (see §5).

If a glyph name is not found in the current font, then \mayaGlyph produces

something like this ! xyz (for \mayaGlyph{422.xyz}). If the parentheses are un-

balanced in the glyph code, then it produces
bad
"()" (for \mayaGlyph{422.(001}).

18

Cartouche. We shall use the term cartouche for the box created by \mayaGlyph
macro. In this subsection, we shall denote its sizes by h (height) and w (width).
They are stored in the “hidden” TEX’s registers \maya@xsize and \maya@ysize.
The ratio w/h is a fixed for each font. It is called the aspect of a font. For the
fonts codex and gates the aspect is w/h = 23/15 = 1.53333 (this value is
recommended by Bruno Delprat for all Maya fonts).

We do not recommend to change the aspect, however it can be done. For
example, after the command \mayaSetCartoucheAspect{7.5} the glyphs of
the current font become as ugly as this: !/.

The recommended way to change w and h is the macro \mayaSize{new h},
for example, \mayaSize{5mm}. The action of this macro is explained below in
more detail.

The initial value of h is 12mm.

How a glyph is placed in the cartouche. A composed glyph is rescaled
so that it completely fills the cartouche unless the glyph is obtained by vertical
attachment only. In the latter case (for glyphs like A:B:C), the glyph is rescaled
so that it fills a rectangle w+h

2
×h which is placed in the middle of the cartouche.

A single primitive glyph (even preceded by a modifier) is displayed in its nat-
ural proportions (i.e., the ratio height/width is not changed) and it is inscribed
into a rectangle w+h

2
× h which is placed in the middle of the cartouche.

Empty argument. When the macro \mayaGlyph is called with the empty
argument (no spaces between the braces!), it produces an empty cartouche w×h.
For example, abc\mayaGlyph{}\dots produces

abc . . .

(note, that abc\mayaGlyph{()}\dots yields abc . . .).

7.2. Macro \mayaGlyphInLine{GlyphCode}

The action of this macro is equivalent to the action of the \maya macro with
a single glyph code (except that it works a little bit faster, but who cares of it
today). However, it is more convenient to explain \maya via \mayaGlyphInLine.

The macro \mayaGlyphInLine serves to insert maya glyphs into a paragraph
written in a European language (as is done everywhere in this text). Its action
depends on the current font sizes (of the both current fonts: European and
Maya) and it is controlled by the registers \mayahspace, \mayavspace, and
\mayavcorrection. Their values are changed automatically by the command
\mayaSize (see §7.3), but they can be changed manually in the usual way. For
example, the command \mayavspace=2pt sets a new value of \mayavspace, and
\advance\mayavspace by 1pt increases the value of \mayavspace.

The macro \mayaGlyphInLine creates a box (w + w′) × (h + h′) where w′

and h′ are the values of \mayahspace and \mayavspace and w×h is the current
cartouche size. Then it inserts the cartouche made by \mayaGlyph{GlyphCode}
in the middle of the box, lowers the box by the value of d (see below), and then
TEX formats the paragraph as if it were an ordinary word of the width w + w′

(see the figure).

19

ww

h
h

word1 word2 word3

w

h

d

cartouche with
a Maya glyph

The value of d (the depth) is computed by the formula d = 1

2
(h− 3

2
ex)+ 1

2
h′−c

where h is the cartouche height, h′ is the value of \mayavspace, c is the value
of \mayavcorrection, and ex is the height of the letter ‘x’ in the current Latin
font.

Thus, the \mayavcorrection parameter is used to move glyphs vertically.
For example,

Some text \maya{422.001} {\mayavcorrection=1mm\maya{422.001}}

more text \maya{422.001} {\mayavcorrection=-1mm\maya{422.001}}.

produces

Some text !/ !/ more text !/ !/.

The parameter \mayavspace influences the interline space in the usual way.

7.3. Macro \mayaSize{ dimen }

Sets the height h of the cartouche to dimen. Here dimen is a dimension in the
format of TEX or LATEX, for example, 4mm, 1.2cm, 0.1in, 12pt, 15bp, etc. (1in
= 1 inch = 72.27pt = 72bp).

This command changes the width w of the cartouche proportionally, i.e.,
(new h)/(new w) = (old h)/(old w), and it sets the size of the caption font.

It sets also \mayahspace = 1

30
h, \mayavspace = 1

10
h, and \mayahskip = 0.

7.4. Macro \maya{GlyphCode1 GlyphCode2 . . . GlyphCoden}

Writes a sequence of Maya glyphs separated by spaces and newline characters.
(the glyphs are formatted by the \mayaGlyphInLinemacro). This macro is the
main macro of all the package. It is possible to use only it and nothing else.
It is forbidden to put anything between the glyph codes (no commas, no dots,
no TEX commands). Spaces before the first and after the last glyph code are
allowed but ignored. The argument of \maya may have several paragraphs.

The action of \maya is controlled by the parameters from §7.2 and also by
the skip (glue) register \mayahskip. If the parameter \mayahskip is set to zero,
then \maya{g1 g2 . . . gn} is equivalent to

\mayaGlyphInLine{g1} \mayaGlyphInLine{g2} . . . \mayaGlyphInLine{gn}.

If \mayahskip is nonzero then its value is added (as an additional horizontal
skip) between each pair of consecutive glyphs.

20

The value of \mayahskip is set automatically by the \mayaSize macro (see
§7.3), but it can be redefined in a standard way. For example, by the command
\mayahskip=0pt\relax or \mayahskip=1mm plus 0.5mm minus 0.5mm

7.5. Glyphs with Captions
7.5.1. The macros

\mayaGlyph, \mayaGlyphInLine, and \maya

have analogs with captions. These are

\mayaGlyphC, \mayaGlyphInLineC, and \mayaC.

For example, if you type

\mayahskip=10pt

\mayaC{422.001 321<173> ?422} some text \mayaGlyphC{T1.001}

then you obtain:

!/
422.001

a
321<173>

!

?422

some text
*/
T1.001

So, the caption-macros act by the same algorithms that their no-caption pro-
totypes, but the cartouche is enlarged from the bottom by a caption where the
argument of the \mayaGlyph macro is shown.

Double captions. The macro \mayaGlyphCC acts like \mayaGlyphC but
the caption has two lines: the first line is the argument and the second line is
the result of substitutions (ligatures). Roughly speaking, the second line is the
result of \mayaDebug macro (see §5.6). Example:

\mayaGlyphCC{369<204>.xyz}\hskip30pt\mayaGlyphCC{570/014.267.024}

yields

d xyz

369<204>.xyz

367.xyz

.3 %
570/014.267.024

571.267.024

The macro \mayaGlyphCC is used for construction of font maps (see §4.2).

7.5.2. Captions of fixed width: \mayaCFWtrue and \mayaCFWfalse.
When the distance between two glyphs with captions is computed, the width
of the captions is not taken into account. So, if you type several lines of Maya
glyphs using the \mayaC command, then the glyphs are automatically aligned.

There are two possible modes of the caption tool in MayaPS: the fixed width
mode and the natural width mode. The fixed width mode is switched on by the
command \mayaCFWtrue and it is switched off by the command \mayaCFWfalse.
By default, the fixed width mode is switched on.

The natural width mode may lead to the overlapping of the captions if they

are too long: !
[RRRR]422

!
++++++422

. In this case one can increase \mayahskip or

\mayahspace.

21

If the fixed width mode is on, then wide captions are compressed (only in

the horizontal direction) to fit the cartouche width: !
[RRRR]422

!
++++++422

. Example:

\mayaCFWtrue \mayaC{570/014.267.024 111.+176/111} \hskip20pt

\mayaCFWfalse \mayaC{570/014.267.024 111.+176/111}

yields .3 %
570/014.267.024

, ,

1

111.+176/111

.3 %
570/014.267.024

, ,

1

111.+176/111

7.5.3. Parameters. The caption-macros are controlled by the same param-
eters as their no-caption prototypes (see §§7.1 – 7.3) and also by the dimension
register \mayavspaceC. Its value is the distance between the cartouche and the
caption text. The default value is 3pt.

Example:

Some text \mayaC{422.001} { \mayavspaceC=2mm \mayaC{422.001} }

more text \mayaC{422.001} { \mayavspaceC=1pt \mayaC{422.001}}

more text \mayaC{422.001} {\mayavcorrection=2mm\mayaC{422.001}}

produces

Some text !/
422.001

!/
422.001

more text !/
422.001

!/
422.001

more text !/
422.001

!/
422.001

7.5.4. Font in captions. The default caption font is cmtt scaled propor-
tionally to the cartouche size. For example, \mayaSize{12mm} sets cmtt9 as
the caption font. The size of the caption font can be changed by the commands
\mayaCfive, \mayaCsix, . . . , \mayaCeighteen. For example,

\mayaCfive\mayaC{422}\mayaCseven\mayaC{422}\mayaCnine\mayaC{422}

yields: !
422

!
422

!
422

These commands set only \tt font (typewriter font). To set another font, use

\let\mayaCaptionFont=\cs

where \cs is a control sequence associated to any TEX font. For example,

\font\f=cmr5 at 15pt

\mayaC{?422} { \let\mayaCaptionFont=\f \mayaC{422} }

\mayaC{?422} { \let\mayaCaptionFont=\it \mayaC{?422} }

yields !

?422

!
422

!

?422

!

?422

22

7.5.5. Text in captions. If the caption-macros are used as described
above, the text appearing in the caption just coincides with the argument of the
macro (as is seen in the examples). Any other text can be inserted by commands

\mayaGlyphC*{Text}{GlyphCode}, \mayaGlyphInLineC*{Text}{GlyphCode},
\mayaGlyphCC*{Text1}{Text2}{GlyphCode}

(no analog for \mayaC macro). For example,

\mayaGlyphC*{\bf arm}{=314}\mayaGlyphCC*{unreadable}{glyph}{005}

yields:

'
arm

r
unreadable

glyph

7.6. Local and global action of commands
Recall (see [5] for more details), that the state of TEX, and hence, its behavior,
depends on many parameters (current font, interline space, definitions, etc.).
Some commands change the state of TEX. The changes can be local or global.
Local changes are valid only till the end of the group containing the command.
A group is, roughly speaking, a part of a tex file enclosed in braces {} (see [5;
Ch. 5] for more details). Global changes of TEX’s state are valid till the end of the
file (or till a command which explicitly cancels the changes). For example, the
font change commands \it, \rm, . . . , and the commands \def, \register=value,
have the local action, but the commands \gdef, \global\register=value have
the global action.

Here we list the commands that cause global/local change of MayaPS state.

Global Local

\mayaGlobalDefine \mayaDefine

\mayaGlobalUndefine \mayaUndefine

\mayaFont \cs (defined by \mayaFont\cs=file)
\mayaAddGlyph(r.a.)\mayaImport(r.a.) \mayaSize,\mayaSetCartoucheAspect
\mayaRGB (r.a), \mayaIgnoreRGB (r.a.) \mayaCfive, . . . , \mayaCeighteen

\global\mayahskip=glue \mayahskip=glue
\global\register=dimen \register=dimen
\global\let\mayaCaptionFont=\cs \let\mayaCaptionFont=\cs
\global\mayaCFWtrue \mayaCFWtrue

(here \register is one of \mayahspace, \mayavspace, \mayavcorrection,
\mayavspaceC; ‘r.a.’ means ‘retroactive’).

23

7.7. Maya glyphs in tables of contents.

If you use LATEX’s macro \tableofcontents, then for inserting Maya glyphs
to section titles, use only the macros \maya, \mayaGlyph, \mayaGlyphInLine
preceded by \protect. You may use also \mayaTOC{g1 g2 . . . } which is equiv-
alent to \protect\maya{g1 g2 . . . }. For example:

\codex\mayaSize=20pt \tableofcontents

.

\gates\mayaSize=30pt \section{All about \mayaTOC{023:023}}

.

\section*{All about \maya{422.422}} % \protect not needed here

\addcontentsline{toc}{section}{All about \protect\maya{422.422}}

.

Note, that the same glyph may be printed in a section title and in the table
of contents in different sizes and even in different fonts (as in example above). In
fact, the table of contents is created in two passes (you latex your file twice). On
the first pass, a temporary file .toc is created and if you use \protect\maya{

. . . } in a section name, then \maya{ . . . } (without \protect) appears in the
toc file. On the second pass, the toc file is included by the \tableofcontents
command, thus the glyph design in the table of contents is governed by the
parameters which are current at that point.

The caption versions of these macros do not work properly in the table of
contents. In fact, they almost work. The only problem is that the glyphs are
displaced horizontally. The displacement can be corrected manually like this:

\mayaSize{20pt} \tableofcontents

. . . .

\section*{All about \mayaC{422.422} and some other glyphs}

\addcontentsline{toc}{section}{All about \hskip-50pt

\protect\mayaC{422.422} \hskip50pt and some other glyphs}

All this concerns also Maya glyphs used in lists of figures, indexes etc.

24

8. Error diagnostics
8.1. Errors detected by TEX. These are errors appeared, for example,
if you misspell a name of a macro, if you forget a brace, etc. The standard
TEX/LATEX mechanism of the error diagnostics works in this case.

The most disturbing error is caused by spaces at the end of the argument
of \mayaGlyph, \mayaGlyphInLine, or their caption versions. In the current
version of MayaPS, in this case TEX stops with an error message like this

! Argument of \maya@sA has an extra }.

<inserted text>

\par

.

l.15 \mayaGlyphInLine{ }

It is not so clear from this message that the problem is the space in the argument.
Fortunately, the line with the error is indicated correctly (‘l.15’ in this example)
as well as the macro which caused the problem. Moreover, if you ignore this
message (by keeping to press ‘Enter’, or by replying q to TEX), then you have
a good chance to compile correctly the rest of the document.

8.2. Errors detected by a PostScript interpreter (i.e., error
messages appeared while printing or viewing the ps file or convertion it to pdf).
Normally, such errors do not occur unless you use bad mpf files or include bad
eps files by \mayaAddGlyph command (or eps files not satisfying the restrictions
discussed in §4.2). Another exception is mentioned in §4.3.2, Remark 1. If this
is not so, then it is a bug and I will be grateful if you inform me about it.

8.3. Errors in glyph codes. See §7.1.

8.4. MayaPS warnings. When something is wrong, MayaPS always
tries to go on nonetheless (doing, maybe, not exactly what you want). In this
case usually (not always) it writes a warning to the same output stream where
TEX writes his messages. Usually, this is the file .log and/or the terminal.

8.5. Capacity restrictions. TEX capacity can be exceeded if you use
too many Maya fonts. Usually, TEX allows 60,000 multiletter control sequences
(names of macros). MayaPS creates some macros for each substitution in Maya
fonts and for each used primitive glyph. For example, codex creates up to 3300
macros. So, if you use 17 Maya fonts like codex, you may get TEX’s message

! TeX capacity exceeded, sorry [hash size=60000].

If you really absolutely need more capacity,

you can ask a wizard to enlarge me.

TEX can also refuse a single macro \maya with too many arguments.

PostScript capacity. If you use too many glyphs, you may encounter prob-
lems with PostScript virtual memory (VM). For more details see [7], config.ps
(the line m), and comments in mayaps.tex about \mayaNoVMtrick.

25

9. How MayaPS works (interaction TEX/Dvips)
In this and in the next sections (§9 and §10) we assume that the reader knows
something about PostScript (see [11] for a short introduction and [1] for a com-
plete description of the PostScript language). Understanding of this section is
not necessary for usage of MayaPS with existing fonts but it could be helpful
for creating new fonts.

9.1. Dvips features used in MayaPS
Dvips creates a ps file which has prolog, setup, and body. The body consists
of page descriptions which are all independent on each other. In particular, all
definitions which are made on one page cannot be used on another page.

The TEX command \special{header=file} makes Dvips to include a file
into the prolog of the resulting ps file.

The TEX command \special{!PostScript commands } makes Dvips to in-
clude the PostScript commands into the prolog of the resulting ps file. When
the commands are executed, the dictionary SDict is on the top of the dictionary
stack. Thus, all key-value pairs defined here, are stored in SDict.

The TEX command \special{"PostScript commands } makes Dvips to in-
clude the PostScript commands into the body of the resulting ps file at the
place corresponding to the place in the tex file where \special{" . . .} occurs.
When the PostScript commands are being executed, the dictionary SDict is
on the top of the dictionary stack and its state is not changed since the last
\special{! . . .}. Thus, all key-value pairs defined there are available.

9.2. Rough structure of MPF files. A file MPF (MayaPS Font)

contains PostScript programs which are (partially) included by Dvips into the
resulting ps file. An mpf file has the following structure:

Font Header

%@

Glyph Description Section

The Glyph Description Section has the following structure:

Glyph Description Header

%@ g1

Description of g1

%@ g2

Description of g2

. . .

%@

end end end end

where g1, g2, . . . are glyph names (see §3.1). Thus, the description of a glyph
gi is the text between the line ‘%@ gi’ and the next line starting with ‘%@’. A
complete definition of the MPF format is given in §10.

26

9.3. How MayaPS works in the standard mode
If everything runs well, then MayaPS works in the following way.

When TEX scans the file, it creates an auxiliary file mayaps.tmp and writes
the following data into it:

1). At the first moment, it writes a copy of mayaps.pro skipping extra
spaces and the lines starting with the percent sign (comment lines).

2). Each time when a macro \mayaFont (see §4.1) is expanded, the font
header (see §9.2) of the corresponding font file is appended to mayaps.tmp

skipping extra spaces and comment lines. It is placed between the lines

userdict begin MayaDict begin tmpini end end

userdict begin MayaDict begin tmpend end end

3). At the end of each page MayaPS writes to mayaps.tmp the following
data. Suppose that glyphs gi1 , gi2 , . . . (for example, g5, g13, . . .) of a font F ,
glyphs g′j1 , g

′

j2
, . . . of a font F ′, etc., appear on this page the first time since the

beginning of the document. Then MayaPS writes to mayaps.tmp:

userdict begin MayaDict begin n dF AddGlyphs

Description of gi1 from the font F

Description of gi2 from the font F

. . .

end end end end

userdict begin MayaDict begin n′ dF ′ AddGlyphs

Description of g′j1 from the font F ′

Description of g′j2 from the font F ′

. . .

end end end end

and so on...

where n = 5×(the number of newly appeared glyphs from F) and dF is the
font descriptor of F , i.e., an integer number assigned to F when the command
\mayaFont is executed (n′ and dF ′ mean the same for the font F ′). When the
glyph descriptions are copied into mayaps.tmp, extra spaces and comment lines
are removed.

4). Each time when the macro \mayaAddGlyph is expanded, MayaPS writes
to mayaps.tmp:

userdict begin MayaDict begin 5 dF AddGlyphs

Glyph Description as in §11.3

end end end end

and it is supposed from that moment, that the glyph is used.

The file mayaps.tmp is included into the prolog of the resulting ps file by
the command \special{header=mayaps.tmp}. When the ps file is interpreted

27

(printed or viewed on the screen), all the glyph definitions from mayaps.tmp are
done before interpreting the first page of the document. This is an explanation
of the retroactivity of the macro \mayaAddGlyph (see §4.2).

All the glyph drawing macros of MayaPS call finally the macro \mayaGlyph.
This command first applies the substitutions (ligatures), then it checks if the
parentheses are balanced, and then it issues the command

\special{"M(GlyphCode) w h d E}

where w × h is the cartouche size, d is the descriptor of the current font (see
above in this subsection), and GlyphCode is just the glyph code in the same
syntax as described in §3.1. Thus, all the work of interpreting the glyph code
and drawing the glyph according to §3 is delegated to a PostScript interpreter
(i.e., it is postponed till the moment of printing, viewing, or conversion of the
ps file). This work is done by the PostScript procedure E which is defined
in the file mayaps.pro and stored in the dictionary MayaDict. The latter is
opened by the procedure M which is put to the dictionary SDict by the command
\special{!/M{. . .}def}.

9.4. Work in absence of some files
If mayaps.pro or an MPF file is not found by TEX, then TEX issues the command
\special{header=...} assuming that the file will be found by Dvips. If a font
is not found by TEX but it is found by Dvips, then the aspect and the ligatures
defined in the font file are ignored.

The format MPF presumes that all fonts work properly in this mode.

10. MPF format description
Recall that we assume in this section that the reader knows the PostScript

language at least as much as is written in [11]. In the next two sections we
explain how to create a Maya font out of eps files without any knowledge of
PostScript.

10.1. More about glyph names and types. There is no formal
difference between the names of affixes and those of central elements. In con-
trary, if it is already known that a given glyph is an affix, then the property to
be a numeral is prescribed by the first character of its name.

A list of Numeral’s Initial Characters is associated to each Maya font. If the
initial character of an affix belongs to this list, then the affix is a numeral. Oth-
erwise it is non-numeral. For the font ‘codex’ this list consists of two elements:
‘8’ and ‘9’.

10.2. General Structure. Comments. A file mpf (MayaPS Font)
contains PostScript programs which are included by Dvips into the ps file as
described in §9. It consists of two sections:

• Font Header (see §10.3).

• Glyph Description Section. (see §10.4).

28

Empty lines are in mpf files are ignored. An mpf file may contain comments.
They start with the percent sign %, i. e., everything between ‘%’ and the end of
the line is ignored. If ‘%’ is the first symbol of a line, then the line is not included
by MayaPS into the resulting ps file. Otherwise a comment is transmitted to
the ps file.

Comments may not start with the combinations %@ , %M@ , %L@ %V@ and
%W@ because they are reserved for the information exchange between tex and
ps. Comment lines which start with %c@ where c is any character, are reserved
for future versions of MayaPS.

Lines starting with %V@ and %M@ are used only in font maps (see §4.2) as
version information and section names. For example, the text ‘v 0.35 (Oct 27,
2012’ in the title and the section name ‘Irregular Affixes’ in §4.2 are defined in
codex.mpf by the lines

%V@ version 0.35 (Oct 27, 2012)

%M@ Irregular Affixes

Remark. In §10.3 and §10.4, when we explain the action of PS commands
from an mpf file, we assume for simplicity that the mpf file is included by the
command \special{header=fontname.mpf} (see §9.4).

10.3. Font Header. Contains definitions of variables and procedures
(key-value pairs) used in the glyph descriptions. It starts with the line(s)

userdict begin MayaDict begin (s) n NewFont

fx fy SetInfixScaleFactors (this line is optional)

followed by the Header Body, and terminates by the two lines

end end end

%@

Here (s) is the string of Numeral’s Initial Characters (see §10.1), for example, in
‘codex.mpf’ its value is (89), the numbers fx and fy are scale factors for a glyph
B in the construction A (the defailt values are fx = 0.65 and fy = 0.6),
and n is the number of key-value pairs defined in the header body.

The command NewFont, in particular, creates two new dictionaries associ-
ated to the font (let us denote them here by D1 and D2) of capacity 3 and n
respectively. It makes the dictionary D2 current (the dictionary stack becomes:
. . .userdict MayaDict D2). The dictionary D1 (resp. D2) is stored as the i-th
entry of the array GDicts (resp. GGDicts) where i is the number associated
to the font at the moment of expansion of the macro \mayaFont. The arrays
GDicts and GGDicts are stored in the dictionary MayaDict.

The Header Body may contain definitions which are put into the current
dictionary D2. All standard PostScript commands are available here. The
dictionary D2 will be used in glyph descriptions (see the next subsection). For
example, the font header may look like this (the empty header body):

29

userdict begin MayaDict begin (89) 0 NewFont

end end end

%@

(then only standard PS commands will be available in the glyph descriptions).

A font header may contain a cartouche aspect declaration (the quotient
width/height; see §7.1). It is a line

%W@ a

where a is any number. The default value is 23/15 = 1.53333.

A font header may contain also any number of substitution (ligature) decla-
rations. These are lines of the form

%L@ s1 s2

(at least one space between %L@ and s1, and at least one space between s1
and s2). Such a line acts as the command \mayaDefine{s1}{s2} described
in §5.3. Substitution declaration lines may be placed everywhere before the
end-of-header line ‘%@’.

10.4. Glyph Description Section.

This section starts with the line

userdict begin MayaDict begin k AG

followed by any number of Glyph Descriptions, and terminates by the two lines

%@

end end end end

The parameter k should be greater than the number of key-value pairs defined in
all the glyph descriptions. For example, it is always possible to set k = 1+5×(the
number of glyphs). The command AG increases the capacity of D1 by k and
it leaves D2 D1 on the top of the dictionary stack (after this command, the
dictionary stack becomes: . . . userdict MayaDict D2 D1).

A Glyph Description consists of a line

%@ name

followed by a Glyph Description Body. The latter must contain definitions of
the following key-value pairs (and nothing else):

• wname (number) width of glyph;

• hname (number) height of glyph;

• aname (boolean) true if affix;

• Aname (array; optional) [(L)(U)(R)(D)(S)]where L, . . . , S are strings
of modifiers (see §3). The default value: [()(|r)(|)(R)()].

30

• mname the procedure of glyph drawing. It should have the form {GIni

PostScript commands GEnd} (see Remark 2 below). The procedures GIni
and GEnd contain a gsave-grestore pair, but they do not contain any save-
restore pair. So, the procedure should not leave anything on stacks.

The dictionary D2 is open at the moment of the definition of these objects (as
we told already, it is open by the command AG). It will be also open when the
procedure mname will be executed (the command GIni opens it). So, the names
defined in D2 may be used everywhere. The procedure mname should draw the
glyph in the bounding box [0 0 w h] where w and h are the values of wname
and hname.

Remark 1. Only the ratio h/w is important, but not the values of w and h
themselves. For example, if you multiply w and h by 2 and insert the command
2 2 scale just after GIni, then the result will be the same.

Remark 2. If you do not use the definitions fromD2, then it is not necessary
to include the GIni-GEnd pair, but in this case you are responsible yourself for
not to change the graphic state.

Remark 3. As we explained already, AG leaves . . . userdict MayaDict

D2 D1 on the dictionary stack. Thus, the names defined in D2 are available
at the moment of definition of wname, hname, aname, etc. This means, for
example, that a definition ‘aname false def’ can be abbreviated up to ‘aname
F D’ if the names F and D were defined in the dictionary D2 by the commands
‘/D{def}bind def/F false D’ in the font header (this possibility is used in
fonts of §11.5). Such names (like F and D in our example) should not start with
w, h, a, A, and m if they consist of more than one character. This is a precaution
to avoid conflicts with the names from D1. Even if you know that a glyph name
is not used in the font, a user can introduce it by \mayaAddGlyph macro.

10.5. Examples.

Example 1. Suppose that an mpf file is:

% Empty MayaPS Font

userdict begin MayaDict begin (89) 1 NewFont

%@

end end end

% end of the font header

userdict begin MayaDict begin 0 AG

%@

end end end end

Then it is a valid font which has no glyphs. Such a font is not as useless as one
could think. One can define glyphs using \mayaAddGlyph macro.

Example 2. Suppose that the file fractal.mpf contains:

userdict begin MayaDict begin () 15 NewFont

/D{def}def/B{bind def}D/d{dup}D/gs{gsave}D/gr{grestore}D

31

/t{d translate}D/s{scale}D/r{rotate}D/w{setlinewidth}D

/C{curveto}D/y{58}D/m{newpath moveto}B/sb{add r neg 100 add}B

/f{2 w 30 2 m 2 2 2 2 2 30 C 2 y 2 y 30 y C

y y y y y 30 C y 2 y 2 30 2 C stroke}B

/F{2 w .5 -.5 m 30 30 lineto -.5 .5 lineto stroke

d 0 gt{7 8 23{gs d t d 280 sb 210 div d s d 1 sub F gr}for

9 8 25{gs d t d neg 80 sb 230 div d s d 1 sub F gr}for

gs 28 t -5 r .4 d s d 1 sub F gr}if pop}B

end end end

%@

userdict begin MayaDict begin 20 AG

%@ 0

/w0 60 D/h0 60 D/a0 false D/m0{GIni f 9 t 0 F GEnd}B

%@ 1

/w1 60 D/h1 60 D/a1 false D/m1{GIni f 9 t 1 F GEnd}B

%@ 2

/w2 60 D/h2 60 D/a2 false D/m2{GIni f 9 t 2 F GEnd}B

%@ 3

/w3 60 D/h3 60 D/a3 false D/m3{GIni f 9 t 3 F GEnd}B

%@ 4

/w4 60 D/h4 60 D/a4 false D/m4{GIni f 9 t 4 F GEnd}B

%@

end end end end

and a tex file contains

\input maya \mayaFont\fractal=fractal \mayaSize{24mm}

\mayahskip=-3pt\relax\mayahspace=-3mm

Fonts {\tt codex} and {\tt fractal}: \par

\noindent\maya{422.001} \fractal \maya{1 2 3 4 3.2:(1.0)} \end

Then plain TEX (not LATEX) and Dvips produce the output:

Fonts codex and fractal:

!/
Exercise. What is the Hausdorff dimension of the glyph \maya{∞}? :-)

32

11. How to make a Maya font out of EPS files
No knowledge of PostScript Language is required for understanding this

section. All necessary information about the EPS format is given in §11.2.
We assume that a user has a collection of EPS (Encapsulated PostScript)

files with glyph images and we explain how to create an MPF (MayaPS Font)
file out of them by copying some parts of EPS files into the MPF file. Since
the both EPS and MPF files are ASCII text files (at least those EPS files which
are allowed here; see the next subsection), this can be done, for example, by a
straightforward ‘copy-paste technology’ using any text editor (which is rather
boring however). Otherwise, it is easy to write simple programs (scripts) which
do this more or less automatically.

11.1. Restrictions on EPS files.
We assume that EPS files do not contain the backslash character ‘\’ (compare

with §4.2). We assume also that EPS files do not contain ‘unprintable’ characters
except the tabulation character and all kinds of end-of-line characters (usually
they don’t).

11.2. On the structure of EPS files.
An EPS (Encapsulated PostScript) file is a PS program satisfying some

additional conventions which ensure that any such file can be included into any
PostScript document. An EPS file starts with the 2 characters ‘%!’ followed by
an information on the version of EPS format (in the first line). Next several
lines start with the double percent sign ‘%%’ These are DSC header comments
(DSC means Document Structuring Conventions). One of them must contain
the bounding box – the rectangle limiting the picture. This is a line of the form

%%BoundingBox: llx lly urx ury

where (llx, lly) are the coordinates of the lower-left corner of the box and
(urx, ury) are the coordinates of the upper-right corner. The coordinates are
given in big points (bp, see §7.3) but the unit of measure is not important for
us, because each glyph will be scaled anyway to the size defined in a tex file.

In old versions of EPS format, the bounding box line was allowed to be
placed near the end of file.

These two lines (the %!-line and the bounding box) are the only required
DSC header comments in an EPS file. However, the most of programs producing
EPS files include more DSC header comments. The last one is

%%EndComments

Usually EPS files are organized as follows. They begin with a prolog (the com-
mon part of all EPS files produced by the given program) followed by a script
(the part which varies from one EPS file to another). Usually, the prolog is writ-
ten by a programmer and the script is generated automatically by the program.
The prolog ends with the line

%%EndProlog

33

11.3. The simplest (not the best) way to make an MPF. An
MPF file may be composed as follows (see in §10.2 about comments and §10.3
about ligatures).

% Title (optional): the font name, the creator, the version, etc.
userdict begin MayaDict begin (s) 0 NewFont

end end end

% Table of Ligatures (Substitution):

%L@ s11 s12
%L@ s21 s22

. . .

%@

userdict begin MayaDict begin k AG

Glyph Description 1

Glyph Description 2
. . .

%@

end end end end

where s is the string of Numeral’s Initial Characters (see §10.1; for example, (s)
is (89) in codex.mpf) and k may be set to 5× (the number of glyphs) + 1 (see
§10.4 for more details). Each Glyph Description has the following structure:

%@ name
/wname w def /hname h def /aname bool def

/Aname[(L)(U)(R)(D)(S)]def (optional; only for affixes)
/mname{save
−llx −lly translate (not needed if llx = lly = 0)

A copy of the EPS file of the glyph

restore}bind def

where: name is a glyph name, w = urx− llx, h = ury − lly, bool is true if the
glyph is an affix and false if it is a central element, L, . . . , S are the orientations
as in §3.3 (the default value is [()(|r)(|)(R)()]), and [llx, lly, urx, ury] is the
bounding box of the EPS file (see §11.2).

Note, that almost all programs creating EPS provide llx = lly = 0. In this
case the line ‘−llx −lly translate’ is not needed and w = urx, h = ury.

Remarks. 1. Usually EPS files have a rather long header (prolog) which is
common for all of them. If a font is created as described here, then MayaPS
includes into the resulting ps a copy of the prolog for each glyph used in the
text. If the text contains several hundreds of primitive glyphs, then the resulting
ps file could get several useless Mb.

2. If you use an mpf file created as described here, then the result will be
absolutely the same as if you define all the primitive glyphs used in the text by

34

\mayaAddGlyph macro. An advantage of the latter approach is that you don’t
care of boundary boxes (\mayaAddGlyph does it itself). A disadvantage is that
you have to select yourself the glyphs which are used in the text. Otherwise
(for example, if you create a ‘pseudofont’ which can be loaded by the ‘\input’
command and which contains many \mayaAddGlyph’s), the resulting ps file may
be huge (see the previous remark).

11.4. Case of EPS files created in a uniform way. In this
subsection we assume that all EPS files are created by the same program, For
example, by the same graphical editor, or they are scanned and then vectorized
by the same vectorizer. More precisely, we assume that all EPS files have the
same prolog, i.e., all of them look like this:

The common prolog of all EPS files

%%EndProlog

The script (depends on the EPS files)

Then the MPF file can be composed as follows:

% Title (optional): the font name, the creator, the version, etc.
userdict begin MayaDict begin (s) 1 NewFont

/prolog{save userdict begin

The common prolog without DSC Header Comments

}bind def end end end

% Table of Ligatures (Substitution):

%L@ s11 s12
%L@ s21 s22

. . .

%@

userdict begin MayaDict begin k AG

Glyph Description 1

Glyph Description 2

. . .

%@

end end end end

where (s) and k are the same as in §11.3. Each Glyph Description has the
following structure:

%@ name
/wname w def /hname h def /aname bool def

/Aname[(L)(U)(R)(D)(S)]def (optional; only for affixes)
/mname{GIni prolog

35

−llx −lly translate (not needed if llx = lly = 0)

The script of the EPS file of the glyph

end restore GEnd}bind def

where all the parameters are the same as in §11.3.

11.5. MPF file created using cotrace -n.

If the eps files are created by the vectorizer cotrace with the option -n (this
option ensures that there are no backslash characters ‘\’ in them), a file MPF
can be composed as follows.

% Title (optional): the font name, the creator, the version, etc.
userdict begin MayaDict begin (s) 10 NewFont

The prolog produced by cotrace with -n option

end end end

% Table of Ligatures (Substitution):

%L@ s11 s12
%L@ s21 s22

. . .

%@

userdict begin MayaDict begin k AG

Glyph Description 1

Glyph Description 2

. . .

%@

end end end end

and the glyph descriptions are:

%@ name
/wname w D/hname h D/aname bool D

/Aname[(L)(U)(R)(D)(S)]D (optional; only for affixes)
/mname{GIni

The script of the EPS file of the glyph

end restore GEnd}B

The file codex.mpf used in Version 0.23 of MayaPS have this structure.

11.6. Case of EPS files of different origins.
Here we assume that you have a collection of EPS files with one prolog, another
collection with another prolog, etc. Let us denote the prologs by P1, P2, . . . , Pn.
In this case the MPF file described in §11.4 should be changed as follows.

1). The part

userdict begin MayaDict begin (s) 1 NewFont

36

/prolog{save userdict begin

The common prolog without DSC Header Comments

}bind def end end end

should be replaced with

userdict begin MayaDict begin (s) n NewFont

/prolog1{save userdict begin

Prolog P1 without DSC Header Comments

}bind def

/prolog2{save userdict begin

Prolog P2 without DSC Header Comments

}bind def

. . .

/prologn{save userdict begin

Prolog Pn without DSC Header Comments

}bind def end end end

2). ‘prolog’ should be replaced by ‘prologi ’ in each definition of mname. Here
i is the number of the prolog used in the EPS file of the glyph.

Of course, the names prolog1, prolog2, . . . may be replaced by any other
names (except ‘GEnd’), for example, it is reasonable to choose names explaining
the origin of the EPS files.

12. Vectorizer CoTrace

12.1. cotrace (Compact Trace) is a vectorizer that I wrote for making EPS
files of glyphs for the font ‘codex’ out of scanned hand-made pictures of Maya
glyphs (prepared by Bruno Delprat). However, it can be used in any other
situation when a conversion (monochrome bitmap)→EPS is needed.

The main (and, maybe, the only) advantage of cotrace with respect to other
vectorizers which I tried, is that it produces very short eps files.

Instructions for installation and usage can be found in the file README.

The program cotrace with -c option (version 1.1 and higher) produces
a glyph description in Type 1 font format. This option is used in the script
makefont described in the next subsection.

Digression on Adobe Type 1 fonts. PostScript is a powerful program-
ming language. In particular, it allows subroutines. So, it is possible to write
a subroutine of drawing a picture and then to call it many times. This is why
a PS document containing 1000 identical copies of a picture is not much longer
than a document containing it only once. This mechanism is used in MayaPS
fonts.

37

PDF inherited some features of PostScript language but not subroutines.
When a PS file with 1000 copies of a picture is converted into PDF, the pro-
gram of drawing the picture is reproduced 1000 times. The only exceptions are
pictures of characters of Type 1 fonts (see [2]).

12.2. Creating a MayaPS font using cotrace and makefont.
Shell script makefont was used for creating the font ‘thompson2.mpf’. It can
be easily adapted for creating other fonts. It runs under UNIX/Linux/MacOS.

To create a new MayaPS font, do the following:

1). Prepare rasterized images (bitmaps) of glyphs, for example, by scanning
hand-written pictures. The resolution (the size of the image measured in pixels)
must be chosen so that all black pixels are contained in a square 3527 × 3527
pixels (the restriction imposed by cotrace). The linear sizes of bitmaps used in
the font ‘codex’ are about 300–1000 pixels. If you use a higher resolution, you
may get a higher quality, but you pay for it by increasing of the length of the
EPS file. The file length is proportional to the linear size of a glyph measured
in pixels.

2). Make sure that central elements appear in the desired orientation. If the
default orientations of an affix are like this

L = C/
504.001

U = /
C

504:001

R = / C
001.504

D = C/
001:504

S = C
504

then it is reasonable to choose the orientation in the bitmap file so that it
coincides with S- (the same as L-) orientation of the primitive glyph (like

this C for the glyph 504). In this case you needn’t write explicitly the
[(L)(U)(R)(D)(S)] vector.

Clean the images using some graphical editor for rasterized graphics and
convert (export) the files to the monochrome (1 bit per pixel) BMP format.
Under Linux, the conversion to the monochrome BMP can be done, for example,
by the program convert from the package ImageMagick 6.7.7-10 with the
following options

convert -colors 2 inputfile name.bmp

The BMP files should be named name.bmp where name is the glyph name.
Put all these files to a zip-archive bmp.zip.

3). Create a new directory (say, makefn where fn is the name of the Maya
font you are making). Compile the C programs and make the shell scripts
executable. It can be done by the following commands:

gcc cotrace.c -o cotrace

gcc addg.c -o addg

chmod +x addglyph

chmod +x makefont

Copy the files cotrace, addg, addglyph, makefont (all without extensions),
and bmp.zip to the directory makefn. Modify the file makefont which is more
or less self-explaining, and run

./makefont

38

13. How to make a Maya font out of an Adobe
Type 1 font

In this section we suppose that you have an Adobe Type 1 font program (a pfa

file; see [2]) prepared, e. g., with FontForge, and we explain how to create a
MayaPS font out of it.

Remark 1. (Important!) The type 1 font should not use subroutines.

Remark 2. Quotation from [2], page 23: “. . . assume the 1000 to 1 character
space to user space scaling that is typical of the Type 1 font format”. We do the
same. Otherwise minor changes are required everywhere including the header.

For simplicity, we use the example considered in [2; §6.6, §7.3]. So, suppose

that your Type 1 font has a character named C looking like ! and encoded as
in §6.6 and §7.3 of [2]. Here is an example of a MayaPS font (T1example.mpf)
with this character:

% MayaPS font T1example.mpf

% An illustration of pfa->mpf conversion

%

%%% The header for MayaPS fonts based on Adobe Type 1 fonts %%%

Omitted PostScript commands can be copied from codex.mpf

%%% End of the standard part of the header %%%

% Substitutions (ligatures)

%L@ 555 C

%@

%@ C

/hC 1000 D % should be set to 1000 (see Remark 2 above)

/wC 800 D % 800 is from ‘50 800 hsbw...’, see T1Format.pdf; p.58

/aC F D % central element (use T instead of F for affixes)

P/mC{GIni()A()Z}U/gC % Do not forget P and the space in ‘A()’

<10bf31704fab5b1f03f9b68b1f39a66521b1841f14

81697f8e12b7f7ddd6e3d7248d965b1cd45e2114> %see T1Format.pdf; p.65

V

%@

end end end end

Then the commands

\mayaFont\testfont=T1example

\testfont\maya{C |C:?C +555:(C.*C).C}

produce ! !!!

!

!

!
Now we explain how to extract the needed information from a pfa file.

1). Extract the eexec-encrypted part (thousands of hexadecimal digits between
the command eexec and several lines of zeros). Decrypt it using the algorithm

39

in §7.1, page 63 of [2] with R = 55665 (decimal) and n = 4 (i.e. discard the first
4 bytes after the decryption). You obtain an ASCII text (PostScript commands)
which contains some binary segments enclosed between ‘RD’ and ‘ND’.

2). Find the command /lenIV n def. This value of n will be used later for the
charstring decryption in Step 5. If this command is absent, set n = 4.

3). Find the command /name m RD –m–binary–bytes– ND (in the example

with ! this is /C 41 RD –41–binary–bytes– ND). There is one space (the
code 32) after ‘RD’. It should not be included to the m binary bytes.

4). Rewrite the m binary bytes in the hexadecimal form (2m hexadecimal
digits), and put them to the mpf file between ‘gname<’ and ‘>V’.

5). The glyph height is always 1000 (see Remark 2). If you don’t know the
width, decrypt the m binary bytes using [2; §7.1] with R = 4330 and n from
Step 2; decode the result according to [2; §6] till the command hsbw (usually it
is the first command) and see the preceding number.

References

[1]. Adobe System Inc. PostScript Language Reference Manual. Files
plrm.pdf, plrm2.pdf available on http://www.adobe.com

[2]. Adobe System Inc. Adobe Type 1 Font Format. File T1Format.pdf

available on http://www.adobe.com

[3] B. Delprat, S. Orevkov, MayaPS: Maya hieroglyphics with (La)TEX.
TUGboat, 33(2012), no. 3, 289–294.

[4]. E. V. Evreinov, Yu. G. Kosarev, B. A. Ustinov, Using computers for
Study of the Ancient Maya Written Language. Siberian Branch of the Acad.
Sci. USSR, Novosibirsk, 1961 (in Russian).

[5]. D. E. Knuth. The TEXbook. Addison-Wesley, Boston, 1984.

[6]. L. Lamport. LATEX: A Document Preparation System (2nd ed.),Addison-
Wesley, Boston, 1994.

[7]. T. Rokicki. Dvips: A DVI-to-PostScript Translator. The file dvips.pdf
included in the most of TEX distributions; available on http://www.ctan.org

[8]. A. Syropoulos. Typesetting Native American Languages. Journal of
Electronic Publishing, 8(2002), issue 1. http://www.press.umich.edu/jep

[9]. A directory structure for TeX files. http://www.ctan.org

[10]. J. E. S. Thompson, A Catalog of Maya Hieroglyphs, Univ. Oklahoma
Press, 1962

[11]. I. Utting. A PostScript Tutorial and Reference. Available on
http://www.cs.kent.ac.uk/publ/1991/109

E-mail: orevkov@math.ups-tlse.fr

http://picard.ups-tlse.fr/~orevkov/mayaps.html

40

http://picard.ups-tlse.fr/~orevkov/mayaps.html

