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1. Introduction and statement of the result. Let A be a non-singular real
algebraic curve of degree m in RP2. Its connected components are embedded
circles. Those of them whose complement in RP2 is not connected are called ovals.
One says that an oval u lies inside an oval v if u is contained is the orientable
component of the complement of v. A union of d ovals v1, . . . , vd such that vi is
inside vi+1, 1 ≤ i < d, is called a nest of the depth d. An oval is called exterior if it
does not lye inside any other oval; an oval is called empty if there is no other ovals
inside it. An oval is called even if it is contained inside an even number of other
ovals, and odd otherwise. Denote by p and n the number of even and odd ovals
respectively. One says that A is an M -curve if it has the maximal possible number
of connected components which equals M(m) = (m − 1)(m − 2)/2 + 1. If A has
M(m)− i connected components then it is called an (M − i)-curve Let CA be the
complexification of A. If CA \A is not connected, A is a curve of type I; if CA \A
is connected then A is a curve of type II.

For curves of an even degree m = 2k, in some cases, the difference p−n satisfies
congruences. For example,
Gudkov-Rohlin congruence p − n ≡ k2 mod 8 for M -curves,
Gudkov-Krahnov-Kharlamov congruence p−n ≡ k2±1 mod 8 for (M −1)-curves,
Kharlamov-Marin congruence p− n 6≡ k2 + 4 mod 8 for M -curves of type II, and
Arnold congruence p − n ≡ k2 mod 4 for curves of type I.
These statements do not extend to curves of odd degrees. So, for an M -curve of
any odd degree 2k + 1 with k ≥ 3, the residue p − n mod 8 may take any values
congruent to k mod 2. As far as we know, the following theorem is the first result
of this kind.

Theorem 1. Let A be a curve of degree m = 2k + 1 = 4d + 1 which has 4 paiwise

distinct nests of the depth d. Then

if A is an M -curve then p − n ≡ −k mod 8; (1)

if A is an (M − 1)-curve then p − n ≡ −k ± 1 mod 8;

if A is an (M − 2)-curve of type II then p − n 6≡ −k + 4 mod 8;

if A is a curve of type I then p − n ≡ −k mod 4;

It is clear that (1) for d = 2 is equivalent to the fact that the number of ex-
terior empty ovals of an M -curve of degree 9 with 4 nests is divisible by 4. This
was conjectured by Korchagin [2]. Theorem 1 is obtained below (see Sect. 4) as
a consequence of Kharlamov-Viro congruence [1] which generalizes the classical
congruences to the case of singular curves of even degrees.
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2. Brown - van der Blij invariant. By a quadratic space we mean a triple
(V, ◦, q) composed of a vector space V over the field Z2, a bilinear form V ×V → Z2,
(x, y) 7→ x ◦ y, and a function q : V 7→ Z4 which is quadratic with respect to ◦ in
the sense that q(x + y) = q(x) + q(y) + 2x ◦ y. A quadratic space is determined by
its Gram matrix with respect to a base e1, . . . , en of V , i.e. the matrix Q = (qij)
where qii = q(ei) and qij = ei ◦ ej for i 6= j (the diagonal entries are defined
mod 4, the others mod 2; note that q(x) ≡ x◦x mod 2). It is easy to see that by
elementary changes of the base, one can put the Gram matrix to the block-diagonal

form diag(d1, . . . , dt)⊕Q1⊕· · ·⊕Qs where each block Qi is either
(

0 1

1 0

)

, or
(

2 1

1 2

)

.

If all di 6= 2, we say that the form q is informative and in this case we define its
Brown - van der Blij invariant B(q) =

∑

B(di)+
∑

B(Qi) mod 8 where B(0) = 0,

B(1) = 1, B(−1) = −1, B
(

0 1

1 0

)

= 0, and B
(

2 1

1 2

)

= 4.

3. Kharlamov-Viro congruence for nodal curves. Let A be a curve in RP2

of degree 2k defined by f = 0 and let each of its singular points be the point of
transverse intersection of two smooth real local branches. A is called an M -curve (a
curve of type I) if the normalization of any its irreducible component is an M -curve
(a curve of type I). A curve which is not of type I, is of type II. Let x1, . . . , xs be
the singular points and ΓA be the union of the connected components of A passing
through them. Let b = 0 if RP2

+ = {f ≥ 0} is contractable in RP2 and b = (−1)k

otherwise.

Suppose that ΓA is connected. Let us define a quadratic space (V, ◦, q) as follows.
Let C1, . . . , Cr be the oriented components of RP2 \ ΓA on which f > 0 near
ΓA. Let (V0, ◦, q0) be the quadratic space with the orthogonal base e1, . . . , es such
that q0(e1) = · · · = q0(es) = −1. Set ci =

∑

j∈αi
ej where {xj}j∈αi

are the
singular points through which ∂Ci passes only once. In the cases when either ΓA

is contractible in RP2 or, as in Sect. 4, there is a branch of ΓA (i.e. a smoothly
immersed circle) which is non-contractible in RP2, we define V ⊂ V0 as the subset
generated by c1, . . . , cr and we set q = q0|V .

In the case when ΓA is not contractible in RP2 but all its branches are, let
us choose a simple closed curve in ΓA which is not contractible in RP2. Let
(V ′

0 , ◦, q′0) be the quadratic space with the base (e0, . . . , es) which contains V0 as
a quadratic subspace (q′0|V0

= q0) and let q′0(e0) = (−1)k, e0 ◦ ej = 0 iff L ∼ 0
in H1(RP 2

+, RP 2
+ \ xj). Let V ⊂ V ′

0 be the subspace generated by c1, . . . , cr, and
e0 +

∑

j∈α0
ej where α0 = {j |L 6∼ 0 in H1(RP 2

−
, RP 2

−
\ xj)}, and let q = q′0|V .

If ΓA is not connected, we define (V, ◦, q) as the direct sum of quadratic spaces
associated as above to each connected component of ΓA.

Theorem 2. Suppose that each branch of A which is contractible in RP2 cuts

other branches at n ≡ 0 mod 4 singular points and each branch which is not con-

tractible in RP2, at n ≡ (−1)k+1 mod 4 singular points. If A is an M -curve then

χ(RP2
+) ≡ k2 + B(q) + b mod 8 and also the corresponding analogues of Gudkov-

Krahnov-Kharlamov, Kharlamov-Marin, and Arnold congruences take place.

Theorem 2 is a corollary of Theorem (3.B) on curves with arbitrary singularities
from the paper by Kharlamov and Viro [1]. Theorem 2 is formulated here because
there are mistakes in [1] in the discussion of the corresponding particular case (4.I),
(4.J) of Theorem (3.B).



CONGRUENCE MODULO 8 FOR CURVES OF DEGREE 9 3

4 Proof of Theorem 1. Let us choose any three pairwise distinct nests of the
depth d and a point inside the innermost oval of each of them. Theorem 1 fol-
lows from Theorem 2 applied to the union of A and the three straight lines passing
through the three chosen points. Indeed, the union of the three chosen lines and the
non-contractible branch of A divides RP2 into 4 triangles and 3 quadrangles (curvi-
linear). All ovals not belonging to the three chosen nests lye in the quadrangles
(otherwise would exist a conic having too many intersections with A). Therefore,
after the suitable choice of the sign, one has χ(RP2

+) = χ(
⋃

Cj) + p′ −n′ where p′

and n′ are the numbers of even and odd ovals, not belonging to the three chosen
nests. B(q) can be computed according to Sect. 2.
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