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DEGREE 8 UP TO ISOTOPY

S.Yu. Orevkov

1 Introduction

In the first part of his 16-th problem, Hilbert asked how the connected
components of a plane real algebraic curve of degree m can be arranged on
RP2 up to isotopy. At that time, the answer was known only for m ≤ 5.
Gudkov [GuU] solved this problem for m = 6 and Viro [V2,4] did it for
m = 7. For m = 8, the complete answer is still unknown. Following [V3],
we shall call the real scheme of a curve the arrangement of its connected
components on RP2 up to isotopy.

It is reasonable to start the classification with M -curves (a curve is
called an M -curve if it has the maximal possible number (m−1)(m−2)/2+1
of connected components). After the studies of Fiedler, Viro, Shustin, Ko-
rchagin, and Chevallier, there remained only 9 real schemes whose realiz-
ability was open (we use the encoding system from [V3])

〈4 � 1〈2 � 1〈14〉〉〉 , 〈1 � 1〈1〉 � 1〈18〉〉 , 〈1 � 1〈6〉 � 1〈13〉〉 ,
〈7 � 1〈2 � 1〈11〉〉〉 , 〈1 � 1〈3〉 � 1〈16〉〉 , 〈1 � 1〈7〉 � 1〈12〉〉 ,
〈14 � 1〈2 � 1〈4〉〉〉 , 〈1 � 1〈4〉 � 1〈15〉〉 , 〈1 � 1〈9〉 � 1〈10〉〉 .

(1)

Here we exclude two of them:

Theorem 1.1. There do not exist real algebraic curves of degree 8 with
real schemes

〈1 � 1〈3〉 � 1〈16〉〉 , 〈1 � 1〈6〉 � 1〈13〉〉 . (2)

This is an immediate consequence of Theorem 1.2(a) below. In [O1,4],
three of the arrangements (1) were realized as the set of real points of a
smooth symplectic surface of degree 8 in CP2 which is invariant under the
complex conjugation Conj : CP2 → CP2 (the degree of a surface A is m if
A ∼ mL where L is a complex line). Such a surface is J-holomorphic for
a suitable Conj-invariant tame almost complex structure J . So, we shall
call it a real pseudo-holomorphic curve (it was called Lp-flexible curve in
[O1,4]). Real pseudo-holomorphic curves satisfy all the restrictions which
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are known for the topology of real algebraic curves of degree 8 (in particular,
they are flexible curves in the sense, introduced by Viro in [V3]).

We say that a real scheme in RP2 is realized by a real pseudo-holomor-
phic curve A if it is isotopic in RP2 to RA = A∩RP2, the set of real points
of A. Here we complete the classification up to isotopy of the arrangements
of 22 ovals on RP2 realizable by real pseudo-holomorphic M -curves of
degree 8:

Theorem 1.2. (a) The two real schemes (2) are not realizable by real
pseudo-holomorphic curves of degree 8.

(b) The other seven real schemes (1) are realizable by real pseudo-
holomorphic curves of degree 8.

Remarks. 1. We do not claim in Theorem 1.2(b) that all the seven
schemes are realizable in the same almost complex structure.

2. In Corollaries 4.10 and 4.15 we study possible distribution of ovals
between chains (see the definition in section 4.2) for real M -schemes of the
form 〈1�1〈α1〉�1〈α2〉〉. We show that only a few of the distributions might
be realized by real pseudo-holomorphic curves.

3. In a recent paper [O6], we realize the real scheme 〈7 � 1〈2 � 1〈11〉〉〉
by a real algebraic curve in RP2.

4. Non-trivial examples of arrangements of real curves which are pseudo-
holomorphically realizable but algebraically unrealizable can be found in
[FiO] (using the techniques of auxiliary pencils of cubics developed in [Fi])
and in [OS] (using Hilbert–Rohn–Gudkov approach developed in [R1,2],
[GuU]). However it is still unknown if there exists a smooth real pseudo-
holomorphic curve in CP2 whose real scheme is algebraically unrealizable.
This question (in a slightly different context of flexible curves) was asked
by Viro [V3].

The proof of the part (a) of Theorem 1.2 is based on the methods
proposed by the author in [O1] and used in [O2-5] and [OP]. The new tools
are:

• Using one pencil of lines, we prove that some chain of ovals of a real
pseudo-holomorphic curve can be degenerated to a singular point of
the type An, and then we use this information studying the braid
coming from another pencil of lines (we already applied this idea in
[O4,5]).

• We use a generalized Fox–Milnor theorem for ribbon surfaces of Euler
characteristic 1 (see sections 3.3, 4.6, and 4.7).
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• We use the periodicity of Tristram signatures to get a contradiction
with Murasugi–Tristram inequality for all the braids from a sequence
of the form {b σk

i σ−k
j }k∈Z (see sections 3.2, 4.8).

In section 2 (resp. section 3), we give necessary definitions and facts
about real pseudo-holomorphic curves (resp. links).

In section 4 (resp. section 5), we prove the part (a) (resp. (b)) of Theo-
rem 1.2. As a “side product” of the proof we obtain the results mentioned
in Remark 2.

In the Appendix, we present the computer programs (for the system
Mathematica [Wo]) which were used for the computations in section 4 (and
also in our previous papers [O1-5] and [OP]). It makes this paper (together
with the previous ones) self-contained, at least for a reader to whom Math-
ematica is available. However, the programs are so short that they can be
easily translated for any other system of symbolic computations.

A survey of the classification and the complete list. In Table 1, we
give the complete list of real schemes realizable by real pseudo-holomorphic
M -curves of degree 8 (we present this table in the same form as in [V3]).
The 6 schemes whose algebraic realizability is still unknown are marked
with an asterisk. Near each real scheme, we indicate the author of its first
realization.

The fact that the other real schemes are not realizable follows from:
• Gudkov–Rohlin congruence which implies that p− n ≡ k2 mod 8 for

any M -curve of an even degree 2k where p (resp. n) is the number of
ovals contained inside an even (resp. odd) number of other ovals;

• Bezout’s theorem for an auxiliary conic which implies that there are
≤ 3 nests and if there is a nest of depth 3 then there are no other
nests;

• the result of Viro [V2] which states that if
〈19− a− b− c � 1〈a〉 � 1〈b〉 � 1〈c〉〉 , a, b, c > 0 , (3)

is the real scheme of a curve of degree 8 then each of the numbers a,
b, c is odd (it generalizes an earlier result of Fiedler [F]);

• the result of Viro [V3, (4.12)] which excludes those schemes (3) with
odd a, b, and c which are not listed in Table 1 (the proof is not
published but later the idea of this proof was used in [KoS], [S3]
and one can find a description of the method in [KoS, Sections (5.1)
and (5.2)]);

• the result of Shustin [S3] which excludes 〈1〈20−a�1〈a〉〉〉 with a > 0;
• Theorem 1.2(a) of this paper.
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Table 1. Real schemes of pseudo-holomorphic M -curves

p=19, n=3 p=15, n=7 p=11, n=11 p=7, n=15 p=3, n=19

〈18�1〈3〉〉Ha 〈14�1〈7〉〉G 〈10�1〈11〉〉V 〈6�1〈15〉〉V 〈2�1〈19〉〉V

〈17�1〈1〉�1〈2〉〉Ha 〈13�1〈1〉�1〈6〉〉V 〈9�1〈1〉�1〈10〉〉K 〈5�1〈1〉�1〈14〉〉V 〈1�1〈1〉�1〈18〉〉O ∗

〈13�1〈2〉�1〈5〉〉G 〈9�1〈2〉�1〈9〉〉V 〈5�1〈2〉�1〈13〉〉V 〈1�1〈2〉�1〈17〉〉V
〈13�1〈3〉�1〈4〉〉V 〈9�1〈3〉�1〈8〉〉V 〈5�1〈3〉�1〈12〉〉V

〈9�1〈4〉�1〈7〉〉V 〈5�1〈4〉�1〈11〉〉V 〈1�1〈4〉�1〈15〉〉∗
〈9�1〈5〉�1〈6〉〉V 〈5�1〈5〉�1〈10〉〉V 〈1�1〈5〉�1〈14〉〉V

〈5�1〈6〉�1〈9〉〉V
〈5�1〈7〉�1〈8〉〉V 〈1�1〈7〉�1〈12〉〉∗

〈1�1〈8〉�1〈11〉〉V
〈1�1〈9〉�1〈10〉〉∗

〈17�3〈1〉〉W 〈12�2〈1〉�1〈5〉〉V〈8�1〈1〉�1〈1〉�1〈9〉〉V〈4�1〈1〉�1〈1〉�1〈13〉〉S〈1〈1〉�1〈1〉�1〈17〉〉S
〈12�1〈1〉�2〈3〉〉V〈8�1〈1〉�1〈3〉�1〈7〉〉V〈4�1〈1〉�1〈3〉�1〈11〉〉S〈1〈1〉�1〈7〉�1〈11〉〉S

〈8�1〈1〉�1〈5〉�1〈5〉〉V 〈4�1〈1〉�1〈5〉�1〈9〉〉V 〈1〈5〉�1〈7〉�1〈7〉〉S
〈8�1〈3〉�1〈3〉�1〈5〉〉V 〈4�1〈1〉�1〈7〉�1〈7〉〉S

〈4�1〈3〉�1〈5〉�1〈7〉〉V
〈4�1〈5〉�1〈5〉�1〈5〉〉S

〈1�1〈2�1〈17〉〉〉Hi 〈1�1〈6�1〈13〉〉〉V 〈1�1〈10�1〈9〉〉〉V 〈1�1〈14�1〈5〉〉〉Hi 〈1�1〈18�1〈1〉〉〉V
〈2�1〈2�1〈16〉〉〉C 〈2�1〈6�1〈12〉〉〉K 〈2�1〈10�1〈8〉〉〉K 〈2�1〈14�1〈4〉〉〉K
〈3�1〈2�1〈15〉〉〉K 〈3�1〈6�1〈11〉〉〉K 〈3�1〈10�1〈7〉〉〉V 〈3�1〈14�1〈3〉〉〉V
〈4�1〈2�1〈14〉〉〉O ∗〈4�1〈6�1〈10〉〉〉K 〈4�1〈10�1〈6〉〉〉K 〈4�1〈14�1〈2〉〉〉K
〈5�1〈2�1〈13〉〉〉C 〈5�1〈6�1〈9〉〉〉V 〈5�1〈10�1〈5〉〉〉V 〈5�1〈14�1〈1〉〉〉Hi

〈6�1〈2�1〈12〉〉〉K 〈6�1〈6�1〈8〉〉〉K 〈6�1〈10�1〈4〉〉〉K
〈7�1〈2�1〈11〉〉〉O 〈7�1〈6�1〈7〉〉〉V 〈7�1〈10�1〈3〉〉〉V
〈8�1〈2�1〈10〉〉〉K 〈8�1〈6�1〈6〉〉〉K 〈8�1〈10�1〈2〉〉〉K
〈9�1〈2�1〈9〉〉〉V 〈9�1〈6�1〈5〉〉〉V 〈9�1〈10�1〈1〉〉〉V Ha=Harnack [H]

〈10�1〈2�1〈8〉〉〉K 〈10�1〈6�1〈4〉〉〉K Hi=Hilbert [Hi]

〈11�1〈2�1〈7〉〉〉V 〈11�1〈6�1〈3〉〉〉V W=Wiman [Wi]

〈12�1〈2�1〈6〉〉〉K 〈12�1〈6�1〈2〉〉〉K G=Gudkov [Gu]

〈13�1〈2�1〈5〉〉〉C 〈13�1〈6�1〈1〉〉〉V K=Korchagin [Ko1,2]

〈14�1〈2�1〈4〉〉〉O ∗ V=Viro [V1,4]

〈15�1〈2�1〈3〉〉〉K S=Shustin [S1,2]

〈16�1〈2�1〈2〉〉〉C C=Chevallier [C]

〈17�1〈2�1〈1〉〉〉V O=Orevkov [O1,4,6]

2 Pseudo-holomorphic Curves and Quasipositive Braids

2.1 Real pseudo-holomorphic curves. Let X be a smooth 4-manifold
and ω a symplectic (i.e. closed and nowhere vanishing) 2-form on X. Recall
that an almost complex structure J on X is a smooth family of linear
operators {Jp : TpX → TpX}p∈X such that Jp ◦ Jp = −1 for each p ∈ X.
Following Gromov [Gr], we say that an almost complex structure J on X is
tamed by ω if ωp(v, Jv) > 0 for any p ∈ X and v ∈ TpX. A J-holomorphic
(or pseudo-holomorphic if J is not specified) curve in X is a smooth surface
A ⊂ X such that Jv ∈ TpA for any p ∈ A and v ∈ TpA.
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Let ω be Fubini–Studi symplectic form on CP2. It is anti-invariant un-
der the complex conjugation, i.e. Conj∗ ω = −ω where Conj : CP2 → CP2,
(z0 : z1 : z2) �→ (z̄0 : z̄1 : z̄2). We say that an almost complex structure
J on CP2 is real if Jp ◦ Conj∗ = Conj∗ ◦J−1

p for each p ∈ CP2. A real
pseudo-holomorphic curve is a Conj-invariant surface A in CP2 which is a
J-holomorphic curve with respect to some real almost complex structure J
tamed by ω. When speaking of J-holomorphic curves with singularities, we
shall always suppose that near singular points the almost complex structure
is standard and hence, the curve near singularities is real analytic.

The degree of a pseudo-holomorphic curve A in CP2 is its homological
degree, i.e. the number m such that A ∼ mL in H2(CP2) where L is
a complex line. In particular, a pseudo-holomorphic line (resp. conic) is
a pseudo-holomorphic curve of degree 1 (resp. 2). Given a tame almost
complex structure J on CP2, it follows from Gromov’s results [Gr] that
there exists a unique J-holomorphic line (resp. conic) through any two
(resp. five) given points. Moreover, if J and the given two (five) points are
real then the line (conic) through them is also real because otherwise it
would have too many intersections with its conjugate. Therefore, given a
real point p, one can consider the pencil of J-holomorphic lines through p
(we denote it by Lp). The behaviour of a J-holomorphic curve with respect
to such a pencil is very similar to the behaviour of a real algebraic curve
with respect to a pencil of true lines.

2.2 Encoding of an arrangement of a curve with respect to a
pencil of lines. Suppose that A is a real pseudo-holomorphic curve of
degree m all whose singularities are real and of the type An. Let Lp be
the pencil of pseudo-holomorphic lines through a generic point p. Suppose
that there exists a real line l∞ ∈ Lp meeting A transversally at m distinct
real points.

We shall encode the arrangement of RA with respect to Lp (the Lp-
scheme of RA) the same way as in [O1,5], [OP], but we also cover the case
of singular points An. Namely, let us choose smooth coordinates (x, y) in
R2 = RP2 \Rl∞ so that the lines of Lp are vertical lines x = const. Let
(x1, y1), . . . , (xs, ys) be all the real points where RA is not transversal to
the vertical lines. Since p is generic, we may suppose that x1 < · · · < xs

and that at some neighbourhood of each point (xj, yj), the curve A is given
by

(y − yj)2 ± (x− xj)nj+1 = 0 , nj ≥ 0 . (4)

We encode the arrangement of RA with respect to Lp by the word
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[A±
n1

]k1 . . . [A±
ns

]ks where the sign of Anj is taken from (4) and kj − 1 is
the number of intersections of RA with the open half-line {x = xj , y < yj}.
We also abbreviate:

[A+
0 ]k −→ ⊃k , [A−

0 ]k −→ ⊂k , [A−
1 ]k −→ ×k , ⊂k⊃k −→ ok

(so, ok denotes an empty oval in the k-th horizontal band).

2.3 The braid associated to a real curve and a pencil of lines.
If lt, t ∈ [0, 1], is a generic closed path in Lp \ {l∞}, it defines a braid
with m strings b ∈ Bm. Indeed, the m points lt ∩A travel on the complex
plane (we may identify all lt using the complexification of the chosen affine
coordinates). Let b be the braid corresponding to a simple closed path γ
surrounding all the lines from the upper half-plane of Lp which are not
tangent to A (when we say of the upper half-plane, we identify Lp \ {l∞}
with C).

Let prp : CP2 \ {p} → CP1 = C ∪ {∞} be the projection along the
lines of Lp such that prp(l∞) = ∞. Since p is a generic point, all the
ramifications of prp |A inside γ are simple. The fact that A and the lines
from Lp are J-holomorphic for the same almost complex structure J implies
that all the ramifications are positive, i.e. the braid associated to a small
loop around any branch point is a standard generator σj , j = 1, . . . ,m−1 of
the braid group. Hence, the obtained braid is quasipositive, i.e. is a product
of braids conjugate to the standard generators of the braid group. The term
“quasipositive braid” was introduced by Rudolph [Ru]. A presentation of a
quasipositive braid as the product of conjugates of the standard generators
is commonly referred to as a braid monodromy decomposition.

We shall suppose that any real line l ∈ Lp meets A at least at m − 2
real points (counting the multiplicities). Under this assumption, the braid
b is determined by the Lp-scheme of RA and it can be easily computed
as follows. Put πk,l = σk . . . σl and ∆m = π1,m−1π1,m−2 . . . π1,1. Then
b = bR∆m where bR is obtained from the encoding word by the following
algorithm:
Algorithm 2.1. (i) Replace each [A+

2n]k with ×n
k⊃k; each [A−

2n]k with
⊂k×n

k ; each [A+
2n+1]k with ⊂k×n

k⊃k; each [A−
2n+1]k with ×n+1

k .

(ii) Replace each subword ⊃k×i1 . . .×in⊂l with σ−1
k δ1 . . . δnτk,l where

δj =




σ−1
ij

, ij < k − 1 ,

σ−1
ij+2 , ij > k − 1 ,

τk,k+1σ
−1
k+1τk+1,k , ij = k − 1 ;

τk,l =




π−1
l,k+1πk,l−1 , k < l ,

π−1
l,k−1πk,l+1 , k > l ,

1 , k = l .

(iii) Replace each ×k (which was not replaced in the step (ii)) with σ−1
k .
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If any real line l ∈ Lp meets A at least at m − 4 real points (counting
the multiplicities) then the braid b is determined by the Lp-scheme of RA
up to some unknown integers e1, . . . , eh, where h is the number of intervals
of the pencil with m−4 real intersections with A. In this case the family of
braids {b�e}�e∈Zh can be explicitly written down in terms of the Lp-scheme
using the algorithm described in [O1, Sect. 3.4] preceded by the step (i) of
Algorithm 2.1.

As we already mentioned, the quasipositivity of the braid b is a necessary
condition for the realizability of a given Lp-scheme as the set of real points
of some real pseudo-holomorphic curve. It can be easily seen (see [FiO,
Section 4] for details) that this condition is sufficient as well. Namely,
Proposition 2.2. Let C ⊂ RP2 be a C∞-smooth curve which has a finite
number of singular points of the type An. Suppose that C is real analytic
in some neighbourhoods of these points. Suppose also that there exists a
generic point in RP2 such that almost any real line through p meets C at
least at m−4 points. Denote by RLp the pencil of real lines through p. Let
B = {b�e}�e∈Zh ⊂ Bm be the family of braids constructed from (C,RLp) by
the above procedure. Then B contains a quasipositive braid if and only if
there exist a tame Conj-invariant almost complex structure J in CP2 and
a J-holomorphic Conj-invariant curve A ⊂ CP2 such that C = A ∩RP2

and each line from RLp is the set of real points of some real J-holomorphic
line.

Corollary 2.3. Let C,C ′ ⊂ RP2 be unions of immersed real circles
with transversal intersections. Let p ∈ RP2 be a generic point.

a) Suppose that the Lp-scheme of C ′ is obtained from the Lp-scheme of
C either by one of the replacements from Step (i) of Algorithm 2.1 or their
inverses, or by one of the following substitutions:

⊂j⊃j±1 → ∅ ⊂j⊃k → ⊃k⊂j (5)
× j⊃j±1 ←→ × j±1⊃j ⊂j±1×j ←→ ⊂j× j±1 ×j [A±

n ]k ←→ [A±
n ]k×j

(6)
where |k − j| > 1.

If C is realizable by a real pseudo-holomorphic curve then so is C ′.
b) Suppose that the Lp-scheme of C ′ is obtained from the Lp-scheme of

C by the substitution
⊃j⊂j → × j . (7)

Let [�1�2] be the segment of RLp where the modification (7) is performed.
Suppose that �1 meets C at m real points.

If C is realizable by a real pseudo-holomorphic curve then so is C ′.



730 S.YU. OREVKOV GAFA

Remark. We do not claim in Corollary 2.3 that the curves C and C ′ are
pseudo-holomorphic with respect to the same tame real almost complex
structure.

In section 5 we shall need a local version of Proposition 2.2.

3 Some Facts on Links

3.1 Murasugi–Tristram inequality. Let L be an oriented link in
the 3-sphere S3. Let V be its Seifert matrix corresponding to a Seifert
surface F . For a complex number ζ such that |ζ| = 1, ζ �= 1, we set
Vζ = Vζ(L) = (1− ζ)V + (1− ζ̄ )V T . The Tristram signature Signζ(L) and
nullity Nullζ(L) are defined as

Signζ(L) = the signature of Vζ(L) , Nullζ(L) = µ(F )+the nullity of Vζ(L)

where µ(F ) is the number of connected components of F . The Alexander
polynomial of L is ∆L(t) = det(V − tV T ) considered up to a factor ±tk.
The determinant of L is detL = |det(V + V T )| = |∆L(−1)|.

It is known that Signζ(L), Nullζ(L), ∆L(t), and det L are link invariants
(do not depend on the choice of F ). If b is a braid then we denote Signζ(b) =
Signζ(L), Nullζ(b) = Nullζ(L), and ∆b(t) = ∆L(t) where L is the closure
of b in S3.

Proposition 3.1 (Murasugi–Tristram inequality). Let F be a smooth
oriented surface in the 4-ball whose boundary is L (taking into account the
orientations). Then for any ζ such that |ζ| = 1, ζ �= 1, we have

Nullζ(L) ≥ |Signζ(L)|+ χ(F )

where χ denotes the Euler characteristic.

For a braid b =
∏

j σ
kj

ij
, let us set e(b) =

∑
j kj (the exponent sum).

Recall (see 2.3) that a braid b is called quasipositive if b =
∏

j ajσ1a
−1
j for

some braids aj (note that all the generators σi are conjugate to each other).

Corollary 3.2. Let b be a quasipositive braid with m strings. Then for
any ζ such that |ζ| = 1, ζ �= 1, we have

Nullζ(b) ≥ |Signζ(b)| + m− e(b) .

Remark. In fact, Corollary 3.2 is much easier than Proposition 3.1 and
it can be immediately proved as follows. Let b =

∏n
j=1 ajσ1a

−1
j , n = e(b),

be a quasipositive presentation of b. Let b0 be the trivial braid and bk =∏k
j=1 ajσ1a

−1
j for k = 1, . . . , n. Set sk = Nullζ(bk) − |Signζ(bk)|. Since

a−1
k bkak = (a−1

k bk−1ak) · σ1, there exists a Seifert matrix of bk obtained
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from that of bk−1 by adding one row and one column (see, e.g. [O1]). Hence,
|sk − sk−1| = 1, and we have m = s0 ≤ s1 + 1 ≤ s2 + 2 ≤ · · · ≤ sn + n =
Nullζ(b)− |Signζ(b)|+ e(b). �

3.2 Periodicity of Tristram signatures.
Proposition 3.3. Let Lk, k ∈ Z, be the closure in S3 of the braid σk

νb
where b is a fixed braid. Let t = exp(2πi p/q) be a primitive root of the
unity of degree q for q > 2. Then

Sign−t(Lk+q) = Sign−t(Lk)− |2p − q| , Null−t(Lk+q) = Null−t(Lk) .

Proof. Changing the numbering, we may assume that k > 0. Then
the Seifert matrices of Lk and Lk+q computed in [O1] are n × n- and
(n + q)× (n + q)-matrices

V (Lk) =
(

a V12

V21 V22

)
and V (Lk+q) =




−1 1 0 . . . 0 0

0 −1
. . . . . .

...
...

...
. . . . . . . . . 0 0

...
. . . −1 1 0

0 . . . . . . 0 a V12

0 . . . . . . 0 V21 V22




.

for some integer a, (n − 1) × 1-matrix V12, 1 × (n − 1)-matrix V21, and
(n− 1)× (n− 1)-matrix V22. Consider a (n+ q)× (n+ q)-matrix U = ‖uij‖
where

uij =




1 for i = j ,

tj−i(ti − 1)/(tj − 1) for i ≤ j < q ,

0 otherwise .

Then U∗ ·V−t(Lk+q) ·U = diag(d1, . . . , dq−2)⊕((1+t)W +(1+ t̄)W T ) where

dj = − (t + 1)(tj+1 − 1)
t (tj − 1)

and W =




0 1 0 0
0 −1 1 0
0 0 a V12

0 0 V21 V22


 .

It is easy to see that (1+t)W+(1+t̄)W T is congruent to
(

0 1+t
1+t̄ 0

)⊕V−t(Lk),
hence,

Null−t(Lk+q) = Null−t(Lk) and Sign−t(Lk+q) = Sign−t(Lk) +
q−2∑
i=1

sign di .

Note, that {dj | 1 ≤ j ≤ q − 2} = {cj | 1 ≤ j ≤ q − 1, j �= q − p} where

cj = − (t + 1)(tω2j − 1)
t(ω2j − 1)

= − 8Re ωp · Imωj · Im ωj+p

|ω2j − 1|2 , ω = eπi/q .
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Since Signζ(L) = Signζ̄(L), it is enough to consider the case p < q/2. Then
Reωp > 0 , Im ωj > 0,

∑
sign Im ωj+p = (q − p− 1) · 1 + (p− 1) · (−1). �

Remark. In essential, our proof of Proposition 3.3 is nothing more than
a diagonalisation of a Seifert matrix. It would be interesting to find a more
conceptual proof (maybe, based on the Novikov–Wall additivity) which
would work for generalised Tristram signatures studied in [Fl].

Corollary 3.4. Let Lk, k ∈ Z, be the closure in S3 of the braid
b1σ

k
i1

b2σ
−k
i2

b3 where b1, b2, and b3 are some fixed braids.

Let ζ = exp(2πip/q) for an integer p and an even q > 2. Then

Signζ(Lk+q) = Signζ(Lk) , Nullζ(Lk+q) = Nullζ(Lk) . �

Corollary 3.5. Let {Lk}k∈Z be as in Corollary 3.4. Suppose that an
arc A = {e2πiθ | θ1 < θ < θ2} (0 ≤ θ1 < θ2 ≤ 1) does not contain roots of
∆L0(t). Let s0 = Signζ(L0) for ζ ∈ A. Then for any q ∈ 2Z \ [−α,α] where
α = 1/(θ2 − θ1), there exists ζq (|ζq| = 1, ζq �= 1) such that

Signζq
(Lq) = s0 and Nullζq(Lq) = 1 .

Proof. For q ∈ 2Z \ [−α,α], set ζq = e2πiθ where θ = ([qθ2 − 1] + 1)/q.
Then θ1 < θ < θ2, hence, Signζq

(L0) = s0. By Corollary 3.4, we have
Signζq

(Lq) = Signζq
(L0). �

Combining Corollary 3.2 and Corollary 3.5, sometimes it is possible to
prove that none of the braids b1σ

k
i1

b2σ
−k
i2

b3 is quasipositive.

3.3 Fox–Milnor theorem for links of ribbon Euler characteristic
one. Recall that a ribbon surface in the 3-sphere S3 is an immersion r :
F → S3 of a smooth oriented surface F without closed components which
satisfies the following property. There exist disjoint embedded segments
I1, . . . , In and J1, . . . , Jn in F such that

1. Ik ∩ ∂F = ∂Ik and Ik is transversal to ∂F for k = 1, . . . , n;
2. Jk ∩ ∂F = ∅ for k = 1, . . . , n;
3. for each k = 1, . . . , n, one has: r(Ik) = r(Jk), the restrictions r|Ik

and
r|Jk

are embeddings, and the images of some neighbourhoods of Ik

and Jk are transversal to each other;
4. r is injective outside I1 ∪ · · · ∪ In ∪ J1 ∪ · · · ∪ Jn.

Proposition 3.6. Let L be an oriented link in the 3-sphere S3. Suppose,
there exists a ribbon surface r : F → S3 such that r(∂F ) = L (taking into
account the orientations ) and χ(F ) = 1. Then there exists a polynomial
f(t) ∈ Z[t] such that ∆L(t) = f(t) · f(t−1).
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If L is a knot (and hence, F is a disk), this was proved by Fox and
Milnor [FoM] even when F is slice (which is a priori stronger than ribbon).

Proof. Repeat word-by-word the second proof of Fox–Milnor theorem given
in [K, Example on pp. 212–213]. �

Remark. A weaker form of Proposition 3.6, namely, with f(t) ∈ R[t], is
a direct consequence from the symmetricity of ∆L and Murasugi–Tristram
inequality (Proposition 3.1). Indeed, the signature is constantly zero along
the unit circle, hence all the roots of the Alexander polynomial on the unit
circle are double.

Lemma 3.7. Let b be a quasipositive braid with m strings. Then there
exists a ribbon surface of Euler characteristic m − e(b) bounded by the
closure of b in S3.

Figure 1

Proof. Let b =
∏e(b)

j=1 ajσija
−1
i . We attach e(b) ribbons to m parallel discs

as in Figure 1 (each ribbon corresponds to a factor ajσija
−1
i ). �

Corollary 3.8. Let b be a quasipositive braid with m strings. If
e(b) = m− 1 then there exists a polynomial f(t) ∈ Z[t] such that ∆b(t) =
f(t) · f(t−1). In particular, det b is a complete square.

Proof. Combine Proposition 3.6 and Lemma 3.7. �

Conjecture. Under the hypothesis of Proposition 3.6, there exists a
polynomial f(t1, . . . , tn) ∈ Z[t1, . . . , tn] such that the Alexander polynomial
in several variables ∆L(t1, . . . , tn) is equal to f(t1, . . . , tn) · f(t−1

1 , . . . , t−1
n ).

Remark. Applied to real algebraic curves, Corollary 3.8 is a generalisa-
tion of Viro’s method (used in [V3, Sect. (4.12)], [KoS, Sect. (5.1) and (5.2)],
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[S3]) which is based on the observation that the determinant of the inter-
section matrix of some set of 2-cycles on the double covering is a complete
square.

4 Restrictions for the Curves 〈1 � 1〈α1〉 � 1〈α2〉〉
4.1 Notation. Let A be a real pseudo-holomorphic curve of degree 8
whose set of real points RA has the following real scheme〈

1�1〈α1〉�1〈α2〉
〉
, α1, α2 ≥ 2 , α1 +α2 = 19 , α1 is odd , α2 is even . (8)

It has one exterior empty oval v0 and two non-empty ovals V1 and V2. (An
oval is called empty if it has no other ovals inside; it is not ∅.) The oval
Vk, (k = 1, 2), surrounds interior ovals v

(k)
j , j = 1, . . . , αk.

4.2 Restrictions coming from Bezout’s theorem. As usual, we say
that two ovals u1, u2 surrounded by an oval V are separated by a line � if
they lie in the different connected components of (IntV ) \ �.
Lemma 4.1. Suppose a curve of degree 8 has five ovals 1, . . . , 5 arranged
as in Figure 2 up to isotopy. Let p1, p2, p3 be some points inside the ovals
1, 2, 3 respectively. Let H1 and H2 be the connected components of the
complement of the lines (p1p2) and (p1p3). Then (up to swapping H1 and
H2) one has:

1. if p ∈ H1 and the line (p1p) does not cut the ovals 2 and 3, then (p1p)
separates the ovals 2 and 3;

2. if p ∈ H2 then (p1p) does not separate the ovals 2 and 3. �

1

32

4

5

C

C

C

C
C

C

C

C

C

Figure 2 Figure 3 Figure 4

Let the notation be as in sect. 4.1.
Lemma 4.2. Let k = 1 or 2.
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(a) Suppose that two ovals v
(i1)
k and v

(i2)
k are separated by a line � passing

through v
(j1)
3−k and v

(j2)
3−k. Then, for any j3 ∈ {1, . . . , α3−k}, j3 �= j1,

the ovals v
(i1)
k and v

(i2)
k are separated by any line �′ passing through

v
(j1)
3−k and v

(j3)
3−k.

(b) Suppose that two ovals v
(i1)
k and v

(i2)
k are separated by a line � passing

through v
(j1)
3−k and v0. Then, for any j2 ∈ {1, . . . , α3−k}, the ovals v

(i1)
k

and v
(i2)
k are separated by any line �′ passing through v

(j2)
3−k and v0.

Proof. Let us choose points p0, p1, p2, q1, q2, q3 inside the ovals v0, v
(i1)
k ,

v
(i2)
k , v

(j1)
3−k, v

(j2)
3−k, and v

(j3)
3−k respectively. We assume that the lines � and �′

pass through the corresponding points.
(a) Let C be the conic through p1, p2, q1, q2, and q3. It cannot cut

� ∩ IntVk because it cuts already � at q1 and q2. Hence, C cuts Vk at least
at 4 points. But C cuts the 5 empty ovals at least at 10 points and the total
number of real intersections is ≤ 16, hence, C cuts V3−k only at 2 points.
Let us denote the arc C ∩ IntV3−k by γ and the connected components of
RP2 \ ((q1p1) ∪ (q1p2)) by H1 and H2. Then γ ∩ ((q1p1) ∪ (q1p2)) = {q1}.
Hence, for some ν = 1 or 2, we have {q2, q3} ⊂ γ \ {q1} ⊂ Hν ∩ IntVk−3

and the result follows from Lemma 4.1.
(b) Let C be the conic through p0, p1, p2, q1, and q2. As in part (a), C

cannot cut �∩ IntVk, hence, C ∩ Int V3−k is connected. Let qt, t ∈ [1, 2], be
a parametrisation of the arc q1q2 of C lying inside V3−k. Then none of the
lines (p0qt) can pass through p1 or p2 because (p0qt) already cuts C at p0

and qt. Hence, all of these lines separate p1 and p2. �

Let us say that two ovals v
(i1)
k and v

(i2)
k , k = 1 or 2, are separated if

they are separated either by a line passing through some two ovals v
(j1)
3−k

and v
(j2)
3−k or by a line passing through v0 and some oval v

(j)
3−k. In the former

case we say that v
(i1)
k and v

(i2)
k are separated by a pair of interior ovals;

in the latter case we say that v
(i1)
k and v

(i2)
k are separated by the oval v0.

Lemma 4.2(a) implies:

Corollary 4.3. If two ovals v
(i1)
k and v

(i2)
k are separated by a pair of

interior ovals then they are separated by a line passing through any two

ovals v
(j1)
3−k and v

(j2)
3−k. �

Lemma 4.4. Let k = 1 or 2. Suppose that some two ovals v
(i1)
k and v

(i2)
k

are separated. Then any two ovals v
(j1)
3−k and v

(j2)
3−k are not separated.
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Proof. Suppose that the ovals v
(j1)
3−k and v

(j2)
3−k are also separated.

Case 1. The ovals v
(i1)
k and v

(i2)
k are separated by a pair of interior

ovals; the ovals v
(j1)
3−k and v

(j2)
3−k are also separated by a pair of interior ovals.

By Corollary 4.3, this would imply that v
(i1)
k and v

(i2)
k are separated by a

line through v
(j1)
3−k and v

(j2)
3−k and vice versa which is impossible.

Case 2. The ovals v
(i1)
k and v

(i2)
k are separated by a pair of interior

ovals; the ovals v
(j1)
3−k and v

(j2)
3−k are separated by v0. By Corollary 4.3, in this

case v
(i1)
k and v

(i2)
k are separated by a line � passing through v

(j1)
3−k and v

(j2)
3−k.

By Lemma 4.2(b), v
(j1)
3−k and v

(j2)
3−k are separated by a line �′ passing through

v
(i1)
k and v0. Let C be the conic through all the five ovals. It cannot cut

�∩ IntVk and �′∩ IntV3−k, hence, it cuts each of Vk and V3−k at ≥ 4 points
(see Figure 3). Contradiction.

Case 3. The ovals v
(i1)
k and v

(i2)
k are separated by v0; the ovals v

(j1)
3−k

and v
(j2)
3−k are also separated by v0. By Lemma 4.2(b) one has: v

(i1)
k and v

(i2)
k

are separated by a line � passing through v
(j1)
3−k and v0; v

(j1)
3−k and v

(j2)
3−k are

separated by a line �′ passing through v
(i1)
k and v0. The end of the proof is

the same as in Case 2 (see Figure 4). �

4.3 Complex orientations and chains of ovals. Let the notation be
as in sect. 4.1. Let us fix one of the complex orientations on the curve A.
For k = 1 or 2, let α+

k (resp. α−
k ) be the number of ovals which form positive

(resp. negative) injective pair with the oval Vk. According to Welschinger’s
result [W, Corollary 2.9], we have

(α+
1 − α−

1 ) = 1 , (α+
2 − α−

2 ) = 2 . (9)

Let us write v
(i1)
k ∼ v

(i2)
k when v

(i1)
k and v

(i2)
k are not separated. It is

clear that this is an equivalence relation. The equivalence classes are called
the chains of ovals.

Lemma 4.5. (a) The ovals v
(1)
1 , . . . , v

(α1)
1 form one chain (recall that α1 is

odd).
(b) A line through v

(i)
1 and v0 divides IntV2 into two halves each of

which contains an odd number of empty ovals. The empty ovals lying in
one of the halves form a chain; the empty ovals from the other half form

either one chain or two chains separated by any pair of ovals v
(i)
1 , v

(j)
1 .
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Proof. By Lemma 4.4, for some k where k = 1 or 2, the ovals v
(1)
k , . . . , v

(αk)
k

form a single chain. Then, by Fiedler’s theorem [F] applied to a pencil
of lines through a point in the oval v

(1)
3−k, we have |α+

k − α−
k | ≤ 1. Thus,

k = 1 by (9). It remains to apply the Fiedler’s theorem to a pencil of lines
through a point in the oval v

(1)
1 . �

4.4 A pseudo-holomorphic degeneration. Let A be as in sect. 4.1.
By Corollary 2.3 and Lemma 4.5(a), there exists a real pseudo-holomorphic
curve A′ (a priori, with respect to another tame real almost complex struc-
ture J ′) such that RA′ is obtained from RA by replacing the chain of ovals
v

(1)
1 , . . . , v

(α1)
1 with a connected curve v′1 which has a singular point q of the

type An for n = 2α1 − 3 and which is smooth outside it (v′1 is isotopic to
the curve y2 = xn+1(x2− 1)). Let us consider the pencil of J ′-holomorphic
lines Lp where p is a generic point inside v′1.
Lemma 4.6. Up to a choice of the line l∞, a choice of the orientation of
the pencil, and a choice of the half of Int v′1 containing p, the Lp-scheme of
RA′ can be reduced by (5) to one of the following:

⊃4⊃3⊂5[A−
n ]4⊃4⊂3o

β1
4 oνoβ2−1

4 ⊂4 , β1, β2 are odd , β1+β2 = α2 , β1 ≤ β2 ,
(10)

⊃4⊃3⊂3o
β1
4 ⊂7[A−

n ]6⊃6o
β2
4 oνo

β3−1
4 ⊂4 , β3 is odd, β1 > 0 , β1+β2+β3 = α2 ,

(11)
where ν = 3 or 5 (oν represents the oval v0). �

Corollary 4.7. There exist e1, e2 ∈ Z, ν ∈ {3, 5}, and βj ’s as in (10),
(11) such that one of the following braids (12) or (13) is quasipositive:

b1σ
1−e1
5 σe1

3 b2σ
−e2
5 σ1+e2

3 σ−β1
4 b3σ

1−β2
4 ∆ , (12)

b1σ
1−e1
5 σ1+e1

3 σ−β1
4 σ−1

5 b2σ5σ
−β2
4 b3σ

1−β3
4 ∆ , (13)

where (12) and (13) correspond to (10) and (11) respectively, and

b1 = σ−1
4 σ−1

3 σ−1
5 σ−1

4 , b2 = σ−1
6 σ−1

7 σ4σ5σ
1−α1
6 σ−1

5 σ−1
4 σ6,

b3 = σ−1
ν σ4σ

−1
ν σ−1

4 σν .

If b is any of the braids (12), (13) then

e(b) = 7 . (14)
In Fig. 5, we depicted the Lp-scheme (10) by the dashed line and the

braid (12) by the solid line for ν = 5. A box n means σn
k for the braid

and ×|n|
k for the Lp-scheme if the dashed lines enter into the box (k is the

height of the box).
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-e 1

1e

-e 2

V1

V1

V2

V2

v0

v1

v1

1

2

3

4

5

6

11−α

2e
1−β1 1−β2

∆

7

8

Figure 5

Remark. If we do not degenerate the chain v
(1)
1 , . . . , v

(α1)
1 into a singular-

ity An then we get an interval of {l ∈ RLp | CardRl∩RA = 4} between any
two consecutive ovals v

(j)
1 . This would give us a braid depending of many

unknown integer parameters (see sect. 2.3) instead of the braid (12) which
depends only on e1 and e2 (in Lemma 4.8 we express e1 via e2). In this case,
it would be very difficult to prove that the braid is not quasipositive for all
possible values of the parameters. The usage of pseudo-holomorphic curves
is essential here because staying in the real algebraic context, it is very
difficult (if possible at all) to prove the existence of such a degeneration.

4.5 Linking numbers. Let the notation be as in sect. 4.1–4.4. Now,
using linking numbers of sublinks of the braids (12) and (13) as it was done
in [O1, Sect. 8.2], we shall compute all possible values for e1 in the case (13)
and express e1 in terms of e2 in the case (12).

Lemma 4.8. (a) Suppose, the Lp-scheme of RA′ is (10). Then the braid
(12) is quasipositive at least in one of the six cases listed in Table 2a.

(b) Suppose, the Lp-scheme of RA′ is (11). Then the braid (13) is
quasipositive at least in one of the six cases listed in Table 2b.

Table 2a
Case ν e2 e1

1 3 even 12− α2 − e2

2 3 even 4− α2 − e2

3 3 odd −6− e2

4 5 even −4 + α2 − e2

5 5 odd 14− e2

6 5 odd 6− e2

Table 2b
Case ν β1 e1

1 3 odd −14
2 3 odd −6
3 5 odd 6
4 3 even −6
5 5 even 6
6 5 even 14
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Proof. Let prp and γ be as in sect. 2.3. Denote by H the domain bounded
by γ and let N = pr−1

p (H)∩A and L = ∂N (it is the link representing the
braid b). Since A is an M -curve, A \RA is a disjoint union A+ � A− and
Conj(A±) = A∓. Let us denote N± = pr−1

p (H) ∩A± and L± = ∂N±. Let
us denote the number of components of N and L by µN and µL respectively.
Since prp |N has e(b) = 7 simple branch points, we have χ(N) = 1. The
genus of A+ ∪ A− is zero because A is an M -curve. Since N ⊂ A+ ∪ A−,
the genus of N is also zero, and hence,

1 = χ(N) = 2µN − µL . (15)

(a) The complex orientations imply (see arrows in Fig. 5) that e1 + e2

is even. Consider the standard homomorphism ϕ of Bn to the symmetric
group defined by σi �→ (i, i + 1). Then (see Fig. 5)

ϕ(b) =

{
(183)(27)(4)(5)(6) if e1 and e2 are even,
(184)(27)(3)(5)(6) if e1 and e2 are odd.

(16)

In the both cases we have µL = 5, and hence, µN = 3 by (15). Let us
denote the components of L by L1, . . . , L5 in the order of the cycles in (16).

Consider the case when e1 and e2 are even. Let us denote the linking
number of Li and Lj by lij. Then we have l12 = 3, l15 = (3 − α1)/2,
l23 = l24 = l25 = 1, l34 = −α2/2 and

l13 = 2− (e1 + e2)/2 , l14 = 1 , l35 = −1 , l45 = 2 + (e1 + e2)/2 for ν = 3 ;
l13 = 3− (e1 + e2)/2 , l14 = 0 , l35 = 0 , l45 = 1 + (e1 + e2)/2 for ν = 5 .

We see from the complex orientations that L1∪L4⊂L+ and L2∪L3∪L5⊂L−
(up to swapping L+ and L−). L2 cannot bound a connected component of
N because if L2 = ∂N0 then N0∪Conj(N0) would be an isolated component
of A. Thus, all possible distributions of Lj between the components of N are
those listed in the first column of Table 3 where N1, N2, N3 are connected
components of N and Lij... denotes Li ∪ Lj ∪ . . . The linking numbers
∂Ni · ∂Nj must be zero for i �= j. In the second and the third column of
Table 3, we put the linking numbers which lead either to a contradiction
or to a relation between e1 and e2.

Table 3. The braid (12) for even e1 and e2

∂N1, ∂N2, ∂N3 ν = 3 ν = 5
L1, L4, L235 L1 · L4 = 1 L4L235 = 2 + (e1 + e2 − α2)/2
L14, L23, L5 L14L5 = −6 + (e1 + e2 + α2)/2 L23 · L5 = 1
L14, L25, L3 L14L3 = 2− (e1 + e2 + α2)/2 L25 · L3 = 1
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The case when e1 and e2 are odd is similar. The linking numbers are
l12 = 3, l14 = −8, l23 = l24 = l25 = 1, l35 = 0 and
l13 = 2− (e1 + e2)/2, l15 = 0, l34 = 0, l45 = 2 + (e1 + e2)/2 for ν = 3;
l13 = 3− (e1 + e2)/2, l15 = 1, l34 = −1, l45 = 1 + (e1 + e2)/2 for ν = 5.
We have L+ = L1 ∪ L5 and L− = L2 ∪ L3 ∪ L4. Possible distributions of
Li’s between ∂Nj ’s and the corresponding linking numbers are presented
in Table 4.

Table 4. The braid (12) for odd e1 and e2

∂N1, ∂N2, ∂N3 ν = 3 ν = 5
L1, L5, L234 L5 · L234 = 3 + (e1 + e2)/2 L1 · L5 = 1
L15, L23, L4 L23 · L4 = 1 L15 · L4 = −7 + (e1 + e2)/2
L15, L24, L3 L24 · L3 = 1 L15 · L3 = 3− (e1 + e2)/2

(b) The proof follows the same scheme.
Suppose that β1 is odd. Then we have ϕ(b) = (158)(27)(3)(4)(6); L+ =

L2 ∪L4 ∪L5 and L− = L1 ∪L3; the linking numbers are l12 = 3, l14 = −8,
l23 = l24 = l25 = 1, l35 = 0, and

l13 = 1, l15 = 3 + e1/2, l34 = 1− e1/2, l45 = −1 for ν = 3 ;
l13 = 0, l15 = 2 + e1/2, l34 = 2− e1/2, l45 = 0 for ν = 5 .

The linking numbers of ∂Ni’s are in Table 5.

Table 5. The braid (13) for odd β1

∂N1, ∂N2, ∂N3 ν = 3 ν = 5
L1, L3, L245 L1 · L3 = 1 L3 · L245 = 3− e1/2
L13, L24, L5 L13 · L5 = 3 + e1/2 L24 · L5 = 1
L13, L25, L4 L13 · L4 = −7− e1/2 L25 · L4 = 1

Suppose that β1 is even. Then we have ϕ(b) = (148)(27)(3)(5)(6);
L+ = L1 ∪ L5 and L− = L2 ∪ L3 ∪ L4; the linking numbers are l12 = 3,
l14 = −8, l23 = l24 = l25 = 1, l35 = 0, and

l13 = 2− e1/2, l15 = 0, l34 = 0, l45 = 2 + e1/2 for ν = 3 ;
l13 = 3− e1/2, l15 = 1, l34 = −1, l45 = 1 + e1/2 for ν = 5 .

The linking numbers of ∂Ni’s are in Table 6.

4.6 Restrictions provided by the generalised Fox–Milnor theo-
rem. Here we prove some restrictions applying Corollary 3.8 to braids
which do not depend on unknown parameters, namely, to the braids b cor-
responding to Lemma 4.8(b). For each of these 612 braids we compute
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Table 6. The braid (13) for even β1

∂N1, ∂N2, ∂N3 ν = 3 ν = 5
L1, L5, L234 L5 · L234 = 3 + e1/2 L1 · L5 = 1
L15, L23, L4 L23 · L4 = 1 L15 · L4 = −7 + e1/2
L15, L24, L3 L24 · L3 = 1 L15 · L3 = 3− e1/2

its determinant (using the computer program given in the Appendix) and
check if its absolute value is a complete square or not. For most of the
braids, it is not. Hence, they are not quasipositive by Corollary 3.8. In the
remaining cases (there are 28 of them) we compute the Alexander polyno-
mial (see Example 3 in the Appendix). The only six cases when it is of the
form (t− 1)4 f(t) f(t−1), are those listed in Table 7 where
p1(t) = t10 − t9 + 2t8 − t7 + 3t6 − 2t5 + 3t4 − 2t3 + 2t2 − t + 1 ,

p2(t) = t14−t13+2t12−2t11+3t10−2t9+4t8−3t7+3t6−2t5+2t4−t3+t2−t+1 ,

p3(t) = t12−t11+2t10−2t9+4t8−3t7+4t6−3t5+3t4−2t3+2t2−t+1 ,

and Φn(t) is the n-th cyclotomic polynomial. This proves the following
lemma.

Table 7. The braids (13) satisfying Corollary 3.8
α1 α2 β1 β2 β3 ν e1 f(t)
7 12 9 2 1 5 +6 p1(t)
7 12 10 1 1 3 −6 p2(t)
7 12 10 1 1 5 +6 p3(t)
9 10 7 2 1 5 +6 p1(t)
15 4 1 2 1 3 −6 Φ5(t)Φ10(t)
15 4 1 2 1 5 +6 Φ5(t)Φ10(t)

Lemma 4.9. If a braid (13) with ν ∈ {3, 5}, and αi’s and βj ’s from (8) and
(11) is quasipositive then the values of the parameters are as in Table 7. �

Corollary 4.10. Suppose that a real pseudo-holomorphic M -curve
A with real scheme (8) contains six ovals arranged with respect to some
line as in Fig. 6 up to isotopy. Then the Lp-scheme of RA with respect
to some point p is (11) with (β1, β2, β3; ν) as in Table 7, in particular,
(α1, α2) ∈ { (7, 12), (9, 10), (15, 4) }.
4.7 Fox–Milnor theorem applied to infinite families of braids.
Here we prove restrictions applying Corollary 3.8 to braids depending on
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Figure 6

unknown parameters, namely, to the braids corresponding to Lemma 4.8(a).
For odd positive β1, β2 satisfying β1 + β2 ≤ 16 and for k ∈ {1, . . . , 6}, let
b
(k)
β1,β2

(e2) denote the braid (12) with α1 = 19 − β1 − β2 and with (ν, e1)

from the k-th line of Table 2a. Let d
(k)
β1,β2

(e2) = det b
(k)
β1,β2

(e2)/16. Using
the algorithm from [O1, Sect. 2.6] (see Appendix) or using Göritz matrices
[GL] (as it was done in [O4], [OS]), one can compute

d
(1)
β1,β2

(e2) = c1c2e
2
2 + c1(c2 + γ)(α2 − 10)e2 + 3α3

2β1β2

− 9/4 β4
1 − 131β3

1β2 − 513/2 β2
1β2

2 − 129β1β
3
2 − 5/4 β4

2

+ 90β3
1 + 1868β2

1β2 + 1830β1β
2
2 + 52β3

2

− 1169β2
1 − 9006β1β2 − 709β2

2 + 5126β1 + 3326β2 − 1609,

d
(2)
β1,β2

(e2) = c1c2e
2
2 + c1(c2 + γ)(α2 − 2)e2 + 3α3

2β1β2

− 9/4 β4
1 − 83β3

1β2 − 321/2 β2
1β2

2 − 81β1β
3
2 − 5/4 β4

2

+ 54β3
1 + 544β2

1β2 + 522β1β
2
2 + 32β3

2

− 257β2
1 − 1102β1β2 − 181β2

2 + 414β1 + 342β2 − 113,

d
(3)
β1,β2

(e2) = c1c2e
2
2 + 8c1(c2 + γ)e2 + 136α2β1β2

− 123β2
1 − 2666β1β2 − 59β2

2 + 2289β1 + 1137β2 − 763,

d
(4)
β1,β2

(e2) = c1c2e
2
2 − c1

(
(c2 + γ)(α2 − 6) + 4γ

)
e2 + 3α3

2β1β2

− 9/4 β4
1 − 91β3

1β2 − 353/2 β2
1β2

2 − 89β1β
3
2 − 5/4 β4

2

+ 60β3
1 + 734β2

1β2 + 708β1β
2
2 + 34β3

2

− 387β2
1 − 1858β1β2 − 231β2

2 + 818β1 + 602β2 − 257,

d
(5)
β1,β2

(e2) = c1c2e
2
2 − 4c1(3c2 + 4γ)e2 + 536α2β1β2

− 443β2
1 − 10538β1β2 − 251β2

2 + 8285β1 + 4829β2 − 2795,

d
(6)
β1,β2

(e2) = c1c2e
2
2 − 4c1(c2 + 2γ)e2 + 88α2β1β2

− 83β2
1 − 1754β1β2 − 51β2

2 + 1557β1 + 981β2 − 547
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where c1 = α2 − 18, c2 = (2β1 − 1)(2β2 − 1), and γ = β2 − β1 (recall that
α2 = β1 + β2).

Lemma 4.11. |d(k)
β1,β2

(e2)| cannot be a complete square for the values of
(β1, β2, k) listed in Table 8 and for any e2 ∈ Z.

Table 8. The braids (12) whose determinants are never complete squares
β1 β2 k p β1 β2 k p β1 β2 k p

3 13 1,...,6 5 5 9 5 25 3 5 1,...,6 5
5 11 1 9 3 7 1 5 1 5 1,...,6 25
7 9 1,...,6 25 5 5 2,3,4,6 25 3 3 1,...,6 5

Proof. It is easy to see that if we fix integers β1 and β2 of the same parity
then each d

(k)
β1,β2

is a polynomial in e2 with integral coefficients. Computing
all its values mod p for p given in Table 8, we obtain the result (see
Example 5 in Appendix). �

Corollary 4.12. The real scheme 〈1 � 1〈13〉 � 1〈6〉〉 is not realizable
as the set of real points of a real pseudo-holomorphic curve of degree 8
in CP2.

4.8 Restrictions provided by the periodicity of Tristram signa-
tures.

Lemma 4.13. Let A be a non-degenerate Hermitian n× n-matrix. Then

SignA ≡ n + 2a mod 4 where sign detA = (−1)a. �

Proposition 4.14. Let b = b
(k)
β1,β2

(e2) (see section 4.7). If b is quasi-
positive then it is one of

b
(1)
1,13(−1), b

(1)
7,7(−2), b

(4)
7,7(4);

b
(1)
1,11(−6), b

(2)
1,11(−10), b

(3)
1,11(−7), b

(4)
1,11(8), b

(5)
1,11(9), b

(6)
1,11(5);

b
(1)
1,9(0), b

(5)
1,9(5);

b
(1)
1,7(4), b

(2)
1,7(0), b

(3)
1,7(−5), b

(4)
1,7(−2), b

(5)
1,7(7), b

(6)
1,7(3);

b
(1)
1,3(6), b

(6)
1,3(5);

b
(1)
1,1(4), b

(2)
1,1(0), b

(3)
1,1(−11), b(3)

1,1(3), b
(4)
1,1(−2), b(5)

1,1(−1), b(5)
1,1(13), b

(6)
1,1(−5), b(6)

1,1(9).

Corollary 4.15. Suppose that a real pseudo-holomorphic M -curve A
with real scheme (8) does not contain six ovals arranged with respect to
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some line as in Fig. 6 up to isotopy. Then the Lp-scheme of RA with respect
to some point p is (10) with

(β1, β2) ∈
{

(1, 13), (7, 7), (1, 11), (1, 9), (1, 7), (1, 3), (1, 1)
}

and if (β1, β2) = (1, 13) then ν = 3. In particular, (α1,α2) �∈ {(3,16), (6,13)}.
Combining Corollaries 4.10 and 4.15, we obtain immediately Theo-

rem 1.2(a) and hence, Theorem 1.1.

Proof of Proposition 4.14. For the triples (β1, β2, k) listed in Table 8 the
result follows from Lemma 4.11. For each of the other triples (there are 84
of them; they are listed in the first columns of Tables 9a–g we proceed as
follows.

Step 1. Choice of qmax. Fix a value e2 = e0
2 of the parity indicated in

Table 2a. In all the cases we choose e0
2 = 0 or 1 except the three cases

(β1, β2, k) = (1, 9, 2), (1, 7, 2), and (1, 9, 1) where we choose e0
2 = 2. Let

b0 = b
(k)
β1,β2

(e0
2) and s = Sign−1(b0). A computation shows that s = 2

for (β1, β2, k) ∈ {(1, 3, 4), (1, 1, 5), (1, 1, 6)} and s = 0 otherwise. Then
we compute the Alexander polynomial ∆b0(t). The change of variable t =
ϕ(u) = (u+i)/(u−i) transforms the circle |t| = 1 into the real line Imu = 0
and we have ϕ(0) = −1, ϕ(±1) = ±i, ϕ(∞) = 1. Since ∆b0(t) is symmetric,
we have ∆b0(ϕ(u)) = Q(u2)/(u − i)n where n = deg ∆b0(t) and Q(z) is a
polynomial with integral coefficients. The roots of ∆b0(t) on the unit circle
are exactly ϕ

(±√z1

)
, . . . , ϕ

(±√z�

)
where z1, . . . , z� are non-negative real

roots of Q(z). Then we find an interval I = [z′, z′′] on the positive half-line
such that sign Q(z) = −(−1)s/2 sign Q(0) when z′ < z < z′′. Let qmax be the
maximal even number such that 1/qmax > |θ′ − θ′′| where e2πiθ′ = ϕ

(√
z′

)
,

e2πiθ′′ = ϕ
(√

z′′
)
, and 0 < θ′′ < θ′ ≤ 1/2. The intervals I are listed in

Tables 9a–g.

Step 2. Let us show that the braid b = b
(k)
β1,β2

(e2) is not quasipositive
when |e2−e0

2| > qmax. Indeed, if b were quasipositive then by Corollary 3.2
and (14) one would have Signζ(b) = 0 for a generic ζ on the unit circle.
We used here that ∆b(t) is not identically zero (this follows from the fact
that each of the d

(k)
β1,β2

has no integer roots; see sect. 4.7). By Lemma 4.13,
we have Signζ(b0) ≡ 2 mod 4 for ζ = ϕ(

√
z), z ∈ Int I. Thus, if q =

|e2−e0
2| > qmax then, by Corollary 3.5, there exists ζq such that Signζq

(b) =
Signζq

(b0) �= 0 which implies that b is not quasipositive.

Step 3. In the last columns of Tables 9a–g (entitled “sq.”), we give
the set of the values of e2 such that |e2 − e0

2| ≤ qmax and d
(k)
β1,β2

(e2) is a
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complete square. Computing the Alexander polynomial for each of these
values of e2, one can check that it has the form f(t)f(t−1) only in the
cases marked by an asterisk. In the cases marked by ′ one can avoid the
computation of the Alexander polynomial excluding them by the arguments
similar to those in Step 2. In each of these cases we find p such that
sign Q(u2) = −(−1)s/2 sign Q(0) where ϕ(u) = e2πip/q and q = |e2 − e0

2|.
This reduces the computations considerably: for instance, deg(∆b) = 277
for b = b

(2)
1,11(60). �

Remark. To do the computations, I used the program “Mathemat-
ica 3.0 for Silicon Graphics. Copyright 1988-96 Wolfram Research. Inc.”
(see [Wo]). First, to find the intervals where sign Q(z) is constant, I used
the command NRoots[Q==0,z] hoping that it finds approximations of the
roots with the declared precision. However, I found that this command
gives absolutely wrong results when the degree of the polynomial is large.
Therefore, I justified the intervals presented in Tables 9a–g using Sturm’s
method.

Table 9a. Braids (12) corresponding to 〈1 � 〈3〉 � 〈16〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,15 (0,0) [0.49, 0.77] 28 {−6} b

(1)
5,11 see §4.7

b
(2)
1,15 (0,0) [0.35, 0.55] 30 {−4} b

(2)
5,11 (0,0) [3.37, 6.05] 26 {−20′,−10}

b
(3)
1,15 (1,0) [1.07, 3.00] 12 {−3} b

(3)
5,11 (1,0) [1.08, 2.38] 16 ∅

b
(4)
1,15 (0,0) [1.19, 3.00] 14 {2} b

(4)
5,11 (0,0) [1.19, 5.23] 8 {8′}

b
(5)
1,15 (1,0) [1.06, 7.63] 6 ∅ b

(5)
5,11 (1,0) [1.06, 2.65] 14 {13}

b
(6)
1,15 (1,0) [1.11, 4.12] 10 {11′} b

(6)
5,11 (1,0) [1.11, 7.44] 6 ∅

5 Constructions

The real scheme 〈1� 1〈1〉 � 1〈18〉〉 is realized by a real pseudo-holomorphic
curve in [O1]. The real schemes 〈4� 1〈2� 1〈14〉〉〉 and 〈14� 1〈2� 1〈4〉〉〉 are
realized by real pseudo-holomorphic curves in [O4].

5.1 Construction of 〈7 � 1〈2 � 1〈11〉〉〉. Let C0 be the union of four
ellipses on RP2 which pairwise touch each other with the tangency of order
four at the same point q. Let p be a generic point on RP2. We shall use a
local analogue of Proposition 2.2. Namely, a given Lp-scheme is realizable
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Table 9b. Braids (12) corresponding to 〈1 � 〈5〉 � 〈14〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,13 (0, 0) [22.37, 2341.43] 16 {−6∗} b

(1)
5,9 (0, 0) [14.78, 1449.51] 12 {−10}

b
(2)
1,13 (0, 0) [1.27, 2.12] 24 ∅ b

(2)
5,9 (0, 0) [3.23, 5.48] 30 {6}

b
(3)
1,12 (1, 0) [3.36, 7.01] 22 ∅ b

(3)
5,9 (1, 0) [1.85, 3.00] 28 ∅

b
(4)
1,13 (0, 0) [1.33, 5.55] 10 ∅ b

(4)
5,9 (0, 0) [1.33, 1.74] 46 {−8}

b
(5)
1,13 (1, 0) [4.37, 7.33] 34 {11} b

(5)
5,9 (1, 0) [2.58, 3.71] 40 ∅

b
(6)
1,13 (1, 0) [3.00, 7.57] 18 ∅ b

(6)
5,9 (1, 0) [1.36, 2.38] 22 ∅

b
(1)
3,11 (0, 0) [15.94, 1947.89] 14 ∅ b

(1)
7,7 (0, 0) [34.46, 838.76] 22 {−2∗}

b
(2)
3,11 (0, 0) [3.61, 4.91] 50 {14′} b

(2)
7,7 (0, 0) [10.81, 26.8] 30 {−6}

b
(3)
3,11 (1, 0) [0.11, 0.21] 28 ∅ b

(3)
7,7 (1, 0) [3.00, 7.28] 18 ∅

b
(4)
3,11 (0, 0) [3.79, 5.80] 38 {−16} b

(4)
7,7 (0, 0) [1.31, 5.21] 10 {4∗}

b
(5)
3,11 (1, 0) [0.65, 0.82] 54 ∅ b

(5)
7,7 (1, 0) [4.40, 7.48] 32 ∅

b
(6)
3,11 (1, 0) [1.41, 3.00] 16 ∅ b

(6)
7,7 (1, 0) [1.37, 8.96] 8 ∅

by a pseudo-holomorphic smoothing of C0 if and only if the braid b = bR∆4

is quasipositive where bR is constructed according to Algorithm 2.1.
In Figure 7, we depicted a curve by a dashed line and the corresponding

braid by a solid line. As in Figure 5, a box n means σn
k for the braid

and ×|n|
k for the Lp-scheme. So, we have

b = σ−1
2 τ2,1σ

−1
1 σ−1

2 σ−6
1 τ1,3σ

−8
3 σ−1

2 σ−2
3 τ3,2σ

−1
2 τ2,3σ

−1
3 τ3,2 ∆4

∆4

5

8

Figure 7

One can check that

b = (a−1
1 σ3a1)(a−1

2 σ2a2) where a1 = σ2
2σ1σ2, a2 = σ2

3σ2σ
2
1σ2σ

2
3σ2σ1 .

5.2 Construction of 〈1�1〈7〉�1〈12〉〉. We proceed as in section 5.1
but using the smoothing depicted in Figure 8.

b(e1, e2) = σ−11
2 σ−1

1 σ−1
3 σ−1

2 σ1+e1
1 σ1−e1

3 σ−1
2 σ−1

1 σ−6
2 ·

· σ−1
1 σ−1

3 σ−1
2 σ1+e2

1 σ1−e2
3 σ−1

2 σ−1
3 σ2σ

−1
3 σ−1

2 σ3 ∆4.

A corresponding pseudo-holomorphic curve exists iff there exist integers
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Table 9c. Braids (12) corresponding to 〈1 � 〈7〉 � 〈12〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,11 (0, 0) [0.47, 0.69] 34 {−18,−6∗,−4} b

(4)
3,9 (0, 0) [0.50, 0.92] 20 ∅

b
(2)
1,11 (0, 0) [0.38, 0.46] 72 {−10∗,−6, 60′} b

(5)
3,9 (1, 0) [0.42, 0.78] 20 ∅

b
(3)
1,11 (1, 0) [1.09, 2.29] 16 {−11′,−7∗, 3} b

(6)
3,9 (1, 0) [1.35, 2.59] 20 {5, 15′}

b
(4)
1,11 (0, 0) [0.47, 0.93] 18 {4, 8∗} b

(1)
5,7 (0, 0) [7.26, 21.26] 22 {−2, 2}

b
(5)
1,11 (1, 0) [0.45, 0.78] 22 {−3, 7, 9∗, 21′} b

(2)
5,7 (0, 0) [6.58, 12.71] 30 {−12}

b
(6)
1,11 (1, 0) [1.13, 5.00] 8 {−5′, 5∗, 9} b

(3)
5,7 (1, 0) [1.09, 2.30] 16 ∅

b
(1)
3,9 (0, 0) [0.44, 0.77] 22 {−4,−2} b

(4)
5,7 (0, 0) [0.45, 0.93] 16 {10′}

b
(2)
3,9 (0, 0) [2.86, 4.07] 42 ∅ b

(5)
5,7 (1, 0) [0.46, 0.78] 24 ∅

b
(3)
3,9 (1, 0) [0.25, 0.69] 12 {−7} b

(6)
5,7 (1, 0) [3.86, 9.08] 20 {−3}

Table 9d. Braids (12) corresponding to 〈1 � 〈9〉 � 〈10〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,9 (2,0) [1.25, 3.65] 12 {0∗} b

(1)
3,7 see §4.7

b
(2)
1,9 (0,0) [0.37, 0.69] 20 {12} b

(2)
3,7 (0,0) [1.83, 3.00] 26 {−2}

b
(3)
1,9 (1,0) [1.23, 3.00] 14 {−7} b

(3)
3,7 (1,0) [1.19, 2.41] 18 {−15′,−5, 5, 9′}

b
(4)
1,9 (0,0) [1.155, 3.0] 12 ∅ b

(4)
3,7 (0,0) [1.22, 8.41] 6 ∅

b
(5)
1,9 (1,0) [1.23, 4.19] 10 {−7} b

(5)
3,7 (1,0) [1.20, 2.68] 16 {16′}

b
(6)
1,9 (1,0) [1.24, 4.30] 10 {5∗} b

(6)
3,7 (1,0) [1.25, 3.00] 14 {−11′,−7′, 3′, 13′}

b
(1)
5,5 (0,0) [2.28, 8.38] 12 ∅ b

(5)
5,5 (1,0) [1.22, 2.63] 17 ∅

e1 and e2 such that the braid b(e1, e2) is quasipositive. One can check that

b(3, 7) = σ2
3σ2 · σ1 · σ−1

2 σ−2
3 .

1e
∆4

2e

e
510

e1 2

Figure 8

5.3 Construction of 〈1 � 1〈9〉 � 1〈10〉〉. As we have seen in sections
4.6 and 4.8, this real scheme is realizable as the set of real points of a real
pseudo-holomorphic curve if and only if one of the following three braids
is quasipositive: either the braid (13) with (β1, β2, β3; ν, e1) = (7, 2, 1; 5, 6),
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Table 9e. Braids (12) corresponding to 〈1 � 〈11〉 � 〈8〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,7 (0,0) [3.78, 5.16] 52 {−48′,−26, 2, 4∗, 12} b

(2)
1,7 (2,0) [1.49, 7.33] 8 {−6′, 0∗}

b
(3)
1,7 (1,0) [3.00, 7.68] 16 {−15′,−5∗} b

(4)
1,7 (0,0) [2.37, 7.30] 14 {−2∗, 4}

b
(5)
1,7 (1,0) [4.10, 7.57] 28{−21′,−7′, 7∗, 15, 21} b(6)

1,7 (1,0) [3.00, 9.47] 14 {3∗, 13}

Table 9f. Braids (12) corresponding to 〈1 � 〈15〉 � 〈4〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,3 (0,0) [0.39, 0.56] 36 {−18, 6∗, 12′} b

(4)
1,3 (0,2) [0.00, 0.03] 18{−8,−2, 2, 4}

b
(2)
1,3 (0,0) [1.71, 2.60] 32{−6,−4, 0′, 6, 26′} b

(5)
1,3 (1,0) [2.32, 4.03] 26{−13, 11, 17′}

b
(3)
1,3 (1,0) [1.90, 3.00] 30{−13,−7,−3,−1}b(6)

1,3 (1,0) [1.26, 4.68] 10{−1, 1, 5∗, 11′}

or b
(1)
1,9(0), or b

(6)
1,9(5). One can check that b

(1)
1,9(0) is equal to

(b−1
7 σ5b7)(a−1

1 σ6a1)(a−1
2 σ7a2)(a−1

3 σ3a3)(a−1
4 σ6a4)(a−1

5 σ1a5)(a−1
6 σ2a6)

where (recall that πj,k denotes σj . . . σk; see section 2.3)

a1 = σ−1
5 σ6 a2, a2 = σ6

6σ5σ4σ
−1
5 c, a3 = σ4π4,7σ5 c, a4 = σ−2

7 π6,3 a6,

a5 = σ−1
2 σ3 a6, a6 = π2

3,7(σ3σ5σ4)2, bn = σn
6 σ7σ

−2
5 , c = π4,7σ5σ4.

5.4 Construction of 〈1 � 1〈15〉 � 1〈4〉〉. This real scheme is realiz-
able by a real pseudo-holomorphic curve if and only if one of the following
four braids is quasipositive: either the braid (13) with (β1, β2, β3; ν, e1) =
(1, 2, 1; 3,−6) or (1, 2, 1; 5, 6), or the braid b

(1)
1,3(6), or b

(6)
1,3(5). One can check

that b
(1)
1,3(6) is equal to

(b−1
13 σ5b13)(ã−1

1 σ7ã1)(ã−1
2 σ6ã2)(a−1

3 σ3a3)(a−1
4 σ6a4)(a−1

5 σ1a5)(a−1
6 σ2a6)

where
ã1 = σ−1

6 σ−1
5 σ4

7 ã2, ã2 = σ5σ
−1
6 σ7σ4σ

−1
5 c

and the braids a3, . . . , a6, bn, and c are the same as in section 5.3.

Appendix. A program for computation of Seifert matrix of
a braid.

In this appendix we present two computer programs for Mathematica [Wo]
which were used in sections 4.6 – 4.8 (and also in [O1-5], [OP]). The first
one, SeifertMatrix, computes Seifert matrix of an explicitly given braid.
The second one, ssmW (symmetrised seifert matrix W ), allows to find the
determinant of a braid which contains factors of the form σe1

k1
, . . . , σen

kn
with
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Table 9g. Braids (12) corresponding to 〈1 � 〈17〉 � 〈2〉〉
b (e2, s) I qmax sq. b (e2, s) I qmax sq.

b
(1)
1,1 (0,0) [0.19, 0.31] 32{−14′, 4∗, 22′} b

(4)
1,1 (0,0) [1.06, 1.82] 22 {−8,−2∗, 4}

b
(2)
1,1 (2,0) [1.08, 3.92] 10 {−6, 0∗, 6} b

(5)
1,1 (1,2) [1.12, 1.94] 22{−13′,−1∗, 13∗}

b
(3)
1,1 (1,0) [1.11, 2.15] 19 {−11∗, 3∗} b

(6)
1,1 (1,2) [0.00, 0.03] 18 {−5∗, 9∗}

known kj’s and unknown ej ’s as a polynomial in e1, . . . , en (in fact, it
computes the matrix W from [O1, section 2.6]).

A.1 The texts of the programs.
SeifertMatrix=Function[{m,brd}, Module[{n,e,V,X,q,c,i,j,h,a,b},

a={{ 0,1,-1,0},{-1, 0,1,0},{0,0,0,0},{1,-1,0,0}};
b={{-1,1, 0,0},{ 1,-1,0,0},{0,0,0,0},{0, 0,0,0}};
n=Length[brd]; V=Table[0,{i,n},{j,n}]; X=Table[{n},{h,m-1}];
Do[ h=Abs[brd[[q]]]; e=Sign[brd[[q]]];

c[1]=X[[h,1]]; X[[h]]={c[2]=q};
c[3]=If[h<m-1,X[[h+1,1]],n]; c[4]=If[h>1,X[[h-1,1]],n];

Do[Do[ V[[ c[i],c[j] ]] += a[[i,j]]+e*b[[i,j]], {i,4}],{j,4}],
{q,n}];
Transpose[Delete[Transpose[Delete[V,X]],X]]/2

]];

ssmW=Function[{m,brd}, Module[{bq,n,d,e,V,X,p=1,q,r=1,c,i,j,h,a,b},
a={{0,0,-1,1, 2},{0,0,1,-1,-2},{-1,1,0,0,0},{1,-1,0,0,0},
{2,-2,0,0,0}}; b={{-2,2,0,0},{2,-2,0,0},{0,0,0,0},{0,0,0,0}};

d=n=Length[brd]; Do[If[Not[IntegerQ[brd[[q]]]],d++;p++],{q,n}];
V=Table[0,{i,d},{j,d}]; X=Table[{d},{h,m-1}];
Do[ bq=brd[[q]];

If[ IntegerQ[bq], h=Abs[bq]; e=Sign[bq],

h=Abs[bq[[2]]]; V[[r,r]]=2*bq[[1]]*Sign[bq[[2]]]; c[5]=r++;

];

c[1]=X[[h,1]]; X[[h]]={c[2]=p++};
c[3]=If[h<m-1,X[[h+1,1]],d]; c[4]=If[h>1,X[[h-1,1]],d];

If[ IntegerQ[bq],

Do[Do[ V[[ c[i],c[j] ]] += a[[i,j]]+e*b[[i,j]], {i,4}],{j,4}],
Do[Do[ V[[ c[i],c[j] ]] += a[[i,j]], {i,5}],{j,5}]

],

{q,n}];
Transpose[Delete[Transpose[Delete[V,X]],X]]/2

]];
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A.2 User’s guide. Suppose that m is a positive integer and brd is
a list of non-zero integers which range between ±(m− 1). The command

SeifertMatrix[m,brd]

computes a Seifert matrix of the braid b = σε1
k1

. . . σεn
kn

where kq and εq

are respectively the absolute value and the sign of the q-th element of the
list brd.

Remark. The number of connected components of the corresponding
Seifert surface F is equal to m − Card{k1, . . . , kn}. Thus, F is connected
if and only if each of the numbers 1, . . . ,m− 1 appears among k1, . . . , kn.

Example 1. Computation of a Seifert matrix of the trefoil (we suppose
that the program of section A.1 is written in the file sm.mat ).

In[1]:= <<sm.mat;

In[2]:= V=SeifertMatrix[2,{1,1,1}]
Out[2]= {{-1, 1}, {0, -1}}
Example 2. Computation of the Alexander polynomial of the torus
knot (3, 4).

In[3]:= V=SeifertMatrix[3,{1,2,1,2,1,2,1,2}];
In[4]:= Factor[Det[ V - t*Transpose[V] ]]

2 2 4
Out[4]= (1 - t + t ) (1 - t + t )

Example 3. Computation of the Alexander polynomial of the braid (13)
with (α1; β1, β2, β3; ν, e1) = (15; 1, 2, 1; 5, 6); see the last line of Table 7 in
section 4.6.
In[5]:=De={1,2,3,4,5,6,7,1,2,3,4,5,6,1,2,3,4,5,1,2,3,4,1,2,3,1,2,1};
In[6]:=b1={-4,-3,-5,-4}; b2={-6,-7,4,5}; bb2={-5,-4,6};
In[7]:=b3[3]={-3,4,-3,-4,3}; b3[5]={-5,4,-5,-4,5};
In[8]:=b=Join[b1,{-5,-5,-5,-5,-5,3,3,3,3,3,3,3,-4,-5},b2,

Table[-6,{14}],bb2,{5,-4,-4},b3[5],De]; V=SeifertMatrix[8,b];

In[9]:=Factor[Det[ V - t*Transpose[V] ]]

4 24 2 3 4 2 2 3 4 2

Out[9]=(-1 + t) t (1 - t + t - t + t ) (1 + t + t + t + t )
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Now suppose that brd is a list whose elements are of two kinds. An
element of the first kind is an integer h such that 0 < |h| < m; an element of
the second kind is a list of the form { iter, h } where iter is any expression
and h is an integer such that 0 < |h| < m. The command

ssmW[m,brd]

computes the matrix W J (see [O1, Section 2.6]) associated with the braid
b = σe1

k1
. . . σen

kn
where J is the set of indices of the second kind and (kq, eq)

are defined as follows. If the q-th element of brd is an integer h then
kq = |h| and eq = sign h. If the q-th element of brd is { iter, h } then
kq = |h| and eq = iter × sign h.

Recall the following property of the matrix W J (a specialisation of [O1,
Corollary 2.11] for the case when |eq| = 1 for q �∈ J):

Sign b = Sign W J −
∑
q∈J

(eq − sign eq) , Null b = µ(F ) + NullW J ,

det b = ± detW J

where µ(F ) is the number of connected components of the Seifert surface.
As above, µ(F ) = m− Card{k1, . . . , kn}.
Example 4. Computation of the determinant of the torus knot (2, n).

In[10]:= ssmW[2,{{n,1}}]
Out[10]= {{n}}
In[11]:= W=ssmW[2,{1,1,{n-2,1}}]
Out[11]= {{-2 + n, 0, 1}, {0, -2, 1}, {1, 1, -1}}
In[12]:= Det[W]

Out[12]= n

Example 5. Computation of d
(k)
3,3(e2) mod 5 and d

(k)
1,5(e2) mod 25 (see

the last two lines of Table 8 in section 4.7) for k = 1.

In[13]:= alpha1=13; alpha2=6;

In[14]:= b=Join[b1,{{1-e1,5},{e1,3}},b2,{{1-alpha1,6}},bb2,
{{-e2,5},{1+e2,3},{-beta1,4}},b3[3],{{1-beta2,4}},De];

In[15]:= W=ssmW[8,b];

In[16]:= d=Det[W//.{beta1->3,beta2->3,e1->12-alpha2-e2}]/16
2

Out[16]= 6817 - 1200 e2 + 300 e2
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This is d = d
(1)
3,3(e2) as a polynomial in e2. It is clear that d ≡ 2 mod 5 for

any e2, hence d cannot be ±n2.

In[17]:= d=Det[W//.{beta1->1,beta2->5,e1->12-alpha2-e2}]/16
2

Out[17]= 2833 - 624 e2 + 108 e2

In[18]:= Union[Table[ Mod[d//.e2->n,25], {n,25} ]]

Out[18]= {2, 3, 7, 8, 12, 13, 15, 17, 18, 22, 23}

This is the set of all possible values of d
(1)
1,5(e2) mod 25. Its intersection

with the set of possible values of ±n2 mod 25 is empty. Indeed,

In[19]:= Union[Table[Mod[n*n,25],{n,25}],Table[Mod[-n*n,25],{n,25}]]
Out[19]= {0, 1, 4, 6, 9, 11, 14, 16, 19, 21, 24}

A.3 The implemented algorithms. The algorithm implemented in
the program SeifertMatrix is a modification of the algorithm described
in [O1, Section 2.5]. It is based on the following observation. Let b =
σε1

k1
. . . σεn

kn
, εq = ±1. Let F be the Seifert surface of b constructed in

[O1, Section 2.5]. We shall denote the Seifert form by V (x, y), x, y ∈
H1(F ). Let us choose the base x1, . . . , xs of H1(F ) as in [O1]. Its elements
correspond to the bounded regions (we shall denote them by X1, . . . ,Xs)
of the complement of the standard projection of the braid b onto the plane.

It is easy to check that the description of the form V given in [O1] can
be reformulated as follows. V (xµ, xν) =

∑n
q=1 Vq(xµ, xν) is the sum of the

local contributions over all the crossings. All the non-zero contributions of
the q-th crossing (i.e. of the factor σ

εq

kq
) are

Vq(xci(q), xcj(q)) = (aij + εqbij)/2
where Xc1(q), . . . ,Xc4(q) are the regions which are respectively to the left,
right, up, and down from the crossing point and aij, bij are the entries of
the matrices

A =




0 1 −1 0
−1 0 1 0
0 0 0 0
1 −1 0 0


 and B =



−1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0


 .

The algorithm is as follows. We prepare a zero n×n-matrix V . Its rows
and columns correspond to the extended set of the regions X1, . . . ,Xn to
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whom we added those which are unbounded from the right. We numerate
the regions according to their left corners. Then we skip the crossings from
the left to the right accumulating their contributions in the matrix V .
Between each two iterations (i.e. between two crossings) the list X con-
tains the indices of all the regions intersected by a vertical line which passes
between the crossing. At the end, we delete the rows and columns indexed
by the list X (they correspond to the unbounded regions). Since we know
from advance that the last region will be deleted, we use it as the “dummy
region” throughout the computation.

The algorithm implemented in the program ssmW is that from [O1,
Section2.6] modified in a similar way.
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