IRREDUCIBILITY OF LEMNISCATES

S. Yu. Orevkov

Abstract. We prove that lemniscates (i.e., sets of the form $|P(z)|=1$ where P is a complex polynomial) are irreducible real algebraic curves.

A lemniscate (or polynomial lemniscate) is a real curve in \mathbb{C} given by the equation $|P(z)|=1$ where $P(z)$ is a non-constant polynomial with complex coefficients.

We say that a subset of \mathbb{R}^{2} is an irreducible real algebraic curve if it is the zero set of an irreducible over \mathbb{C} real polynomial in two variables. We prove in this note that
any lemniscate is an irreducible real algebraic curve in \mathbb{C}
(under the standard identification of \mathbb{R}^{2} and \mathbb{C}). This fact is an immediate consequence of Corollary 1 below. (indeed, since $\left\{[P \mid=1\}=\left\{\left|P^{d}\right|=1\right\}\right.$, any lemniscate can be defined via a polynomal which is not a power of another one).
Theorem 1. Let P and Q be two polynomials in one variable with complex coefficients. Then the polynomial $P(z) Q(w)-1$ is reducible if and only if

$$
P(z)=P_{1}(z)^{d} \quad \text { and } \quad Q(w)=Q_{1}(w)^{d}
$$

for $d>1$ and some polynomials $P_{1}(z)$ and $Q_{1}(w)$.
Corollary 1. Let $P(z)$ be a polynomial in one variable with complex coefficients and $f(x, y)$ be the real polynomial given by

$$
f(x, y)=P(x+i y) \bar{P}(x-i y)-1
$$

where \bar{P} is the polynomial whose coefficients are conjugates to those of P. Then $f(x, y)$ is reducible over \mathbb{C} if and only if $P(z)=P_{1}(z)^{d}$ for $d>1$ and a polynomial $P_{1}(z)$.
Proof. It is enough to apply Theorem 1 to P and \bar{P} after the linear change of variables $z=x+i y, w=x-i y$ in \mathbb{C}^{2}.

Remark 1. (F. B. Pakovich). If $P(z)$ and $Q(w)$ are arbitrary rational functions, then the problem of reducibility of the algebraic curve $P(z) Q(w)=1$ seems to be very hard. For example, in another particular case (in a sense, opposite to the ours), when $P(z)$ and $1 / Q(w)$ are polynomials, this problem is solved in [2] (up to finite number of cases) and in [1] (completely) but the solution relies on the classification of simple finite groups.

The rest of the paper is devoted to the proof of Theorem 1. Let

$$
P(z)=\prod_{j=1}^{k}\left(z-z_{j}\right)^{p_{j}}, \quad \operatorname{deg} P=p \quad \text { and } \quad Q(w)=\prod_{j=1}^{l}\left(w-w_{j}\right)^{q_{j}}, \quad \operatorname{deg} Q=q
$$

where z_{1}, \ldots, z_{k} are pairwise distinct as well as w_{1}, \ldots, w_{l}. Let C be the closure in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of the affine algebraic curve in \mathbb{C}^{2} given by $P(z) Q(w)=1$ (here we represent \mathbb{P}^{1} as $\mathbb{C} \cup\{\infty\}$).

Suppose that $P(z) Q(w)-1=f^{\prime}(z, w) f^{\prime \prime}(z, w)$ with non-constant polynomials f^{\prime} and $f^{\prime \prime}$. Let C^{\prime} and $C^{\prime \prime}$ be the corresponding subsets of C. We denote their local intersection numbers with the infinite lines $L_{1}=\mathbb{P}^{1} \times\{\infty\}$ and $L_{2}=\{\infty\} \times \mathbb{P}^{1}$ as follows:

$$
\begin{array}{lll}
\left(C^{\prime} \cdot L_{1}\right)_{\left(z_{j}, \infty\right)}=p_{j}^{\prime}, & \left(C^{\prime \prime} \cdot L_{1}\right)_{\left(z_{j}, \infty\right)}=p_{j}^{\prime \prime}, & (j=1, \ldots, k), \\
\left(C^{\prime} \cdot L_{2}\right)_{\left(\infty, w_{j}\right)}=q_{j}^{\prime}, & \left(C^{\prime \prime} \cdot L_{2}\right)_{\left(\infty, w_{j}\right)}=q_{j}^{\prime \prime}, & (j=1, \ldots, l) .
\end{array}
$$

Let $\left(p^{\prime}, q^{\prime}\right)$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right)$ be the bidegree of C^{\prime} and $C^{\prime \prime}$ respectively. Then

$$
p=p^{\prime}+p^{\prime \prime}, \quad q=q^{\prime}+q^{\prime \prime}, \quad p_{j}=p_{j}^{\prime}+p_{j}^{\prime \prime}, \quad q_{j}=q_{j}^{\prime}+q_{j}^{\prime \prime} .
$$

The germ of C at $\left(z_{j}, \infty\right)$ has equation $u^{q}=v^{p_{j}}$ in some local analytic coordinates (u, v). So, it has $\operatorname{gcd}\left(q, p_{j}\right)$ local branches which are distributed in some proportion between C^{\prime} and $C^{\prime \prime}$. By comparing the the degree of the projections of the germs of C^{\prime} and $C^{\prime \prime}$ onto the coordinate axes, we conclude that $p_{j}^{\prime} / p_{j}^{\prime \prime}=q^{\prime} / q^{\prime \prime}$. Similarly, $q_{j}^{\prime} / q_{j}^{\prime \prime}=p^{\prime} / p^{\prime \prime}$. We denote these quotients by α and β respectively. Since $\sum p_{j}^{\prime}=p^{\prime}$ and $\sum p_{j}^{\prime \prime}=p^{\prime \prime}$, we obtain

$$
\beta p^{\prime \prime}=p^{\prime}=p_{1}^{\prime}+\cdots+p_{k}^{\prime}=\alpha p_{1}^{\prime \prime}+\cdots+\alpha p_{k}^{\prime \prime}=\alpha p^{\prime \prime}
$$

whence $\alpha=\beta$. Let $\alpha=d^{\prime} / d^{\prime \prime}$ with coprime d^{\prime} and $d^{\prime \prime}$. Since

$$
\frac{p_{1}^{\prime}}{p_{1}^{\prime \prime}}=\cdots=\frac{p_{k}^{\prime}}{p_{k}^{\prime \prime}}=\frac{q_{1}^{\prime}}{q_{1}^{\prime \prime}}=\cdots=\frac{q_{l}^{\prime}}{q_{l}^{\prime \prime}}=\frac{d^{\prime}}{d^{\prime \prime}},
$$

we obtain $p_{j}^{\prime}=a_{j} d^{\prime}, p_{j}^{\prime \prime}=a_{j} d^{\prime \prime}$ and $q_{j}^{\prime}=b_{j} d^{\prime}, q_{j}^{\prime \prime}=b_{j} d^{\prime \prime}$ for some integers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{l}. Hence $p_{j}=p_{j}^{\prime}+p_{j}^{\prime \prime}=a_{j} d$ and $q_{j}=b_{j} d$ for $d=d^{\prime}+d^{\prime \prime}$, and we finally obtain $P(z)=P_{1}(z)^{d}$ and $Q(w)=Q_{1}(w)^{d}$ with

$$
P_{1}(z)=\prod_{j=1}^{k}\left(z-z_{j}\right)^{a_{j}} \quad \text { and } \quad Q_{1}(w)=\prod_{j=1}^{l}\left(w-w_{j}\right)^{b_{j}} .
$$

I am gateful to Fedor Pakovich for suggesting the problem and stimulating discussions.

References

1. Pierrette Cassou-Nogus and Jean-Marc Couveignes, Factorisations explicites de $g(y) h(z)$, Acta Arith. 87 (1999), no. 4, 291-317.
2. Walter Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
