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Abstract. We prove that lemniscates (i.e., sets of the form |P (z)| = 1 where P is
a complex polynomial) are irreducible real algebraic curves.

A lemniscate (or polynomial lemniscate) is a real curve in C given by the equation
|P (z)| = 1 where P (z) is a non-constant polynomial with complex coefficients.

We say that a subset of R2 is an irreducible real algebraic curve if it is the zero
set of an irreducible over C real polynomial in two variables. We prove in this note
that

any lemniscate is an irreducible real algebraic curve in C

(under the standard identification of R2 and C). This fact is an immediate conse-
quence of Corollary 1 below. (indeed, since {[P | = 1} = {|P d| = 1}, any lemniscate
can be defined via a polynomal which is not a power of another one).

Theorem 1. Let P and Q be two polynomials in one variable with complex coeffi-

cients. Then the polynomial P (z)Q(w)− 1 is reducible if and only if

P (z) = P1(z)
d and Q(w) = Q1(w)

d

for d > 1 and some polynomials P1(z) and Q1(w).

Corollary 1. Let P (z) be a polynomial in one variable with complex coefficients

and f(x, y) be the real polynomial given by

f(x, y) = P (x+ iy)P̄ (x− iy)− 1

where P̄ is the polynomial whose coefficients are conjugates to those of P . Then

f(x, y) is reducible over C if and only if P (z) = P1(z)
d for d > 1 and a polynomial

P1(z).

Proof. It is enough to apply Theorem 1 to P and P̄ after the linear change of
variables z = x+ iy, w = x− iy in C2. �

Remark 1. (F. B. Pakovich). If P (z) and Q(w) are arbitrary rational functions,
then the problem of reducibility of the algebraic curve P (z)Q(w) = 1 seems to be
very hard. For example, in another particular case (in a sense, opposite to the
ours), when P (z) and 1/Q(w) are polynomials, this problem is solved in [2] (up
to finite number of cases) and in [1] (completely) but the solution relies on the
classification of simple finite groups.
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The rest of the paper is devoted to the proof of Theorem 1. Let

P (z) =
k∏

j=1

(z − zj)
pj , degP = p and Q(w) =

l∏

j=1

(w − wj)
qj , degQ = q

where z1, . . . , zk are pairwise distinct as well as w1, . . . , wl. Let C be the closure
in P1 × P1 of the affine algebraic curve in C2 given by P (z)Q(w) = 1 (here we
represent P1 as C ∪ {∞}).

Suppose that P (z)Q(w) − 1 = f ′(z, w)f ′′(z, w) with non-constant polynomials
f ′ and f ′′. Let C′ and C′′ be the corresponding subsets of C. We denote their local
intersection numbers with the infinite lines L1 = P1 × {∞} and L2 = {∞}× P1 as
follows:

(C′ · L1)(zj ,∞) = p′j , (C′′ · L1)(zj ,∞) = p′′j , (j = 1, . . . , k),

(C′ · L2)(∞,wj) = q′j , (C′′ · L2)(∞,wj) = q′′j , (j = 1, . . . , l).

Let (p′, q′) and (p′′, q′′) be the bidegree of C′ and C′′ respectively. Then

p = p′ + p′′, q = q′ + q′′, pj = p′j + p′′j , qj = q′j + q′′j .

The germ of C at (zj ,∞) has equation uq = vpj in some local analytic coordinates
(u, v). So, it has gcd(q, pj) local branches which are distributed in some proportion
between C′ and C′′. By comparing the the degree of the projections of the germs
of C′ and C′′ onto the coordinate axes, we conclude that p′j/p

′′

j = q′/q′′. Similarly,
q′j/q

′′

j = p′/p′′. We denote these quotients by α and β respectively. Since
∑

p′j = p′

and
∑

p′′j = p′′, we obtain

βp′′ = p′ = p′1 + · · ·+ p′k = αp′′1 + · · ·+ αp′′k = αp′′

whence α = β. Let α = d′/d′′ with coprime d′ and d′′. Since

p′1
p′′1

= · · · =
p′k
p′′k

=
q′1
q′′1

= · · · =
q′l
q′′l

=
d′

d′′
,

we obtain p′j = ajd
′, p′′j = ajd

′′ and q′j = bjd
′, q′′j = bjd

′′ for some integers a1, . . . , ak
and b1, . . . , bl. Hence pj = p′j + p′′j = ajd and qj = bjd for d = d′ + d′′, and we

finally obtain P (z) = P1(z)
d and Q(w) = Q1(w)

d with

P1(z) =

k∏

j=1

(z − zj)
aj and Q1(w) =

l∏

j=1

(w − wj)
bj .

I am gateful to Fedor Pakovich for suggesting the problem and stimulating dis-
cussions.
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