
COUNTER-EXAMPLES TO THE"JACOBIAN CONJECTURE AT INFINITY"S.Yu. OrevkovTo Anatoliy Georgievih Vitushkin for his 70-th birthdayIntrodutionThe well-known Jaobian Conjeture (see surveys [17℄, [3℄) is as follows:Jaobian Conjeture (JC). Let P (x; y) and Q(x; y) be polynomials with omplexoeÆients whose jaobian P 0xQ0y�P 0yQ0x is identially equal to one. Then the map-ping C2 ! C2, (x; y) 7! (u; v) = �P (x; y); Q(x; y)� is one-to-one (or, in algebrailanguage: the ring homomorphism C[u; v℄ ! C[x; y℄, u 7! P (x; y), v 7! Q(x; y) isan isomorphism).De�nition 0.1. A pair (U; l) where U is a smooth analyti surfae and l � Ua smooth ompat (i.e. isomorphi to CP1) urve of self-intersetion +1, will bealled a (+1)-pair.Let us all a (+1)-pair (U; l) at if U is biholomorphially equivalent to a subsetof CP2 (it is lear, that suh a biholomorphism maps l onto a line).A meromorphi immersion (respetively, embedding) of a (+1)-pair (U; l) into C2is a pair funtions meromorphi on U suh that the both of them are holomorphion U n l and the mapping U n l ! C2 de�ned by these funtions is an immersion(respetively, embedding).The index of a meromorphi immersion of a (+1)-pair f : U nl! C2 is by de�nedas the degree of the Gauss mapping Gf :M ! S3 whereM = ��V is the boundaryof a tubular neighbourhood V of l with the reversed orientation (the mapping Gftakes p 2M into the positive normal vetor to the hyperplane f�(TpM)).The Jaobian Conjeture an be equivalently reformulated as follows:Any meromorphi immersion of a at (+1)-pair into C2 is an embedding.Indeed, if (U; l) is a at (+1)-pair then one may onsider l as the in�nite line in C2and U as its neighbourhood. Then any funtion, holomorphi on U nl, is extendableto the whole C2 by the theorem of removing ompat singularities. Moreover, if itis meromorphi on U , it is a polynomial.A natural question arises:1 an one omit the hypothesis that the (+1)-pair isat? In other words, does the following onjeture hold:1This question (maybe, not so onretely formulated) was posed to me by A.G. Vitushkinwhen I was his graduate student. Typeset by AMS-TEX1



2 S.YU. OREVKOVWeak Jaobian Conjeture at In�nity (WJC1). Any meromorphi immer-sion of a (+1)-pair into C2 is an embedding.In the paper [13℄, I onstruted a ounter-example to this onjeture. Later, Ionstruted many other analogous ounter-examples to WJC1 (unpublished) butall of them were not extendable to ounter-examples to JC beause they had toobig index.But it is lear that The index of a meromorphi immersion of a at (+1)-pairis equal to one. Indeed, it is equal to DG(F jS3r ) for r � 1 where F : C2 ! C2is a polynomial mapping whose jaobian is equal to one, S3r is the sphere of radiusr (oriented as the boundary of a ball), and DG(') denotes the degree of Gaussmapping assoiated to an immersion '. It remains to note that the funtion g(r) =DG(F jS3r ) is ontinuous, hene, onstant and that F jS3r is an embedding for r � 1,i.e. g(r) = 1.Beause of this, I formulated a new onjeture whih I announed at severalonferenes:Jaobian Conjeture at In�nity (JC1). Any meromorphi immersion of a(+1)-pair into C2 whose index is equal to one, is an embedding.In this paper we onstrut a ounter-example to this onjeture also:Proposition 0.2. There exists a (+1)-pair (U; l) and its meromorphi immersionf : U n l! C2 of index 1, whih is not an embedding.Suh a meromorphi immersion of a (+1)-pair is onstruted in x3. The (+1)-pair (U; l) onstruted in x3 is not at, i.e. it an not provide a ounter-example toJC. It is proved in x4, Setions 4.1 { 4.2 analysing the oeÆients of polynomialsP (x; y) and Q(x; y) whih ould realize the given immersion. (in Set. 4.3, wegive a simple but not rigorous topologial explanation of this fat). Sine we analways hoose a stritly pseudo-onvex tubular neighbourhood of l (see. [13; x2℄),the non-extendibility of the onstruted ounter-example to JC1 up to a ounter-example to JC implies an amazing onsequene. To formulate it, we need one morede�nition.De�nition 0.3. In immersion f of a smooth oriented (2n � 1)-manifold Z to aomplex n-manifold Y is alled stritly pseudo-onvex if any point z 2 Z has aneighbourhood V � Z suh that f(V ) is a part of the boundary (taking in aountthe orientations) of some stritly pseudo-onvex domain in Y . Reall, that a regularhomotopy is suh a homotopy fftgt2[0;1℄ that ft is an immersion for any t. If inaddition, eah ft is stritly pseudo-onvex then suh a homotopy is alled stritlypseudo-onvex.Proposition 0.4. There exists a stritly pseudo-onvex immersion of the spheref : S3 ! C2 whih is regularly homotopi to an embedding but is not stritlypseudo-onvexly homotopi to an embedding.This proposition is proved in x5. At the same time, we prove Proposition 5.6 onthe uniqueness of an extension of a pseudo-onvex immersion of the 3-sphere up toan immersion of the 4-ball.In the paper [13℄, we gave a omplete proof that the example onstruted theresatis�es the required properties. But the onstrution was exposed, using the shoolgeometry language, without an "analysis of the problem". Probably, this aused



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 3some diÆulties to understand how the example was onstruted and how to on-strut other similar examples. In this paper, I tried to �ll this gap by addingSet. 2.4. In this setion we also disuss some parallelism between our approah toJC and those from the papers [10℄ and [9℄.It is P. Cassou-Nogues who alled my attention to some orrespondene between[13℄ and [9℄. I am grateful to her for this and for other useful disussions. I amgrateful also to my teaher A.G. Vitushkin due to whom I started to work on theJaobian Conjeture. x1. Preliminaries1.1. Dual graphs of reduible urves and their splie diagrams.Let D be a urve on a smooth analyti surfae suh that all its irreduible ompo-nents D1; : : : ; Dn are isomorphi to CP1, meet eah other transversally and at mostpairwise. We all dual graph or just graph of D the graph �D whose verties orre-spond to irreduible omponents of D and edges orrespond to their intersetions.To eah vertex we assoiate its weight whih is equal to the self-intersetion of theorresponding irreduible omponent. If it does not lead to a misunderstanding,we shall use the same notation for a urve and its graph.If C is a smooth urve (not neessarily ompat) meeting transversally D thenwe de�ne the graph of C near D as the graph �D;C obtained from the graph ofD by adding verties orresponding to loal branhes C1; : : : ; Cr of C near D (wedepit these verties as arrowheads). The vertex orresponding to a loal branhCi is onneted by a single edge to the vertex orresponding to the omponent Djwhih meets Ci. The weight of Ci is not de�ned.Example. If D and C are a line and a oni on CP2 then �D;C = ��+1Æ�!.The determinant of a urve D is by de�nition the determinant of the minusintersetion matrix: detD = det k�DiDjkni;j=1.From now on, we assume that the graph of D is a tree (i.e. a onneted graphwithout yles). We all a branh of D at a vertex Di a onneted omponent ofthe losure of D nDi.A linear hain is a graph with verties v1; : : : ; vn and edges [v1; v2℄; [v2; v3℄; : : : ; [vn�1; vn℄.A splie diagram of a urve D (respetively, of a urve C near a urve D) isde�ned as a graph �D (respetively, �D;C), obtained from �D (respetively, from�D;C) by replaing some (for instane, all) linear hains by a single edge. Toeah beginning of edge oming from a non-end vertex Di, we assoiate the numberequal to the determinant of the branh of D at the vertex Di whih grows to thediretion of this edge (this de�nition slightly di�ers from the original de�nition ofsplie diagram introdued by Eisenbud and Neumann in [6℄).Proposition 1.1. (Edge determinant formula; see [6℄, [11℄). Let �D be a spliediagram of a tree D of urves with simple normal rossings. Let u and v be vertiesof �D onneted to eah other by an edge. Let E be the linear hain of irreduibleomponents of D orresponding to the edge uv (the urves orresponding to theverties u and v themselves are not inluded into E). Suppose that � looks as inFig. 1 near the edge uv. ThendetD � detE = a0b0 � (a1 : : : ak) � (b1 : : : bn):



4 S.YU. OREVKOV
a1 b1

ak

a2 a0

. .
 .

. .
 .

b0
b2

bnFig. 11.2. Transformation of the determinant of the intersetion matrix un-der a proper analyti mapping. The objet of this subsetion is to prove thefollowing not diÆult statement (it was used in [5℄).Proposition 1.2. Let f : eX ! X be a proper analyti mapping of smooth omplexsurfaes. Let D = D1 [ � � � [Dn be ompat urves on X and eD = eD1 [ � � � [ eD~n =f�1(D). Then:(a). det eD = 0 if and only if detD = 0.(b). Suppose that eD1 is the only irreduible omponent of the urve f�1(D1)whih is not onstruted to a single point by f . Let us denote the losures of D nD1and eD n eD1 by D0 and eD0 respetively. Let m be the degree of f j eD1 and n thebranhing order of f along eD1 (i.e. the jaobian of f has zero of order n � 1 oneD1). Then det eD0det eD = nm � detD0detD : (1)Moreover, if one of the denominators in (1) is zero then the other also is zero.Proof. (a). First, let us prove that detD = 0 implies det eD = 0. Indeed, ifdetD = 0 then there exists a non-zero divisor E =PxiDi suh that ED1 = � � � =EDn = 0. Then f�(E) is a non-zero divisor whose support is ontained in eD andf�(E) � eDj = E � f�( eDj) = 0 for all j. Hene, det eD = 0.Now, let us prove that det eD = 0 implies detD = 0. Indeed, if det eD = 0 thenthere exists a non-zero divisor eE =P ~xi eDi suh thateE eD1 = � � � = eE eD~n = 0: (2)Then f�( eE) is a divisor whose support is ontained in D and f�( eE) � Dj = eE �f�(Dj) = 0 for all j. Hene, the equality detD = 0 would follow from the fat thatf�( eE) 6= 0. Suppose that f�( eE) = 0. This means that the support of the divisor eEis onentrated in the preimage of a �nite set of points. But the intersetion matrixof irreduible omponents of a ompat urve ontratible to a point by an analytimapping is negative de�nite. Hene, eE2 < 0. This ontradits to (2).(b). In virtue of (a), we may assume that the both denominators in (1) are non-zero. Let us denote by E = PxiDi and eE = P ~xi eDi the divisors with rationaloeÆients, dual to D1 and eD1 respetively. It means thatE �D1 = 1; E �Di = 0 for i > 1; eE � eD1 = 1; eE � eDi = 0 for i > 1. (3)The existene of the divisors E and eE easily follows from the fat that the inter-setion matries are non-degenerate. Indeed,(x1; : : : ; xn) = B(1; 0; : : : ; 0); (~x1; : : : ; ~x~n) = eB(1; 0; : : : ; 0); (4)



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 5where B = kbijk = A�1, A = kDiDjkni;j=1, eB = k~bijk = eA�1 and eA = k eDi eDjk~ni;j=1.We have f�( eD1) = mD1, hene, f�( eE) = m~x1D1 + F where D1 62 suppF , andhene, by (3), E � f�( eE) = m~x1: (5)Analogously, f�(D1) = n eD1+ eF1 where eD1 62 supp eF1 and hene, f�(E) = nx1 eD1+eF2 where eD1 62 supp eF2. Hene, by (3) we havef�(E) � eE = nx1: (6)Putting (5) and (6) into the equality E �f�( eE) = f�(E) � eE, we get ~x1 = (n=m) �x1.Note that x1 = b11 and ~x1 = ~b11 by (4). Finally, by Cramer rule, we haveb11 = detD0detD and ~b11 = det eD0det eD :1.3. A formula for the anonial lass of a blown up (+1)-pair. Let (U; l)be some (+1)-pair (for example, l is the in�nite line of the aÆne plane C2) and let� : X ! U be a omposition of blow-ups "at in�nity", i.e. �jXnL : X n L ! U n lis an isomorphism where L = ��1(l). Let L0 be the proper preimage of the line l.Prolaim 1.3. (a). L be the line of rational urves, detL = �1.(b). The determinant of any branh of L at the vertex L0 is equal to one.(). Let L1 is an irreduible omponent of L, di�erent from L0. Consider thebranhes of L at the vertex L1 whih does not ontain L0. Among these branhes,there is at most one whose determinant is not equal to one.Proof. Indution by the number of the blow-ups. �Let L0; : : : ; Ln be the irreduible omponents of L. Suppose that the anon-ial lass KX of X is representable by a divisor supported by L, i.e. there is ameromorphi 2-form ! on X whih neither has zeros nor poles outside of L. LetKX =X kjLj :We are still assuming that L0 is the proper transform of l. The irreduible ompo-nents are numbered arbitrarily, hene any irreduible omponent di�erent from L0an be onsidered as the urve L1 in the next proposition.
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6 S.YU. OREVKOVProposition 1.4. (see. [14℄). (a). k0 = �3.(b). Let us denote the weights of the splie diagram of L, situated along theshortest path from L0 to L1, as in Fig. 2 (see Proposition 1.3). Thenk1 = �1� q0 � p0 + mXj=1 q0 : : : qj�1(qj � 1)(pj � 1):1.4. Coverings branhed along linear hains. As in [13℄, we shall use thelanguage of tori varieties to desribe overings branhed along linear hains ofrational urves. An equivalent desription not involving tori varieties see in [2;III, x5℄. Sine we need a very small portion of the theory of tori varieties, for thereader's onveniene we give all the de�nitions and statements that we use.1.4.1. Fans and tori surfaes. Let us identify Z2^Z2 = Z, i.e. (a; b)^(; d) willdenote ad�b. For e1; e2 2 Z2, let us denote the one fx1e1+x2e2 j xi 2 R; xi > 0gby he1; e2i, and let hei = he; ei (the ray in the diretion e). A vetor e 2 Z2 is alledprimitive if it annot be presented in the form me0, e0 2 Z2, m 2 Z. We all a fana olletion of distint primitive integral vetors � = (e0; : : : ; er+1) � Z2 suh thatei ^ ei+1 > 0 for all i = 0; : : : ; r and the ones he0; e1i; : : : ; her; er+1i are pairwisedisjoint. If ei ^ ei+1 = 1 for all i = 0; : : : ; r then the fan is alled primitive.Let us denote uj = ej and vj = ej+1. The tori surfae assoiated to a primitivefan � is the smooth algebrai surfae X� glued out of harts U0; : : : ; Ur isomorphito C2. The hart Uj with oordinates (xj ; yj) orresponds to the one huj ; vji andthe transition funtions are:( xi = xaj yjyi = xbj ydj where � uj = aui + bvivj = ui + dviIt is lear that X ontains a Zariski open subset isomorphi to T2 = (Cn0)2 whihis de�ned by the inequality xiyi 6= 0 in any oordinates xi; yi.Proposition 1.5. Let � be a primitive fan and E = X� n T2. Then E = E0 [� � � [ Er+1. Moreover,(a). Ej is de�ned by xj = 0 in the oordinates (xj ; yj), by yj�1 = 0 in theoordinates (xj�1; yj�1), and Ej does not meet the other harts.(b). E0 e=Er+1 e=C and E1 e= : : : e=Er e=CP1.(). The self-intersetion E2j of Ej is equal to �ej�1 ^ ej+1, j = 1; : : : ; r.(d). det k�EiEjkri;j=1 = e0 ^ er+1.Proof. (a) { () follow immediately from the de�nitions; (d) is proved by indution,using (). �1.4.2. Mappings of tori surfaes. To a linear mapping A : Z2 ! Z2 and prim-itive fans e� = (~e0; : : : ; ~e~r+1) and � = (e0; : : : ; er+1), we assoiate a birationalmapping f = A� : Xe� ! X�. In oordinates (~xj ; ~yj) on Xe� and (xi; yi) on X�, itis de�ned byf(~xj ; ~yj) = (xi; yi); ( xi = ~xaj ~yjyi = ~xbj ~ydj where � A(~uj) = aui + bviA(~vj) = ui + dvi



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 7(As above, here ui = ei, vi = ei+1, and also ~uj = ~ej , ~vj = ~ej+1). A regular mappingof a fan e� to a fan � is alled a linear mapping A : Z2 ! Z2 suh that for anyone heuj ; evji there is a one hui; vii suh that f�h~uj ; ~vji� � hui; vii. It is easy tohek that in this ase A� is a regular (i.e. without indeterminay points) mappingXe� ! X�.The following properties follow immediately from the de�nitions and from Propo-sition 1.5.Proposition 1.6. Let A : Z2 ! Z2 be a regular mapping of primitive fans e�! �,and let f = A� : Xe� ! X�. Suppose also that A(h~e0i) = he0i and A(h~e~r+1i) =her+1i. Let us denote:N the degree of f ;n0 the order of branhing of f along eE0;n1 the order of branhing of f along eE~r+1(i.e. the jaobian of f has zero of order n0 � 1 on eE0 and zero of order n1 � 1 oneE~r+1);m0 the branhing order of f j eE0 at the point eE0 \ eE1;m1 the branhing order of f j eE~r+1 at the point eE~r \ eE~r+1.� = det k�EiEjkri;j=1, e� = det k� eEi eEjk~ri;j=1Then:(a). detA = N = m0n0 = m1n1;(b). A(~e0) = n0e0 and A(~e~r+1) = n1er+1;(). e� = n0n1N �:Corollary 1.7. Let the notation be as in 1.6. If the mapping f is not branhedalong eE~r then � = m0 e�. �A fan �0 = (e00; : : : ; e0r0+1) is alled a subdivision of a fan � = (e0; : : : ; er+1), ife00 = e0, e0r0+1 = er+1 and the identity mapping id : Z2 ! Z2 is a regular mappingof fans �0 ! �.Lemma 1.8. Any fan � has a primitive subdivision �0.Proof. For eah 2-dimensional one �, let us add as new generators all the vetorslying on ompat sides of the onvex hull of the set (Z2 \ ��) n f0g. �Propositions 1.9. Let e� = (e0; : : : ; ~e~r+1) and � = (e0; : : : ; er) be two fans and letA : Z2 ! Z2 be a linear mapping suh that A(h~e0i) = he0i and A(h~e~r+1i) = her+1i.Then there exist subdivisions e�0 and �0 of the fans e� and � suh that A is a regularmapping e�0 ! �0.Proof.1). Let us add to � the integral generators of the rays A(h~e0i); : : : ; A(h~e~r1i) andsubdivide the obtained fan up to a primitive one �0 = (e00; : : : ; e0r0+1).2). Let us add to e� the integral generators of the rays A�1(h~e00i); : : : ; A�1(h~e0r01i)and subdivide the obtained fan up to a primitive one e�0. �



8 S.YU. OREVKOVx2. Regular ompatifiation at infinityof a meromorphi immersion of a (+1)-pair2.1. Compati�ation at in�nity. Diritial omponents. Let us onsidersome algebrai ompati�ation X of the omplex plane C2 with simple normalrossings of the urve at the in�nity, i.e. X is a projetive surfae whih ontainsa urve L (generally, reduible) suh that X n L = C2. All suh ompati�ationsare obtained from CP2 with a hosen in�nite line by blow-ups and blow-downs atthe in�nity. The dual graph of L is a tree.Let (U; l) be a (+1)-pair and U n l! C2 a meromorphi immersion of it into C2.Blowing up points of l, it an be presented in the form f Æ ��1 where � : eX ! Uis a omposition of blow-ups and f : eX ! X a holomorphi mapping. The triple( eX;X; f) is alled a regular ompati�ation of the meromorphi immersion of the(+1)-pair (U; l) into C2. Let us denoteeL = ��1(l); eL1 = f�1(L); eLFC = eL n eL1;D = f(eLFC); eD = eD1 [ � � � [ eDd; eLC = eLFC n eDwhere eD1; : : : ; eDd are the diritial omponents of the mapping f , i.e. the irreduibleomponents of the urve eLFC suh that f is not onstant on them. The urve Dwill be alled the branhing urve.Proposition 2.1. (p. [12℄) (a). Irreduible omponents of the urve ~L are ratio-nal urves and the dual graph of ~L is a tree.(b). The urve eL1 is onneted.(). eLFC has d onneted omponents eL(1)FC ; : : : ; eL(d)FC.(d). The dual graph of eL(i)(FC) (i = 1; : : : ; d) is a linear hain (possibly, with asingle vertex) one of whose end verties orresponds to the diritial omponent eDi.(e). The urve eL(i)FC (i = 1; : : : ; d) uts eL1 at a single point and this pointbelongs to eDi (i = 1; : : : ; d).Let ni, i = 1; : : : ; d, be the branhing order of f along eDi, i.e. the jaobian of fvanishes on eDi with the multipliity ni � 1.Proposition 2.2. The anonial lass K eX of eX an be represented by a divisorsupported by eL and the multipliity of a diritial omponent Di in this divisor isni � 1.Proof. K eX is represented by the divisor of the form f�(dx ^ dy) where x; y are theaÆne oordinates in C2.2.2. Formula for the index of a meromorphi immersion of a (+1)-pair.De�nition 2.3. The loal multipliity at a point x 2 X of a ontinuous mappingof topologial spaes � : X ! Y is alled �x� = minU deg ��eU(x)� where the mini-mum is taken over all neighbourhoods U of �(x) and eU(x) denotes the onnetedomponent of f�1(U) whih ontains x.Let the notation be as in the previous subsetion. Let X� be the one-pointompati�ation of C2. Denote by eX� the singular surfae obtained from eX if eah



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 9onneted omponent of eah set f�1(x), x 2 X is ontrated to a single pointand also the urve eL1 is ontrated to a single point (whih we denote by 1).Then there exists a unique mapping f� : X� ! X suh that the following diagramommutes eX f�! X# #eX� f��! X�(the vertial arrows are the natural projetions). Let us denote the image of eDi oneX� by eD�i .Let, as in Set. 2.1, ni, be the branhing order of f along eDi, i.e. ni = �xf fora generi point x 2 eDi.Proposition 2.4. The index ind of the meromorphi immersion (U; l) ! C2 isequal to ind = �1f� � dXi=1 �ni + Xx2D�i nf1g(�xf� � ni)�: (7)Proof. Let us hoose oordinates (z; w) in C2 in suh a way that the line z = 0does not meet the urve D at the in�nity under the standard inlusion of C2 intoCP2. Denote the projetion (z; w) 7! z by � : C2 ! C.Denote the branh points of the mapping �jD : D ! C by p1; : : : ; pn, the orderof the branhing at pi by mi (i = 1; : : : ; n), and the degree of the urve D by m1.Let Bi, (i = 1; : : : ; n), be a ball of a suÆiently small radius entred at pi, and letB1 be a ball of a suÆiently large radius entred at the origin.Let V be a tubular neighbourhood of D whose radius is small with respetto the radii of the spheres Si. Let T = B1 \ �(��V ) n (B1 [ � � � [ Bn)� andS = (��B1) [ � � � [ (��Bn) [ �B1 (the minus means the orientation reversing).Let Ri, i 2 f1; : : : ; n;1g be a hypersurfae with a boundary (homeomorphi toseveral opies of S1�S1� [0; 1℄) whih smoothes the orner between �Bi and T asit is shown in Fig. 3.Eah sphere �Bi has exatly one point where the positive normal vetor is equalto (1; 0), moreover, its index (i.e. the ontribution into the degree of the Gaussmapping) is equal to �1 for i = 1; : : : ; n and +1 for i = 1. If the oordinates(z; w) are generi then this points is outside V . The surfae T has no suh points,and eah surfae Ri has mi suh points of index +1 for i = 1; : : : ; n and �1 fori =1.By the de�nition, ind is equal to the degree of the Gauss map assoiated to f j�Mwhere M is the boundary of the tubular neighbourhood of l in U or, whih is thesame, the boundary of a neighbourhood of eD� in eX�. The minus before M meansthe reversing of the orientation.The immersion f j�M an be deformed into an immersion whose image is inS [ R [ T . Extend the mapping � Æ f�j eD�j n1 : eD�j n 1 ! C up to a mappingf�j : eD�j ! C[f1g. The ontributions of the surfaes into the degree of the Gauss
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Fig. 3mapping are:S1 ! �1f�; R1 ! � dXj=1 nj � �1f�j ; T ! 0;Si ! �Xx2 eD�f�(x)=pi�xf�; Ri ! dXj=1 Xx2 eD�jf�(x)=pinj � �xf�j :Thus, denoting P = fp1; : : : ; png, we haveind = �1f� � nXi=1 Xx2 eD�f�(x)=pi�xf� � dXj=1 nj��1f�j � nXi=1 Xx2 eD�jf�(x)=pi�xf�j �= �1f� � dXj=1 Xx2 eD�jf�(x)2P�xf� � dXj=1 nj��1f�j � Xx2 eD�jf�(x)2P�xf�j �= �1f� � dXj=1 � Xx2 eD�jf�(x)2P(�xf� � nj) + njn�1f�j �Xx2eD�jf�(x)2P(�xf�j � 1)o�:It remains to note that by Riemann-Hurwitz formula applied to the branhed ov-ering f�j , the expression in the braes is equal to one. �Remark. In the ase of a meromorphi immersion of a at (+1)-pair de�ned by apolynomial mapping C2 ! C2 with a onstant jaobian, the fat that the righthand side of (7) is equal to one was proved in [12℄ by omputing the Euler hara-teristi. Proposition 2.4 is a generalization of this fat to the ase of meromorphiimmersions into C2 of arbitrary (+1)-pairs.2.3. Properties of splie diagrams of L and eL.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 11We may assume that L meets D transversally (otherwise we blow up D\L severaltimes). Then the formulas given in x1 together with Proposition 2.2 impose ratherstrong restritions for the splie diagrams of eL and L [D. We apply the formulasfrom x1 as follows:(1) we apply Proposition 1.3 to the splie diagrams of L and eL;(2) we apply Proposition 1.6() to eah edge of the splie diagrams;(3) we apply Proposition 1.1 to eah edge of the splie diagrams between vertiesof the valene � 3;(4) we apply Propositions 1.4 and 2.2 to the diritial omponents;(5) we apply Proposition 1.2 (if it is appliable) to eah non-linear onnetedomponent of the graph of L from whih some verties of the valene � 3are removed.In the papers [5℄, [4℄, it is shown that these restritions are suÆient to prove thatthere are no ounter-examples to the Jaobian Conjeture provided by a mappingof the topologial degree N � 4 (for N = 2 this is evident, and for N = 3 thisfollows from Abhyankar-Moh-Suzuki theorem, see [12℄).2.4. The ase of an irreduible branhing urve with two harateristipairs. Suppose that eL has a single diritial omponent eD, and that the branhingurve D = f( eD) has two harateristi pairs at the in�nity. This means that afterthe resolution of the singularity of D at the in�nity, its splie diagram near L hasthe form � Æj �Æj ! . Moreover, we shall suppose that the following additionalondition holds:(�) There exists an irreduible omponent of L whose preimage has only oneirreduible omponent whih is not ontratible by f into a single point(ompare with Proposition 1.2(b)).Under these assumptions, the splie diagrams of eD near eL1, of D near L, andof eL have the form depited in Fig. 4, Fig. 5 and Fig. 6. The blak vertex denotesthe proper transform of l under the mapping � : ( eX; eL)! (U; l).
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Fig. 4. Splie diagram �eL1; eD Fig. 5. Splie d. �L;DLet us introdue the following notation. Let Q2 and eQ2 be the determinants ofthe edges L1L2 and eL1eL2 of the splie diagrams �L and e�L, i.e. Q2 (respetively,eQ2) is the determinant of that omponent of the losure of the urve L n (L1 [L2),(the urve eL n (eL1 [ eL2)) whih is between L1 and L2 (between eL1 and eL2).
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~Fig. 6. Splie diagram �eLFor j = 1; 2 let us denote the degree of f jeLj by mj , the branhing order of falong eL1 by nj , and let m0j (respetively, dj) be the branhing order of f jeLj at thepoint of intersetion of eLj with that branh of eL at the vertex Lj whih ontains el,(respetively, whih has the determinant eDj). Let us also denote the degree of f j eDand the branhing order of f along eD by m and n.All the introdued integers are positive (the positivity of Rj see [11℄; from thetheory of approximation roots[1℄, it follows also that Rj > 1). They satisfy thefollowing relations. gd(D1; R1) = gd(D2; R2) = 1; (8)the edge determinant formula (Proposition 1.1) yields�Q2 = R2 �R1D1D2 (the edge L1L2 in L); (9)�x eQ2 = eS11 � eS12 eD1 eD2 (the edge eL1eL2 in eL1): (10)By Proposition 1.6 and Corollary 1.7, we haveD1 = d1 eD1; D2 = d2 eD2; eQ2Q2 = n1m2 = n2m01 ; eS12 = n2m = nm02 ; (11)and also see that the branhing orders at the points of eL1 and eL2, orrespondingto the edges of the splie diagram are:R1; : : : ; R1| {z }k0 ; d1; D1; : : : ; D1| {z }k1 ; m01; 1; : : : ; 1| {z }k01 for the urve eL1;m2; d2; D2; : : : ; D2| {z }k2 ; m02 for the urve eL2;this implies k0R1 = d1 + k1D1 = m01 + k01 = m1; d2 + k2D2 = m2; (12)m01 = k1 + k0; m02 = k2 + 1 (13)(the relation (13) is obtained from (12) and Riemann-Hurwitz formula).



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 13Applying Proposition 1.2 to the urve L itself and to its branh at the vertex L1ontaining L2, we geteD1 eS11x = n1m1 � R1D11 ; eD2 eQ2 eS12eS11 = n2m2 � Q2D21 : (14)Finally, by Proposition 2.2, the order of the jaobian of f on eD is equal to n� 1and by Proposition 1.4 it is equal to �1� a+ x, i.e.x = a+ n: (15)If the onsidered meromorphi immersion is realizable by polynomials P (x; y),Q(x; y) then (see Set. 4.1)degP (x; y) = k0 eD1 eD2 + aD1D2; degQ(x; y) = k1 eD1 eD2 + eD2 + aR1D2: (16)A �rst arbitrarily found solution of simultaneous equations allowed me to on-strut a ounter-example to WJC1 in [13℄.Proposition 2.5. The simultaneous equations (8) { (15) have a �nite number ofpositive integral solutions under the ondition that m1n1 = N = onst.Proof. From the equations (11), (14) and k0R0 = m1 (see (12)) we get m1 =mxd1d2R1, n1 = md2 eS11 , hene, m2xd1d22R1 eS11 = N . The other parameters alsoan be easily estimated via N . �I wrote a simple omputer program whih �nds all positive integral solutions of(8) { (15) for any given N = m1n1. For N < 9, there is no solution. For N = 9,there is a unique solutionR1 = 3; D1 = eD1 = 4; m1 = 9; n1 = 1; eQ2 = 5; n = 2;R2 = 23; D2 = eD2 = 4; m2 = 5; n2 = 1; Q2 = 25; a = 1: (17)This solution allows one to onstrut the simplest ounter-example to WJC1. Ifthis solution were a ounter-example to JC then, by (16), the degrees of P andQ would be 48 and 64. The solution (17) is disussed in [9; x3℄. There is exatlyfour solutions with max(degP; degQ) < 100. They orrespond exatly to the fourdiÆult ases in Moh's paper [10℄.The example whih we onstrut in x3 orresponds to the solutionR1 = 3; D1 = eD1 = 20; m1 = 21; n1 = 1; eQ2 = 17; n = 4;R2 = 112; D2 = eD2 = 3; m2 = 4; n2 = 2; Q2 = 68; a = 3:x3. Constrution of the example3.1. The mapping of graphs. We shall onstrut a meromorphi immersion ofa (+1)-pair into C2 with a single diritial omponent eD whose image D = f( eD)has two harateristi pairs at the in�nity and whose regular ompati�ation atthe in�nity indues the mapping of the graphs of eL and D [ L depited in Fig. 7.The blak verties "�" in Fig. 7 orrespond to the urves whih are ontrated byf into a single point. The mapping of linear hains e� ! � is given in Set. 3.3.2.



14 S.YU. OREVKOV

-1 -1 -1

-6 -1

-1

-1 -2 -3 -2 -2 -2 -2 -1-2

v1 2v

-6 -3

-2

-6 -3

-2

7

-1 -1 -1

-3

-1 -1

-1

-3 -3. . .
-1

-7

-1

-1

-3

-2

-2

-2

-2

-4

-1 -4

-9

7

-42 -5

-1

. .
 . 13

. .
 .

1v

D

D

. .
 .u0

u1 u

2v

2

7
-1

-4

-3

-1
-3

-2-2-3

-1 -3 -2

-2

-7

-2

20:1

1:1

3:1 3:1. . . 6:1 2:1

1:1

1:1

8:1
(4,2)(21,1) 4:1 (4,1)

(6,1)

1:1

5:1
-1-2-3-1

-6

2:1

2:1

(6,1)

(6,1)

2:1

-6 -1

-1

-1 -1 -1

3:1

3:1

3:1

3:1

4:1

4:1

4:1

2:1 2:1

2:1 2:1

2:1 2:1
-3 -2

Γ

Γ

Γ

Γ

Fig. 7In Fig. 7, we also show the resolutions of loal branhes of the urve D and theregularization of f over them.In the piture of the graph of eL (Fig. 7, upper part) is also equipped with thefollowing information onerning the mapping f . A mark of the form N : 1 neara linear hain (an edge of the splie diagram) means that the degree of f at itsneighbourhood is N . A mark of the form (m;n) near a vertex of the valene � 3(denote the orresponding urve by A) means that the degree of f jA is m and thebranhing order of f along A is n.3.2. Constrution of the branhing urve.Lemma 3.1. There exists a urve D, parametrized by a polynomial mapping g :C ! C2, t 7! �p(t); q(t)� where p(t) and q(t) are polynomials of degrees 60 and 9



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 15respetively, and pairwise distint points t1; : : : ; t7 2 C n f0g suh that(a). g(0) = (0; 0), and gjCnf0;t1;:::;t7g is an immersion, i.e. p0(t) 6= 0 and q0(t) 6=0 for t 62 f0; t1; : : : ; t7g;(b). the splie diagram of D at the in�nity is as in Fig. 8;(). the loal branh of D parametrized by a neighbourhood of 0 has the spliediagram at the origin depited in Fig. 9, i.e. it has the singularity de�nedby u2 = v5 in some loal oordinates (the singularity of the type A4);(d). for all k = 1; : : : ; 7, the loal branh of D, parametrized by a neighbourhoodof tk has the splie diagram depited in Fig. 10, i.e. it has the singularityde�ned by u2 = v3 in some loal oordinates (the singularity of the type A2);
3
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1Fig. 8 (t =1) Fig. 9 (t = 0) Fig. 10 (t = tk)The onditions (b) and () of Lemma 3.1 are equivalent to the fat that thegraph of resolution of the urve at the in�nity (of the loal branh at t = 0, att = tk) is as in Fig. 11 (in Fig. 12, in Fig. 13).
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Fig. 11 (t =1) Fig. 12 (t = 0) Fig. 13 (t = tk)Proof. By linear hanges of oordinates, the polynomials p and q an be put intothe form p(t) = t60 + : : : and q(t) = t9 + : : : . The ondition (b) of Lemma 3.1means that there exists a polynomial G(u; v) of the formG(u; v) = u3 � v20 + X20i+3j<60i;j�0 Cijuivjsuh that degtG�p(t); q(t)� = 112: (18)The ondition () of Lemma 3.1 means that there exist onstants 1 and 2 suhthat ordt=0 � p(t)� 1q(t)� 1q(t)2 � = 5: (19)The ondition (d) of Lemma 3.1 means that for k = 1; : : : ; 7,p0(tk) = q0(tk) = 0; (20)p00(tk)q000(tk) 6= q00(tk)p000(tk): (21)



16 S.YU. OREVKOVSine deg q0 = 8 and q0(0) = 0, the ondition (20) is equivalent to the fat thatf0; t1; : : : ; t7g are the roots of q0, and there exists a polynomial r(t) of degree 51suh that p0(t) = r(t) � q0(t): (22)The ondition (18), (19), (21) and (22) provide a system of simultaneous equationsand inequalities for the unknowns 1, 2 and for the oeÆients of q, r and G (theoeÆients of p an be found from (22) and p(0) = 0).This system has a solution:1 = � 3236876211189240090684846733 ; 2 = 30833889663060410338673 ;q(t) = t9 + 3 t6 + 5417 t3 + 3�t2; where � = � 3617 3q 14734r(t) = 203 �t51 + 17 t48 + 137 t45 + 17� t44 + 681 t42 + 238� t41 + 501054221 t39++1561� t38 + 119�2 t37 + 8626217 t36 + 6160� t35 + 1309�2 t34 + 1932222289 t33++ 26351617 � t32 + 6622�2 t31 � 900938944913 t30 + 39723217 � t29 + 19250�2 t28�� 8461330354913 t27 + 3005266289 � t26 + 54388417 �2 t25 � 4995793089183521 t24�� 4205386244913 � t23 + 35327617 �2 t22 � 9129829078783521 t21 � 101367959289 � t20�� 9780232289 �2 t19 � 11620529937071419857 t18 � 5660302417083521 � t17 � 8073770324913 �2 t16+ 7662180839221419857 t15 � 4545091805183521 � t14 � 14426037014913 �2 t13 + 4692111626370624137569 t12++ 2303395553521419857 � t11 � 1939524625583521 �2 t10 + 1413944975064438410338673 t9++ 6213933385921419857 � t8 + 624561121883521 �2 t7 + 554559678398538410338673 t6++ 820458619365624137569 � t5 + 427317579083521 �2 t4 � 35248608667851486975757441 t3++ 27750500696754410338673 � t2 � 485531431678386090684846733 � ;G(u; v) = u3 + 12569434722667023599752415841411674 u2++ u � � 36795442 v12 + 14347938063869 v11 � 674442661861085773 v10 � 137300874259560313788397 v9++ 2580726046707594885181369693466 v8+ 128472519510619218001541642394461 v7� 1112181512392833344850034271896307633 v6��� v20 + 44017 v19 + 137380289 v18 � 155703160083521 v17 + 7858270459414524955406632 v16++ 5956885860588398964901514064581 v15 + 15055946520458773867110260537564663909 v14�� 3286758414687687627327372075295356187869701 v13 :One an hek that the polynomial t�1q0(t) is irreduible over Q(�), hene, itsroots t1; : : : ; t7 are distint. Lemma 3.1 is proved �Remark 3.2. After the hange of oordinates t = �s, the oeÆients of polynomialsp(t) and q(t) beomes rational.Remark 3.3. The number of the unknowns in the system (18), (19), (22) exeedsthe number of the equations. Therefore, to simplify the omputations, we set theoeÆients of t8, t7, t5 and t4 in q(t) to be zero from the very beginning.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 173.3. Constrution of the overing of the edges of the splie diagram. Foreah linear hain in the graphs in Figures 11{13, we shall onstrut a overing overa neighbourhood of the union of the orresponding urves.3.3.1. Covering over the edge �7Æ����3Æ�� (Fig. 11).Aording to Proposition 1.5, a neighbourhood of the orresponding urve an beembedded into a tori surfae assoiated to the fan� = � 1 1 6 170 1 7 20� ; and let A = � 1 170 20� ; e� = � 1 00 1� :Here and further, the fans are represented by matries whose olumns orrespondto the vetors. Applying to A, e� and � the proedure desribed in Proposition 1.9,we obtain primitive fans�0 = � and e�0 = �1 3 2 1 1 1 1 1 1 1 00 1 1 1 2 3 4 5 6 7 1� :Here and further, we use the bold font for the vetors ~e0j of the fan e�0 suh thatA(R~e0j) = Re0i for some e0i 2 �0. The mapping of graphs has the form:�1Æ����2�����3�����2�����2�����2�����2�����2�����1Æ�� �20:1�! �7Æ����3Æ�� :Here and later in Setions 3.3.1 { 3.3.8 the blak verties orrespond to thoseirreduible omponents whih are ontrated to a point by the onsidered mapping.By 1.6, we have N = detA = 20, m0 = m1 = 20, n0 = n1 = 1.3.3.2. Covering over the edge ���2Æ� � � � ��2Æ| {z }21 ����3Æ����2Æ�� (Fig. 11).� = h 1 1 ::: 1 1 2 30 1 ::: 21 22 45 68 i ; A = h 1 00 8 i ; e� = h 1 1 1 2 3 4 5 60 1 2 5 8 11 14 17 i�0 = h 1 1 ::: 1 3 2 1 3 5 2 30 1 ::: 21 64 43 22 67 112 45 68 ie�0 = h 1 8 7 6 5 4 3 8 5 2 5 8 3 4 5 6 7 8 1 8 7 6 5 4 3 8 5 2 5 8 3 4 5 6 7 8 10 1 1 1 1 1 1 3 2 1 3 5 2 3 4 5 6 7 1 9 8 7 6 5 4 11 7 3 8 13 5 7 9 11 13 15 28 7 6 5 4 3 8 5 2 5 8 3 16 13 10 7 4 9 14 19 24 5 16 11 617 15 13 11 9 7 19 12 5 13 21 8 43 35 27 19 11 25 39 53 67 14 45 31 17 iThe mapping of graphs has the form:�� e�1 ���5Æ�� e�2 ���16Æ�� e�1 ���5Æ�� e�2 ���16Æ�� e�1 ���5Æ�� e���# 8:1�� �1 ���2Æ�� �2 ���2Æ�� �1 ���2Æ�� �2 ���2Æ�� �1 ���2Æ�����where �� e�1 �� ���1Æ����2�����2�����2�����2Æ����4�����1Æ����2����# = #�� �1 �� ���2Æ����������������2Æ���������2Æ�������



18 S.YU. OREVKOV�2, e�2 are the mirror images of �1, e�1, and�� e��� ���2�����1Æ����8Æ����1Æ����2�����2�����2�����4Æ����2�����2�����2�����1Æ����8Æ����1Æ����2���# = #�� ��� ������4Æ����1Æ����2Æ����������������5Æ����������������2Æ����1Æ����4Æ�����By Proposition 1.6, we have N = detA = 8, m0 = 8, m1 = 4, n0 = 1, n1 = 2.3.3.3. Covering over the vertial edge �2Æ����2Æ�� (Fig. 11).� = h 1 1 1 10 1 2 3 i ; A = h 1 10 3 i ; e� = h 1 00 1 i ; �0 = h 1 1 2 1 10 1 3 2 3 i ; e�0 = h 1 2 1 1 00 1 1 2 1 iThe mapping of graphs has the form: �1Æ����3Æ����1Æ�� �3:1�! �3Æ����1Æ����3Æ�� :By Proposition 1.6, we have N = detA = 3, m0 = m1 = 3, n0 = n1 = 1.3.3.4. Two overings over the vertial edge �3Æ��� (Fig. 11).The �rst overing:� = h 1 1 20 1 3 i ; A = h 1 40 6 i ; e� = h 1 00 1 i ; �0 = h 1 1 3 20 1 4 3 i ; e�0 = h 1 2 1 1 00 1 1 2 1 iThe mapping of graphs has the form: �1Æ����3�����1Æ��� �6:1�! �4Æ����1Æ��� :By Proposition 1.6, we have N = detA = 6, m0 = 6, m1 = 3, n0 = 1, n1 = 2.The seond overing:� = h 1 1 20 1 3 i ; A = h 1 10 2 i ; e� = e�0 = h 1 1 1 10 1 2 3 i ; �0 = h 1 1 3 20 1 4 3 iThe mapping of graphs has the form: �2Æ����2Æ�� �2:1�! �4Æ����1Æ�� :By Proposition 1.6, we have N = detA = 2, m0 = 2, m1 = 1, n0 = 1, n1 = 2.3.3.5. Covering over the edge "���!" (Fig. 11).� = �0 = h 1 00 1 i ; A = h 2 �10 2 i ; e� = e�0 = h 1 1 10 1 2 iThe mapping of graphs has the form: ����2���� �4:1�! ����� :By Proposition 1.6, we have N = detA = 4, m0 = 2, m1 = 1, n0 = 2, n1 = 4.3.3.6. Covering over the edge �2Æ����3Æ�� (Fig. 12).� = �0 = h 1 1 1 20 1 2 5 i ; A = h 1 20 5 i ; e� = h 1 00 1 i ; e�0 = h 1 3 2 1 1 00 1 1 1 2 1 iThe mapping of graphs has the form: �1Æ����2�����3�����1Æ�� �5:1�! �2Æ����3Æ��By Proposition 1.6, we have N = detA = 5, m0 = m1 = 5, n0 = n1 = 1.3.3.7. Covering over vertial the edge �2Æ�� (Fig. 12 and Fig. 13).� = �0 = h 1 1 10 1 2 i ; A = h 1 10 2 i ; e� = h 1 00 1 i ; e�0 = h 1 1 00 1 1 iThe mapping of graphs has the form: �1Æ�� �2:1�! �2Æ�� .By Proposition 1.6, we have N = detA = 2, m0 = m1 = 2, n0 = n1 = 1.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 193.3.8. Covering over the edge �3Æ�� (Fig. 13).� = �0 = h 1 1 20 1 3 i ; A = h 1 20 3 i ; e� = h 1 00 1 i ; e�0 = h 1 1 00 1 1 iThe mapping of graphs has the form: �1Æ�� �3:1�! �3Æ�� .By Proposition 1.6, we have N = detA = 3, m0 = m1 = 3, n0 = n1 = 1.3.4. Covering over trivalent verties of the splie diagram.Lemma 3.4. Let (m(1)1 ; : : : ;m(1)k1 ; m(2)1 ; : : : ;m(2)k2 ; m(3)1 ; : : : ;m(3)k3 ) be one of thefollowing olletions of integers (here nm denotes m times n; : : : ; n):(20; 1; 37; 8; 113); (4; 3; 1; 2; 12); (5; 1; 23; 4; 12); (32; 23; 4; 12):Then there exists a branh overing ' : S2 ! S2 whih has three ritial values p1,p2, p3, i.e. ' is unbranhed over '�1(fp1; p2; p3g), suh that m(i)1 ; : : : ;m(i)ki are themultipliities of ' at the preimages of pi.Proof. Let us onnet the points p2 and p3 by an embedded segment I . Let � bethe graph embedded into S2 in one of the ways depited in Fig. 14. Let us de�nea mapping ' : � ! I whih takes the blak verties into p2, the white ones intop3, and maps the edges homeomorphially onto I . Let us extend ' to the wholesphere so that eah omponent of the omplement of � oversS2 n I with a singlebranh point whih is over p1. �

Fig. 14For all the trivalent verties of the graph in Fig. 7(lower part) exept v2, weextend the overing of the sphere onstruted in Lemma 3.4 up to a overing whihis branhed only along the urves orresponding to the neighbouring verties andunbranhed along the urve orresponding to the trivalent vertex itself.For the vertex v2, we should extend the overing more arefully. It must havedouble branhing along the urve orresponding to v2 (denote it by A) beausen1 = 2 in the overings 3.3.2, 3.3.4 and n0 = 2 in the overings 3.3.5. Let B1,B2, B3 be the urves orresponding to the neighbouring verties and let V be asuÆiently small tubular neighbourhood of A. Let �, �1, �2, �3 be the elements ofthe fundamental group � = �1�V n (A [ B1 [ B2 [ B3)� de�ned by the meridiansof A, B1, B2 and B3 respetively (we all a meridian the positive loop along theboundary of a small transversal disk). Sine A2 = �2, under a ertain hoie of



20 S.YU. OREVKOVthe paths onneting the meridians to a ommon base point, we have the followingrelations: �2 = �1�2�3; ��j = �j�; j = 1; 2; 3 (23)The overing is de�ned by a homomorphism to the symmetri group �! S(8), i.e.by an ation of � on the preimages of the base point.Analysing the overings from 3.3.2, 3.3.4 and 3.3.5, we see that the monodromyof the overing over some neighbourhoods of the points A \ Bi should be as inFig. 15. It remains to establish a orrespondene between the points so that therelations (23) are satis�ed. This an be ahieved by the numbering of the vertiesdepited in Fig. 15.
β1β1

β1

β1 β1

β1β1
β2

β2 β2

β2 β2

β2

β2

β3

β3

β3β3

β2

β3

β3β3

β3

β1

α α α α α α

12

7

83

4

2

5 6

4

8

3 1

57 6 3

4

8

7
2

6

1

5

αα

Fig. 153.5. Proof of Proposition 0.2. The same way as in [13℄ (or somehow else), onean hek that the polynomial immersion C ! C2 onstruted in Setion 3.2 isextendable up to an immersion of some neighbourhood of ~D (see Fig. 7). To seethis, one should ompute the degree of the normal bundle of the urve D on thesurfae orresponding to the graph in the lowerBlowing down suessively the (�1)-verties in Fig. 7(upper part), we obtain thelinear hain �2Æ����2Æ���0Æ~v2����2Æ����1ÆeD����2Æ����2Æ .Blowing up four times the point orresponding to the edge to the right of ~v2, weobtain the graph depited in Fig. 16. This graph an be blown down to a single(+1)-vertex ~l. Thus, we obtain a meromorphi immersion of a (+1)-pair.�2Æ����2Æ����1Æ~v2����4Æ����1Æ~l����2Æ����2Æ����4Æ����1ÆeD����2Æ����2ÆFig. 16It remains to note that by Proposition 2.4, the index of the onstruted immer-sion is equal to one. Indeed, introduing the notation as in Set. 2.2, we have�1f� = 21; d = 1; n1 = 4; and Xx2D�1nf1g(�xf� � n1) = 8� (6� 4):x4. Non-existene of a ounter-example to the JaobianConjeture with the given behaviour at the infinityIn this setion we prove



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 21Proposition 4.1. There does not exist a polynomial mapping C2 ! C2 realiz-ing the meromorphi immersion onstruted in x3. In partiular, the (+1)-paironstruted in x3 is not at.4.1. Redution to a system of simultaneous equations and inequali-ties. Suppose, there exist polynomials P (x; y) and Q(x; y) suh that P 0xQ0y �P 0yQ0x = 1 and the mapping (x; y) 7! (u; v) = �P (x; y); Q(x; y)� at the in�nityis as it is desribed in x3. By linear hanges of oordinates one an ahieve thatthe lines u = onst and v = onst meets transversally the urves orresponding tothe verties u0 and u1 in Fig. 7(lower part).Aording to 3.3.1, 3.3.3, the restrition of f onto eah of the urves orrespond-ing to the preimages of u0 and u1 is one-to-one. Therefore, eah preimage of v0(respetively, of v1) meets the urve P (x; y) = onst (respetively, Q(x; y) = onst)one and transversally. All the other intersetions of P = onst and Q = onstwith the in�nite urve are onentrated in the diritial omponent ~D. Moreover,sine the polynomials parametrizing the branh urve D are of degrees 9 and 60,the urves P = onst and Q = onst have 9 and 60 intersetions with ~D.Blowing down suessively extra (�1)-urves in Fig. 7(upper part), we obtain aommon resolution graph for the urves P = onst and Q = onst at the in�nitywhih is depited in Fig. 17. Hene, the splie diagrams of these urves at thein�nity are as in Figures 18 and 19. This implies, in partiular (see [11℄), thatdegP (x; y) = 600; degQ(x; y) = 90: (24)
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22 S.YU. OREVKOVLet X19 �19�! X18 �18�! : : : �2�! X1 �1�! X0 = CP2Be the sequene of the �-proesses whih blows down suessively all the vertiesin Fig. 17 exept ~l. Let us denote the in�nite line in CP2 by E0, and let Ej bethe exeptional urve of the �-proess (blow-up) �j , j = 1; : : : ; 19. We shall usethe same notation for a urve and all its proper transforms on the other surfaes.The mutual position of the urves Ej is depited in Fig. 20. The numbers in theparentheses near the verties have the following meaning. P Æ �19 and Q Æ �19 arerational funtions on X19. Let (P ) and (Q) be their divisors. They are of the form(P ) = (P )a�0 � 19Xj=0 pjEj ; (Q) = (Q)a�0 � 19Xj=0 qjEj ;where (P )a�0 and (Q)a�0 are the losures of the aÆne urves fP = 0g and fQ = 0g.The numbers in the parentheses near a vertex Ej in Fig. 20 are (pj ; qj).
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2)Fig. 20Let us hoose oordinates x; y in C2 so that the entre of the blow-ups �1 and�2 are at the in�nite point of the axis y = 0 and the entres of the blow-ups �7 and�8 are are at the in�nite point of the axisx = 0. Let us hoose oordinates hartson Xj alled standard as follows. As the standard harts on X0 = CP2, we hoose(x; y), (1=x; y=x) and (x=y; 1=y). If the entre of the blowup �j is at the origin ofone of the standard oordinate harts (x0; y0) on Xj�1 then we replae this harton Xj by the two harts (x0=y0; y0) and (x0; y0=x0). The only three blow-ups wherethe hoie of the standard harts is ambiguous, are �3, �4 and �11.Let (x2; y2) be the standard oordinates on X2 in whih E2 = fx2 = 0g andfy = 0g = fy2 = 0g, i.e. x2 = x�1, y2 = xy. In these oordinates, the urve E2is the oordinate axis x2 = 0. Sine the entre of �3 lies on E2, its oordinatesare (x2; y2) = (0; �2). As the standard oordinates at this point, we hose theoordinates x20 = x2 = x�1 and y20 = y2��2 = xy��2. Let (x3; y3) be the standardoordinates on X3 suh that x3 = x20 = x�1 and y3 = y20=x20 = (xy � �2)x. Inthese oordinates, the urve E3 is the oordinate axis x3 = 0. Sine the entre of �4lies on E3, its oordinates are (x3; y3) = (0; �3). As the standard oordinates at thispoint, we hose the oordinates x30 = x3 = x�1 and y30 = y3��3 = x2y��2x��3.Analogously, let (x10; y10) be the standard oordinates on X10 in whih E10 =fx10 = 0g and E7 = fy10 = 0g, i.e. x10 = x, y10 = x�3y�1. Resaling if neessary,the axis x, we may assume that the entre of �11 is at the point (x10; y10) = (0; 1) 2E10. As the standard oordinates at this point, we hose the oordinates x100 = x10and y100 = y10 � 1.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 23When depiting the Newton polygons, we shall use the following onvention. Ifthe depited polygon � is not ompletely known then we show a polygon whihontains �. In this ase, we depit the verties whih are known to belong to �,as a small blak irle "�".Lemma 4.1. Let R stands for one of P or Q and let us set a = 20 when R = Pand a = 3 when R = Q.(a). The Newton polygon of R(x; y) is the quadrangle depited in Fig. 21 (leftupper part).(b). Passing to the oordinates (xj ; yj) for j = 2; 20; 3; 30 or 10, the polynomial Rbeomes a Laurent polynomial whih we denote by Rj(xj ; yj). The Newton polygonsof these Laurent polynomials are depited in Fig. 21.(). Passing to the oordinates (x100 ; y100), the polynomial R beomes a rationalfuntion of the form (1+y100)�6aR100(x100 ; y100), where R100 is a Laurent polynomialwhose Newton polygon is depited in Fig. 22.
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Fig. 22Proof. It is suÆient to write expliitely all the blow-ups in the standard oordi-nates and to trae the multipliities of P and Q on the exeptional urves. Forexample, q0 = 90 and q1 = 27, hene the divisor (Q)a�0 has the multipliity 27



24 S.YU. OREVKOVat the entre of �1. Therefore, the Newton polygon of Q is ontained in the areax � 63, x+ y � 90. The further arguments are similar. �The ondition that the oeÆients of Q30 and Q100 are zero outside the polygonsin Figures 21 and 22 yeilds a system of simultaneous equations for the oeÆientsof Q(x; y). A straight-forward omputation shows that this system has no solutionproviding non-zero oeÆients at the verties marked as blak points �" in Figures21 and 22. This proves Proposition 4.1. In the next subsetion we show how toprove the absene of the solutions without tedious alulations. The idea of theproof is taken from Heitmann's paper [9℄.4.2. Proof that there is no solution. We shall proeed analogously to [9; x3℄.Let us hange the notation denoting the oordinates (x30 ; y30) by (t; u), and theoordinates (x100 ; y100) by (x; z):x = t�1; y = �2t+ �3t2 + ut2; y = x�3(1 + z)�1;t = x�1; u = x2y � �2x� �3; z = x�3y�1 � 1:Let us set� = xu� 1; � = u3 � 2xyu+ y + 2�2u+ �3xy � �2�3; � = �2�3:These funtions are polynomials in (x; y) and Laurent polynomials in (t; u), theirNewton polygons are depited in Fig. 23. In the oordinates (x; z), the funtions(1 + z)�(x; z), (1 + z)3�(x; z) and (1 + z)9�(x; z) are Laurent polynomials. TheirNewton polygons are also depited in Fig. 23. In partiular, we see that the Newtonpolygon of �3 is ontained in that of Q in all the three oordinate systems (x; y),(x; z), (t; u).
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COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 25For a Laurent polynomial (t) = Pnk=m ktk suh that m 6= 0 and n 6= 0, letus denote ordt  = m and degt  = n.Lemma 4.2. Let a be a positive integer and R(x; y) a polynomial whose New-ton polygon is ontained in the quadrangle [(0; 0), (12a; 0), (21a; 9a), (0; 2a)℄. LetR(t; u) and R(x; z) be the result of the substitution into R(x; y) of the expressionsof (x; y) via (x; z) and (t; u). Suppose that the Newton polygon of the Laurent poly-nomial R(t; u) is ontained in the quadrangle [(0; 0), (4a; 0), (4a; 2a), (�3a; 9a)℄(ompare with Fig. 21). Let(1 + z)9aR(x; z) = 12aXk=�6a bk(z)xk:Suppose that bk = 0 for k < m. Thendegz bm � ordz bm � 3=2 (m+ 6a);and in the ase of the equality sign we have bm(z) = z�7=6m(1 + z)3=2 (m+6a).Proof. Sine bk = 0 for k < m, the Newton polygon of (1+z)9aR(x; z) is to the rightof the vertial line x = m. In the oordinates (x; y10), this ondition means that theNewton polygon of y9a10R(x; y10) lies in the area shadowed in the left hand side ofFig. 24. Passing from the oordinates (x; y10) to the oordinates (t; u) (see Fig. 24)and bak (see Fig. 25), one an trae that the Newton polygon of R must alwaysremain in the shadowed area. Therefore, all non-zero monomials of y9a10R(x; y10)lying on the vertial line x = m must be above the segment [(�6a; 0); (0; 9a)℄ (it isshown by the dashed line in Figures 24 and 25), i.e. ordy10 m � 3=2 (m+6a), wherem(y10) is the oeÆient of xm in the Laurent polynomial y9a10R(x; y10). It remainsto note that bm(z) = m(1 + z), and hene, degz bm � ordz bm � ordy10 m. �
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26 S.YU. OREVKOVWithout loss of generality, we may assume that the oeÆient of x63y27 in thepolynomial Q(x; y) is equal to one. Applying Lemma 4.2 suessively to the polyno-mialQ��3, we obtain that in the oordinates (x; z), its oeÆients of x�18; : : : ; x�13are zero and the oeÆient of x�12 is 2 z14 (z + 1)9 for some onstant 2.Still applying Lemma 4.2, this time to the polynomial Q � �3 � 2�2, we seethat its oeÆient of x�12; : : : ; x�7 are zero and the oeÆient of x�6 is equal to1 z7 (z + 1)18 for some onstant 1.Finally, applying suessively Lemma 4.2 to the polynomial Q� �3� 2�2� 1�,we obtain that it is identially zero, i.e.Q = �3 + 2�2 + 1�:It remains to note that the oeÆient of x�1z in this polynomial is zero whileby Lemma 4.1 it should not be so (see Fig. 22, left hand side). The obtainedontradition proves Proposition 4.1.4.3. Seond proof of Proposition 4.1 (simple but not rigorous). Whenonstruting the branh urveD in Set. 3.2, we solved an underdeterminate systemof simultaneous equations (the number of unknowns was greater than the numberof equations: see Remark 3.3). Therefore it is naturally to assume that D admitsdeformations in the lass of urves with the given types of singularities, hene, itan be further degenerated.Suppose that there exists a degeneration suh that a singularity of the type A2meets a simple double point and transforms into a singularity of the type A4 as inthe family of urves Ct = fy2 = x3(x � t)2g with t! 0: (26)Then a ounter-example to the Jaobian Conjeture is impossible by the followingsimple reason of topologial nature. Indeed, in this ase, there exists a dis �ontinuously embedded into C2 suh that(i ) � meets D along its boundary: � \D = ��;(ii ) the path �� passes through the simple double point of D and at this point,it passes from one loal branh to the other.For instane, in the situation (26) for t 2 R, t > 0, suh a dis an be hosenas f(x; y) 2 R2 j 0 � x � t, y2 � x3(x � t)2g. Sine this dis an be lifted tothe overing, the preimages of the both branhes meet on the overing whih isimpossible.It must be very diÆult (if possible at all) to prove the existene of degenerationsof the form (26). Nevertheless, it seems that a urve satisfying the onditions ofLemma 3.1 might be obtained by triple appliation of degenerations of the form(26) to a urve D0 whih satisfy the onditions (a) and (b) of Lemma 3.1 and hasfour singular points of the type A2 and four singular points of the type A4. Suhurves exist, among them, there is a urve whih has the symmetry of the fourthorder. x5. Pseudo-onvex immersionsNow we shall prove Proposition 0.4.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 275.1. Immersions S3 ! C2 up to regular homotopy. Let us denote the spae ofimmersions of a manifold X into a manifold Y by Imm(X;Y ). By Smale's theorem[16℄, the onneted omponents of Imm(Sk;Rn) are in a one-to-one orrespondenewith the elements of the homotopy group �k(SO(n)). Hene,�0� Imm(S3;R4)�e=�3(SO(4))e=Z2: (27)In this subsetion, we give an expliite geometri desription of this isomorphismwhen R4 is equipped by a omplex struture (identi�ed with C2).For f 2 Imm(S3;C2), denote the degree of the Gauss mapping (see De�nition0.1) by DG(f) and let CS(f) be the homotopy lass of the pull-bak of the omplextangent �eld, i.e. the �eld of tangent 2-planesq 7! f�1� (T \ iT ); where q 2 S3 and T = f�(TqS3):Proposition 5.1. Two immersions f1; f2 2 Imm(S3;C2) are regularly homotopiif and only if DG(f1) = DG(f2) and CS(f1) = CS(f2).Proof. Sine the sphere S3 parallelizable, the Smale's isomorphism (27) and theinvariants DG(f) and CS(f) admit the following interpretation. Let us identifyC2 with the quaternion body H by the mapping (z; w) 7! z+wj. Then S3 = fq 2H j q�q = 1g. Let ~i, ~j, ~k be the tangent vetor �elds on S3 linearly independent atevery point and ~n the �eld of exterior unit normal vetors de�ned by~i(q) = qi; ~j(q) = qj; ~k(q) = qk; ~n(q) = q; where q 2 S3:To an immersion f : S3 ! H, we assoiate a mapping �(f) : S3 ! SO(4) inthe following way. Let us extend f up to an orientation preserving immersion ofsome neighbourhood of the sphere S3 in suh a way that eah vetor f�(~n(q)) isorthogonal to f�(TqS3). Then �(f) : q 7! Q 2 SO(4), where q 2 S3 and Q isthe matrix whih takes the frame (1; i; j; k) to the orthogonalization of the framef��~n(q);~i(q);~j(q); ~k(q)�. By Smale's theorem, the mapping � indues a bijetion�� : �0� Imm(S3;R4)�! �3(SO(4)).We shall onsider S3 as a subgroup of the multipliative group H n 0, and letS2 = S3 \ (iR+ jR+ kR). Let us introdue the following notation:�1; �2 : S3 ! S3 � S3; �1(s) = (s; 1); �2(r) = (1; r);� : S3 � S3 ! SO(4); �(s; r) : q 7! s q �r;� : SO(4)! S3; �(Q) = Q(1);� : SO(4)! S2; �(Q) = Q(i) �Q(1);(Q 2 SO(4) is onsidered as an orthogonal operatorH! H). Let us �x the naturalidenti�ations �3(S3) = �3(S2) = Z. The mapping � is a double overing beauseit is a group homomorphism and Ker � = f�1g. It indues an isomorphism�� : Z� Z = �3(S3 � S3)! �3(SO(4)):Sine ��(s; r) = s �r, we have���� : Z� Z = �3(S3 � S3)! �3(S3) = Z; (m;n) 7! m� n: (28)



28 S.YU. OREVKOVIt is easy to see that ���1 : S3 ! S2 takes s into s i �s. It is the Hopf �bration.Indeed, s1 i s1 = s2 i s2 if and only if s1 = s2 � (x + iy) for some x; y 2 R. Henethere is an isomorphism (���1)� : �3(S3)! �3(S2):It is lear also that ���2 : S3 ! S2 is a onstant map r 7! i, i.e.im�(���2)� : �3(S3)! �3(S2)� = 0:Thus, we have���� : Z� Z = �3(S3 � S3)! �3(S2) = Z; (m;n) 7! m: (29)By de�nition, DG(f) = ��([�(f)℄) 2 �3(S3) = Z and CS(f) is de�ned be thehomotopy lass of the vetor �eld q 7! f�1� �i f�(~n(q))�. Sine S3 is parallelizable,non-zero vetor �elds an be identi�ed with mappings S3 ! S2 � T1(S3). Underthis identi�ation, CS(f) orresponds to the homotopy lass ��([�(f)℄) 2 �3(S2).It follows from (28) and (29) that [�(f)℄ is determined by its images under thehomomorphisms �� and ��. �5.2. On extendibility of an immersion of a sphere to an immersion of aball.Let X and Y be onneted n-manifolds suh that X is ompat and has a boundary(not neessary onneted), for example, X = Bn, Y = Rn. In this subsetion,we give a suÆient ondition for an immersion of the boundary �X ! Y to beextendable to an immersion X ! Y . For n = 2 it was proved by Franis [8℄.De�nition. Let Z and Y be manifolds of dimensions n� 1 and n respetively.1. An immersion f : Z ! Y is alled Morse, if for any points z; z0 2 Z suh thatf(z) = f(z0) and f�(TzZ) = f�(Tz0Z) (we shall all suh a pair of points a self-tangeny of f), there exist neighbourhoods U and U 0 on whih f is an embedding,a neighbourhood V of y = f(z) and a smooth funtion ' : V ! R, suh thatf' = 0g = V [ f(U 0) and ' Æ f jU is a Morse funtion.2. A normal bundle of an immersion f : Z ! Y is alled the line bundle Nf ! Zwhose �bre over z is Tf(z)Y=f�(TzZ). A oorientation of an immersion f is alledan orientation of its normal bundle.3. Suppose that f : Z ! Y is a ooriented Morse immersion and z; z0 2 Z itsself-tangeny points. The self-tangeny at points z; z0 2 Z is alled oherent, if theiroorientations are indued by the same orientation of the spae Tf(z)Y=f�(TzZ) =Tf(z0)Y=f�(Tz0Z), and opposite otherwise.4. The index of an opposite self-tangeny is alled the index of the singularpoint of the funtion ' Æ f jU (see above) under the ondition that the gradient of' de�nes a positive normal vetor �eld V \ f(U 0) (in the ase of a oherent self-tangeny or in the ase of a non ooriented immersion, the index is de�ned only upto the identi�ation of k and n� k � 1).5. A regular homotopy fhtgt2[0;1℄ is alled Morse, if for all t 2 [0; 1℄, the immer-sion ht is Morse. A triple z; z0; t where z; z0 2 Z are self-tangeny points of ht isalled a passing through a self-tangeny.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 296. A passing through a self-tangeny z; z0; t of a regular homotopy fhtg is alledtransversal if there are neighbourhoods of the points (z; t), (z0; t) whose imagesunder the mapping (z; t) 7! (ht(z); t) are transversal to eah other in Y � [0; 1℄. Aregular homotopy is alled transversal if all its passings through self-tangenies aretransversal.7. A passing through an opposite self-tangeny of a ooriented regular homotopyis alled positive (negative) if the veloity of eah branh with respet to the otheris positive (negative) in the sense of the oorientation.Fig. 23 illustrates the de�nitions of the self-tangeny types. In Fig. 24, positivepassings of self-tangenies of di�erent indies are depited (the negative ones anbe obtained from them by the reversing of time, i.e. for " < 0). The arrows in theboth �gures indiate the oorientations.
Index 0 Index 1| {z }Coherent OppositeFig. 23. Self-tangenies

t = t0 � " t = t0 + " t = t0 � " t = t0 + "Index 0 Index 1Fig. 24. Positive passings through self-tangenies (" > 0)Proposition 5.2. Let X and Y be onneted n-manifolds suh that X is ompatand has a boundary Z = �X. Let H : X ! Y be an immersion and ht : Z ! Y , t 2[0; 1℄ a transversal Morse homotopy suh that h0 = H jZ . Let us �x the oorientationof h0 de�ned by the image under the mapping H� of an exterior normal vetor �eldto Z (it it extends by ontinuity for all ht). If all the passings of opposite self-tangenies of index n � 1 are positive then there exists a homotopy Ht : X ! Ysuh that HtjZ = ht and H0 = H.For n = 2, Proposition 5.2 is proved in [8℄. In the general ase, the proof is moreor less the analogous and we omit it.Example. In Fig. 25, we depited a regular homotopy of a irle fhtg suh that h0is extendable to an immersion of a dis but h1 is not. One sees that the extendibilityfails at the moment of a negative passing through an opposite self-tangeny of index1. By Proposition 5.2, this is the only reason whih an break the extendibility.
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 = 0t  = 1tFig. 25De�nition 5.3. Let X;Y be onneted n-manifolds suh that X is ompat andf : Z = �X ! Y is an immersion. Two extensions F;G : X ! Y of f are alledequivalent if there exists an isotopy Ht : X ! Z, t 2 [0; 1℄ suh that H0 = F ,H1 = G, and HtjZ = f for all t.Corollary 5.4. Let X;Y be onneted n-manifolds suh that X is ompat andZ = �X. Suppose that ht : Z ! Y is a transversal Morse regular homotopy whihhas no opposite self-tangenies of index n�1. Then the immersions h0 and h1 havethe same number of extensions to X up to the equivalene from De�nition 5.3. �Now let us apply Proposition 5.2 to the problem of extension of a stritly pseudo-onvex homotopy of the boundary (see De�nition 0.3) to a regular homotopy of thewhole manifold.Corollary 5.5. Let Y be a smooth omplex (or almost omplex) manifold of om-plex dimension k � 2, and let X a smooth ompat oriented manifold of real di-mension n = 2k with a boundary Z = �X. Let H : X ! Y be an immersion andht : Z ! Y , t 2 [0; 1℄ a stritly pseudo-onvex homotopy suh that h0 = H jZ . Thenthere exists a regular homotopy Ht : X ! Y suh that HtjZ = ht and H0 = H.Proof. By a small perturbation, the homotopy fhtg an be done Morse and transver-sal. If the perturbation is suÆiently small then the homotopy remains to be stritlypseudo-onvex. Comparing the Levi forms of the touhing branhes, it is easy to seethat opposite self-tangenies of index n�1 are impossible for Morse pseudo-onveximmersions. Hene, Proposition 5.5 follows from Proposition 5.2. �Corollary 5.6. Let Y be a smooth omplex and let f : S3 ! Y be a stritlypseudo-onvex immersion. Then:(a). The immersion f is extendable to an immersion of a ball if and only ifstritly pseudo-onvexly homotopi to the standard embedding.(b). Up to equivaleny (see De�nition 5.3), there exists at most one extensionof f to an immersion of the ball B4 ! Y .Proof. Suppose that f is extendable to an immersion F : B4 ! Y . By a theoremof Eliashberg [7℄, there exists a pluri-subharmoni (with respet to the omplexstruture pulled bak from Y ) funtion on B4 with a single minimum. The levelhypersurfaes of this funtion de�ne a stritly pseudo-onvex homotopy between fand an embedding. Sine an embedding of a the sphere is uniquely extendable toan embedding of the ball, the required statement follows from Corollary 5.4. �Remark. For k = 1, the onlusion of the Corollary 5.6(b) is wrong: in Fig. 26, wegive an example of an immersion S1 ! R2 whih is non-uniquely extendable to animmersion of the dis. In the paper [15℄, this example is alled Milnor example.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 31In the 50-th, this example was onstruted independently by N.N. Konstantinov.Rotating the urve in Fig. 27 around the axis, we obtain examples of non-uniquelyextendable immersions Sn�1 ! Rn for all n � 2, i.e. Corollary 5.6(b) is wrongwithout the ondition that f is pseudo-onvex.
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