
COUNTER-EXAMPLES TO THE"JACOBIAN CONJECTURE AT INFINITY"S.Yu. OrevkovTo Anatoliy Georgievi
h Vitushkin for his 70-th birthdayIntrodu
tionThe well-known Ja
obian Conje
ture (see surveys [17℄, [3℄) is as follows:Ja
obian Conje
ture (JC). Let P (x; y) and Q(x; y) be polynomials with 
omplex
oeÆ
ients whose ja
obian P 0xQ0y�P 0yQ0x is identi
ally equal to one. Then the map-ping C2 ! C2, (x; y) 7! (u; v) = �P (x; y); Q(x; y)� is one-to-one (or, in algebrai
language: the ring homomorphism C[u; v℄ ! C[x; y℄, u 7! P (x; y), v 7! Q(x; y) isan isomorphism).De�nition 0.1. A pair (U; l) where U is a smooth analyti
 surfa
e and l � Ua smooth 
ompa
t (i.e. isomorphi
 to CP1) 
urve of self-interse
tion +1, will be
alled a (+1)-pair.Let us 
all a (+1)-pair (U; l) 
at if U is biholomorphi
ally equivalent to a subsetof CP2 (it is 
lear, that su
h a biholomorphism maps l onto a line).A meromorphi
 immersion (respe
tively, embedding) of a (+1)-pair (U; l) into C2is a pair fun
tions meromorphi
 on U su
h that the both of them are holomorphi
on U n l and the mapping U n l ! C2 de�ned by these fun
tions is an immersion(respe
tively, embedding).The index of a meromorphi
 immersion of a (+1)-pair f : U nl! C2 is by de�nedas the degree of the Gauss mapping Gf :M ! S3 whereM = ��V is the boundaryof a tubular neighbourhood V of l with the reversed orientation (the mapping Gftakes p 2M into the positive normal ve
tor to the hyperplane f�(TpM)).The Ja
obian Conje
ture 
an be equivalently reformulated as follows:Any meromorphi
 immersion of a 
at (+1)-pair into C2 is an embedding.Indeed, if (U; l) is a 
at (+1)-pair then one may 
onsider l as the in�nite line in C2and U as its neighbourhood. Then any fun
tion, holomorphi
 on U nl, is extendableto the whole C2 by the theorem of removing 
ompa
t singularities. Moreover, if itis meromorphi
 on U , it is a polynomial.A natural question arises:1 
an one omit the hypothesis that the (+1)-pair is
at? In other words, does the following 
onje
ture hold:1This question (maybe, not so 
on
retely formulated) was posed to me by A.G. Vitushkinwhen I was his graduate student. Typeset by AMS-TEX1



2 S.YU. OREVKOVWeak Ja
obian Conje
ture at In�nity (WJC1). Any meromorphi
 immer-sion of a (+1)-pair into C2 is an embedding.In the paper [13℄, I 
onstru
ted a 
ounter-example to this 
onje
ture. Later, I
onstru
ted many other analogous 
ounter-examples to WJC1 (unpublished) butall of them were not extendable to 
ounter-examples to JC be
ause they had toobig index.But it is 
lear that The index of a meromorphi
 immersion of a 
at (+1)-pairis equal to one. Indeed, it is equal to DG(F jS3r ) for r � 1 where F : C2 ! C2is a polynomial mapping whose ja
obian is equal to one, S3r is the sphere of radiusr (oriented as the boundary of a ball), and DG(') denotes the degree of Gaussmapping asso
iated to an immersion '. It remains to note that the fun
tion g(r) =DG(F jS3r ) is 
ontinuous, hen
e, 
onstant and that F jS3r is an embedding for r � 1,i.e. g(r) = 1.Be
ause of this, I formulated a new 
onje
ture whi
h I announ
ed at several
onferen
es:Ja
obian Conje
ture at In�nity (JC1). Any meromorphi
 immersion of a(+1)-pair into C2 whose index is equal to one, is an embedding.In this paper we 
onstru
t a 
ounter-example to this 
onje
ture also:Proposition 0.2. There exists a (+1)-pair (U; l) and its meromorphi
 immersionf : U n l! C2 of index 1, whi
h is not an embedding.Su
h a meromorphi
 immersion of a (+1)-pair is 
onstru
ted in x3. The (+1)-pair (U; l) 
onstru
ted in x3 is not 
at, i.e. it 
an not provide a 
ounter-example toJC. It is proved in x4, Se
tions 4.1 { 4.2 analysing the 
oeÆ
ients of polynomialsP (x; y) and Q(x; y) whi
h 
ould realize the given immersion. (in Se
t. 4.3, wegive a simple but not rigorous topologi
al explanation of this fa
t). Sin
e we 
analways 
hoose a stri
tly pseudo-
onvex tubular neighbourhood of l (see. [13; x2℄),the non-extendibility of the 
onstru
ted 
ounter-example to JC1 up to a 
ounter-example to JC implies an amazing 
onsequen
e. To formulate it, we need one morede�nition.De�nition 0.3. In immersion f of a smooth oriented (2n � 1)-manifold Z to a
omplex n-manifold Y is 
alled stri
tly pseudo-
onvex if any point z 2 Z has aneighbourhood V � Z su
h that f(V ) is a part of the boundary (taking in a

ountthe orientations) of some stri
tly pseudo-
onvex domain in Y . Re
all, that a regularhomotopy is su
h a homotopy fftgt2[0;1℄ that ft is an immersion for any t. If inaddition, ea
h ft is stri
tly pseudo-
onvex then su
h a homotopy is 
alled stri
tlypseudo-
onvex.Proposition 0.4. There exists a stri
tly pseudo-
onvex immersion of the spheref : S3 ! C2 whi
h is regularly homotopi
 to an embedding but is not stri
tlypseudo-
onvexly homotopi
 to an embedding.This proposition is proved in x5. At the same time, we prove Proposition 5.6 onthe uniqueness of an extension of a pseudo-
onvex immersion of the 3-sphere up toan immersion of the 4-ball.In the paper [13℄, we gave a 
omplete proof that the example 
onstru
ted theresatis�es the required properties. But the 
onstru
tion was exposed, using the s
hoolgeometry language, without an "analysis of the problem". Probably, this 
aused



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 3some diÆ
ulties to understand how the example was 
onstru
ted and how to 
on-stru
t other similar examples. In this paper, I tried to �ll this gap by addingSe
t. 2.4. In this se
tion we also dis
uss some parallelism between our approa
h toJC and those from the papers [10℄ and [9℄.It is P. Cassou-Nogues who 
alled my attention to some 
orresponden
e between[13℄ and [9℄. I am grateful to her for this and for other useful dis
ussions. I amgrateful also to my tea
her A.G. Vitushkin due to whom I started to work on theJa
obian Conje
ture. x1. Preliminaries1.1. Dual graphs of redu
ible 
urves and their spli
e diagrams.Let D be a 
urve on a smooth analyti
 surfa
e su
h that all its irredu
ible 
ompo-nents D1; : : : ; Dn are isomorphi
 to CP1, meet ea
h other transversally and at mostpairwise. We 
all dual graph or just graph of D the graph �D whose verti
es 
orre-spond to irredu
ible 
omponents of D and edges 
orrespond to their interse
tions.To ea
h vertex we asso
iate its weight whi
h is equal to the self-interse
tion of the
orresponding irredu
ible 
omponent. If it does not lead to a misunderstanding,we shall use the same notation for a 
urve and its graph.If C is a smooth 
urve (not ne
essarily 
ompa
t) meeting transversally D thenwe de�ne the graph of C near D as the graph �D;C obtained from the graph ofD by adding verti
es 
orresponding to lo
al bran
hes C1; : : : ; Cr of C near D (wedepi
t these verti
es as arrowheads). The vertex 
orresponding to a lo
al bran
hCi is 
onne
ted by a single edge to the vertex 
orresponding to the 
omponent Djwhi
h meets Ci. The weight of Ci is not de�ned.Example. If D and C are a line and a 
oni
 on CP2 then �D;C = ��+1Æ�!.The determinant of a 
urve D is by de�nition the determinant of the minusinterse
tion matrix: detD = det k�DiDjkni;j=1.From now on, we assume that the graph of D is a tree (i.e. a 
onne
ted graphwithout 
y
les). We 
all a bran
h of D at a vertex Di a 
onne
ted 
omponent ofthe 
losure of D nDi.A linear 
hain is a graph with verti
es v1; : : : ; vn and edges [v1; v2℄; [v2; v3℄; : : : ; [vn�1; vn℄.A spli
e diagram of a 
urve D (respe
tively, of a 
urve C near a 
urve D) isde�ned as a graph �D (respe
tively, �D;C), obtained from �D (respe
tively, from�D;C) by repla
ing some (for instan
e, all) linear 
hains by a single edge. Toea
h beginning of edge 
oming from a non-end vertex Di, we asso
iate the numberequal to the determinant of the bran
h of D at the vertex Di whi
h grows to thedire
tion of this edge (this de�nition slightly di�ers from the original de�nition ofspli
e diagram introdu
ed by Eisenbud and Neumann in [6℄).Proposition 1.1. (Edge determinant formula; see [6℄, [11℄). Let �D be a spli
ediagram of a tree D of 
urves with simple normal 
rossings. Let u and v be verti
esof �D 
onne
ted to ea
h other by an edge. Let E be the linear 
hain of irredu
ible
omponents of D 
orresponding to the edge uv (the 
urves 
orresponding to theverti
es u and v themselves are not in
luded into E). Suppose that � looks as inFig. 1 near the edge uv. ThendetD � detE = a0b0 � (a1 : : : ak) � (b1 : : : bn):
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a1 b1

ak

a2 a0

. .
 .

. .
 .

b0
b2

bnFig. 11.2. Transformation of the determinant of the interse
tion matrix un-der a proper analyti
 mapping. The obje
t of this subse
tion is to prove thefollowing not diÆ
ult statement (it was used in [5℄).Proposition 1.2. Let f : eX ! X be a proper analyti
 mapping of smooth 
omplexsurfa
es. Let D = D1 [ � � � [Dn be 
ompa
t 
urves on X and eD = eD1 [ � � � [ eD~n =f�1(D). Then:(a). det eD = 0 if and only if detD = 0.(b). Suppose that eD1 is the only irredu
ible 
omponent of the 
urve f�1(D1)whi
h is not 
onstru
ted to a single point by f . Let us denote the 
losures of D nD1and eD n eD1 by D0 and eD0 respe
tively. Let m be the degree of f j eD1 and n thebran
hing order of f along eD1 (i.e. the ja
obian of f has zero of order n � 1 oneD1). Then det eD0det eD = nm � detD0detD : (1)Moreover, if one of the denominators in (1) is zero then the other also is zero.Proof. (a). First, let us prove that detD = 0 implies det eD = 0. Indeed, ifdetD = 0 then there exists a non-zero divisor E =PxiDi su
h that ED1 = � � � =EDn = 0. Then f�(E) is a non-zero divisor whose support is 
ontained in eD andf�(E) � eDj = E � f�( eDj) = 0 for all j. Hen
e, det eD = 0.Now, let us prove that det eD = 0 implies detD = 0. Indeed, if det eD = 0 thenthere exists a non-zero divisor eE =P ~xi eDi su
h thateE eD1 = � � � = eE eD~n = 0: (2)Then f�( eE) is a divisor whose support is 
ontained in D and f�( eE) � Dj = eE �f�(Dj) = 0 for all j. Hen
e, the equality detD = 0 would follow from the fa
t thatf�( eE) 6= 0. Suppose that f�( eE) = 0. This means that the support of the divisor eEis 
on
entrated in the preimage of a �nite set of points. But the interse
tion matrixof irredu
ible 
omponents of a 
ompa
t 
urve 
ontra
tible to a point by an analyti
mapping is negative de�nite. Hen
e, eE2 < 0. This 
ontradi
ts to (2).(b). In virtue of (a), we may assume that the both denominators in (1) are non-zero. Let us denote by E = PxiDi and eE = P ~xi eDi the divisors with rational
oeÆ
ients, dual to D1 and eD1 respe
tively. It means thatE �D1 = 1; E �Di = 0 for i > 1; eE � eD1 = 1; eE � eDi = 0 for i > 1. (3)The existen
e of the divisors E and eE easily follows from the fa
t that the inter-se
tion matri
es are non-degenerate. Indeed,(x1; : : : ; xn) = B(1; 0; : : : ; 0); (~x1; : : : ; ~x~n) = eB(1; 0; : : : ; 0); (4)



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 5where B = kbijk = A�1, A = kDiDjkni;j=1, eB = k~bijk = eA�1 and eA = k eDi eDjk~ni;j=1.We have f�( eD1) = mD1, hen
e, f�( eE) = m~x1D1 + F where D1 62 suppF , andhen
e, by (3), E � f�( eE) = m~x1: (5)Analogously, f�(D1) = n eD1+ eF1 where eD1 62 supp eF1 and hen
e, f�(E) = nx1 eD1+eF2 where eD1 62 supp eF2. Hen
e, by (3) we havef�(E) � eE = nx1: (6)Putting (5) and (6) into the equality E �f�( eE) = f�(E) � eE, we get ~x1 = (n=m) �x1.Note that x1 = b11 and ~x1 = ~b11 by (4). Finally, by Cramer rule, we haveb11 = detD0detD and ~b11 = det eD0det eD :1.3. A formula for the 
anoni
al 
lass of a blown up (+1)-pair. Let (U; l)be some (+1)-pair (for example, l is the in�nite line of the aÆne plane C2) and let� : X ! U be a 
omposition of blow-ups "at in�nity", i.e. �jXnL : X n L ! U n lis an isomorphism where L = ��1(l). Let L0 be the proper preimage of the line l.Pro
laim 1.3. (a). L be the line of rational 
urves, detL = �1.(b). The determinant of any bran
h of L at the vertex L0 is equal to one.(
). Let L1 is an irredu
ible 
omponent of L, di�erent from L0. Consider thebran
hes of L at the vertex L1 whi
h does not 
ontain L0. Among these bran
hes,there is at most one whose determinant is not equal to one.Proof. Indu
tion by the number of the blow-ups. �Let L0; : : : ; Ln be the irredu
ible 
omponents of L. Suppose that the 
anon-i
al 
lass KX of X is representable by a divisor supported by L, i.e. there is ameromorphi
 2-form ! on X whi
h neither has zeros nor poles outside of L. LetKX =X kjLj :We are still assuming that L0 is the proper transform of l. The irredu
ible 
ompo-nents are numbered arbitrarily, hen
e any irredu
ible 
omponent di�erent from L0
an be 
onsidered as the 
urve L1 in the next proposition.
q0

p0 p0

q0

1

1 ... 1

p0

q0

1 ... 1

. . . . 1

1 ... 1 1 ... 1

11L
0LFig. 2



6 S.YU. OREVKOVProposition 1.4. (see. [14℄). (a). k0 = �3.(b). Let us denote the weights of the spli
e diagram of L, situated along theshortest path from L0 to L1, as in Fig. 2 (see Proposition 1.3). Thenk1 = �1� q0 � p0 + mXj=1 q0 : : : qj�1(qj � 1)(pj � 1):1.4. Coverings bran
hed along linear 
hains. As in [13℄, we shall use thelanguage of tori
 varieties to des
ribe 
overings bran
hed along linear 
hains ofrational 
urves. An equivalent des
ription not involving tori
 varieties see in [2;III, x5℄. Sin
e we need a very small portion of the theory of tori
 varieties, for thereader's 
onvenien
e we give all the de�nitions and statements that we use.1.4.1. Fans and tori
 surfa
es. Let us identify Z2^Z2 = Z, i.e. (a; b)^(
; d) willdenote ad�
b. For e1; e2 2 Z2, let us denote the 
one fx1e1+x2e2 j xi 2 R; xi > 0gby he1; e2i, and let hei = he; ei (the ray in the dire
tion e). A ve
tor e 2 Z2 is 
alledprimitive if it 
annot be presented in the form me0, e0 2 Z2, m 2 Z. We 
all a fana 
olle
tion of distin
t primitive integral ve
tors � = (e0; : : : ; er+1) � Z2 su
h thatei ^ ei+1 > 0 for all i = 0; : : : ; r and the 
ones he0; e1i; : : : ; her; er+1i are pairwisedisjoint. If ei ^ ei+1 = 1 for all i = 0; : : : ; r then the fan is 
alled primitive.Let us denote uj = ej and vj = ej+1. The tori
 surfa
e asso
iated to a primitivefan � is the smooth algebrai
 surfa
e X� glued out of 
harts U0; : : : ; Ur isomorphi
to C2. The 
hart Uj with 
oordinates (xj ; yj) 
orresponds to the 
one huj ; vji andthe transition fun
tions are:( xi = xaj y
jyi = xbj ydj where � uj = aui + bvivj = 
ui + dviIt is 
lear that X 
ontains a Zariski open subset isomorphi
 to T2 = (Cn0)2 whi
his de�ned by the inequality xiyi 6= 0 in any 
oordinates xi; yi.Proposition 1.5. Let � be a primitive fan and E = X� n T2. Then E = E0 [� � � [ Er+1. Moreover,(a). Ej is de�ned by xj = 0 in the 
oordinates (xj ; yj), by yj�1 = 0 in the
oordinates (xj�1; yj�1), and Ej does not meet the other 
harts.(b). E0 e=Er+1 e=C and E1 e= : : : e=Er e=CP1.(
). The self-interse
tion E2j of Ej is equal to �ej�1 ^ ej+1, j = 1; : : : ; r.(d). det k�EiEjkri;j=1 = e0 ^ er+1.Proof. (a) { (
) follow immediately from the de�nitions; (d) is proved by indu
tion,using (
). �1.4.2. Mappings of tori
 surfa
es. To a linear mapping A : Z2 ! Z2 and prim-itive fans e� = (~e0; : : : ; ~e~r+1) and � = (e0; : : : ; er+1), we asso
iate a birationalmapping f = A� : Xe� ! X�. In 
oordinates (~xj ; ~yj) on Xe� and (xi; yi) on X�, itis de�ned byf(~xj ; ~yj) = (xi; yi); ( xi = ~xaj ~y
jyi = ~xbj ~ydj where � A(~uj) = aui + bviA(~vj) = 
ui + dvi



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 7(As above, here ui = ei, vi = ei+1, and also ~uj = ~ej , ~vj = ~ej+1). A regular mappingof a fan e� to a fan � is 
alled a linear mapping A : Z2 ! Z2 su
h that for any
one heuj ; evji there is a 
one hui; vii su
h that f�h~uj ; ~vji� � hui; vii. It is easy to
he
k that in this 
ase A� is a regular (i.e. without indetermina
y points) mappingXe� ! X�.The following properties follow immediately from the de�nitions and from Propo-sition 1.5.Proposition 1.6. Let A : Z2 ! Z2 be a regular mapping of primitive fans e�! �,and let f = A� : Xe� ! X�. Suppose also that A(h~e0i) = he0i and A(h~e~r+1i) =her+1i. Let us denote:N the degree of f ;n0 the order of bran
hing of f along eE0;n1 the order of bran
hing of f along eE~r+1(i.e. the ja
obian of f has zero of order n0 � 1 on eE0 and zero of order n1 � 1 oneE~r+1);m0 the bran
hing order of f j eE0 at the point eE0 \ eE1;m1 the bran
hing order of f j eE~r+1 at the point eE~r \ eE~r+1.� = det k�EiEjkri;j=1, e� = det k� eEi eEjk~ri;j=1Then:(a). detA = N = m0n0 = m1n1;(b). A(~e0) = n0e0 and A(~e~r+1) = n1er+1;(
). e� = n0n1N �:Corollary 1.7. Let the notation be as in 1.6. If the mapping f is not bran
hedalong eE~r then � = m0 e�. �A fan �0 = (e00; : : : ; e0r0+1) is 
alled a subdivision of a fan � = (e0; : : : ; er+1), ife00 = e0, e0r0+1 = er+1 and the identity mapping id : Z2 ! Z2 is a regular mappingof fans �0 ! �.Lemma 1.8. Any fan � has a primitive subdivision �0.Proof. For ea
h 2-dimensional 
one �, let us add as new generators all the ve
torslying on 
ompa
t sides of the 
onvex hull of the set (Z2 \ ��) n f0g. �Propositions 1.9. Let e� = (e0; : : : ; ~e~r+1) and � = (e0; : : : ; er) be two fans and letA : Z2 ! Z2 be a linear mapping su
h that A(h~e0i) = he0i and A(h~e~r+1i) = her+1i.Then there exist subdivisions e�0 and �0 of the fans e� and � su
h that A is a regularmapping e�0 ! �0.Proof.1). Let us add to � the integral generators of the rays A(h~e0i); : : : ; A(h~e~r1i) andsubdivide the obtained fan up to a primitive one �0 = (e00; : : : ; e0r0+1).2). Let us add to e� the integral generators of the rays A�1(h~e00i); : : : ; A�1(h~e0r01i)and subdivide the obtained fan up to a primitive one e�0. �



8 S.YU. OREVKOVx2. Regular 
ompa
tifi
ation at infinityof a meromorphi
 immersion of a (+1)-pair2.1. Compa
ti�
ation at in�nity. Di
riti
al 
omponents. Let us 
onsidersome algebrai
 
ompa
ti�
ation X of the 
omplex plane C2 with simple normal
rossings of the 
urve at the in�nity, i.e. X is a proje
tive surfa
e whi
h 
ontainsa 
urve L (generally, redu
ible) su
h that X n L = C2. All su
h 
ompa
ti�
ationsare obtained from CP2 with a 
hosen in�nite line by blow-ups and blow-downs atthe in�nity. The dual graph of L is a tree.Let (U; l) be a (+1)-pair and U n l! C2 a meromorphi
 immersion of it into C2.Blowing up points of l, it 
an be presented in the form f Æ ��1 where � : eX ! Uis a 
omposition of blow-ups and f : eX ! X a holomorphi
 mapping. The triple( eX;X; f) is 
alled a regular 
ompa
ti�
ation of the meromorphi
 immersion of the(+1)-pair (U; l) into C2. Let us denoteeL = ��1(l); eL1 = f�1(L); eLFC = eL n eL1;D = f(eLFC); eD = eD1 [ � � � [ eDd; eLC = eLFC n eDwhere eD1; : : : ; eDd are the di
riti
al 
omponents of the mapping f , i.e. the irredu
ible
omponents of the 
urve eLFC su
h that f is not 
onstant on them. The 
urve Dwill be 
alled the bran
hing 
urve.Proposition 2.1. (
p. [12℄) (a). Irredu
ible 
omponents of the 
urve ~L are ratio-nal 
urves and the dual graph of ~L is a tree.(b). The 
urve eL1 is 
onne
ted.(
). eLFC has d 
onne
ted 
omponents eL(1)FC ; : : : ; eL(d)FC.(d). The dual graph of eL(i)(FC) (i = 1; : : : ; d) is a linear 
hain (possibly, with asingle vertex) one of whose end verti
es 
orresponds to the di
riti
al 
omponent eDi.(e). The 
urve eL(i)FC (i = 1; : : : ; d) 
uts eL1 at a single point and this pointbelongs to eDi (i = 1; : : : ; d).Let ni, i = 1; : : : ; d, be the bran
hing order of f along eDi, i.e. the ja
obian of fvanishes on eDi with the multipli
ity ni � 1.Proposition 2.2. The 
anoni
al 
lass K eX of eX 
an be represented by a divisorsupported by eL and the multipli
ity of a di
riti
al 
omponent Di in this divisor isni � 1.Proof. K eX is represented by the divisor of the form f�(dx ^ dy) where x; y are theaÆne 
oordinates in C2.2.2. Formula for the index of a meromorphi
 immersion of a (+1)-pair.De�nition 2.3. The lo
al multipli
ity at a point x 2 X of a 
ontinuous mappingof topologi
al spa
es � : X ! Y is 
alled �x� = minU deg ��eU(x)� where the mini-mum is taken over all neighbourhoods U of �(x) and eU(x) denotes the 
onne
ted
omponent of f�1(U) whi
h 
ontains x.Let the notation be as in the previous subse
tion. Let X� be the one-point
ompa
ti�
ation of C2. Denote by eX� the singular surfa
e obtained from eX if ea
h
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onne
ted 
omponent of ea
h set f�1(x), x 2 X is 
ontra
ted to a single pointand also the 
urve eL1 is 
ontra
ted to a single point (whi
h we denote by 1).Then there exists a unique mapping f� : X� ! X su
h that the following diagram
ommutes eX f�! X# #eX� f��! X�(the verti
al arrows are the natural proje
tions). Let us denote the image of eDi oneX� by eD�i .Let, as in Se
t. 2.1, ni, be the bran
hing order of f along eDi, i.e. ni = �xf fora generi
 point x 2 eDi.Proposition 2.4. The index ind of the meromorphi
 immersion (U; l) ! C2 isequal to ind = �1f� � dXi=1 �ni + Xx2D�i nf1g(�xf� � ni)�: (7)Proof. Let us 
hoose 
oordinates (z; w) in C2 in su
h a way that the line z = 0does not meet the 
urve D at the in�nity under the standard in
lusion of C2 intoCP2. Denote the proje
tion (z; w) 7! z by � : C2 ! C.Denote the bran
h points of the mapping �jD : D ! C by p1; : : : ; pn, the orderof the bran
hing at pi by mi (i = 1; : : : ; n), and the degree of the 
urve D by m1.Let Bi, (i = 1; : : : ; n), be a ball of a suÆ
iently small radius 
entred at pi, and letB1 be a ball of a suÆ
iently large radius 
entred at the origin.Let V be a tubular neighbourhood of D whose radius is small with respe
tto the radii of the spheres Si. Let T = B1 \ �(��V ) n (B1 [ � � � [ Bn)� andS = (��B1) [ � � � [ (��Bn) [ �B1 (the minus means the orientation reversing).Let Ri, i 2 f1; : : : ; n;1g be a hypersurfa
e with a boundary (homeomorphi
 toseveral 
opies of S1�S1� [0; 1℄) whi
h smoothes the 
orner between �Bi and T asit is shown in Fig. 3.Ea
h sphere �Bi has exa
tly one point where the positive normal ve
tor is equalto (1; 0), moreover, its index (i.e. the 
ontribution into the degree of the Gaussmapping) is equal to �1 for i = 1; : : : ; n and +1 for i = 1. If the 
oordinates(z; w) are generi
 then this points is outside V . The surfa
e T has no su
h points,and ea
h surfa
e Ri has mi su
h points of index +1 for i = 1; : : : ; n and �1 fori =1.By the de�nition, ind is equal to the degree of the Gauss map asso
iated to f j�Mwhere M is the boundary of the tubular neighbourhood of l in U or, whi
h is thesame, the boundary of a neighbourhood of eD� in eX�. The minus before M meansthe reversing of the orientation.The immersion f j�M 
an be deformed into an immersion whose image is inS [ R [ T . Extend the mapping � Æ f�j eD�j n1 : eD�j n 1 ! C up to a mappingf�j : eD�j ! C[f1g. The 
ontributions of the surfa
es into the degree of the Gauss
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T

S

S

D

p
i

R

iB

i R 8

Fig. 3mapping are:S1 ! �1f�; R1 ! � dXj=1 nj � �1f�j ; T ! 0;Si ! �Xx2 eD�f�(x)=pi�xf�; Ri ! dXj=1 Xx2 eD�jf�(x)=pinj � �xf�j :Thus, denoting P = fp1; : : : ; png, we haveind = �1f� � nXi=1 Xx2 eD�f�(x)=pi�xf� � dXj=1 nj��1f�j � nXi=1 Xx2 eD�jf�(x)=pi�xf�j �= �1f� � dXj=1 Xx2 eD�jf�(x)2P�xf� � dXj=1 nj��1f�j � Xx2 eD�jf�(x)2P�xf�j �= �1f� � dXj=1 � Xx2 eD�jf�(x)2P(�xf� � nj) + njn�1f�j �Xx2eD�jf�(x)2P(�xf�j � 1)o�:It remains to note that by Riemann-Hurwitz formula applied to the bran
hed 
ov-ering f�j , the expression in the bra
es is equal to one. �Remark. In the 
ase of a meromorphi
 immersion of a 
at (+1)-pair de�ned by apolynomial mapping C2 ! C2 with a 
onstant ja
obian, the fa
t that the righthand side of (7) is equal to one was proved in [12℄ by 
omputing the Euler 
hara
-teristi
. Proposition 2.4 is a generalization of this fa
t to the 
ase of meromorphi
immersions into C2 of arbitrary (+1)-pairs.2.3. Properties of spli
e diagrams of L and eL.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 11We may assume that L meets D transversally (otherwise we blow up D\L severaltimes). Then the formulas given in x1 together with Proposition 2.2 impose ratherstrong restri
tions for the spli
e diagrams of eL and L [D. We apply the formulasfrom x1 as follows:(1) we apply Proposition 1.3 to the spli
e diagrams of L and eL;(2) we apply Proposition 1.6(
) to ea
h edge of the spli
e diagrams;(3) we apply Proposition 1.1 to ea
h edge of the spli
e diagrams between verti
esof the valen
e � 3;(4) we apply Propositions 1.4 and 2.2 to the di
riti
al 
omponents;(5) we apply Proposition 1.2 (if it is appli
able) to ea
h non-linear 
onne
ted
omponent of the graph of L from whi
h some verti
es of the valen
e � 3are removed.In the papers [5℄, [4℄, it is shown that these restri
tions are suÆ
ient to prove thatthere are no 
ounter-examples to the Ja
obian Conje
ture provided by a mappingof the topologi
al degree N � 4 (for N = 2 this is evident, and for N = 3 thisfollows from Abhyankar-Moh-Suzuki theorem, see [12℄).2.4. The 
ase of an irredu
ible bran
hing 
urve with two 
hara
teristi
pairs. Suppose that eL has a single di
riti
al 
omponent eD, and that the bran
hing
urve D = f( eD) has two 
hara
teristi
 pairs at the in�nity. This means that afterthe resolution of the singularity of D at the in�nity, its spli
e diagram near L hasthe form � Æj �Æj ! . Moreover, we shall suppose that the following additional
ondition holds:(�) There exists an irredu
ible 
omponent of L whose preimage has only oneirredu
ible 
omponent whi
h is not 
ontra
tible by f into a single point(
ompare with Proposition 1.2(b)).Under these assumptions, the spli
e diagrams of eD near eL1, of D near L, andof eL have the form depi
ted in Fig. 4, Fig. 5 and Fig. 6. The bla
k vertex denotesthe proper transform of l under the mapping � : ( eX; eL)! (U; l).
k0

D1

~

k1

D2

D2

R1 R2

L1 L2

k1. .
 .

1

1

L2

~
1

~
L

1

1

. .
 .

. . .
1 1

. . .
1 1~

k2

S
~ 1

~
l

1 S
~

D1

1 18

1

8

S
~

2

8

3

Fig. 4. Spli
e diagram �eL1; eD Fig. 5. Spli
e d. �L;DLet us introdu
e the following notation. Let Q2 and eQ2 be the determinants ofthe edges L1L2 and eL1eL2 of the spli
e diagrams �L and e�L, i.e. Q2 (respe
tively,eQ2) is the determinant of that 
omponent of the 
losure of the 
urve L n (L1 [L2),(the 
urve eL n (eL1 [ eL2)) whi
h is between L1 and L2 (between eL1 and eL2).
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k0

D1

~

k1

k1. .
 .

1

1

L2

~
1

~
L

D2

1

1

. .
 .

. . .
1 1

. . .
1 1

k2

S
~ 1

~
l

11 S
~

2 1 a-x

~
D

~Fig. 6. Spli
e diagram �eLFor j = 1; 2 let us denote the degree of f jeLj by mj , the bran
hing order of falong eL1 by nj , and let m0j (respe
tively, dj) be the bran
hing order of f jeLj at thepoint of interse
tion of eLj with that bran
h of eL at the vertex Lj whi
h 
ontains el,(respe
tively, whi
h has the determinant eDj). Let us also denote the degree of f j eDand the bran
hing order of f along eD by m and n.All the introdu
ed integers are positive (the positivity of Rj see [11℄; from thetheory of approximation roots[1℄, it follows also that Rj > 1). They satisfy thefollowing relations. g
d(D1; R1) = g
d(D2; R2) = 1; (8)the edge determinant formula (Proposition 1.1) yields�Q2 = R2 �R1D1D2 (the edge L1L2 in L); (9)�x eQ2 = eS11 � eS12 eD1 eD2 (the edge eL1eL2 in eL1): (10)By Proposition 1.6 and Corollary 1.7, we haveD1 = d1 eD1; D2 = d2 eD2; eQ2Q2 = n1m2 = n2m01 ; eS12 = n2m = nm02 ; (11)and also see that the bran
hing orders at the points of eL1 and eL2, 
orrespondingto the edges of the spli
e diagram are:R1; : : : ; R1| {z }k0 ; d1; D1; : : : ; D1| {z }k1 ; m01; 1; : : : ; 1| {z }k01 for the 
urve eL1;m2; d2; D2; : : : ; D2| {z }k2 ; m02 for the 
urve eL2;this implies k0R1 = d1 + k1D1 = m01 + k01 = m1; d2 + k2D2 = m2; (12)m01 = k1 + k0; m02 = k2 + 1 (13)(the relation (13) is obtained from (12) and Riemann-Hurwitz formula).



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 13Applying Proposition 1.2 to the 
urve L itself and to its bran
h at the vertex L1
ontaining L2, we geteD1 eS11x = n1m1 � R1D11 ; eD2 eQ2 eS12eS11 = n2m2 � Q2D21 : (14)Finally, by Proposition 2.2, the order of the ja
obian of f on eD is equal to n� 1and by Proposition 1.4 it is equal to �1� a+ x, i.e.x = a+ n: (15)If the 
onsidered meromorphi
 immersion is realizable by polynomials P (x; y),Q(x; y) then (see Se
t. 4.1)degP (x; y) = k0 eD1 eD2 + aD1D2; degQ(x; y) = k1 eD1 eD2 + eD2 + aR1D2: (16)A �rst arbitrarily found solution of simultaneous equations allowed me to 
on-stru
t a 
ounter-example to WJC1 in [13℄.Proposition 2.5. The simultaneous equations (8) { (15) have a �nite number ofpositive integral solutions under the 
ondition that m1n1 = N = 
onst.Proof. From the equations (11), (14) and k0R0 = m1 (see (12)) we get m1 =mxd1d2R1, n1 = md2 eS11 , hen
e, m2xd1d22R1 eS11 = N . The other parameters also
an be easily estimated via N . �I wrote a simple 
omputer program whi
h �nds all positive integral solutions of(8) { (15) for any given N = m1n1. For N < 9, there is no solution. For N = 9,there is a unique solutionR1 = 3; D1 = eD1 = 4; m1 = 9; n1 = 1; eQ2 = 5; n = 2;R2 = 23; D2 = eD2 = 4; m2 = 5; n2 = 1; Q2 = 25; a = 1: (17)This solution allows one to 
onstru
t the simplest 
ounter-example to WJC1. Ifthis solution were a 
ounter-example to JC then, by (16), the degrees of P andQ would be 48 and 64. The solution (17) is dis
ussed in [9; x3℄. There is exa
tlyfour solutions with max(degP; degQ) < 100. They 
orrespond exa
tly to the fourdiÆ
ult 
ases in Moh's paper [10℄.The example whi
h we 
onstru
t in x3 
orresponds to the solutionR1 = 3; D1 = eD1 = 20; m1 = 21; n1 = 1; eQ2 = 17; n = 4;R2 = 112; D2 = eD2 = 3; m2 = 4; n2 = 2; Q2 = 68; a = 3:x3. Constru
tion of the example3.1. The mapping of graphs. We shall 
onstru
t a meromorphi
 immersion ofa (+1)-pair into C2 with a single di
riti
al 
omponent eD whose image D = f( eD)has two 
hara
teristi
 pairs at the in�nity and whose regular 
ompa
ti�
ation atthe in�nity indu
es the mapping of the graphs of eL and D [ L depi
ted in Fig. 7.The bla
k verti
es "�" in Fig. 7 
orrespond to the 
urves whi
h are 
ontra
ted byf into a single point. The mapping of linear 
hains e� ! � is given in Se
t. 3.3.2.
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Fig. 7In Fig. 7, we also show the resolutions of lo
al bran
hes of the 
urve D and theregularization of f over them.In the pi
ture of the graph of eL (Fig. 7, upper part) is also equipped with thefollowing information 
on
erning the mapping f . A mark of the form N : 1 neara linear 
hain (an edge of the spli
e diagram) means that the degree of f at itsneighbourhood is N . A mark of the form (m;n) near a vertex of the valen
e � 3(denote the 
orresponding 
urve by A) means that the degree of f jA is m and thebran
hing order of f along A is n.3.2. Constru
tion of the bran
hing 
urve.Lemma 3.1. There exists a 
urve D, parametrized by a polynomial mapping g :C ! C2, t 7! �p(t); q(t)� where p(t) and q(t) are polynomials of degrees 60 and 9



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 15respe
tively, and pairwise distin
t points t1; : : : ; t7 2 C n f0g su
h that(a). g(0) = (0; 0), and gjCnf0;t1;:::;t7g is an immersion, i.e. p0(t) 6= 0 and q0(t) 6=0 for t 62 f0; t1; : : : ; t7g;(b). the spli
e diagram of D at the in�nity is as in Fig. 8;(
). the lo
al bran
h of D parametrized by a neighbourhood of 0 has the spli
ediagram at the origin depi
ted in Fig. 9, i.e. it has the singularity de�nedby u2 = v5 in some lo
al 
oordinates (the singularity of the type A4);(d). for all k = 1; : : : ; 7, the lo
al bran
h of D, parametrized by a neighbourhoodof tk has the spli
e diagram depi
ted in Fig. 10, i.e. it has the singularityde�ned by u2 = v3 in some lo
al 
oordinates (the singularity of the type A2);
3

20

3

11 112 5

2

1 3

2

1Fig. 8 (t =1) Fig. 9 (t = 0) Fig. 10 (t = tk)The 
onditions (b) and (
) of Lemma 3.1 are equivalent to the fa
t that thegraph of resolution of the 
urve at the in�nity (of the lo
al bran
h at t = 0, att = tk) is as in Fig. 11 (in Fig. 12, in Fig. 13).
-2 -3 -2 -1

-3

-2 -3 -1

-2

-3 -1

-2

-7 -3 -2 -2

-2

-2
21

. . .

Fig. 11 (t =1) Fig. 12 (t = 0) Fig. 13 (t = tk)Proof. By linear 
hanges of 
oordinates, the polynomials p and q 
an be put intothe form p(t) = t60 + : : : and q(t) = t9 + : : : . The 
ondition (b) of Lemma 3.1means that there exists a polynomial G(u; v) of the formG(u; v) = u3 � v20 + X20i+3j<60i;j�0 Cijuivjsu
h that degtG�p(t); q(t)� = 112: (18)The 
ondition (
) of Lemma 3.1 means that there exist 
onstants 
1 and 
2 su
hthat ordt=0 � p(t)� 
1q(t)� 
1q(t)2 � = 5: (19)The 
ondition (d) of Lemma 3.1 means that for k = 1; : : : ; 7,p0(tk) = q0(tk) = 0; (20)p00(tk)q000(tk) 6= q00(tk)p000(tk): (21)
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e deg q0 = 8 and q0(0) = 0, the 
ondition (20) is equivalent to the fa
t thatf0; t1; : : : ; t7g are the roots of q0, and there exists a polynomial r(t) of degree 51su
h that p0(t) = r(t) � q0(t): (22)The 
ondition (18), (19), (21) and (22) provide a system of simultaneous equationsand inequalities for the unknowns 
1, 
2 and for the 
oeÆ
ients of q, r and G (the
oeÆ
ients of p 
an be found from (22) and p(0) = 0).This system has a solution:
1 = � 3236876211189240090684846733 ; 
2 = 30833889663060410338673 ;q(t) = t9 + 3 t6 + 5417 t3 + 3�t2; where � = � 3617 3q 14734r(t) = 203 �t51 + 17 t48 + 137 t45 + 17� t44 + 681 t42 + 238� t41 + 501054221 t39++1561� t38 + 119�2 t37 + 8626217 t36 + 6160� t35 + 1309�2 t34 + 1932222289 t33++ 26351617 � t32 + 6622�2 t31 � 900938944913 t30 + 39723217 � t29 + 19250�2 t28�� 8461330354913 t27 + 3005266289 � t26 + 54388417 �2 t25 � 4995793089183521 t24�� 4205386244913 � t23 + 35327617 �2 t22 � 9129829078783521 t21 � 101367959289 � t20�� 9780232289 �2 t19 � 11620529937071419857 t18 � 5660302417083521 � t17 � 8073770324913 �2 t16+ 7662180839221419857 t15 � 4545091805183521 � t14 � 14426037014913 �2 t13 + 4692111626370624137569 t12++ 2303395553521419857 � t11 � 1939524625583521 �2 t10 + 1413944975064438410338673 t9++ 6213933385921419857 � t8 + 624561121883521 �2 t7 + 554559678398538410338673 t6++ 820458619365624137569 � t5 + 427317579083521 �2 t4 � 35248608667851486975757441 t3++ 27750500696754410338673 � t2 � 485531431678386090684846733 � ;G(u; v) = u3 + 12569434722667023599752415841411674 u2++ u � � 36795442 v12 + 14347938063869 v11 � 674442661861085773 v10 � 137300874259560313788397 v9++ 2580726046707594885181369693466 v8+ 128472519510619218001541642394461 v7� 1112181512392833344850034271896307633 v6��� v20 + 44017 v19 + 137380289 v18 � 155703160083521 v17 + 7858270459414524955406632 v16++ 5956885860588398964901514064581 v15 + 15055946520458773867110260537564663909 v14�� 3286758414687687627327372075295356187869701 v13 :One 
an 
he
k that the polynomial t�1q0(t) is irredu
ible over Q(�), hen
e, itsroots t1; : : : ; t7 are distin
t. Lemma 3.1 is proved �Remark 3.2. After the 
hange of 
oordinates t = �s, the 
oeÆ
ients of polynomialsp(t) and q(t) be
omes rational.Remark 3.3. The number of the unknowns in the system (18), (19), (22) ex
eedsthe number of the equations. Therefore, to simplify the 
omputations, we set the
oeÆ
ients of t8, t7, t5 and t4 in q(t) to be zero from the very beginning.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 173.3. Constru
tion of the 
overing of the edges of the spli
e diagram. Forea
h linear 
hain in the graphs in Figures 11{13, we shall 
onstru
t a 
overing overa neighbourhood of the union of the 
orresponding 
urves.3.3.1. Covering over the edge �7Æ����3Æ�� (Fig. 11).A

ording to Proposition 1.5, a neighbourhood of the 
orresponding 
urve 
an beembedded into a tori
 surfa
e asso
iated to the fan� = � 1 1 6 170 1 7 20� ; and let A = � 1 170 20� ; e� = � 1 00 1� :Here and further, the fans are represented by matri
es whose 
olumns 
orrespondto the ve
tors. Applying to A, e� and � the pro
edure des
ribed in Proposition 1.9,we obtain primitive fans�0 = � and e�0 = �1 3 2 1 1 1 1 1 1 1 00 1 1 1 2 3 4 5 6 7 1� :Here and further, we use the bold font for the ve
tors ~e0j of the fan e�0 su
h thatA(R~e0j) = Re0i for some e0i 2 �0. The mapping of graphs has the form:�1Æ����2�����3�����2�����2�����2�����2�����2�����1Æ�� �20:1�! �7Æ����3Æ�� :Here and later in Se
tions 3.3.1 { 3.3.8 the bla
k verti
es 
orrespond to thoseirredu
ible 
omponents whi
h are 
ontra
ted to a point by the 
onsidered mapping.By 1.6, we have N = detA = 20, m0 = m1 = 20, n0 = n1 = 1.3.3.2. Covering over the edge ���2Æ� � � � ��2Æ| {z }21 ����3Æ����2Æ�� (Fig. 11).� = h 1 1 ::: 1 1 2 30 1 ::: 21 22 45 68 i ; A = h 1 00 8 i ; e� = h 1 1 1 2 3 4 5 60 1 2 5 8 11 14 17 i�0 = h 1 1 ::: 1 3 2 1 3 5 2 30 1 ::: 21 64 43 22 67 112 45 68 ie�0 = h 1 8 7 6 5 4 3 8 5 2 5 8 3 4 5 6 7 8 1 8 7 6 5 4 3 8 5 2 5 8 3 4 5 6 7 8 10 1 1 1 1 1 1 3 2 1 3 5 2 3 4 5 6 7 1 9 8 7 6 5 4 11 7 3 8 13 5 7 9 11 13 15 28 7 6 5 4 3 8 5 2 5 8 3 16 13 10 7 4 9 14 19 24 5 16 11 617 15 13 11 9 7 19 12 5 13 21 8 43 35 27 19 11 25 39 53 67 14 45 31 17 iThe mapping of graphs has the form:�� e�1 ���5Æ�� e�2 ���16Æ�� e�1 ���5Æ�� e�2 ���16Æ�� e�1 ���5Æ�� e���# 8:1�� �1 ���2Æ�� �2 ���2Æ�� �1 ���2Æ�� �2 ���2Æ�� �1 ���2Æ�����where �� e�1 �� ���1Æ����2�����2�����2�����2Æ����4�����1Æ����2����# = #�� �1 �� ���2Æ����������������2Æ���������2Æ�������



18 S.YU. OREVKOV�2, e�2 are the mirror images of �1, e�1, and�� e��� ���2�����1Æ����8Æ����1Æ����2�����2�����2�����4Æ����2�����2�����2�����1Æ����8Æ����1Æ����2���# = #�� ��� ������4Æ����1Æ����2Æ����������������5Æ����������������2Æ����1Æ����4Æ�����By Proposition 1.6, we have N = detA = 8, m0 = 8, m1 = 4, n0 = 1, n1 = 2.3.3.3. Covering over the verti
al edge �2Æ����2Æ�� (Fig. 11).� = h 1 1 1 10 1 2 3 i ; A = h 1 10 3 i ; e� = h 1 00 1 i ; �0 = h 1 1 2 1 10 1 3 2 3 i ; e�0 = h 1 2 1 1 00 1 1 2 1 iThe mapping of graphs has the form: �1Æ����3Æ����1Æ�� �3:1�! �3Æ����1Æ����3Æ�� :By Proposition 1.6, we have N = detA = 3, m0 = m1 = 3, n0 = n1 = 1.3.3.4. Two 
overings over the verti
al edge �3Æ��� (Fig. 11).The �rst 
overing:� = h 1 1 20 1 3 i ; A = h 1 40 6 i ; e� = h 1 00 1 i ; �0 = h 1 1 3 20 1 4 3 i ; e�0 = h 1 2 1 1 00 1 1 2 1 iThe mapping of graphs has the form: �1Æ����3�����1Æ��� �6:1�! �4Æ����1Æ��� :By Proposition 1.6, we have N = detA = 6, m0 = 6, m1 = 3, n0 = 1, n1 = 2.The se
ond 
overing:� = h 1 1 20 1 3 i ; A = h 1 10 2 i ; e� = e�0 = h 1 1 1 10 1 2 3 i ; �0 = h 1 1 3 20 1 4 3 iThe mapping of graphs has the form: �2Æ����2Æ�� �2:1�! �4Æ����1Æ�� :By Proposition 1.6, we have N = detA = 2, m0 = 2, m1 = 1, n0 = 1, n1 = 2.3.3.5. Covering over the edge "���!" (Fig. 11).� = �0 = h 1 00 1 i ; A = h 2 �10 2 i ; e� = e�0 = h 1 1 10 1 2 iThe mapping of graphs has the form: ����2���� �4:1�! ����� :By Proposition 1.6, we have N = detA = 4, m0 = 2, m1 = 1, n0 = 2, n1 = 4.3.3.6. Covering over the edge �2Æ����3Æ�� (Fig. 12).� = �0 = h 1 1 1 20 1 2 5 i ; A = h 1 20 5 i ; e� = h 1 00 1 i ; e�0 = h 1 3 2 1 1 00 1 1 1 2 1 iThe mapping of graphs has the form: �1Æ����2�����3�����1Æ�� �5:1�! �2Æ����3Æ��By Proposition 1.6, we have N = detA = 5, m0 = m1 = 5, n0 = n1 = 1.3.3.7. Covering over verti
al the edge �2Æ�� (Fig. 12 and Fig. 13).� = �0 = h 1 1 10 1 2 i ; A = h 1 10 2 i ; e� = h 1 00 1 i ; e�0 = h 1 1 00 1 1 iThe mapping of graphs has the form: �1Æ�� �2:1�! �2Æ�� .By Proposition 1.6, we have N = detA = 2, m0 = m1 = 2, n0 = n1 = 1.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 193.3.8. Covering over the edge �3Æ�� (Fig. 13).� = �0 = h 1 1 20 1 3 i ; A = h 1 20 3 i ; e� = h 1 00 1 i ; e�0 = h 1 1 00 1 1 iThe mapping of graphs has the form: �1Æ�� �3:1�! �3Æ�� .By Proposition 1.6, we have N = detA = 3, m0 = m1 = 3, n0 = n1 = 1.3.4. Covering over trivalent verti
es of the spli
e diagram.Lemma 3.4. Let (m(1)1 ; : : : ;m(1)k1 ; m(2)1 ; : : : ;m(2)k2 ; m(3)1 ; : : : ;m(3)k3 ) be one of thefollowing 
olle
tions of integers (here nm denotes m times n; : : : ; n):(20; 1; 37; 8; 113); (4; 3; 1; 2; 12); (5; 1; 23; 4; 12); (32; 23; 4; 12):Then there exists a bran
h 
overing ' : S2 ! S2 whi
h has three 
riti
al values p1,p2, p3, i.e. ' is unbran
hed over '�1(fp1; p2; p3g), su
h that m(i)1 ; : : : ;m(i)ki are themultipli
ities of ' at the preimages of pi.Proof. Let us 
onne
t the points p2 and p3 by an embedded segment I . Let � bethe graph embedded into S2 in one of the ways depi
ted in Fig. 14. Let us de�nea mapping ' : � ! I whi
h takes the bla
k verti
es into p2, the white ones intop3, and maps the edges homeomorphi
ally onto I . Let us extend ' to the wholesphere so that ea
h 
omponent of the 
omplement of � 
oversS2 n I with a singlebran
h point whi
h is over p1. �

Fig. 14For all the trivalent verti
es of the graph in Fig. 7(lower part) ex
ept v2, weextend the 
overing of the sphere 
onstru
ted in Lemma 3.4 up to a 
overing whi
his bran
hed only along the 
urves 
orresponding to the neighbouring verti
es andunbran
hed along the 
urve 
orresponding to the trivalent vertex itself.For the vertex v2, we should extend the 
overing more 
arefully. It must havedouble bran
hing along the 
urve 
orresponding to v2 (denote it by A) be
ausen1 = 2 in the 
overings 3.3.2, 3.3.4 and n0 = 2 in the 
overings 3.3.5. Let B1,B2, B3 be the 
urves 
orresponding to the neighbouring verti
es and let V be asuÆ
iently small tubular neighbourhood of A. Let �, �1, �2, �3 be the elements ofthe fundamental group � = �1�V n (A [ B1 [ B2 [ B3)� de�ned by the meridiansof A, B1, B2 and B3 respe
tively (we 
all a meridian the positive loop along theboundary of a small transversal disk). Sin
e A2 = �2, under a 
ertain 
hoi
e of



20 S.YU. OREVKOVthe paths 
onne
ting the meridians to a 
ommon base point, we have the followingrelations: �2 = �1�2�3; ��j = �j�; j = 1; 2; 3 (23)The 
overing is de�ned by a homomorphism to the symmetri
 group �! S(8), i.e.by an a
tion of � on the preimages of the base point.Analysing the 
overings from 3.3.2, 3.3.4 and 3.3.5, we see that the monodromyof the 
overing over some neighbourhoods of the points A \ Bi should be as inFig. 15. It remains to establish a 
orresponden
e between the points so that therelations (23) are satis�ed. This 
an be a
hieved by the numbering of the verti
esdepi
ted in Fig. 15.
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Fig. 153.5. Proof of Proposition 0.2. The same way as in [13℄ (or somehow else), one
an 
he
k that the polynomial immersion C ! C2 
onstru
ted in Se
tion 3.2 isextendable up to an immersion of some neighbourhood of ~D (see Fig. 7). To seethis, one should 
ompute the degree of the normal bundle of the 
urve D on thesurfa
e 
orresponding to the graph in the lowerBlowing down su

essively the (�1)-verti
es in Fig. 7(upper part), we obtain thelinear 
hain �2Æ����2Æ���0Æ~v2����2Æ����1ÆeD����2Æ����2Æ .Blowing up four times the point 
orresponding to the edge to the right of ~v2, weobtain the graph depi
ted in Fig. 16. This graph 
an be blown down to a single(+1)-vertex ~l. Thus, we obtain a meromorphi
 immersion of a (+1)-pair.�2Æ����2Æ����1Æ~v2����4Æ����1Æ~l����2Æ����2Æ����4Æ����1ÆeD����2Æ����2ÆFig. 16It remains to note that by Proposition 2.4, the index of the 
onstru
ted immer-sion is equal to one. Indeed, introdu
ing the notation as in Se
t. 2.2, we have�1f� = 21; d = 1; n1 = 4; and Xx2D�1nf1g(�xf� � n1) = 8� (6� 4):x4. Non-existen
e of a 
ounter-example to the Ja
obianConje
ture with the given behaviour at the infinityIn this se
tion we prove



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 21Proposition 4.1. There does not exist a polynomial mapping C2 ! C2 realiz-ing the meromorphi
 immersion 
onstru
ted in x3. In parti
ular, the (+1)-pair
onstru
ted in x3 is not 
at.4.1. Redu
tion to a system of simultaneous equations and inequali-ties. Suppose, there exist polynomials P (x; y) and Q(x; y) su
h that P 0xQ0y �P 0yQ0x = 1 and the mapping (x; y) 7! (u; v) = �P (x; y); Q(x; y)� at the in�nityis as it is des
ribed in x3. By linear 
hanges of 
oordinates one 
an a
hieve thatthe lines u = 
onst and v = 
onst meets transversally the 
urves 
orresponding tothe verti
es u0 and u1 in Fig. 7(lower part).A

ording to 3.3.1, 3.3.3, the restri
tion of f onto ea
h of the 
urves 
orrespond-ing to the preimages of u0 and u1 is one-to-one. Therefore, ea
h preimage of v0(respe
tively, of v1) meets the 
urve P (x; y) = 
onst (respe
tively, Q(x; y) = 
onst)on
e and transversally. All the other interse
tions of P = 
onst and Q = 
onstwith the in�nite 
urve are 
on
entrated in the di
riti
al 
omponent ~D. Moreover,sin
e the polynomials parametrizing the bran
h 
urve D are of degrees 9 and 60,the 
urves P = 
onst and Q = 
onst have 9 and 60 interse
tions with ~D.Blowing down su

essively extra (�1)-
urves in Fig. 7(upper part), we obtain a
ommon resolution graph for the 
urves P = 
onst and Q = 
onst at the in�nitywhi
h is depi
ted in Fig. 17. Hen
e, the spli
e diagrams of these 
urves at thein�nity are as in Figures 18 and 19. This implies, in parti
ular (see [11℄), thatdegP (x; y) = 600; degQ(x; y) = 90: (24)
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22 S.YU. OREVKOVLet X19 �19�! X18 �18�! : : : �2�! X1 �1�! X0 = CP2Be the sequen
e of the �-pro
esses whi
h blows down su

essively all the verti
esin Fig. 17 ex
ept ~l. Let us denote the in�nite line in CP2 by E0, and let Ej bethe ex
eptional 
urve of the �-pro
ess (blow-up) �j , j = 1; : : : ; 19. We shall usethe same notation for a 
urve and all its proper transforms on the other surfa
es.The mutual position of the 
urves Ej is depi
ted in Fig. 20. The numbers in theparentheses near the verti
es have the following meaning. P Æ �19 and Q Æ �19 arerational fun
tions on X19. Let (P ) and (Q) be their divisors. They are of the form(P ) = (P )a�0 � 19Xj=0 pjEj ; (Q) = (Q)a�0 � 19Xj=0 qjEj ;where (P )a�0 and (Q)a�0 are the 
losures of the aÆne 
urves fP = 0g and fQ = 0g.The numbers in the parentheses near a vertex Ej in Fig. 20 are (pj ; qj).
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2)Fig. 20Let us 
hoose 
oordinates x; y in C2 so that the 
entre of the blow-ups �1 and�2 are at the in�nite point of the axis y = 0 and the 
entres of the blow-ups �7 and�8 are are at the in�nite point of the axisx = 0. Let us 
hoose 
oordinates 
hartson Xj 
alled standard as follows. As the standard 
harts on X0 = CP2, we 
hoose(x; y), (1=x; y=x) and (x=y; 1=y). If the 
entre of the blowup �j is at the origin ofone of the standard 
oordinate 
harts (x0; y0) on Xj�1 then we repla
e this 
harton Xj by the two 
harts (x0=y0; y0) and (x0; y0=x0). The only three blow-ups wherethe 
hoi
e of the standard 
harts is ambiguous, are �3, �4 and �11.Let (x2; y2) be the standard 
oordinates on X2 in whi
h E2 = fx2 = 0g andfy = 0g = fy2 = 0g, i.e. x2 = x�1, y2 = xy. In these 
oordinates, the 
urve E2is the 
oordinate axis x2 = 0. Sin
e the 
entre of �3 lies on E2, its 
oordinatesare (x2; y2) = (0; �2). As the standard 
oordinates at this point, we 
hose the
oordinates x20 = x2 = x�1 and y20 = y2��2 = xy��2. Let (x3; y3) be the standard
oordinates on X3 su
h that x3 = x20 = x�1 and y3 = y20=x20 = (xy � �2)x. Inthese 
oordinates, the 
urve E3 is the 
oordinate axis x3 = 0. Sin
e the 
entre of �4lies on E3, its 
oordinates are (x3; y3) = (0; �3). As the standard 
oordinates at thispoint, we 
hose the 
oordinates x30 = x3 = x�1 and y30 = y3��3 = x2y��2x��3.Analogously, let (x10; y10) be the standard 
oordinates on X10 in whi
h E10 =fx10 = 0g and E7 = fy10 = 0g, i.e. x10 = x, y10 = x�3y�1. Res
aling if ne
essary,the axis x, we may assume that the 
entre of �11 is at the point (x10; y10) = (0; 1) 2E10. As the standard 
oordinates at this point, we 
hose the 
oordinates x100 = x10and y100 = y10 � 1.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 23When depi
ting the Newton polygons, we shall use the following 
onvention. Ifthe depi
ted polygon � is not 
ompletely known then we show a polygon whi
h
ontains �. In this 
ase, we depi
t the verti
es whi
h are known to belong to �,as a small bla
k 
ir
le "�".Lemma 4.1. Let R stands for one of P or Q and let us set a = 20 when R = Pand a = 3 when R = Q.(a). The Newton polygon of R(x; y) is the quadrangle depi
ted in Fig. 21 (leftupper part).(b). Passing to the 
oordinates (xj ; yj) for j = 2; 20; 3; 30 or 10, the polynomial Rbe
omes a Laurent polynomial whi
h we denote by Rj(xj ; yj). The Newton polygonsof these Laurent polynomials are depi
ted in Fig. 21.(
). Passing to the 
oordinates (x100 ; y100), the polynomial R be
omes a rationalfun
tion of the form (1+y100)�6aR100(x100 ; y100), where R100 is a Laurent polynomialwhose Newton polygon is depi
ted in Fig. 22.
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Fig. 22Proof. It is suÆ
ient to write expli
itely all the blow-ups in the standard 
oordi-nates and to tra
e the multipli
ities of P and Q on the ex
eptional 
urves. Forexample, q0 = 90 and q1 = 27, hen
e the divisor (Q)a�0 has the multipli
ity 27



24 S.YU. OREVKOVat the 
entre of �1. Therefore, the Newton polygon of Q is 
ontained in the areax � 63, x+ y � 90. The further arguments are similar. �The 
ondition that the 
oeÆ
ients of Q30 and Q100 are zero outside the polygonsin Figures 21 and 22 yeilds a system of simultaneous equations for the 
oeÆ
ientsof Q(x; y). A straight-forward 
omputation shows that this system has no solutionproviding non-zero 
oeÆ
ients at the verti
es marked as bla
k points �" in Figures21 and 22. This proves Proposition 4.1. In the next subse
tion we show how toprove the absen
e of the solutions without tedious 
al
ulations. The idea of theproof is taken from Heitmann's paper [9℄.4.2. Proof that there is no solution. We shall pro
eed analogously to [9; x3℄.Let us 
hange the notation denoting the 
oordinates (x30 ; y30) by (t; u), and the
oordinates (x100 ; y100) by (x; z):x = t�1; y = �2t+ �3t2 + ut2; y = x�3(1 + z)�1;t = x�1; u = x2y � �2x� �3; z = x�3y�1 � 1:Let us set� = xu� 1; � = u3 � 2xyu+ y + 2�2u+ �3xy � �2�3; � = �2�3:These fun
tions are polynomials in (x; y) and Laurent polynomials in (t; u), theirNewton polygons are depi
ted in Fig. 23. In the 
oordinates (x; z), the fun
tions(1 + z)�(x; z), (1 + z)3�(x; z) and (1 + z)9�(x; z) are Laurent polynomials. TheirNewton polygons are also depi
ted in Fig. 23. In parti
ular, we see that the Newtonpolygon of �3 is 
ontained in that of Q in all the three 
oordinate systems (x; y),(x; z), (t; u).
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COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 25For a Laurent polynomial 
(t) = Pnk=m 
ktk su
h that 
m 6= 0 and 
n 6= 0, letus denote ordt 
 = m and degt 
 = n.Lemma 4.2. Let a be a positive integer and R(x; y) a polynomial whose New-ton polygon is 
ontained in the quadrangle [(0; 0), (12a; 0), (21a; 9a), (0; 2a)℄. LetR(t; u) and R(x; z) be the result of the substitution into R(x; y) of the expressionsof (x; y) via (x; z) and (t; u). Suppose that the Newton polygon of the Laurent poly-nomial R(t; u) is 
ontained in the quadrangle [(0; 0), (4a; 0), (4a; 2a), (�3a; 9a)℄(
ompare with Fig. 21). Let(1 + z)9aR(x; z) = 12aXk=�6a bk(z)xk:Suppose that bk = 0 for k < m. Thendegz bm � ordz bm � 3=2 (m+ 6a);and in the 
ase of the equality sign we have bm(z) = z�7=6m(1 + z)3=2 (m+6a).Proof. Sin
e bk = 0 for k < m, the Newton polygon of (1+z)9aR(x; z) is to the rightof the verti
al line x = m. In the 
oordinates (x; y10), this 
ondition means that theNewton polygon of y9a10R(x; y10) lies in the area shadowed in the left hand side ofFig. 24. Passing from the 
oordinates (x; y10) to the 
oordinates (t; u) (see Fig. 24)and ba
k (see Fig. 25), one 
an tra
e that the Newton polygon of R must alwaysremain in the shadowed area. Therefore, all non-zero monomials of y9a10R(x; y10)lying on the verti
al line x = m must be above the segment [(�6a; 0); (0; 9a)℄ (it isshown by the dashed line in Figures 24 and 25), i.e. ordy10 
m � 3=2 (m+6a), where
m(y10) is the 
oeÆ
ient of xm in the Laurent polynomial y9a10R(x; y10). It remainsto note that bm(z) = 
m(1 + z), and hen
e, degz bm � ordz bm � ordy10 
m. �
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26 S.YU. OREVKOVWithout loss of generality, we may assume that the 
oeÆ
ient of x63y27 in thepolynomial Q(x; y) is equal to one. Applying Lemma 4.2 su

essively to the polyno-mialQ��3, we obtain that in the 
oordinates (x; z), its 
oeÆ
ients of x�18; : : : ; x�13are zero and the 
oeÆ
ient of x�12 is 
2 z14 (z + 1)9 for some 
onstant 
2.Still applying Lemma 4.2, this time to the polynomial Q � �3 � 
2�2, we seethat its 
oeÆ
ient of x�12; : : : ; x�7 are zero and the 
oeÆ
ient of x�6 is equal to
1 z7 (z + 1)18 for some 
onstant 
1.Finally, applying su

essively Lemma 4.2 to the polynomial Q� �3� 
2�2� 
1�,we obtain that it is identi
ally zero, i.e.Q = �3 + 
2�2 + 
1�:It remains to note that the 
oeÆ
ient of x�1z in this polynomial is zero whileby Lemma 4.1 it should not be so (see Fig. 22, left hand side). The obtained
ontradi
tion proves Proposition 4.1.4.3. Se
ond proof of Proposition 4.1 (simple but not rigorous). When
onstru
ting the bran
h 
urveD in Se
t. 3.2, we solved an underdeterminate systemof simultaneous equations (the number of unknowns was greater than the numberof equations: see Remark 3.3). Therefore it is naturally to assume that D admitsdeformations in the 
lass of 
urves with the given types of singularities, hen
e, it
an be further degenerated.Suppose that there exists a degeneration su
h that a singularity of the type A2meets a simple double point and transforms into a singularity of the type A4 as inthe family of 
urves Ct = fy2 = x3(x � t)2g with t! 0: (26)Then a 
ounter-example to the Ja
obian Conje
ture is impossible by the followingsimple reason of topologi
al nature. Indeed, in this 
ase, there exists a dis
 �
ontinuously embedded into C2 su
h that(i ) � meets D along its boundary: � \D = ��;(ii ) the path �� passes through the simple double point of D and at this point,it passes from one lo
al bran
h to the other.For instan
e, in the situation (26) for t 2 R, t > 0, su
h a dis
 
an be 
hosenas f(x; y) 2 R2 j 0 � x � t, y2 � x3(x � t)2g. Sin
e this dis
 
an be lifted tothe 
overing, the preimages of the both bran
hes meet on the 
overing whi
h isimpossible.It must be very diÆ
ult (if possible at all) to prove the existen
e of degenerationsof the form (26). Nevertheless, it seems that a 
urve satisfying the 
onditions ofLemma 3.1 might be obtained by triple appli
ation of degenerations of the form(26) to a 
urve D0 whi
h satisfy the 
onditions (a) and (b) of Lemma 3.1 and hasfour singular points of the type A2 and four singular points of the type A4. Su
h
urves exist, among them, there is a 
urve whi
h has the symmetry of the fourthorder. x5. Pseudo-
onvex immersionsNow we shall prove Proposition 0.4.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY" 275.1. Immersions S3 ! C2 up to regular homotopy. Let us denote the spa
e ofimmersions of a manifold X into a manifold Y by Imm(X;Y ). By Smale's theorem[16℄, the 
onne
ted 
omponents of Imm(Sk;Rn) are in a one-to-one 
orresponden
ewith the elements of the homotopy group �k(SO(n)). Hen
e,�0� Imm(S3;R4)�e=�3(SO(4))e=Z2: (27)In this subse
tion, we give an expli
ite geometri
 des
ription of this isomorphismwhen R4 is equipped by a 
omplex stru
ture (identi�ed with C2).For f 2 Imm(S3;C2), denote the degree of the Gauss mapping (see De�nition0.1) by DG(f) and let CS(f) be the homotopy 
lass of the pull-ba
k of the 
omplextangent �eld, i.e. the �eld of tangent 2-planesq 7! f�1� (T \ iT ); where q 2 S3 and T = f�(TqS3):Proposition 5.1. Two immersions f1; f2 2 Imm(S3;C2) are regularly homotopi
if and only if DG(f1) = DG(f2) and CS(f1) = CS(f2).Proof. Sin
e the sphere S3 parallelizable, the Smale's isomorphism (27) and theinvariants DG(f) and CS(f) admit the following interpretation. Let us identifyC2 with the quaternion body H by the mapping (z; w) 7! z+wj. Then S3 = fq 2H j q�q = 1g. Let ~i, ~j, ~k be the tangent ve
tor �elds on S3 linearly independent atevery point and ~n the �eld of exterior unit normal ve
tors de�ned by~i(q) = qi; ~j(q) = qj; ~k(q) = qk; ~n(q) = q; where q 2 S3:To an immersion f : S3 ! H, we asso
iate a mapping �(f) : S3 ! SO(4) inthe following way. Let us extend f up to an orientation preserving immersion ofsome neighbourhood of the sphere S3 in su
h a way that ea
h ve
tor f�(~n(q)) isorthogonal to f�(TqS3). Then �(f) : q 7! Q 2 SO(4), where q 2 S3 and Q isthe matrix whi
h takes the frame (1; i; j; k) to the orthogonalization of the framef��~n(q);~i(q);~j(q); ~k(q)�. By Smale's theorem, the mapping � indu
es a bije
tion�� : �0� Imm(S3;R4)�! �3(SO(4)).We shall 
onsider S3 as a subgroup of the multipli
ative group H n 0, and letS2 = S3 \ (iR+ jR+ kR). Let us introdu
e the following notation:�1; �2 : S3 ! S3 � S3; �1(s) = (s; 1); �2(r) = (1; r);� : S3 � S3 ! SO(4); �(s; r) : q 7! s q �r;� : SO(4)! S3; �(Q) = Q(1);� : SO(4)! S2; �(Q) = Q(i) �Q(1);(Q 2 SO(4) is 
onsidered as an orthogonal operatorH! H). Let us �x the naturalidenti�
ations �3(S3) = �3(S2) = Z. The mapping � is a double 
overing be
auseit is a group homomorphism and Ker � = f�1g. It indu
es an isomorphism�� : Z� Z = �3(S3 � S3)! �3(SO(4)):Sin
e ��(s; r) = s �r, we have���� : Z� Z = �3(S3 � S3)! �3(S3) = Z; (m;n) 7! m� n: (28)



28 S.YU. OREVKOVIt is easy to see that ���1 : S3 ! S2 takes s into s i �s. It is the Hopf �bration.Indeed, s1 i s1 = s2 i s2 if and only if s1 = s2 � (x + iy) for some x; y 2 R. Hen
ethere is an isomorphism (���1)� : �3(S3)! �3(S2):It is 
lear also that ���2 : S3 ! S2 is a 
onstant map r 7! i, i.e.im�(���2)� : �3(S3)! �3(S2)� = 0:Thus, we have���� : Z� Z = �3(S3 � S3)! �3(S2) = Z; (m;n) 7! m: (29)By de�nition, DG(f) = ��([�(f)℄) 2 �3(S3) = Z and CS(f) is de�ned be thehomotopy 
lass of the ve
tor �eld q 7! f�1� �i f�(~n(q))�. Sin
e S3 is parallelizable,non-zero ve
tor �elds 
an be identi�ed with mappings S3 ! S2 � T1(S3). Underthis identi�
ation, CS(f) 
orresponds to the homotopy 
lass ��([�(f)℄) 2 �3(S2).It follows from (28) and (29) that [�(f)℄ is determined by its images under thehomomorphisms �� and ��. �5.2. On extendibility of an immersion of a sphere to an immersion of aball.Let X and Y be 
onne
ted n-manifolds su
h that X is 
ompa
t and has a boundary(not ne
essary 
onne
ted), for example, X = Bn, Y = Rn. In this subse
tion,we give a suÆ
ient 
ondition for an immersion of the boundary �X ! Y to beextendable to an immersion X ! Y . For n = 2 it was proved by Fran
is [8℄.De�nition. Let Z and Y be manifolds of dimensions n� 1 and n respe
tively.1. An immersion f : Z ! Y is 
alled Morse, if for any points z; z0 2 Z su
h thatf(z) = f(z0) and f�(TzZ) = f�(Tz0Z) (we shall 
all su
h a pair of points a self-tangen
y of f), there exist neighbourhoods U and U 0 on whi
h f is an embedding,a neighbourhood V of y = f(z) and a smooth fun
tion ' : V ! R, su
h thatf' = 0g = V [ f(U 0) and ' Æ f jU is a Morse fun
tion.2. A normal bundle of an immersion f : Z ! Y is 
alled the line bundle Nf ! Zwhose �bre over z is Tf(z)Y=f�(TzZ). A 
oorientation of an immersion f is 
alledan orientation of its normal bundle.3. Suppose that f : Z ! Y is a 
ooriented Morse immersion and z; z0 2 Z itsself-tangen
y points. The self-tangen
y at points z; z0 2 Z is 
alled 
oherent, if their
oorientations are indu
ed by the same orientation of the spa
e Tf(z)Y=f�(TzZ) =Tf(z0)Y=f�(Tz0Z), and opposite otherwise.4. The index of an opposite self-tangen
y is 
alled the index of the singularpoint of the fun
tion ' Æ f jU (see above) under the 
ondition that the gradient of' de�nes a positive normal ve
tor �eld V \ f(U 0) (in the 
ase of a 
oherent self-tangen
y or in the 
ase of a non 
ooriented immersion, the index is de�ned only upto the identi�
ation of k and n� k � 1).5. A regular homotopy fhtgt2[0;1℄ is 
alled Morse, if for all t 2 [0; 1℄, the immer-sion ht is Morse. A triple z; z0; t where z; z0 2 Z are self-tangen
y points of ht is
alled a passing through a self-tangen
y.
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y z; z0; t of a regular homotopy fhtg is 
alledtransversal if there are neighbourhoods of the points (z; t), (z0; t) whose imagesunder the mapping (z; t) 7! (ht(z); t) are transversal to ea
h other in Y � [0; 1℄. Aregular homotopy is 
alled transversal if all its passings through self-tangen
ies aretransversal.7. A passing through an opposite self-tangen
y of a 
ooriented regular homotopyis 
alled positive (negative) if the velo
ity of ea
h bran
h with respe
t to the otheris positive (negative) in the sense of the 
oorientation.Fig. 23 illustrates the de�nitions of the self-tangen
y types. In Fig. 24, positivepassings of self-tangen
ies of di�erent indi
es are depi
ted (the negative ones 
anbe obtained from them by the reversing of time, i.e. for " < 0). The arrows in theboth �gures indi
ate the 
oorientations.
Index 0 Index 1| {z }Coherent OppositeFig. 23. Self-tangen
ies

t = t0 � " t = t0 + " t = t0 � " t = t0 + "Index 0 Index 1Fig. 24. Positive passings through self-tangen
ies (" > 0)Proposition 5.2. Let X and Y be 
onne
ted n-manifolds su
h that X is 
ompa
tand has a boundary Z = �X. Let H : X ! Y be an immersion and ht : Z ! Y , t 2[0; 1℄ a transversal Morse homotopy su
h that h0 = H jZ . Let us �x the 
oorientationof h0 de�ned by the image under the mapping H� of an exterior normal ve
tor �eldto Z (it it extends by 
ontinuity for all ht). If all the passings of opposite self-tangen
ies of index n � 1 are positive then there exists a homotopy Ht : X ! Ysu
h that HtjZ = ht and H0 = H.For n = 2, Proposition 5.2 is proved in [8℄. In the general 
ase, the proof is moreor less the analogous and we omit it.Example. In Fig. 25, we depi
ted a regular homotopy of a 
ir
le fhtg su
h that h0is extendable to an immersion of a dis
 but h1 is not. One sees that the extendibilityfails at the moment of a negative passing through an opposite self-tangen
y of index1. By Proposition 5.2, this is the only reason whi
h 
an break the extendibility.
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 = 0t  = 1tFig. 25De�nition 5.3. Let X;Y be 
onne
ted n-manifolds su
h that X is 
ompa
t andf : Z = �X ! Y is an immersion. Two extensions F;G : X ! Y of f are 
alledequivalent if there exists an isotopy Ht : X ! Z, t 2 [0; 1℄ su
h that H0 = F ,H1 = G, and HtjZ = f for all t.Corollary 5.4. Let X;Y be 
onne
ted n-manifolds su
h that X is 
ompa
t andZ = �X. Suppose that ht : Z ! Y is a transversal Morse regular homotopy whi
hhas no opposite self-tangen
ies of index n�1. Then the immersions h0 and h1 havethe same number of extensions to X up to the equivalen
e from De�nition 5.3. �Now let us apply Proposition 5.2 to the problem of extension of a stri
tly pseudo-
onvex homotopy of the boundary (see De�nition 0.3) to a regular homotopy of thewhole manifold.Corollary 5.5. Let Y be a smooth 
omplex (or almost 
omplex) manifold of 
om-plex dimension k � 2, and let X a smooth 
ompa
t oriented manifold of real di-mension n = 2k with a boundary Z = �X. Let H : X ! Y be an immersion andht : Z ! Y , t 2 [0; 1℄ a stri
tly pseudo-
onvex homotopy su
h that h0 = H jZ . Thenthere exists a regular homotopy Ht : X ! Y su
h that HtjZ = ht and H0 = H.Proof. By a small perturbation, the homotopy fhtg 
an be done Morse and transver-sal. If the perturbation is suÆ
iently small then the homotopy remains to be stri
tlypseudo-
onvex. Comparing the Levi forms of the tou
hing bran
hes, it is easy to seethat opposite self-tangen
ies of index n�1 are impossible for Morse pseudo-
onveximmersions. Hen
e, Proposition 5.5 follows from Proposition 5.2. �Corollary 5.6. Let Y be a smooth 
omplex and let f : S3 ! Y be a stri
tlypseudo-
onvex immersion. Then:(a). The immersion f is extendable to an immersion of a ball if and only ifstri
tly pseudo-
onvexly homotopi
 to the standard embedding.(b). Up to equivalen
y (see De�nition 5.3), there exists at most one extensionof f to an immersion of the ball B4 ! Y .Proof. Suppose that f is extendable to an immersion F : B4 ! Y . By a theoremof Eliashberg [7℄, there exists a pluri-subharmoni
 (with respe
t to the 
omplexstru
ture pulled ba
k from Y ) fun
tion on B4 with a single minimum. The levelhypersurfa
es of this fun
tion de�ne a stri
tly pseudo-
onvex homotopy between fand an embedding. Sin
e an embedding of a the sphere is uniquely extendable toan embedding of the ball, the required statement follows from Corollary 5.4. �Remark. For k = 1, the 
on
lusion of the Corollary 5.6(b) is wrong: in Fig. 26, wegive an example of an immersion S1 ! R2 whi
h is non-uniquely extendable to animmersion of the dis
. In the paper [15℄, this example is 
alled Milnor example.
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onstru
ted independently by N.N. Konstantinov.Rotating the 
urve in Fig. 27 around the axis, we obtain examples of non-uniquelyextendable immersions Sn�1 ! Rn for all n � 2, i.e. Corollary 5.6(b) is wrongwithout the 
ondition that f is pseudo-
onvex.
Fig. 26 Fig. 275.3. Proof of Proposition 0.4.Proposition 5.1 implies that the immersion f of the sphere �M (see De�nition0.1) 
orresponding to the meromorphi
 immersion of the (+1)-pair 
onstru
ted inx3 is regularly homotopi
 to the standard embedding. Indeed, DG(f) = 1 by the
onstru
tion CS(f) = 1 be
ause being holomorphi
, the mapping f preserves the
omplex tangent �eld.Let us prove that there is no stri
tly pseudo-
onvex homotopy between f andthe standard embedding. Suppose, su
h a homotopy exists. Then, by Proposition5.6(a), f would be extendable to a homotopy of a ball. Atta
hing the ball toM , we obtain a 4-manifold di�eomorphi
 to CP2, a 2-sphere L embedded intoit, and an immersion X n L ! C2. Moreover, X has a 
omplex stru
ture in aneighbourhood of L, su
h that L is a 
omplex line and the fun
tions de�ning theimmersion into C2 are meromorphi
. Let us pull ba
k the 
omplex stru
ture fromC2 to the whole X . Then the obtained 
omplex surfa
e is isomorphi
 to CP2, thedes
ribed 
onstru
tion would give a 
ounter-example to the Ja
obian Conje
turewhi
h is impossible by Proposition 4.1.Referen
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