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INTRODUCTION
The well-known Jacobian Conjecture (see surveys [17], [3]) is as follows:

Jacobian Conjecture (JC). Let P(z,y) and Q(z,y) be polynomials with complex
coefficients whose jacobian P, Q) — P, Q;, is identically equal to one. Then the map-
ping C? — C2, (z,y) = (u,v) = (P(m,y),Q(m,y)) is one-to-one (or, in algebraic
language: the ring homomorphism Clu,v] = Clz,y], u = P(z,y), v = Q(z,y) is
an isomorphism,).

Definition 0.1. A pair (U,l) where U is a smooth analytic surface and | C U
a smooth compact (i.e. isomorphic to CP') curve of self-intersection +1, will be
called a (41)-pair.

Let us call a (+1)-pair (U,!) flat if U is biholomorphically equivalent to a subset
of CP? (it is clear, that such a biholomorphism maps ! onto a line).

A meromorphic immersion (respectively, embedding) of a (+1)-pair (U, 1) into C?
is a pair functions meromorphic on U such that the both of them are holomorphic
on U \ [ and the mapping U \ I — C? defined by these functions is an immersion
(respectively, embedding).

The index of a meromorphic immersion of a (+1)-pair f : U\l — C? is by defined
as the degree of the Gauss mapping Gy : M — S® where M = —9V is the boundary
of a tubular neighbourhood V' of [ with the reversed orientation (the mapping Gy
takes p € M into the positive normal vector to the hyperplane f.(T,M)).

The Jacobian Conjecture can be equivalently reformulated as follows:
Any meromorphic immersion of a flat (+1)-pair into C? is an embedding.

Indeed, if (U, 1) is a flat (+1)-pair then one may consider [ as the infinite line in C?
and U as its neighbourhood. Then any function, holomorphic on U'\ [, is extendable
to the whole C? by the theorem of removing compact singularities. Moreover, if it
is meromorphic on U, it is a polynomial.

A natural question arises:' can one omit the hypothesis that the (+1)-pair is
flat? In other words, does the following conjecture hold:

IThis question (maybe, not so concretely formulated) was posed to me by A.G. Vitushkin
when I was his graduate student.
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Weak Jacobian Conjecture at Infinity (WJCy). Any meromorphic immer-
sion of a (+1)-pair into C? is an embedding.

In the paper [13], I constructed a counter-example to this conjecture. Later, I
constructed many other analogous counter-examples to WJCy, (unpublished) but
all of them were not extendable to counter-examples to JC' because they had too
big index.

But it is clear that The index of a meromorphic immersion of a flat (+1)-pair
is equal to one. Indeed, it is equal to DG(F|gs) for r > 1 where F : C* — C?
is a polynomial mapping whose jacobian is equal to one, S? is the sphere of radius
r (oriented as the boundary of a ball), and DG(yp) denotes the degree of Gauss
mapping associated to an immersion ¢. It remains to note that the function g(r) =
DG(F|s3) is continuous, hence, constant and that F'|gs is an embedding for r < 1,
ie. g(r)=1.

Because of this, I formulated a new conjecture which I announced at several
conferences:

Jacobian Conjecture at Infinity (JCy). Any meromorphic immersion of a
(+1)-pair into C? whose index is equal to one, is an embedding.

In this paper we construct a counter-example to this conjecture also:

Proposition 0.2. There ezists a (+1)-pair (U,l) and its meromorphic immersion
f:U\1l— C? of index 1, which is not an embedding.

Such a meromorphic immersion of a (+1)-pair is constructed in §3. The (+1)-
pair (U, 1) constructed in §3 is not flat, i.e. it can not provide a counter-example to
JC. Tt is proved in §4, Sections 4.1 — 4.2 analysing the coefficients of polynomials
P(z,y) and Q(z,y) which could realize the given immersion. (in Sect. 4.3, we
give a simple but not rigorous topological explanation of this fact). Since we can
always choose a strictly pseudo-convex tubular neighbourhood of I (see. [13; §2]),
the non-extendibility of the constructed counter-example to JCo up to a counter-
example to JC implies an amazing consequence. To formulate it, we need one more
definition.

Definition 0.3. In immersion f of a smooth oriented (2n — 1)-manifold Z to a
complex n-manifold Y is called strictly pseudo-convez if any point z € Z has a
neighbourhood V' C Z such that f(V') is a part of the boundary (taking in account
the orientations) of some strictly pseudo-convex domain in Y. Recall, that a regular
homotopy is such a homotopy {f:}:cf0,1] that f; is an immersion for any ¢. If in
addition, each f; is strictly pseudo-convex then such a homotopy is called strictly
pseudo-conver.

Proposition 0.4. There exists a strictly pseudo-conver immersion of the sphere
f : 8% = C2? which is regularly homotopic to an embedding but is not strictly
pseudo-convexly homotopic to an embedding.

This proposition is proved in §5. At the same time, we prove Proposition 5.6 on
the uniqueness of an extension of a pseudo-convex immersion of the 3-sphere up to
an immersion of the 4-ball.

In the paper [13], we gave a complete proof that the example constructed there
satisfies the required properties. But the construction was exposed, using the school
geometry language, without an ”analysis of the problem”. Probably, this caused
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some difficulties to understand how the example was constructed and how to con-
struct other similar examples. In this paper, I tried to fill this gap by adding
Sect. 2.4. In this section we also discuss some parallelism between our approach to
JC' and those from the papers [10] and [9].

It is P. Cassou-Nogues who called my attention to some correspondence between
[13] and [9]. T am grateful to her for this and for other useful discussions. I am
grateful also to my teacher A.G. Vitushkin due to whom I started to work on the
Jacobian Conjecture.

§1. PRELIMINARIES

1.1. Dual graphs of reducible curves and their splice diagrams.

Let D be a curve on a smooth analytic surface such that all its irreducible compo-
nents D1, ..., D, are isomorphic to CP"', meet each other transversally and at most
pairwise. We call dual graph or just graph of D the graph I'p whose vertices corre-
spond to irreducible components of D and edges correspond to their intersections.
To each vertex we associate its weight which is equal to the self-intersection of the
corresponding irreducible component. If it does not lead to a misunderstanding,
we shall use the same notation for a curve and its graph.

If C is a smooth curve (not necessarily compact) meeting transversally D then
we define the graph of C' near D as the graph I'p ¢ obtained from the graph of
D by adding vertices corresponding to local branches C,...,C, of C near D (we
depict these vertices as arrowheads). The vertex corresponding to a local branch
C; is connected by a single edge to the vertex corresponding to the component D;
which meets C;. The weight of C; is not defined.

Example. If D and C are a line and a conic on CP? then T'p ¢ = — b

The determinant of a curve D is by definition the determinant of the minus
intersection matrix: det D = det [[—D;Dj||};_; .

From now on, we assume that the graph of D is a tree (i.e. a connected graph
without cycles). We call a branch of D at a vertex D; a connected component of
the closure of D\ D;.

A linear chain is a graph with vertices vy, ..., v, and edges [v1, v2], [V2,v3], ..., [Un—1,Vn].

A splice diagram of a curve D (respectively, of a curve C near a curve D) is
defined as a graph Ap (respectively, Ap ¢), obtained from I'p (respectively, from
I'p,c) by replacing some (for instance, all) linear chains by a single edge. To
each beginning of edge coming from a non-end vertex D;, we associate the number
equal to the determinant of the branch of D at the vertex D; which grows to the
direction of this edge (this definition slightly differs from the original definition of
splice diagram introduced by Eisenbud and Neumann in [6]).

Proposition 1.1. (Edge determinant formula; see [6], [11]). Let Ap be a splice
diagram of a tree D of curves with simple normal crossings. Let u and v be vertices
of Ap connected to each other by an edge. Let E be the linear chain of irreducible
components of D corresponding to the edge uv (the curves corresponding to the
vertices u and v themselves are not included into E). Suppose that A looks as in
Fig. 1 near the edge uv. Then

det D - det E = apbo — (a1 ...ax) - (b1 ...by).
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1.2. Transformation of the determinant of the intersection matrix un-
der a proper analytic mapping. The object of this subsection is to prove the
following not difficult statement (it was used in [5]).

Proposition 1.2. Let f : X3 Xbea proper analytic mapping of smooth complex
surfaces. Let D = D, U---UD,, be compact curves on X and D = D, U---UDj =
f~Y(D). Then:

(a). det D = 0 if and only if det D = 0.

(b). Suppose that D, is the only irreducible component of the curve f~'(D;)
which is not constructed to a single point by f. Let us denote the closures of D\ Dy
and D\ D1 by D" and D" respectively. Let m be the degree of f|5 and n the

branching order of f along D, (i.e. the jacobian of f has zero of order n — 1 on
Dy). Then
det D' n detD’

= . ) 1
det D m  det D (1)

Moreover, if one of the denominators in (1) is zero then the other also is zero.

Proof. (a). First, let us prove that det D = 0 implies det D = 0. Indeed, if
det D = 0 then there exists a non-zero divisor E = Y x;D; such that ED; = --- =
ED, = 0. Then f*(E) is a non-zero divisor whose support is contained in D and
fH(E)- ﬁ =FE- f*(~ D;) =0 for all j. Hence, det D = 0.

Now, let us prove that det D =0 1mphes det D = 0. Indeed, if det D = 0 then
there exists a non-zero divisor F = szDz such that

EDy =---=ED; = 0. (2)
Then f.(E) is a divisor whose support is contained in D and f.(E) - D; = E -

f *( ;) = 0 for all j. Hence, the equality det D = 0 would follow from the fact that

f«(E ) # 0. Suppose that f.(E ) = 0. This means that the support of the divisor E
is concentrated in the preimage of a finite set of points. But the intersection matrix
of irreducible components of a compact curve contractible to a point by an analytic
mapping is negative definite. Hence, E2 < 0. This contradicts to (2).

(b). In virtue of (a), we may assume that the both denominators in (1) are non-
zero. Let us denote by E = " x;D; and E = Eilﬁl the divisors with rational
coefficients, dual to Dy and 51 respectively. It means that

E-Dy=1, E-D;=0fori>1; E-Dy=1, E-Di=0fori>1.  (3)

The existence of the divisors E and E easily follows from the fact that the inter-
section matrices are non-degenerate. Indeed,

(@1, 20) = BO,0,...,0),  (&1,...,35) = B(1,0,...,0), ()
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where B = [|bij[| = A, A = [|DiDj||7;—y, B = ||bijl| = A" and A = || DiD;|7;_;.
We have f.(D1) = mDy, hence, f.(E) = mZ;D; + F where Dy ¢ supp F', and
hence, by (3),

E- f.(E) = m#. (5)

Analogously, f*(D;) = nD; + F, where D, ¢ supp F, and hence, f*(E) = nxzy Dy +
F, where Dy ¢ supp F». Hence, by (3) we have

f(E)-E =nx. (6)

Putting (5) and (6) into the equality E-f.(E) = f*(E)-E, we get # = (n/m)-z;.
Note that z; = by; and #; = by; by (4). Finally, by Cramer rule, we have

detD' g det D'
= n = ——=.
det D " det D

11

1.3. A formula for the canonical class of a blown up (+1)-pair. Let (U,I)
be some (+1)-pair (for example, [ is the infinite line of the affine plane C?) and let
o : X = U be a composition of blow-ups ”at infinity”, i.e. o|x\r : X \ L = U\
is an isomorphism where L = o~1(I). Let Lo be the proper preimage of the line [.

Proclaim 1.3. (a). L be the line of rational curves, det L = —1.

(b). The determinant of any branch of L at the vertex Ly is equal to one.

(c). Let Ly is an irreducible component of L, different from Lo. Consider the
branches of L at the vertex L1 which does not contain Lo. Among these branches,
there is at most one whose determinant is not equal to one.

Proof. Induction by the number of the blow-ups. O

Let Lg,...,L, be the irreducible components of L. Suppose that the canon-
ical class Kx of X is representable by a divisor supported by L, i.e. there is a
meromorphic 2-form w on X which neither has zeros nor poles outside of L. Let

Kx =Y kiL;.

We are still assuming that Lg is the proper transform of /. The irreducible compo-
nents are numbered arbitrarily, hence any irreducible component different from L
can be considered as the curve Ly in the next proposition.

L 1
1 po 1 po Do 1 Lo
q0 qo qO; ; / \
1.1 1.1 1..1 1.1

Fic. 2
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Proposition 1.4. (see. [14]). (a). ko = —3.

(b). Let us denote the weights of the splice diagram of L, situated along the
shortest path from Lo to Ly, as in Fig. 2 (see Proposition 1.3). Then

m
ki=—l—qo—po+ Y qo---q-1(g; — 1)(p; — 1)
i=1

1.4. Coverings branched along linear chains. As in [13], we shall use the
language of toric varieties to describe coverings branched along linear chains of
rational curves. An equivalent description not involving toric varieties see in [2;
ITI, §5]. Since we need a very small portion of the theory of toric varieties, for the
reader’s convenience we give all the definitions and statements that we use.

1.4.1. Fans and toric surfaces. Let us identify Z2AZ? = Z, i.e. (a,b) A(c,d) will
denote ad—cb. For ey, es € Z2, let us denote the cone {x1e1 +z2e5 | z; € R,z; > 0}
by (e1,e2), and let (e) = (e, e) (the ray in the direction e). A vector e € Z2 is called
primitive if it cannot be presented in the form me’, e’ € Z2, m € Z. We call a fan
a collection of distinct primitive integral vectors ¥ = (eq, ..., e,11) C Z? such that
e;Neiy1 > 0foralli =0,...,r and the cones (eg,e1),..., (€, €,.41) are pairwise
disjoint. If e; Ae;y1 =1 for all i =0, ...,r then the fan is called primitive.

Let us denote u; = e; and v; = ej41. The toric surface associated to a primitive
fan X is the smooth algebraic surface Xy, glued out of charts Uy, . .., U, isomorphic
to C%. The chart U; with coordinates (z;,y;) corresponds to the cone (u;,v;) and
the transition functions are:

T; = a:]“ y]C- u; = au; + bv;
o where
Y; = ;gj yj Uj = CUy + d’l)i

It is clear that X contains a Zariski open subset isomorphic to T? = (C\ 0)? which
is defined by the inequality z;y; # 0 in any coordinates ;, y;-

Proposition 1.5. Let & be a primitive fan and E = Xx \ T?. Then E = Eq U
-+ UE.41. Moreover,

(a). Ej is defined by x; = 0 in the coordinates (zj,y;), by yj—1 = 0 in the
coordinates (z;_1,yj—1), and E; does not meet the other charts.

(b). Ey=E,;1=C and E,=...=E,=CP".

(c). The self-intersection Ef of Ej is equal to —ej_1 ANejp1, j=1,...,r.

(d) det ||—EiEj||£j:1 =ey A [

Proof. (a) — (c) follow immediately from the definitions; (d) is proved by induction,
using (c¢). O

1.4.2. Mappings of toric surfaces. To a linear mapping A : Z? — Z? and prim-
itive fans © = (éo,...,€7+1) and ¥ = (eq,...,€.41), we associate a birational
mapping f = A, : Xg = Xx. In coordinates (Z;,7;) on Xg and (z;,y;) on Xy, it
is defined by

Ty = ii’? ?;lq A(ﬂ,]) = au; + b’l)i

where
{ A(ﬁj) = cu; + dv;

— b d
Yi=2;Y;
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(As above, here u; = e;, v; = e;41, and also @; = €;, ; = €41). A regular mapping
of a fan ¥ to a fan ¥ is called a linear mapping A : Z> — Z2 such that for any
cone (U, ;) there is a cone (u;,v;) such that f((@;,0;)) C (ui,v;). It is easy to
check that in this case A, is a regular (i.e. without indeterminacy points) mapping
Xf) - X5.

The following properties follow immediately from the definitions and from Propo-
sition 1.5.

Proposition 1.6. Let A : Z2 — Z? be a reqular mapping of primitive fans D 3,
and let f = A, : Xg — Xx. Suppose also that A((€o)) = (eo) and A({€541)) =
(ert1). Let us denote:

N the degree of f; N

no the order of branching of f along Ey;

ny the order of branching of f along Fryq
(i.e. the jacobian of f has zero of order ng — 1 on Ey and zero of order ny — 1 on
Ej1); o

myq the branching order of f|]§0 at the point Ey N Ey;

my the branching order of f|l§;+1 at the point E:N EFH-

A = det |- E;E;|| A = det |- EE;|}

r r
i,j=1s i,j=1
Then:

(a). det A =N =mgng = mini;

(b) A(éo) = No€o and A(éf+1) = Ni1€r41y

(c)- e

A= A.
N

Corollary 1.7. Let the notation be as in 1.6. If the mapping f is not branched
along Ei then A = mpgA. 0O

A fan X' = (eg,...,ep,) is called a subdivision of a fan ¥ = (eo, ..., er11), if
ey = €o, € = ery1 and the identity mapping id : Z? — 72 is a regular mapping
of fans ¥/ — X.

Lemma 1.8. Any fan ¥ has a primitive subdivision X'.

Proof. For each 2-dimensional cone o, let us add as new generators all the vectors
lying on compact sides of the convex hull of the set (Z> Na)\ {0}. O

Propositions 1.9, Let Y = (eo,...,€74+1) and X = (eq, ..., e;) be two fans and let
A :Z2% = Z? be a linear mapping such that A((€y)) = (eo) and A((€711)) = (ery1)-
Then there eist subdivisions X' and X' of the fans Y and S such that A is a reqular
mapping &' — 3.

Proof.

1). Let us add to ¥ the integral generators of the rays A({(é)), ..., A((é#)) and
subdivide the obtained fan up to a primitive one ¥' = (eg, ..., e, ).

2). Let us add to 3 the integral generators of the rays A=1((&})),..., AL ((¢",))

and subdivide the obtained fan up to a primitive one Y. O
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§2. REGULAR COMPACTIFICATION AT INFINITY
OF A MEROMORPHIC IMMERSION OF A (+1)-PAIR

2.1. Compactification at infinity. Dicritical components. Let us consider
some algebraic compactification X of the complex plane C? with simple normal
crossings of the curve at the infinity, i.e. X is a projective surface which contains
a curve L (generally, reducible) such that X \ L = C2. All such compactifications
are obtained from CP? with a chosen infinite line by blow-ups and blow-downs at
the infinity. The dual graph of L is a tree.

Let (U,1) be a (+1)-pair and U \ [ — C? a meromorphic immersion of it into C2.
Blowing up points of [, it can be presented in the form f o oc~! where o : XU
is a composition of blow-ups and f : X5 Xa holomorphic mapping. The triple
()?,X, f) is called a regular compactification of the meromorphic immersion of the
(+1)-pair (U,1) into C%. Let us denote

L=0"'(1), Le=fYL), Lpc=L\Lx,

D:f(ZFc), l~):l~)1U---Uﬁd, EC:EF(;'\IN)
where 51, ey l~)d are the dicritical components of the mapping f, i.e. the irreducible
components of the curve Lp¢ such that f is not constant on them. The curve D
will be called the branching curve.

Proposition 2.1. (cp. [12]) (a). Irreducible components of the curve L are ratio-
nal curves and the dual graph of L is a tree.
(b). The curve Lo is connected.

(c). Lpc has d connecteg components E;%, ... ,Z;i%.
(d). The dual graph of ngc) (i=1,...,d) is a linear chain (possibly, with a

single vertez) one of whose end vertices corresponds to the dicritical component ﬁl
(e). Thg curve L;f)c (i =1,...,d) cuts Lo, at a single point and this point
belongs to D; (i=1,...,d).
Let nj, i =1,... ,d, be the branching order of f along l~)i, i.e. the jacobian of f

vanishes on D; with the multiplicity n; — 1.

Proposition 2.2. The canonical class K 5 of X can be represented by a divisor
supported by L and the multiplicity of a dicritical component D; in this divisor is
n; — 1.

Proof. K g is represented by the divisor of the form f*(dx A dy) where z,y are the
affine coordinates in C2.

2.2. Formula for the index of a meromorphic immersion of a (+1)-pair.
Definition 2.3. The local multiplicity at a point x € X of a continuous mapping
of topological spaces ¢ : X — Y is called p,¢ = ming deg (¢ﬁ(z)) where the mini-
mum is taken over all neighbourhoods U of ¢(z) and U(z) denotes the connected

component of f~!(U) which contains z.

Let the notation be as in the previous subsection. Let X* be the one-point
compactification of C2. Denote by X* the singular surface obtained from X if each
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connected component of each set f~!(z), z € X is contracted to a single point
and also the curve Lo, is contracted to a single point (which we denote by c0).
Then there exists a unique mapping f* : X* — X such that the following diagram
commutes

x L ox
d o
x L oxx

(the vertical arrows are the natural projections). Let us denote the image of D; on
X* by D}.

Let, as in Sect. 2.1, n;, be the branching order of f along l~)i, i.e. n; = pgf for
a generic point x € D;.

Proposition 2.4. The index ind of the meromorphic immersion (U,l1) — C? is
equal to

ind = poo f* — i (nz + Z (e f* = ni))- (7)

zeD;\{oco}

Proof. Let us choose coordinates (z,w) in C? in such a way that the line z = 0
does not meet the curve D at the infinity under the standard inclusion of C? into
CP?. Denote the projection (z,w) — z by 7 : C*> — C.

Denote the branch points of the mapping 7|p : D — C by p1,...,Dn, the order
of the branching at p; by m; (i =1,...,n), and the degree of the curve D by m.
Let B;, (i =1,...,n), be a ball of a sufficiently small radius centred at p;, and let
B, be a ball of a sufficiently large radius centred at the origin.

Let V be a tubular neighbourhood of D whose radius is small with respect
to the radii of the spheres S;. Let T = Bo, N ((=0V) \ (B1 U---U B,)) and
S =(-0B;)U---U(—0B,) U 0By (the minus means the orientation reversing).
Let R;, i € {1,...,n,00} be a hypersurface with a boundary (homeomorphic to
several copies of St x S x [0, 1]) which smoothes the corner between 0B; and T as
it is shown in Fig. 3.

Each sphere 0B; has exactly one point where the positive normal vector is equal
to (1,0), moreover, its index (i.e. the contribution into the degree of the Gauss
mapping) is equal to —1 for ¢ = 1,...,n and +1 for i = co. If the coordinates
(z,w) are generic then this points is outside V. The surface T has no such points,
and each surface R; has m; such points of index +1 for i = 1,...,n and —1 for
1 = 00.

By the definition, ind is equal to the degree of the Gauss map associated to f|_ s
where M is the boundary of the tubular neighbourhood of [ in U or, which is the
same, the boundary of a neighbourhood of D* in X*. The minus before M means
the reversing of the orientation.

The immersion f|_j; can be deformed into an immersion whose image is in
SURUT. Extend the mapping 7 o f*|5;\OO : ﬁ; \ oo = C up to a mapping

fi: ﬁ; — CU{oo}. The contributions of the surfaces into the degree of the Gauss
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Fic. 3
mapping are:
d
Seo = ool ™, Roo = =Y nj - fioof}, T 0,
j=1
d
Si%_z,u/mf*a RZ%Z an'p/zf;-
zeD* Jj=1 zeﬁ]*
£ (z)=p: £ (x)=p:

Thus, denoting P = {p1,...,pn}, we have

n d n
ind = poo f* = 30 S f =Y (oo =D D k)
=l geD* i=1 i=1 zep*
£ (@)=pi £ (@) =p:
d d
:Noof*_z Zﬂmf*_znj(/ioof;_ Zﬂxf;)
=1 seb: =1 veD;
f*(z)eP fr(z)eP
d
= toaf =D ( e = mp) 4y {ecf; = Y (e = D})-
=1 2eb; veD;
f*(z)erP f*(z)epP

It remains to note that by Riemann-Hurwitz formula applied to the branched cov-

ering f7, the expression in the braces is equal to one. [

Remark. In the case of a meromorphic immersion of a flat (+1)-pair defined by a
polynomial mapping C?> — C? with a constant jacobian, the fact that the right
hand side of (7) is equal to one was proved in [12] by computing the Euler charac-
teristic. Proposition 2.4 is a generalization of this fact to the case of meromorphic

immersions into C? of arbitrary (+1)-pairs.

2.3. Properties of splice diagrams of L and L.
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We may assume that L meets D transversally (otherwise we blow up D N L several
times). Then the formulas given in §1 together with Proposition 2.2 impose rather
strong restrictions for the splice diagrams of Land LUD. We apply the formulas
from §1 as follows:

(1) we apply Proposition 1.3 to the splice diagrams of L and L;

(2) we apply Proposition 1.6(c) to each edge of the splice diagrams;

(3) we apply Proposition 1.1 to each edge of the splice diagrams between vertices
of the valence > 3;

(4) we apply Propositions 1.4 and 2.2 to the dicritical components;

(5) we apply Proposition 1.2 (if it is applicable) to each non-linear connected
component of the graph of L from which some vertices of the valence > 3
are removed.

In the papers [5], [4], it is shown that these restrictions are sufficient to prove that
there are no counter-examples to the Jacobian Conjecture provided by a mapping
of the topological degree N < 4 (for N = 2 this is evident, and for N = 3 this
follows from Abhyankar-Moh-Suzuki theorem, see [12]).

2.4. The case of an irreducible branching curve with two characteristic
pairs. Suppose that L has a single dicritical component D, and that the branching
curve D = f(D) has two characteristic pairs at the infinity. This means that after
the resolution of the singularity of D at the infinity, its splice diagram near L has
the form — c|> —c|> — . Moreover, we shall suppose that the following additional
condition holds:
(%) There exists an irreducible component of L whose preimage has only one
irreducible component which is not contractible by f into a single point
(compare with Proposition 1.2(b)).

Under these assumptions, the splice diagrams of D near Zoo, of D near L, and
of L have the form depicted in Fig. 4, Fig. 5 and Fig. 6. The black vertex denotes
the proper transform of | under the mapping o : (X, L) — (U, 1).

] L L,
1 - S35 R, 1 R, 1
Dl DZ
FI1G. 4. SPLICE DIAGRAM A7 5 FiGg. 5. SPLICE D. A p

Let us introduce the following notation. Let (> and @3 be the determinants of
the edges L1 Ly and Ly Lo of the splice diagrams Ay, and Ay, i.e. Qo (respectively,
@)2) is the determinant of that component of the closure of the curve L\ (L U L),

(the curve L\ (Ly U Ly)) which is between L; and Ly (between Ly and Ly).
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FI1G. 6. SPLICE DIAGRAM Ajz

For j = 1,2 let us denote the degree of f |Z]- by mj, the branching order of f
along L; by nj, and let m’; (respectively, d;) be the branching order of f|Zj at the
point of intersection of L; with that branch of L at the vertex L; which contains [
(respectively, which has the determinant Dj;). Let us also denote the degree of f|z

and the branching order of f along D by m and n.
All the introduced integers are positive (the positivity of R; see [11]; from the
theory of approximation roots[1], it follows also that R; > 1). They satisfy the

following relations.
ged(D1, Ry) = ged(D2, R2) = 1, (8)

the edge determinant formula (Proposition 1.1) yields
—QQ = RQ — R1D1D2 (the edge LlLQ in L), (9)

—2Qy=5°—8°D;D, (theedge LiLs in Lo). (10)
By Proposition 1.6 and Corollary 1.7, we have
Q2 _m _ M &

Dy =d,Dy, Dy=dyD,, =2

= = 11
QQ m2 mll Y ( )

and also see that the branching orders at the points of El and ZQ, corresponding
to the edges of the splice diagram are:

Ry,..., Ry, dy,Dq,...,Dy, mi,1,...,1 for the curve L,
——— —_———— ——
ko k1 k4
ma, dQ,DQ, .. .,DQ, ’ITLI2 for the curve LQ,
—————
ko

this implies
koRi =di + k1D, = m'l + ki =mq, dy + ke Dy = ma, (12)

(the relation (13) is obtained from (12) and Riemann-Hurwitz formula).
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Applying Proposition 1.2 to the curve L itself and to its branch at the vertex L,
containing Lo, we get

D5 _ni RiDy D2Q55° _ N2 Q2D (14)
! S T 1

T mi 1

Finally, by Proposition 2.2, the order of the jacobian of f on Dis equal ton —1
and by Proposition 1.4 it is equal to —1 — a + z, i.e.

r=a+n. (15)

If the considered meromorphic immersion is realizable by polynomials P(z,y),
Q(z,y) then (see Sect. 4.1)

deg P(2,y) = koD1 D> + aD1Ds;  degQ(x,y) = kiD1 Dy + Do + aR1 Do (16)

A first arbitrarily found solution of simultaneous equations allowed me to con-
struct a counter-example to W.JCy in [13].

Proposition 2.5. The simultaneous equations (8) — (15) have a finite number of
positive integral solutions under the condition that min; = N = const,.

Proof. From the equations (11), (14) and koRoy = my (see (12)) we get m; =
maxdida Ry, n1 = md2S7°, hence, m2zd; d%Rleo = N. The other parameters also
can be easily estimated via N. O

I wrote a simple computer program which finds all positive integral solutions of
(8) — (15) for any given N = myn;. For N < 9, there is no solution. For N =9,
there is a unique solution

Ri=3, Di=Di=4 mi=9, m=1 Q=5 n=2

17
R2:23, D2:D2:4, m2:5, TL2:1, Q2:25, a=1. ( )

This solution allows one to construct the simplest counter-example to W.JCy. If
this solution were a counter-example to JC then, by (16), the degrees of P and
@ would be 48 and 64. The solution (17) is discussed in [9; §3]. There is exactly
four solutions with max(deg P, deg @) < 100. They correspond exactly to the four
difficult cases in Moh’s paper [10].

The example which we construct in §3 corresponds to the solution

Ri=3, Di=Dy=20, m=21, ni=1, Q=17, n=4,
R2 = ].].2, D2 = D2 = 3, mo = 4, N9 = 2, Q2 = 68, a=3.

§3. CONSTRUCTION OF THE EXAMPLE

3.1. The mapping of graphs. We shall construct a meromorphic immersion of
a (+1)-pair into C? with a single dicritical component D whose image D = f(D)
has two characteristic pairs at the infinity and whose regular compactification at
the infinity induces the mapping of the graphs of Land DUL depicted in Fig. 7.
The black vertices ”e” in Fig. 7 correspond to the curves which are contracted by
f into a single point. The mapping of linear chains [ - Tis given in Sect. 3.3.2.
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6.1 5:1
2 -1 -4 6D 4 3%
: oo 6 1324
: 13 R o
: 2 1 -4 -3 2
o—0—o0 2 1 11
20:1 11 R R gt
123222221 (21,1) . (4,2) 4:1 (4,1) 2:1
o o 42 81 5 -2 9 41 6 31 .11
5 o 17 r r— oY O 1
v = . (6,1 ol
-7 11 -3 ! 2. D - 6D 31
21/ | \ea
-14 b -1 -14 5 -2 .
So 973 -3 4l 2:1 7
abrla D S 6 31 .
31... 31 61 21 (6,1) 5 -1
' 2: 2:1 J
7 o O O
1 -1-1
2:1
-7 -3 -2
@
Ug U1
-3
-1
_3 ul

Fic. 7

In Fig. 7, we also show the resolutions of local branches of the curve D and the
regularization of f over them.

In the picture of the graph of L (Fig. 7, upper part) is also equipped with the
following information concerning the mapping f. A mark of the form N : 1 near
a linear chain (an edge of the splice diagram) means that the degree of f at its
neighbourhood is N. A mark of the form (m,n) near a vertex of the valence > 3
(denote the corresponding curve by A) means that the degree of f|4 is m and the
branching order of f along A is n.

3.2. Construction of the branching curve.

Lemma 3.1. There exists a curve D, parametrized by a polynomial mapping g :
C—oC%tw (p(t),q(t)) where p(t) and q(t) are polynomials of degrees 60 and 9
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respectively, and pairwise distinct points ty,...,t7 € C\ {0} such that
(a). 9(0) =(0,0), and glc\{o,¢1,...,t:} 8 an immersion, i.e. p'(t) # 0 and q'(t) #
0 fort & {0,t1,...,t7};
(b). the splice diagram of D at the infinity is as in Fig. 8;
(c). the local branch of D parametrized by a neighbourhood of 0 has the splice

diagram at the origin depicted in Fig. 9, i.e. it has the singularity defined
by u? = v® in some local coordinates (the singularity of the type A4);

(d). for allk =1,...,7, the local branch of D, parametrized by a neighbourhood
of ti, has the splice diagram depicted in Fig. 10, i.e. it has the singularity
defined by u? = v3 in some local coordinates (the singularity of the type As);

20 1 112 1 5 1 3 1
3 2 2

Fia. 8 (t = o0) Fia. 9 (t=0) Fic. 10 (t =ty)

3

The conditions (b) and (c) of Lemma 3.1 are equivalent to the fact that the
graph of resolution of the curve at the infinity (of the local branch at ¢ = 0, at
t =1;) is as in Fig. 11 (in Fig. 12, in Fig. 13).

7 32 2 23241 2 -3 -1
Fia. 11 (t = c0) Fia. 12 (¢t=0) Fia. 13 (¢t =ty)

Proof. By linear changes of coordinates, the polynomials p and ¢ can be put into
the form p(t) = t°° 4+ ... and ¢(t) = t° + .... The condition (b) of Lemma 3.1
means that there exists a polynomial G(u,v) of the form

G(u,v) = u® —v*° + Z Cjju'v’
20443 <60
4,§>0
such that
deg, G (p(t),q(t)) = 112. (18)

The condition (c) of Lemma 3.1 means that there exist constants ¢; and ¢z such
that

ordi=o (p(t) — c1q(t) — c1q(t)?) = 5. (19)
The condition (d) of Lemma 3.1 means that for k=1,...,7,

p'(te) = ¢'(tx) =0, (20)

P (te)q" (tr) # ¢ (tr)p" (tr). (21)
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Since degq’ = 8 and ¢'(0) = 0, the condition (20) is equivalent to the fact that
{0,t1,...,t7} are the roots of ¢/, and there exists a polynomial r(¢) of degree 51
such that

pi(t) =r(t) - (). (22)
The condition (18), (19), (21) and (22) provide a system of simultaneous equations
and inequalities for the unknowns ¢, ¢; and for the coefficients of ¢, r and G (the
coefficients of p can be found from (22) and p(0) = 0).
This system has a solution:

_32368762111892400 o — 30833889663060
90684846733 ' > 7410338673

cC1 =

q(t) =17+ 315 + 5243 + 382, where f=-309/4

T(t) — 23—0(t51 + ]_7t48 + 137t45 + 17B t44 + 681 t42 + 238ﬂt41 + 502120154 t39+
+ 15618138 + 11942 37 + 80362 436 4 61603 %> + 130937 134 + 1232322 4354
263516 ;3 132 2431 _ 90093894 130 | 397232 3 429 2 428
+ S B0+ 66220% 0 — e = ) + = B0 + 1925087 45—

4913
_ 846133035 127 3005266 26 543884 02 425 _ 49957930891 424
4913 7+ 289 Bt + 17 B t 83521 t
_ 420538624 23 353276 02 ;22 _ 91298290787 4,21 _ 101367959 20 _
4913 ﬂt + 17 ﬂ t 83521 ¢ 289 Bt
_ 9780232 2 t19 _ 1162052993707 t18 _ 56603024170ﬂt17 _ 807377032 2 tlﬁ
289 1419857 83521 4913
766218083922 ;15 _ 45450918051 14 _ 1442603701 22 413 46921116263706 112
+ 1419857 t 83521 ﬂt 4913 o+ 24137569 o+
230339555352 11 _ 19395246255 22 410 1413944975064438 49
+ 1419857 Bt 83521 t + 410338673 '+
621393338592 8 6245611218 92 47 554559678398538 16
+ 1419857 Bt + 83521 tt+ 410338673 "+
8204586193656 5 4273175790 02 44 _ 3524860866785148 ;3
+ 24137569 ﬂt + 83521 ¢ 6975757441 t°t
+ 27750500696754ﬂt2 _ 4855314316783860) .
410338673 90684846733 )

G(’U,,U) — U3 + 125694347226670235997 2+

52415841411674
36795 , 12 |, 143479380 , 11 _ 67444266186 10 _ 137300874259560 , 9
+ (442 U+ “asses U~ “iosstrs VY — — sis7sssor U T
| 2580726046707594885 8 | 12847251951061021800 , 7__ 11121815123028335448500 v%) —
181369693466 1541642394461 34271896307633
.20 , 440,19 , 137380 , 18 _ 1557031600 , 17 , 78582704594145 , 16
v T v+ g v 83521 Ut 24055106632 +
| 5956885860588398064 , 15 | 15055046520458773867110 , 14 _
901514064531 260537564663009
_ 32867584146876876273273720 , 13
75295356187869701 .

One can check that the polynomial t~!¢'(t) is irreducible over Q(f), hence, its
roots tq,...,tr are distinct. Lemma, 3.1 is proved [

Remark 8.2. After the change of coordinates ¢t = (s, the coefficients of polynomials
p(t) and ¢(t) becomes rational.

Remark 8.3. The number of the unknowns in the system (18), (19), (22) exceeds
the number of the equations. Therefore, to simplify the computations, we set the
coefficients of %, t7, > and t* in ¢(t) to be zero from the very beginning.
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3.3. Construction of the covering of the edges of the splice diagram. For
each linear chain in the graphs in Figures 11-13, we shall construct a covering over
a neighbourhood of the union of the corresponding curves.

3.8.1. Covering over the edge o (Fig. 11).
According to Proposition 1.5, a neighbourhood of the corresponding curve can be
embedded into a toric surface associated to the fan

{1 1 6 17 |1 17 S _ (1 0
E—{O 17 20}, and let A—{O 20], E—[O 1].

Here and further, the fans are represented by matrices whose columns correspond
to the vectors. Applying to A, ¥ and X the procedure described in Proposition 1.9,
we obtain primitive fans

. < _[1 3211111110
E_Eandz_{o1112345671]'

Here and further, we use the bold font for the vectors é}- of the fan ' such that
A(Ré}) = Re;] for some e; € 3. The mapping of graphs has the form:

-1 -2 -3 -2 -2 -2 -2 -2 -1 20:1 -7 =3
O—=eo—0o—0o—0—0—0o—0 00— — o—o— .

Here and later in Sections 3.3.1 — 3.3.8 the black vertices correspond to those
irreducible components which are contracted to a point by the considered mapping.
By 1.6, we have N = det A = 20, mg = my1 = 20, ng =nq = 1.

3.3.2. Covering over the edge i (Fig. 11).
—_——

21

_ 1111 2 3 _J1o S _[111234 5 6
E_[01...21224568]’ A_[os]’ E_[01258111417]

s [t1..13213 5 23
T |01 ..2164432267 112 45 68

i/_ 1876543852583456781876543 852583456 7 81
T |[011111132135234567198765411738135791113152

8 7 6 5438 525 831613107 4 9 141924 5 1611 6
171513119719 125 13 21 8 43 35 27 19 11 25 39 53 67 14 45 31 17

The mapping of graphs has the form:

where
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Iy, fg are the mirror images of I'y, fl, and

-2 -1 -8 -1 -2 -2 -2 —4 -2 -2 -2 -1 -8 —-1 =2

-L - 4 1 2 ¢5 2 1 4
_ _ _ _ _ _ _

By Proposition 1.6, we have N =det A =8, mg =8, my =4, n9 =1, ny = 2.

3.3.3. Covering over the vertical edge = (Fig. 11).

SRR AN AR R B

0123 03 01 01323 01121
. -1 -3 -1 31 -3 -1 -3
The mapping of graphs has the form: o—o—o— —

By Proposition 1.6, we have N =det A =3, mg =my =3, n9 =ny = 1.

3.8.4. Two coverings over the vertical edge . (Fig. 11).
The first covering;:

=[] 4=l =-li) =Rl =-fi

013 06 01 0143 01121
. -1 -3 -1 6:1 -4 -1
The mapping of graphs has the form: o—e—o0o— —/— o—o— .

By Proposition 1.6, we have N =det A =6, mg =6, m; =3, n9 =1, n1 = 2.

The second covering:

=[] a=lll B-% -l -

013 02 0123 0143
. -2 =2 2:1 -4 -1
The mapping of graphs has the form: o—o— — o—o—.

By Proposition 1.6, we have N =det A =2, mg =2, m;1 =1, n9=1,n1 = 2.
3.3.5. Covering over the edge "——” (Fig. 11).

_ v _ |10 _[2-1 S _sr_f111
Z_E_[m]’ A_[OQ]’ Z_2_[012]

The mapping of graphs has the form: ~—e— —5 _

By Proposition 1.6, we have N =det A =4, mg =2, my =1, n9 =2, ny = 4.

3.8.6. Covering over the edge o (Fig. 12).
s _ 1112 _ 12 S_fro Sr_[1s2110
E_E_[0125]’ A_[ ]’ E_[ ]’ Z_[011121]

. -1 -2 -3 -1 . —
The mapping of graphs has the form: oo o o 2

By Proposition 1.6, we have N =det A =5, mg =my =5, n9 =ny = 1.

2 =3

3.3.7. Covering over vertical the edge = (Fig. 12 and Fig. 13).
s _[111 _[11 S_TJ1o sr_J110
m=w=n] a=fa] == =30

The mapping of graphs has the form: P N R

By Proposition 1.6, we have N =det A =2, mg =my =2, n9 =ny = 1.
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3.8.8. Covering over the edge o (Fig. 13).

v _[112 _[12 s _J10 sr_[110
E_E_[om]’ A_[03]’ E_[Ol]’ E_[011]

The mapping of graphs has the form: o— 2% &
By PrOPOSitiOH 1'6, we have N = det A = 37 mo =my = 3, Nng =n; = 1.

3.4. Covering over trivalent vertices of the splice diagram.

Lemma 3.4. Let (mgl), . ,m,(:l); m§2), . ,m,(i); m§3), . ,m,(:;)) be one of the

following collections of integers (here n™ denotes m times n,...,n):

(20,1; 37; 8,1'%), (4; 3,1; 2,1%), (5,1; 2°; 4,1%), (3% 2% 4,17).

Then there exists a branch covering ¢ : S* — S? which has three critical values p,
P2, 3, i-e. @ is unbranched over ¢~ ({p1,p2,p3}), such that mgl), ... ,m,(c? are the

multiplicities of ¢ at the preimages of p;.

Proof. Let us connect the points ps and ps by an embedded segment I. Let " be
the graph embedded into S? in one of the ways depicted in Fig. 14. Let us define
a mapping ¢ : I' = I which takes the black vertices into p2, the white ones into
p3, and maps the edges homeomorphically onto I. Let us extend ¢ to the whole
sphere so that each component of the complement of T' coversS? \ I with a single
branch point which is over p;. O

261 6

Fia. 14

For all the trivalent vertices of the graph in Fig. 7(lower part) except vs, we
extend the covering of the sphere constructed in Lemma 3.4 up to a covering which
is branched only along the curves corresponding to the neighbouring vertices and
unbranched along the curve corresponding to the trivalent vertex itself.

For the vertex vs, we should extend the covering more carefully. It must have
double branching along the curve corresponding to v, (denote it by A) because
n; = 2 in the coverings 3.3.2, 3.3.4 and ng = 2 in the coverings 3.3.5. Let B,
B,, Bs be the curves corresponding to the neighbouring vertices and let V' be a
sufficiently small tubular neighbourhood of A. Let «, 1, B2, 53 be the elements of
the fundamental group IT = m; (V' \ (AU By U B> U Bs)) defined by the meridians
of A, By, B> and B3 respectively (we call a meridian the positive loop along the
boundary of a small transversal disk). Since A% = —2, under a certain choice of
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the paths connecting the meridians to a common base point, we have the following
relations:

a® = B1 525, af; = Bija, j=1,2,3 (23)

The covering is defined by a homomorphism to the symmetric group IT — S(8), i.e.
by an action of II on the preimages of the base point.

Analysing the coverings from 3.3.2, 3.3.4 and 3.3.5, we see that the monodromy
of the covering over some neighbourhoods of the points A N B; should be as in
Fig. 15. It remains to establish a correspondence between the points so that the
relations (23) are satisfied. This can be achieved by the numbering of the vertices
depicted in Fig. 15.

B2
3/\/\ 8 3@1 Bz@4 4 B3 7 OBS OF

oo o ol e el

/ \ 7 .Bﬁz‘.& | X:] .87. ° 'y
[R ' B1_ [31 (AL 3 8 Oﬁs OBa

B2

Fic. 15

3.5. Proof of Proposition 0.2. The same way as in [13] (or somehow else), one
can check that the polynomial immersion C — C? constructed in Section 3.2 is
extendable up to an immersion of some neighbourhood of D (see Fig. 7). To see
this, one should compute the degree of the normal bundle of the curve D on the
surface corresponding to the graph in the lower

Blowing down successively the (—1)-vertices in Fig. 7(upper part), we obtain the
linear chain 702—32—5%—;—3791—52—52.

U2 D

Blowing up four times the point corresponding to the edge to the right of 92, we

obtain the graph depicted in Fig. 16. This graph can be blown down to a single

(4+1)-vertex I. Thus, we obtain a meromorphic immersion of a (+1)-pair.

Fic. 16

It remains to note that by Proposition 2.4, the index of the constructed immer-
sion is equal to one. Indeed, introducing the notation as in Sect. 2.2, we have

oo f*=21, d=1, n; =4, and Z (b f*—m1) =8 x (6 —4).
z€Dy\{oo}

§4. NON-EXISTENCE OF A COUNTER-EXAMPLE TO THE JACOBIAN
CONJECTURE WITH THE GIVEN BEHAVIOUR AT THE INFINITY

In this section we prove
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Proposition 4.1. There does not exist a polynomial mapping C* — C? realiz-
ing the meromorphic immersion constructed in §3. In particular, the (+1)-pair
constructed in §3 is not flat.

4.1. Reduction to a system of simultaneous equations and inequali-
ties. Suppose, there exist polynomials P(z,y) and Q(z,y) such that P,Q; —
P,Q;, = 1 and the mapping (z,y) = (u,v) = (P(m,y),Q(w,y)) at the infinity
is as it is described in §3. By linear changes of coordinates one can achieve that
the lines u = const and v = const meets transversally the curves corresponding to
the vertices ug and u; in Fig. 7(lower part).

According to 3.3.1, 3.3.3, the restriction of f onto each of the curves correspond-
ing to the preimages of uy and u; is one-to-one. Therefore, each preimage of vy
(respectively, of v1) meets the curve P(z,y) = const (respectively, Q(x,y) = const)
once and transversally. All the other intersections of P = const and () = const
with the infinite curve are concentrated in the dicritical component D. Moreover,
since the polynomials parametrizing the branch curve D are of degrees 9 and 60,
the curves P = const and Q = const have 9 and 60 intersections with D.

Blowing down successively extra (—1)-curves in Fig. 7(upper part), we obtain a
common resolution graph for the curves P = const and () = const at the infinity
which is depicted in Fig. 17. Hence, the splice diagrams of these curves at the
infinity are as in Figures 18 and 19. This implies, in particular (see [11]), that

deg P(x,y) = 600, deg Q(z,y) = 90. (24)

Fic. 17
20 77 1 1 11 7 3 L 7 11 1.1 7 3
” o N
1 [ !
Y /\ 3 /\
— — —
7 60 9

Fic. 18 Fic. 19
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Let
X9 2% X5 2% ... 2 X 75 X = CP?

Be the sequence of the o-processes which blows down successively all the vertices
in Fig. 17 except [. Let us denote the infinite line in CP? by E,, and let E; be
the exceptional curve of the o-process (blow-up) o;, j = 1,...,19. We shall use
the same notation for a curve and all its proper transforms on the other surfaces.
The mutual position of the curves Ej is depicted in Fig. 20. The numbers in the
parentheses near the vertices have the following meaning. P o g19 and () o 019 are
rational functions on Xj9. Let (P) and (Q) be their divisors. They are of the form

19 19
(P)=(PRT=>"piB;,  (Q) = Q3" =) 4E;,
j=0 j=0

where (P)af and (Q)3" are the closures of the affine curves {P = 0} and {Q = 0}.
The numbers in the parentheses near a vertex F; in Fig. 20 are (pj, q;)-

Eq1Ey7 01=E19 E1gErgE15 1y Ej3Eqpv1=Eqyo E7 1=Eq E1 E> E3 D =FEs Es Ey4
oO—O0O0—F———O0—FO0——"—_0O——0——0——0—=C

<
QDD BB SO D DD PP DS DO 4 o
Q" (\\ Q- < \bg\é)\ k Y N D oS 3 @\ \Q\ :fb :Co
@@Q’\\@QQ@&@ & &P C N
& [Eo
S
& Eg
Fia. 20

Let us choose coordinates z,y in C? so that the centre of the blow-ups ¢ and
o2 are at the infinite point of the axis y = 0 and the centres of the blow-ups o7 and
og are are at the infinite point of the axisz = 0. Let us choose coordinates charts
on X; called standard as follows. As the standard charts on X = CP?, we choose
(x,y), (1/z,y/x) and (z/y,1/y). If the centre of the blowup o; is at the origin of
one of the standard coordinate charts (z,y’) on X;_; then we replace this chart
on X; by the two charts (2'/y’,y’) and (2',y'/2"). The only three blow-ups where
the choice of the standard charts is ambiguous, are o3, o4 and o711.

Let (z2,y2) be the standard coordinates on X, in which Ey = {z; = 0} and
{y =0} = {y2 = 0}, i.e. 22 = 27!, y» = xy. In these coordinates, the curve Es
is the coordinate axis zo = 0. Since the centre of o3 lies on Es, its coordinates
are (x2,y2) = (0,a2). As the standard coordinates at this point, we chose the
coordinates £or = o = 2! and yor = ya—aw = Ty—aw. Let (z3,ys) be the standard
coordinates on X3 such that x3 = xo = 27! and y3 = y» /22 = (zy — az)z. In
these coordinates, the curve Ej3 is the coordinate axis x3 = 0. Since the centre of o4
lies on Ej, its coordinates are (z3,ys) = (0, a3). As the standard coordinates at this
point, we chose the coordinates 3 = 3 = 27! and y3 = y3 — a3 = 22y — avT — 3.

Analogously, let (x10,y10) be the standard coordinates on Xjo in which Ejy =
{10 = 0} and E; = {y10 = 0}, i.e. w10 = =, y10 = 2>y ~'. Rescaling if necessary,
the axis z, we may assume that the centre of 11 is at the point (z19,y10) = (0,1) €
Eio. As the standard coordinates at this point, we chose the coordinates z1o9 = z19
and y100 = y10 — L.
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When depicting the Newton polygons, we shall use the following convention. If
the depicted polygon A is not completely known then we show a polygon which
contains A. In this case, we depict the vertices which are known to belong to A,
as a small black circle ”e”.

Lemma 4.1. Let R stands for one of P or ) and let us set a = 20 when R = P
and a = 3 when R = Q.

(a). The Newton polygon of R(z,y) is the quadrangle depicted in Fig. 21 (left
upper part).

(b). Passing to the coordinates (x;,y;) for j = 2,2',3,3" or 10, the polynomial R
becomes a Laurent polynomial which we denote by R;(xz;,y;). The Newton polygons
of these Laurent polynomials are depicted in Fig. 21.

(¢c). Passing to the coordinates (x10:,Y10), the polynomial R becomes a rational
function of the form (1+y10/) "% Rio/ (z107, y10' ), where Ryo is a Laurent polynomial
whose Newton polygon is depicted in Fig. 22.

6a 12a

——————— 9a

R3
12 a -3a 3a

Fia. 21

(0,27) (36,27) (0,180) (240,180)

(18,21 (-120,140)
Qo Py

(-1,1)

(0,0) (36,0) (0,-1) (240,0)
Fic. 22

Proof. Tt is sufficient to write explicitely all the blow-ups in the standard coordi-
nates and to trace the multiplicities of P and () on the exceptional curves. For
example, ¢go = 90 and ¢; = 27, hence the divisor (Q)aT has the multiplicity 27
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at the centre of o;. Therefore, the Newton polygon of () is contained in the area
x <63, z+y <90. The further arguments are similar. O

The condition that the coefficients of Q3 and (1o are zero outside the polygons
in Figures 21 and 22 yeilds a system of simultaneous equations for the coefficients
of Q(z,y). A straight-forward computation shows that this system has no solution
providing non-zero coefficients at the vertices marked as black points ¢” in Figures
21 and 22. This proves Proposition 4.1. In the next subsection we show how to
prove the absence of the solutions without tedious calculations. The idea of the
proof is taken from Heitmann’s paper [9].

4.2. Proof that there is no solution. We shall proceed analogously to [9; §3].
Let us change the notation denoting the coordinates (x3,ys) by (t,u), and the
coordinates (z1o,%10') by (z, 2):

r=t1 y = ast + ast® + ut?, y=x 314274
t:afl, u:m2y—a2m—a3, z:w73y71—1.
Let us set
T=2au—1, o =u® = 2zyu 4y + 200u + azry — asas, p=0c213.

These functions are polynomials in (z,y) and Laurent polynomials in (¢,u), their
Newton polygons are depicted in Fig. 23. In the coordinates (z, z), the functions
(1 + 2)7(z,2), (1 + 2)%0(x,2) and (1 + 2)?p(x, z) are Laurent polynomials. Their
Newton polygons are also depicted in Fig. 23. In particular, we see that the Newton
polygon of p? is contained in that of @ in all the three coordinate systems (z,y),

(1.7 2)7 (t’ u)'

(21,9
ay  ©D ©3 (02
(00 (20 0,0) (30 (0,0) (12,0)
T(xy) a(x,y) p(x.y)
(-39)
(-1,0) 03)
-\.(0’0) % 21) (-1.3) 42
(1,0) (2,0) (2,0 (4,0)
T(t,u) a(t,u) p(t,u)
(0,9 (12,9)
(0,3 33) (-6
0,1) (2,1) (-3,2)
10 (20 (-10) (30 (1,0) 120)
(1+2) T(x,2) (1+2)%0(x,2) (1+2)°p(x,2)

Fic. 23
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For a Laurent polynomial c(t) = Y°,_, cxt* such that c,, # 0 and ¢, # 0, let
us denote ord; ¢ = m and deg, c = n.

Lemma 4.2. Let a be a positive integer and R(z,y) a polynomial whose New-
ton polygon is contained in the quadrangle [(0,0), (12a,0), (21a,9a), (0,2a)]. Let
R(t,u) and R(x,z) be the result of the substitution into R(x,y) of the expressions
of (z,y) via (x,z) and (t,u). Suppose that the Newton polygon of the Laurent poly-
nomial R(t,u) is contained in the quadrangle [(0,0), (4a,0), (4a,2a), (—3a,9a)]
(compare with Fig. 21). Let
12a
(14 2)°"R(z, 2) Z bi(z
k=—6a
Suppose that b, = 0 for k < m. Then

deg, by, — ord, by, > 3/2 (m + 6a),
and in the case of the equality sign we have by, (z) = 2z~ 7/6™ (1 4 z)3/2 (m+6a),

Proof. Since by, = 0 for k < m, the Newton polygon of (1+2)%*R(z, z) is to the right
of the vertical line = m. In the coordinates (z,y10), this condition means that the
Newton polygon of y)3R(x,y10) lies in the area shadowed in the left hand side of
Fig. 24. Passing from the coordinates (x,y10) to the coordinates (¢,u) (see Fig. 24)
and back (see Fig. 25), one can trace that the Newton polygon of R must always
remain in the shadowed area. Therefore, all non-zero monomials of y}3R(z,y10)
lying on the vertical line = m must be above the segment [(—6a,0), (0,9a)] (it is
shown by the dashed line in Figures 24 and 25), i.e. ordy,, ¢m > 3/2 (m+6a), where
cm(y10) is the coefficient of 2™ in the Laurent polynomial y{3 R(z,y10). It remains
to note that by, (2) = c¢m (1 + 2), and hence, deg, by, — ord, by, > ordy,, ¢p. O

(0.99)

(t,u)

(3710,?J10) (372,.7;/2)

Fia. 24

(-6a,7a)

(-6a,0)

(3310, y10)
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Without loss of generality, we may assume that the coefficient of 2%y%7 in the
polynomial Q(z,y) is equal to one. Applying Lemma, 4.2 successively to the polyno-
mial Q—p?, we obtain that in the coordinates (z, 2), its coefficients of z =!8 ... =13
are zero and the coefficient of 712 is ¢y 2'* (2 + 1)° for some constant cs.

Still applying Lemma 4.2, this time to the polynomial Q — p* — c2p?, we see
that its coefficient of 27'2,...,2~7 are zero and the coefficient of 7% is equal to
c1 27 (z + 1)'8 for some constant c;.

Finally, applying successively Lemma, 4.2 to the polynomial Q — p> — c2p® — c1p,
we obtain that it is identically zero, i.e.

Q = p> + cap® + cip.

It remains to note that the coefficient of 7'z in this polynomial is zero while
by Lemma 4.1 it should not be so (see Fig. 22, left hand side). The obtained
contradiction proves Proposition 4.1.

4.3. Second proof of Proposition 4.1 (simple but not rigorous). When
constructing the branch curve D in Sect. 3.2, we solved an underdeterminate system
of simultaneous equations (the number of unknowns was greater than the number
of equations: see Remark 3.3). Therefore it is naturally to assume that D admits
deformations in the class of curves with the given types of singularities, hence, it
can be further degenerated.

Suppose that there exists a degeneration such that a singularity of the type A,
meets a simple double point and transforms into a singularity of the type A4 as in
the family of curves

Cy = {y? = 2%(x — t)*} with ¢ — 0. (26)

Then a counter-example to the Jacobian Conjecture is impossible by the following
simple reason of topological nature. Indeed, in this case, there exists a disc A
continuously embedded into C? such that

(i) A meets D along its boundary: AN D = 0A;
(i) the path OA passes through the simple double point of D and at this point,
it passes from one local branch to the other.

For instance, in the situation (26) for t € R, t > 0, such a disc can be chosen
as {(z,y) € R*|0 < z < t, y> < 23(x — t)?}. Since this disc can be lifted to
the covering, the preimages of the both branches meet on the covering which is
impossible.

It must be very difficult (if possible at all) to prove the existence of degenerations
of the form (26). Nevertheless, it seems that a curve satisfying the conditions of
Lemma 3.1 might be obtained by triple application of degenerations of the form
(26) to a curve D' which satisfy the conditions (a) and (b) of Lemma 3.1 and has
four singular points of the type As and four singular points of the type A4. Such
curves exist, among them, there is a curve which has the symmetry of the fourth
order.

§5. PSEUDO-CONVEX IMMERSIONS

Now we shall prove Proposition 0.4.
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5.1. Immersions S? — C? up to regular homotopy. Let us denote the space of
immersions of a manifold X into a manifold ¥ by Imm(X,Y’). By Smale’s theorem
[16], the connected components of Imm(S*, R™) are in a one-to-one correspondence
with the elements of the homotopy group 7;(SO(n)). Hence,

7o (Imm(S?, R*))=m3(SO(4))=Z°. (27)

In this subsection, we give an explicite geometric description of this isomorphism
when R* is equipped by a complex structure (identified with C?).

For f € Imm(S?, C?), denote the degree of the Gauss mapping (see Definition
0.1) by DG(f) and let C'S(f) be the homotopy class of the pull-back of the complex
tangent field, i.e. the field of tangent 2-planes

g~ fHT NiT), where ¢ € S* and T = f.(T,S%).

Proposition 5.1. Two immersions fi, f» € Imm(S®, C?) are regularly homotopic

if and only if DG(f1) = DG(f2) and CS(f1) = CS(f2).

Proof. Since the sphere S? parallelizable, the Smale’s isomorphism (27) and the
invariants DG(f) and C'S(f) admit the following interpretation. Let us identify
C? with the quaternion body H by the mapping (z,w) — z +wj. Then S® = {q €
H|qg =1}. Let ;, f, k be the tangent vector fields on S? linearly independent at
every point and 77 the field of exterior unit normal vectors defined by

-
—

i(q)=qi, j(@)=qj, k) =gk, 7i(¢)=g,  where geS°

To an immersion f : S® — H, we associate a mapping a(f) : S* — SO(4) in
the following way. Let us extend f up to an orientation preserving immersion of
some neighbourhood of the sphere S® in such a way that each vector f.(ii(q)) is
orthogonal to f.(7,S?). Then a(f) : ¢ = Q € SO(4), where ¢ € S? and Q is
the matrix which takes the frame (1,1, j, k) to the orthogonalization of the frame
I« (ﬁ(q),?(q),;(q),ﬁ(q)). By Smale’s theorem, the mapping a induces a bijection
o, mo (Imm(S?, RY)) — m3(SO(4)).

We shall consider S® as a subgroup of the multiplicative group H \ 0, and let
S? = S2N (iR + jR + kR). Let us introduce the following notation:

L, 8% — 83 x S3, 1 (s) =(s,1), w2(r)=(1,r),
7:8% % 8% = S0(4), 7(s,7) 1 q— sqT,

0:S0(4) = S°, o(@) = Q(1),

p:SO(4) = 52, p(Q) = Qi) - Q(1),

(Q € SO(4) is considered as an orthogonal operator H — H). Let us fix the natural
identifications m3(S?) = m3(S?) = Z. The mapping 7 is a double covering because
it is a group homomorphism and Ker T = {£1}. It induces an isomorphism

T ZBZ =73(S% x S) = 13(SO(4)).
Since o7(s,r) = s7, we have

0uTe LB Z =73(S* x §%) = 13(5%) = Z, (m,n) »m —n. (28)
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It is easy to see that pre; : S® — S2 takes s into si5. It is the Hopf fibration.
Indeed, 1451 = s2i5y if and only if s; = sy - (z + iy) for some z,y € R. Hence
there is an isomorphism

(p7i1)s @ m3(S?) — m3(S?).
It is clear also that pris : S — S2 is a constant map r — i, i.e.
im ((pn2)* :m3(S3) = 7r3(S2)) = 0.
Thus, we have
puTy : LD L =m3(S? x S%) — m3(S?) = Z, (m,n) — m. (29)

By definition, DG(f) = o.([a(f)]) € 73(S?) = Z and CS(f) is defined be the
homotopy class of the vector field ¢ — f' (i f.(7i(g))). Since S? is parallelizable,
non-zero vector fields can be identified with mappings S® — S% C T1(S?). Under
this identification, C'S(f) corresponds to the homotopy class p.([a(f)]) € m3(S?).
It follows from (28) and (29) that [a(f)] is determined by its images under the
homomorphisms o, and p.. O

5.2. On extendibility of an immersion of a sphere to an immersion of a
ball.

Let X and Y be connected n-manifolds such that X is compact and has a boundary
(not necessary connected), for example, X = B", Y = R"™. In this subsection,
we give a sufficient condition for an immersion of the boundary 0X — Y to be
extendable to an immersion X — Y. For n = 2 it was proved by Francis [8].

Definition. Let Z and Y be manifolds of dimensions n — 1 and n respectively.

1. An immersion f : Z — Y is called Morse, if for any points z, 2z’ € Z such that
f(z) = f(Z') and f(T.Z) = f«(T Z) (we shall call such a pair of points a self-
tangency of f), there exist neighbourhoods U and U’ on which f is an embedding,
a neighbourhood V' of y = f(z) and a smooth function ¢ : V — R, such that
{p=0} =V U f(U') and po f|y is a Morse function.

2. A normal bundle of an immersion f : Z — Y is called the line bundle Ny — Z
whose fibre over z is Ty.\Y/f«(T.Z). A coorientation of an immersion f is called
an orientation of its normal bundle.

3. Suppose that f : Z — Y is a cooriented Morse immersion and z,z’' € Z its
self-tangency points. The self-tangency at points z, 2z’ € Z is called coherent, if their
coorientations are induced by the same orientation of the space Ty.\Y/ fu(T.Z) =
Tt:)Y/f«(T Z), and opposite otherwise.

4. The index of an opposite self-tangency is called the index of the singular
point of the function ¢ o f|; (see above) under the condition that the gradient of
¢ defines a positive normal vector field V' N f(U’) (in the case of a coherent self-
tangency or in the case of a non cooriented immersion, the index is defined only up
to the identification of k and n — k — 1).

5. A regular homotopy {h:}+¢[o,1] is called Morse, if for all ¢ € [0, 1], the immer-
sion h; is Morse. A triple z,2',t where 2,2’ € Z are self-tangency points of h; is
called a passing through a self-tangency.
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6. A passing through a self-tangency z, 2, ¢ of a regular homotopy {h:} is called
transversal if there are neighbourhoods of the points (z,t), (2',t) whose images
under the mapping (z,t) — (h(2),t) are transversal to each other in Y x [0,1]. A
regular homotopy is called transversal if all its passings through self-tangencies are
transversal.

7. A passing through an opposite self-tangency of a cooriented regular homotopy
is called positive (negative) if the velocity of each branch with respect to the other
is positive (negative) in the sense of the coorientation.

Fig. 23 illustrates the definitions of the self-tangency types. In Fig. 24, positive
passings of self-tangencies of different indices are depicted (the negative ones can
be obtained from them by the reversing of time, i.e. for € < 0). The arrows in the
both figures indicate the coorientations.

XX

Index 0 Index 1

~~

Coherent Opposite

F1G. 23. SELF-TANGENCIES

XX X

t=1ty—¢ t=1y+¢ t=ty—¢ t=ty+e¢
Index 0 Index 1

F1a. 24. POSITIVE PASSINGS THROUGH SELF-TANGENCIES (g > 0)

Proposition 5.2. Let X and Y be connected n-manifolds such that X is compact
and has a boundary Z = 0X. Let H : X — Y be an immersion and hy : Z — Y, t €
[0,1] a transversal Morse homotopy such that ho = H|z. Let us fix the coorientation
of ho defined by the image under the mapping H, of an exterior normal vector field
to Z (it it extends by continuity for all hy). If all the passings of opposite self-
tangencies of index n — 1 are positive then there exists a homotopy Hy : X — Y
such that Hy|z = hy and Hy = H.

For n = 2, Proposition 5.2 is proved in [8]. In the general case, the proof is more
or less the analogous and we omit it.

Example. In Fig. 25, we depicted a regular homotopy of a circle {h;} such that ho
is extendable to an immersion of a disc but Ay is not. One sees that the extendibility
fails at the moment of a negative passing through an opposite self-tangency of index
1. By Proposition 5.2, this is the only reason which can break the extendibility.
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Fic. 25

Definition 5.3. Let X,Y be connected n-manifolds such that X is compact and
f:Z=0X — Y is an immersion. Two extensions F,G : X — Y of f are called
equivalent if there exists an isotopy H; : X — Z, t € [0,1] such that Hy = F,
H, =@, and H;|; = f for all ¢.

Corollary 5.4. Let X,Y be connected n-manifolds such that X is compact and
7 = 0X. Suppose that hy : Z —'Y is a transversal Morse reqular homotopy which
has no opposite self-tangencies of index n—1. Then the immersions hy and hy have
the same number of extensions to X up to the equivalence from Definition 5.3. O

Now let us apply Proposition 5.2 to the problem of extension of a strictly pseudo-
convex homotopy of the boundary (see Definition 0.3) to a regular homotopy of the
whole manifold.

Corollary 5.5. Let Y be a smooth complex (or almost complex) manifold of com-
plex dimension k > 2, and let X a smooth compact oriented manifold of real di-
mension n = 2k with a boundary Z = 0X. Let H : X = Y be an immersion and
hi: Z =Y, t€]0,1] a strictly pseudo-convex homotopy such that hg = H|z. Then
there exists a regular homotopy Hy : X — 'Y such that H¢|z = ht and Hy = H.

Proof. By asmall perturbation, the homotopy {h;} can be done Morse and transver-
sal. If the perturbation is sufficiently small then the homotopy remains to be strictly
pseudo-convex. Comparing the Levi forms of the touching branches, it is easy to see
that opposite self-tangencies of index n — 1 are impossible for Morse pseudo-convex
immersions. Hence, Proposition 5.5 follows from Proposition 5.2. O

Corollary 5.6. Let Y be a smooth complex and let f : S® — Y be a strictly
pseudo-convex immersion. Then:

(a). The immersion [ is extendable to an immersion of a ball if and only if
strictly pseudo-convexly homotopic to the standard embedding.

(b). Up to equivalency (see Definition 5.3), there exists at most one extension
of f to an immersion of the ball B* =Y.

Proof. Suppose that f is extendable to an immersion F : B* — Y. By a theorem
of Eliashberg [7], there exists a pluri-subharmonic (with respect to the complex
structure pulled back from Y) function on B* with a single minimum. The level
hypersurfaces of this function define a strictly pseudo-convex homotopy between f
and an embedding. Since an embedding of a the sphere is uniquely extendable to
an embedding of the ball, the required statement follows from Corollary 5.4. O

Remark. For k = 1, the conclusion of the Corollary 5.6(b) is wrong: in Fig. 26, we
give an example of an immersion S!' — R? which is non-uniquely extendable to an
immersion of the disc. In the paper [15], this example is called Milnor example.



COUNTER-EXAMPLES TO THE "JACOBIAN CONJECTURE AT INFINITY” 31
In the 50-th, this example was constructed independently by N.N. Konstantinov.
Rotating the curve in Fig. 27 around the axis, we obtain examples of non-uniquely

extendable immersions S"~! — R™ for all n > 2, i.e. Corollary 5.6(b) is wrong
without the condition that f is pseudo-convex.

D) &
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5.3. Proof of Proposition 0.4.

Proposition 5.1 implies that the immersion f of the sphere —M (see Definition
0.1) corresponding to the meromorphic immersion of the (+1)-pair constructed in
§3 is regularly homotopic to the standard embedding. Indeed, DG(f) = 1 by the
construction C'S(f) = 1 because being holomorphic, the mapping f preserves the
complex tangent field.

Let us prove that there is no strictly pseudo-convex homotopy between f and
the standard embedding. Suppose, such a homotopy exists. Then, by Proposition
5.6(a), f would be extendable to a homotopy of a ball. Attaching the ball to
M, we obtain a 4-manifold diffeomorphic to CP?, a 2-sphere L embedded into
it, and an immersion X \ L — C?. Moreover, X has a complex structure in a
neighbourhood of L, such that L is a complex line and the functions defining the
immersion into C? are meromorphic. Let us pull back the complex structure from
C? to the whole X. Then the obtained complex surface is isomorphic to CP?, the
described construction would give a counter-example to the Jacobian Conjecture
which is impossible by Proposition 4.1.
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