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AN EXAMPLE IN CONNECTION WITH THE JACOBIAN CONJECTURE 

S. Yu. Orevkov UDC 517 

Introduction. Let F and G be polynomials of two complex variables x and y. The well- 
known Jacobian conjecture consists in the following: if FxGy - FyG x = const ~ 0, ~hen the 
polynomials F and G determine an invertible mapping C 2 - ~ C  ~ (see, for example, [i~. . In this 
case it is easy to show that the inverse mapping is also polynomial. 

The Jacobian conjecture can be reformulated in the following way. Let s be an infinitely 
remote direct line in CP ~, U its tubular neighborhood (the exterior of a big ball in C~), and 
let fz, f2 be meromorphic functions on U, holomorphic on U - s and defining a locally one-to- 
one mapping /: U--I--~C 2. Then the Jacobian conjecture is equivalent to the injectivity of 
this mapping. Indeed, the functions fl and f2 by the theorem on elimination of compact sin- 
gularities can be continued to holomorphic functions on the whole C = = CP2--1. From the mero- 
morphic property of these functions on CP ~ , and the holomorphic property on C = it follows 
that they are polynomial, and from the fact that the Jacobian is not null outside some ball 
it follows that it is not null on the whole C 2. 

If with the help of the o-processes we solve the undefined points of the mapping f, then 
the meromorphic property of the original mapping leads to rather strong limitations on the 
topology of the resulting surface and its mappings. Moreover, the image of the branching 
curve is an infinitely distant direct line, each with one branch at infinity. 

Now we shall formulate the main result of the present note (Sec. 1 is devoted to its 
proof). 

Proposition 0.I. There exists a smooth (noncompact) complex-analytic surface X, with a 
smooth curve s in it, isomorphic to CP I , with self-intersection number +i, and two func- 
tions fl, f2, meromorphic on X, such that the mapping X - L, determined by these functions, 

/: 2--~-+C 2 is locally one-to-one, but not injective. 

It is obvious that if U is a tubular neighborhood curve L, and U is a tubular neighbor- 
hood of the direct line s on CP 2 , then the pairs (U, L) and (U, s are C~-diffeomorphic. 
Thus there exists a smooth noninvertible embedding of the exterior of some ball into C ~ , 
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which resembles a~polynomial mapping with respect to its geometrical properties. If, how- 
ever, the pairs (U, L) and (U, s were bi-holomorphic equivalent, then, as we mentioned above, 

we would obtain a counterexample to the Jacobian conjecture. 

On the other hand, if the restriction of the mapping f to the boundary S of the tubular 
neighborhood of the curve L (clearly, S is a three-dimensional sphere, and f[~ is an embed- 
ding) could be continued to an embedding of the four-dimensional ball 7~4-+C=, then, ob- 
viously, it would be possible to lift on /J~;~U an analytic structure so as to obtain a 

smooth rational curve with self-intersection number +i, whose complement D would be homeomor- 
phic to |~. It has been shown in [2, p. 85] that in this case D would be isomorphic to C ~ , 
hence again we would obtain a counterexample to the Jacobian conjecture. 

It can be verified that the Gauss degree of the mapping of S into the sphere, obtained 
from the embedding f[~, is not one. Therefore the mapping constructed in this note cannot be 
extended to a mapping providing a counterexample to the Jacobian conjecture. The fact that 
this mapping is not extendible to a counterexample is also an immediate consequence of Lemma 
4.2 in [3]. 

In Sec. 2 with the help of the Lodaira theorem [4] it has been shown that a smooth 
rational curve with a positive self-intersection number on a smooth analytic surface (in par- 
ticular, the curve L in the constructed example) has an arbitrarily small strongly pseudo- 
concave tubular neighborhood. For such a neighborhood we can take the union of curves cor- 
responding to the points of a sufficiently small ball in the manifold of rational curves on 
the given surface. This fact, obviously, is interesting for its own. 

i. Construction of an Example 

i.i. Construction of the Image of a Branching Curve. Let us consider a curve K in C ~, 
parametrized with the polynomials 

+ l l  I 6.~ 1', 6~ {!,__ 39 

63 819 13 819 o 9261 441~9 
631~ + ':-;-" l~ --8-- ~ --g-- l -  -- ~ t 8 ' 

Q ( t ) = t t ~  ~ 4 / r  + 21/~_ - 21 14 2,1t~ 2 1 l ~ 1 7 "  , )  

These polynomials satisfy the relations 

deg~ ( ~ (t')2 - -  Q (t) :~ ~2~i ) ~ Q (t) = i:~. ( 1 )  

g . c . d .  ( P ' ,  Q ' )  = t ,  ( 2 )  

Let X be a compactification of C ~ in which curve K has no singularities at infinity, 
i.e., X is a smooth compact algebraic surface containing a (reducible) curve L, such that 
X--L~--=C 2 , and the closure k of curve K transversally meets curve L at a unique point p~, 
which is a smooth point both on k and L. 

Pair (Y, A), where A is a curve on a smooth complex-analytic surface Y, will be called 
regular if all irreducible components of curve A are smooth compact rational curves, meeting 
transversally but at most pairwise. We shall associate with each regular pair a dual weighted 
graph. The vertices of this graph correspond to irreducible components, and its edges to the 
points of intersections of the corresponding components. The weight of a vertex is minus 
the self-intersection number of the corresponding component. The signs have been so chosen in 
order that the determinant of the intersection matrix be not changed by blowing up a point 
on this curve. If it is clear which surface is concerned then we shall speak about a dual 
graph of a curve. 

Let F be a dual weighted graph of pair (X, L). By (i) it has been constructed as of 
Fig. 1 (the edge with an arrow corresponds to point p~). 

1.2. General Description of the Example. We shall construct a regular pair (X, L) with 
a dual graph displacyed on Fig. 2, and a hoiomorphic mapping f: X + X, such that the restric- 
tion of f to X - L is locally one-to-one, /(~--~)CX--L and/(~) CTL U k. This will be the 
proof of Proposition 0.i. Indeed, if some irreducible component of the curve L has self- 
intersection number -i, and does not intersect more than two other components of the curve 
L, then it can be contracted to a point, and then we obtain again a regular pair. In order 
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to obtain its dual graph we should proceed with F as follows: choose an arbitrary vertex v 
with weight i, with not more than two edges coming out of it; move away the vertex v and the 
edges coming out of it; if from vertex v two edges vu I and vu 2 were coming out, then add the 
edge ulu2; reduce the weights of vertices next to v by one. 

It is easy to verify that continuing the above procedure until the vertices with weight 
i are exhausted, after 228 contractions from graph F we obtain a linear graph with weights 
(2, 2, 2, 2, 2, 2, O, -i). This graph, by means of blowing up and contractions, can be con- 
verted into a graph consisting of a single vertex with weight -i (cf., [2, Lemma 5], it can 
be also easily verified directly). Obviously, the resulting regular pair satisfies the 
hypothesis of Proposition 0.i. 

To construct X and f we shall choose around every irreducible component s of the curve L 
a tubular neighborhood U(s such that U(s meets U(s only if s meets s and in this case 
the intersection will be bicylinder with the center l ~ l'. Let v: k* + k be the normaliza- 
tion of the curve k. By (2) v is an embedding. Therefore there exists a tubular neighbor- 
hood U* of the null section of some linear bundle E * + k* and an embedding v*: U* + X such 
that V*Ik, = v (we shall identify k* with the null section in E*). Let U(k) = v*(U*) and 
U = Uz<L U(1)(l<L means: s is an irreducible component of curve L). For a subgraph F i of 

graph F (see Fig. i) we put U(F~) = Ul<e~ U(1) , where by L i we denote the union of irreducible 

components corresponding to the vertices of graph r i. Let s s be curves corresponding to 
the vertices v I, v 2 (see Fig. i). 

We shall construct the surface X and mapping f: X + X separately over each set U(k), 
U(s U(s U(F l) ..... U(F4), and further we shall show the congruence on the intersections. 
Moreover, over set U mapping f will be a branched covering with the branching over L U k. 

1.3. Construction of Coverings Over 17(F~). Let A = (a~j) be an integer 2 • n-matrix 
such that det (A(i, j)) > 0 for i < j [by A(I, j) we denote the 2 • 2 submatrix of matrix A 
composed with the i-th and j-th columns]. Denote by Z(A) the fan in R =, whose one-dimen- 
sional cones are generated by the columns of the matrix A, and the two-dimensional ones by 
the pairs of adjacent columns. By X(A) we denote the corresponding two-dimensional toroid 
manifold. It is smooth if all det (A(i, i + i)) = 1 (cf., [5]). 

LEMMA 1.3.1. Let A = (aij) be an integer 2 • n matrix, such that det (A(i, i + i)) = 1 
for i = 1 ..... n = i, and let s be the closure of a one-dimensional orbit of the manifold X(A) 
corresponding to the i-th column. Then, if 1 < i < n, then s is compact and its self-inter- 
section number is equal to -det (A(i - i, i + i)). 

With the help of Lemma 1.3.1 it is easy to construct a matrix A, such that the dual 
graph of the union of compact orbits of the manifold X(A) is isomorphic to the given linear 
weighted graph. Let A i (i = 1 ..... 4) be such matrices for the graphs F i and X i = X(Ai). By 
the tautness of the toroid singularities [6] it 'is easy to show that L i can be identified 
with the union of the compact orbits of the manifold X(Ai), and U(F i) with its neighborhood. 

For each i ffi 1,...,4 we shall consider a linear mapping B~: R2-+R 2 given by a matrix 
composed with the first and the last column of the matrix A i, and let ~i be a canonical par- 
tition of the fan Bll(Ei ) into primitive (i.e., generated by the bases of the integer lattice- 
cones (cf., [5, 8.4]). It can be directly verified that if o is one of two extreme two- 
dimensional cones of the fan E i (i = 1 ..... 4), then Bll(o) is a primitive cone. From this 
fact, and also from the coordinate description of toroid manifolds and mappings [7] there 
follows 

LEMMA 1.3.2. Let p be a null-dimensional orbit in X(Ei), corresponding to one of the 
extreme cones of the fan, Yi the union of compact one-dimensional orbits, and ~i a toroid 
mapping associated with B i. Then ~l~l(v ) for some neighborhood V of the point p is a cyclic 

covering of degree det Bi, branching over V ~ Y. 

Let 21 = 12X (E~), X 2 = 18X (E2), X3 = X (E3) U 7X8, X4 =4X (~2) ~J 8X4 (nX denotes a dis- 
joint union of n copies of space X), and let fi: Xi + Xi be a mapping whose restriction to 
the components are either identity mappings, or the mappings ~i" Put U(Fi) = ~I(U(Fi)), E~= 
/i~(Li) A direct computation shows that the following lemma holds. 

LEMMA 1.3.3. The dual graph of the pair (Xi, Li) is isomorphic (up to the weights) to 
graph Fi (see Fig. 2: where some vertices and subgraphs have been indicated; the subgraph 
generated by all the remaining ones is -F~). 
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1.4. Construction of Coverings Over U(s Let i = 1 or 2, D~ = U (li) ~ ((L U k)--l~) 
This union of three-two-dimensional discs transversally intersects s Therefore U(Z i) - D i 
is homotopically equivalent to a two-dimensional sphere with three punctures; m-fold cover- 
ings of the set U(s i) (necessarily connected), branching over Di, are given by the homomor- 
phism of the fundamental group G~ = ~:(U (li)--D~) into the group S(m) of permutations of m 
elements. 

We shall now denote by al, bl, c I the generators of group G l, corresponding to traveling 
around LI, L2, L3, and by a2, b2, c 2 the generators of group G 2 corresponding to traveling 
around L~, L~, k. These elements satisfy the unique relationships aibic i = i. 

Let ~: Gi-+ S (36) be homomorphisms, such that 

~1 (a,) = (2 3 30)(5 6 3i)( t0 1t 32)(t3 i4 33)(t8 t9 34) 
(22 23 35)(25 26 36)(1 7 4)(9 15 12) (t7 28 20) 
(2t 27 24)(8 29 t6), 

~1 (bl) = (2 4)(5 ?)(tO 12)(13 t5)(t8 20)(22 24)(25 27) (3 30) 
(6 3t)(1t 32)(t4 33)(19 34)(23 35)(26 36) (t 8)(9 t6) 
(17 29)(21 28), 

~1 (el) = ~2 (a2) = (i 2 3 . . .  28 29), 
~ (b2)  = (28 2 7 . . . 2 2 ) ( 2 t . . .  t 5 ) ( t 4 . . . 8 ) ( 7 . . . t ) ,  
~ (c2) = (29 22 t5 8 t), 

~ (as) ~ i  (bi) ~ (ci) = 1r  . 

Consequently, these homomorphisms are well defined. Let gi: ~ (l~)--~ U (ll) be a 36-fold cover- 
ing, branching over Di, corresponding to homomorphism ~i (i = 1,2). The curve ~i (11) is con- 
nected (on Fig. 2 vertex 9 corresponds to it), anda ~1(12) splits into 8 disjoint curves (ver- 
tices ~i)). On the curve corresponding to ~(")~ (and. in its neighborhood) the mapping g2 is 
29-fold, and in neighborhoods of other curves it is one-fold. 

1.5. Construction of a Mapping Over U(k). LEMMA 1.5. k*.k* = 5. 

COROLLARY. There exists a cyclic fivefold covering T: C (k)-+ U*, branching over k*. 

Let h = ~'*T, ~ = T-1(A*)=h-l(A ') (on Fig. 2 to curve k corresponds vertex fi). 

Proof of Lemma 1.5. Irreducible components of curve L form a basis in PicX. Since 
the intersection numbers of the basic elements with each other and with the divisor of k 

%We write a product of permutations as a composition of mappings from the right to left, 
i.e., (12).(23) = (123). 
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are known, we can find the decomposition of the divisor of k with respect to this basis and 
its self-intersection number: k.k = 91. Having written the addition formula for each element 
of the basis we obtain a system of linear equations, from which we can find the decomposi- 
tion of the canonical class of the surface X with respect to this basis. Further, we can 
compute the arithmetic type ~a(k) = 43. By (2) all singular points of the curve k are simple 
double. It is known that the arithmetic type of such curves is bigger than the normaliza- 
tion type by the number of the double points. Consequently, ~a(k) = d, where d is the number 
of the double points of curve k. It remains to prove that kok = k*.k* + 2d. Indeed, let us 
choose a C~-section of the bundle E*, close to the null section, whose image k~ is in U* and 
which meets transversally k* (recall that k* is n image of a null section of E*) at points 
which are not coimages of singular points under the mapping ~. Then k.k =:~:k N v (k~) = :~: 
k* ~ k~+2d = k*.k*+2d The lemma has been proved. 

1 .6 .  Glu ing  T o g e t h e r  C o n s t r u c t e d  S o l u t i o n s  ( C o n c l u s i o n  of  t h e  P r o o f  o f  P r o p o s i t i o n  0 . 1 ) .  
The s u r f a c e  X and t h e  mapping f :  X ~ X m e n t i o n e d  in  P r o p o s i t i o n  0 .1  w i l l  be g l u e d  w i t h  t h e  
surfaces 0(F i) (see 1.3), U(~ i) (see 1.4), U(k) (see 1.5), the mappings fi, gi, and h. From 
Lemma 1.3.2 it follows that the mappings fi and gi over the intersections of their 
give equivalent branching coverings. We shall join them together according to the mappings 
representing the equivalence. As a result we obtain a proper mapping f0:0 + U which is a 
covering over U--(L ~ k), while its restriction to one of the components of the set~(U 
U(k)) is equivalent to the restriction of h to h-1(U ~ U (k)). We shall glue U with U(k) 
according to this equivalence and denote by X the resulting surface. 

Denote by L the curve made of ~1(Li), ~1(li) and h-1(k). According to Sec. 1.2 it is 
enough to show that its dual graph is as on Fig. 2. For this, by virtue of Lemma 1.3.3 it 

remains to prove that T~.[~ = --72, T (~)~2 "~2r(~ = --29 and k.k = +i. The first two equalities follow 
from part a) of the following lemma, and the third from part b) and Lemma 1.5. 

LEMMA 1.6. Let F: M 1 + M 2 be an m-fold branching covering of real four-dimensional 
(necessarily compact) manifolds, S i a connected two-dimensional smooth compact submanifold 
in Mi, with S 1 0 F-I($2). Then 

a) If F has a branching of order m along Sl, then (SI.S I) = m(S2-S2). 

b) If the image of the sub-manifold meets transversally S 2, then m(Sl'S I) = ($2"$2). 

. Existence of a Pseudoconcave Neighborhood 

We shall prove the following theorem. 

THEOREM 2.1. Let X be a smooth complex-analytic surface and Y a smooth compact rational 
curve with self-intersection number m > 0 lying on it. Then Y has an arbitrarily small 
strongly pseudoconcave tubular neighborhood. 

LEMMA 2.2. Let p: E--~ CP I be a one-dimensional linear fiber bundle of degree m > 0, 
(x, y) a local analytic coordinates system in E, such that y is a linear coordinate in each 
fiber, x a coordinate on CP I, and p(x, y) = x. Let y = uj(x) (j = 0,...,m) be some basis 
of holomorphic sections of the bundle E. Then the equality 

(u0 (x) . . . . .  um (z)) = (u~ (z) . . . . .  u ~  (x)) ( 3 )  

i s  n o t  s a t i s f i e d  a t  any p o i n t  and f o r  any k. 

P r o o f .  S i n c e  t h e  f i b e r  bund le  E i s  i s o m o r p h i c  t o  a s t a n d a r d  one ,  in  some c o o r d i n a t e  
sy s t em ( x ' ,  y ' )  t h e  s p a c e  o f  i t s  h o l o m o r p h i c  s e c t i o n s  c o i n c i d e s  w i t h  t h e  s p a c e  o f  p o l y n o m i a l s  
in  x '  o f  d e g r e e  n o t  g r e a t e r  t h a n  m. Moreover ,  t h e  c o o r d i n a t e s  x '  and y '  can  be e x p r e s s e d  by 
x,  y by t h e  f o r m u l a s  x '  = f ( x ) ,  y '  = y / g ( x )  where t h e  f u n c t i o n s  f '  and g a r e  nowhere  n u l l .  
S e c t i o n s  u j  in  t h e  c o o r d i n a t e s  ( x ' ,  y ' )  have  t h e  form y '  = P k ( x ' ) ,  where  P0 . . . . .  Pm i s  a b a s i s  
in  t h e  s p a c e  o f  p o l y n o m i a l s  o f  d e g r e e  n o t  g r e a t e r  t h a n  m. C o n s e q u e n t l y ,  

u~ (x) = P~ (1 (x)) g (x). (4 )  

Le t  us assume t h a t  a t  some p o i n t  x and f o r  some X e q u a l i t y  (3)  h o l d s .  S u b s t i t u t i n g  (4)  
i n t o  (3)  we o b t a i n  

p~ (I (x))(~g (x) - g' (z)) = p~ (1 (x)) 1' (x) g (z) ( 5 )  

where {Pk} i s  a b a s i s  in  t h e  p o l y n o m i a l s  s p a c e ,  t h e r e f o r e  1 and x '  can be e x p r e s s e d  as t h e i r  
l i n e a r  c o m b i n a t i o n s  o f  i t s  e l e m e n t s .  A p p l y i n g  t h e s e  l i n e a r  c o m b i n a t i o n s  t o  t h e  e q u a l i t i e s  
(5)  we c o n c l u d e  t h a t  t h e  e q u a l i t i e s  kg - g '  = 0 and f ( k g  - g ' )  = f ' g  h o l d  a t  p o i n t  x,  which  
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implies that f'g = 0. The obtained contradiction proves the lemma. 

Proof of Theorem 2.1. Let N be a normal fiber bundle of the curve Y in the surface X, 

and let �9 (N) be the sheaf of germs of its hoiomorphic sections. Then O (N)~= O (m), conse- 
quently, H ~ (}', 0 (N)) ~--- C '"+I, H I (Y, 0 (N)) ---- 0 , and, by the Kodaira theorem [4], there exists 
on X a family of smooth curves Yt, t---- (t o .... , t,,) ~ B (B is a ball in C '''=I with the center 
at 0), satisfying the following conditions: (i) Y0 = Y; (ii)V---- {(x, t) Ix ~ }'t} is a smooth 
analytic hypersurface in X x B; (iii) the linear mapping a: T0B -H ~ (~', O (N)) is an iso- 
morphism, where o is defined in the following way. Let (x, y) be local coordinates on X, 
in which Y is given by the equation y = 0, and let (x,)l) be the corresponding coordinates 
on N (i.e., n = dy). Since Yt is a smooth curve, then by the implicit function theorem the 
surface V can be defined by the equation F(x, y, t) = 0, where F = f(x, t) - y. Then o (a/ati) 
is defined as a section of the bundle N, which in the coordinates (x, n) is given by the 
equation 11 = o//aQ (x, 0). This definition does not depend on the choice of coordinates. 

Let pr be the projection of X • B on X. On the set X 0 = pr (V) there is defined a real 
function ~ (p) = minw, t)e v I t [ 2, p ~ X0, t ~ ]3 . We shall show (which will conclude the proof of 

the theorem) that X 0 is a neighborhood (on X) of the curve Y, and that for sufficiently small 
E > 0 the set U~ -- {p ~ X 0 I ~(P) < 8} is strongly pseudoconcave. It is sufficient to prove 
these two facts for every coordinate neighborhood on the surface X. We shall show it in the 
coordinates (x, y) introduced above. 

Let uj (x)= O//atj (x, 0). According to (iii) ~ = uj(x) (j = 0 ..... m) are linearly inde- 
pendent sections of the sheaf O (N)-----O (re). From this we can easily derive that the functions 
uj and uj cannot vanish anywhere all at the same time. Consequently, 

I u I ~ > 0, ~hereu  = (u0 . . . . .  u~) .  ( 6 )  

From ( 6 )  i t  f o l l o w s  t h a t  rkc (pr Iv) = 2 i n  some n e i g h b o r h o o d  o f  t h e  c u r v e  Y, t h u s  X 0 i s  a 
n e i g h b o r h o o d  o f  Y. 

I f  a p o i n t  P = ( x , y ) ~ X 0  i s  f i x e d ,  t h e n  { t ~ B  I (P ,  t ) ~  V} i s  a s m o o t h  s u b m a n i f o l d  i n  B, 
a n d  min  t t l  2 i s  a c h i e v e d  a t  i t s  i n t e r n a l  p o i n t  t = ( t 0 , . . . , t m ) .  C o n s e q u e n t l y ,  b y  t h e  L a g r a n g e  
t h e o r e m  on t h e  c o n d i t i o n a l  e x t r e m u m ,  t h e r e  e x i s t s  f o r  t h i s  p o i n t  a n  ~ ~ C-, s u c h  t h a t  

F = 0 ,  (7) 

k a F / O [  i = [ j . ,  j = 0 ,  . . . .  m. ( 8 )  

F o r  t o = . . . =  t m = y = 0 t h e  J a c o b i a n  o f  t h e  s y s t e m  ( 7 ) ,  ( 8 )  w i t h  r e s p e c t  t o  t h e  v a r i -  
a b l e s  k ,  t o . . . . .  t m i s  e q u a l  t o  _+[ul 4,  a n d ,  a c c o r d i n g  t o  ( 6 ) ,  i s  n o t  n u l l .  C o n s e q u e n t l y ,  f o r  
a s u f f i c i e n t l y  s m a l l  y t h i s  s y s t e m  h a s  a u n i q u e  s o l u t i o n  k = X ( x ,  y ) ,  t j  = t j ( x ,  y ) ,  w i t h  

( x , y )  = Y ] t j ( x , y )  [2 .  E x p a n d i n g  f u n c t i o n  F = f ( x ,  t )  - y i n t o  a s e r i e s  w i t h  r e s p e c t  t o  t a n d  
inserting it into (7) we have 

= 7'j u~ (x) t~ + o (I t I"). ( 9 )  

For every fixed j, expressing all t i from (8) by means of tj, and substituting them in 
(9), we obtain 

ya]  = ) u  ] 2 t j - 5 0 ( I t  l ~) ( ] =  0 . . . . .  m), 

c o n s e q u e n t l y  ( l u l  2 w i l l  b e  d e n o t e d  by  U) ,  tj (x, g) = y(zj/~ -5 0 (I Y 1'), a n d  t h u s  

q~ (z, y) = ~ / ~  + o (I y ID.  ( l o )  

Let ~ = %~/'9 = i + O (]y I), .~2 = --~plY = y~t~/'~t-5 0 (IY 1)o. Clearly, y ~ 0 for ~ ~ 0. 
Therefore, ~ = (~i, ~2) is a complex tangent vector to the surface q~ = const W= 0. Differen- 
tiating (10) we shall find the values of the Levi form of the function ~ on vector g: 

L (~.) = Z i .  j (~xi:7"J~i~J" = ~ t3gy (~t~tx~ - -  I~tx [2) ~_ O ([ ~J [a) h e r e  1"1 = x ,  xo. = /J 

I t  r e m a i n s  t o  n o t i c e  t h a t  b y  t h e  C a u c h y - B u n y a k o v s k i i  i n e q u a l i t y  ~p:.�9 - -  ] ~ [ e " -  ~- 0, w h e r e  
t h e  e q u a l i t y  i s  r e a c h e d  o n l y  when v e c t o r  u '  i s  p r o p o r t i o n a l  t o  v e c t o r  u .  H o w e v e r ,  t h e  l a t t e r  
i s  i m p o s s i b l e  by  v i r t u e  o f  Lemma 2 . 2 .  The  t h e o r e m  h a s  b e e n  p r o v e d .  

The  a u t h o r  i s  v e r y  g r a t e f u l  t o  A. G. V i n t u s h k i n  f o r  p o s i n g  t h e  p r o b l e m ,  a n d  f o r  many 
u s e f u l  d i s c u s s i o n s  and  r e m a r k s  c o n c e r n i n g  t h e  p r e p a r a t i o n  o f  t h e  m a n u s c r i p t .  
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A MINIMAL PERMUTATION REPRESENTATION OF THE FINITE 

SIMPLE JANKO GROUP J~ 

V. M. Sitnikov UDC 512 

As shown in [i], the study of minimal permutation representations of known finite simple 
groups, i.e., representations on the cosets of proper subgroups of minimal index, is one of 
the paths to the classification of the finite simple groups. In the present paper we study 
a minimal permutation representation of the sporadic simple Janko group J4- 

It was shown by Mazurov and Mazurova [2] that a proper subgroup of minimal index in J~ 
is a subgroup M isomorphic to a nontrivial split extension of an elementary Abelian group of 
order 2 II by the Mathieu group M2~o The index of M in J4 is equal to 173067389. 

THEOREM. The permutation representation of J4 on the cosets of the subgroup M = 2 II" 
M24 h a s  s u b d e g r e e s  1, 82575360, 28336, i5180, 32643072, 54405120, 3400320. The c o r r e s p o n d i n g  t w o -  
p o i n t  s t a b i l i z e r s  a r e  i s o m o r p h i c  t o  M =  2n :M~a ,  L~(23), 21+a~:3Z~, 23+12(Z3 • L3(2)), [27]'Z5, 
[iSl-(E3 • Z ~ ,  [2*~I(E~ • E~ .  

I n o u r  s u b g r o u p  n o t a t i o n ,  2 m+k d e n o t e s  a s p e c i a l  g r o u p  o f  o r d e r  2 m+k w i t h  a c e n t e r  o f  
o r d e r  2m; 2 m d e n o t e s  an e l e m e n t a r y  A b e l i a n  g roup  o f  o r d e r  2m; [2 m] d e n o t e s  a s u b g r o u p  o f  
o r d e r  2m; A.B (A:B) d e n o t e s  an e x t e n s i o n  ( s p l i t  e x t e n s i o n )  o f  A by B. 

The p e r m u t a t i o n  r e p r e s e n t a t i o n  o f  a go rup  $ on t h e  c o s e t s  o f  a s u b g o r u p  H i s  t h e  a c t i o n  
o f  ~ on t h e  s e t  ~ I H = {Hg i g o r } ,  d e f i n e d  by t h e  r u l e  

Hg--~HgxVx~$ .  
The c o r r e s p o n d i n g  p e r m u t a t i o n  c h a r a c t e r  X o f  $ a g r e e s  w i t h  t h e  g roup  c h a r a c t e r  i n d u c e d  

on $ f rom t h e  t r i v i a l  c h a r a c t e r  X = i ~  o f  t h e  s u b g r o u p  H. Fo r  t h i s  p e r m u t a t i o n  c h a r a c t e r  
we h a v e  t h e  r e l a t i o n  

I ,~ ~ B I.IC~(x)[ I~gAH4.[Cg(x)I 
l~(x)  = IHI --  IxH ~ gl.iC~(x)[ (1 )  

If {x ~ ~ H} = ~=1{x~ QH}, this relation can be written in the form 

1 ~ ( ~ ) = ~  la~(x)l  , ( 2 )  
---~ i I CII(~Ol 

where  x ~ = { g - l x g l g ~  } i s  t h e  c l a s s  o f  e l e m e n t s  c o n j u g a t e  t o  x in  ~ and x 1 . . . . .  x k a r e  
representatives of the different conjugacy classes in H into which the set {x ~ ~ H} splits. 
Obviously X(X) = 1 if and only if IC9 (x) I~- IC1z(x) I and x ~ ~H = xHI~/f, and X(X) = 0 if and 
only if x 9 ~H=~. 
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