
CONSTRUCTION OF ARRANGEMENTS OFAN M-QUARTIC AND AN M-CUBIC WITH A MAXIMALINTERSECTION OF AN OVAL AND THE ODD BRANCH1S.Yu. OrevkovAbstra
t. We 
onstru
t 237 arrangements mentioned in the title. All the 
onstru
tions 
onsistin perturbing singular 
urves. Almost in all 
ases, we prove that all the 
urves with the given set ofsingularity types are 
onsidered under the 
ondition that they 
ould provide arrangements mentionedin the title. We prove that a 
ertain mutual arrangement of a 
ubi
 and a quarti
 is realisable pseudo-holomorphi
ally but unrealisable algebrai
ally. The proof of the algebrai
 unrealisability is based on the
ubi
 resolvent. | C�a 
'est vrai, dit le petit prin
e. Et qu'en fais-tu?| Je les g�ere. Je les 
ompte et je les re
ompte, dit le businessman.C'est diÆ
ile. Mais je suis un homme s�erieux!A. de Saint-Exupery. "Le petit prin
e"In this paper, we 
onstru
t 237 arrangements mentioned in the title (see x5). Theyin
lude the arrangements whi
h were 
onstru
ted in [2, 3, 11℄. All the 
onstru
tions
onsist in perturbing singular 
urves. Almost in all 
ases, we prove that all the 
urveswith the given set of singularity types are 
onsidered under the 
ondition that they 
ouldprovide arrangements mentioned in the title. In parti
ular, we give in x1 a 
omplete
lassi�
ation (up to isotopy) of arrangements of a quarti
 and a 
ubi
 with a maximalinterse
tion of an oval and the odd bran
h (see De�nition 0.2) whi
h have irredu
ibledouble points with the total Milnor number equal to six. In x2, we give an analogous
lassi�
ation in two 
ases when the total Milnor number is four: symmetri
 arrangementswith two A2 (Se
t. 2.1) and quarti
 with A4 (Se
t. 2.2). In x3, we give a 
lassi�
ationof arrangements of a quarti
 and a 
ubi
 with an almost maximal interse
tion of an ovaland the odd bran
h (see De�nition 0.2) whi
h have irredu
ible double points with thetotal Milnor number equal to six, with two ex
eptions: (1) the quarti
 has a singularityA6 and (2) the quarti
 has A4 and either the quarti
 or the 
ubi
 has A2 so that thetangen
y at A2 is not maximal. It is known a priori that these 
ases 
an add nothingto the list in x5 be
ause the 
orresponding smoothings 
an be obtained as smoothings of
urves from Se
t. 2.2.In Se
tions 1.3 and 6.3, we show (see. Remark 1.8 and Proposition 6.8) that a 
ertainmutual arrangement of a 
ubi
 and a quarti
 is pseudoholomorphi
ally realisable but alge-brai
ally unrealisable. Other examples of algebrai
ally unrealisable mutual arrangementsof two transversally interse
ting non-degenerate real pseudoholomorphi
 
urves have been1English translation of the paper published in Bulletin (vestnik) of Nizhni Novgorod State University(Loba
zewski University) "Mathemati
al modeling and optimal 
ontrol", issue 2(24), 2002.Partially supported by the grant RFFI 01-01-00602. Typeset by AMS-TEX1



2 S.YU. OREVKOVknown (see [1℄, [8℄), however, Figure 13 is the �rst known to the author example of thiskind su
h that both the 
onstru
tion and the proof of the algebrai
 non-realisability areobtained by simple arguments and do not require messy 
al
ulations.I am grateful to G.M. Polotovskii for numerous dis
ussions. This paper was writtenbe
ause of his insisten
e.De�nitions and notation. Re
all that a 
urve has a singularity of the type An at apoint p if it is de�ned by the equation y2 = �xn+1 in some lo
al analyti
 
oordinates
entered at p. Su
h points are 
alled double. A double point An is redu
ible when n is oddand irredu
ible when n is even. The integer n is its Milnor number. A bran
h of a realalgebrai
 
urve is by de�nition the image of a 
onne
ted 
omponent of its normalisation(non-singular model). A bran
h of a 
urve in RP 2 is 
alled even (odd) if it realises a zero(non-zero) homology 
lass in H1(RP 2;Z=2Z).De�nition 0.1. Suppose that one 
urve is non-singular at a point p and another 
urvehas a singularity of the type An at this point. We shall say that the 
urves have amaximal (resp. almost maximal) tangen
y at p if the lo
al multipli
ity of the interse
tionis n+ 1 (resp. n).Note, that if one 
urve is non-singular at a point p and another 
urve has a singularityof the type An at p then the interse
tion is maximal if and only if one of the 
urves 
urveis arranged from the both sides of the other one when restri
ted to any neighbourhoodof p.De�nition 0.2. Let B1 and B2 be bran
hes of algebrai
 
urves C1 and C2 of degrees d1and d2 respe
tively. Suppose that ea
h of the 
urves C1, C2 has only irredu
ible doublepoints as singularities. We shall say that the bran
hes B1 and B2 are in maximal mutualarrangement if the following 
onditions hold:(1) All the singularities of C1, C2 are lo
ated on the bran
hes B1, B2;(2) C1 \ C2 = B1 \ B2.(3) C1 and C2 have no 
ommon singular points.(4) The 
urves have a maximal interse
tion at ea
h singular point.Let us say that the bran
hes B1 and B2 are in almost maximal mutual arrangement ifthe 
ondition (4) is repla
ed by(40) the interse
tion is almost maximal at one singular point and maximal at all theother singular points of ea
h 
urve.Notation 0.3. Let C be a 
urve in RP 2 and p a point on C whi
h is not a 
ex point.Let us 
hoose 
oordinates (x : y : z) so that p = (0 : 1 : 0) and the line z = 0 is thetangent to C at p. Let us 
hoose a parameter a so that the 
oni
 yz = ax2 interse
ts Cat p with multipli
ity � 3. Let us denote by fC;p the birational quadrati
 transformation(x : y : z) 7! (xz : yz � ax2 : z2) (the mapping (X;Y ) 7! (X;Y � aX2) in the aÆne
oordinates X = x=z, Y = y=z).Notation 0.4. Let p and q be points in RP 2 and let L be a line passing through q andnot passing through p. Let us 
hoose the 
oordinates (x : y : z) so that p = (0 : 1 : 0), q =(0 : 0 : 1), L = fy = 0g. Let us denote by hp;q;L the birational quadrati
 transformation(x : y : z) 7! (x2 : xy : yz). In the literature on the topology of real algebrai
 
urves,this transformation is usually 
alled the hyperbolism (O.Ya. Viro introdu
ed this termreferring to Newton).



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 3x1. Maximal arrangements of a 
ubi
 and a quarti
 whi
h haveirredu
ible double points whose sum of Milnor numbers is equal to six1.1. A smooth M-
ubi
 and a quarti
 with a point A6.Lemma 1.1. Let C be a non-singular M-
ubi
, E a 
oni
, and L a line. Suppose thatE meets the odd bran
h J of C at 6 points and let us denote one of these points by p.Suppose that L is tangent to E at p and also L is tangent to J at some point q. Then thearrangement of C[E[L on RP 2 is one of those depi
ted in Figures 1.1{1.5. Moreover,all these arrangements are realisable.
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Fig. 1.1 Fig. 1.2 Fig. 1.3 Fig. 1.4 Fig. 1.5Proof. Figure 1.1. Let x; y be aÆne 
oordinates. Let E = fx2 + y2 = 1g, L = f5y =12x+13g, C = f(x2+y2�1)y+�f(y) = 0g, p = (�12=13; 5=13), and q = (xq ; yq) wheref(y) = (y � 513 )(2y � 1)(4y � 3), � = 91144 � 1396p19 � 0:0416769, xq = �(65 +p19)=72and yq = (13�p19)=30.To realise the arrangements in Figures 1.2 { 1.5, let us �x C, L = fl = 0g, p, and q inthe required way, and let us 
onstru
t E.Figure 1.2. Let L1 = fl1 = 0g a line 
utting J at three points whi
h lie on the samear
 pq. Let us set E = fl1l + "fg where ff = 0g is the 
oni
 whi
h is tangent to L at pand whi
h has no other real interse
tions with L1. Choose j"j � 1.Figure 1.3 { 1.5. Let fl1 = 0g be the line passing through p and 
utting J at two morepoints. Set E = fl21 + "l2lg where fl2 = 0g is a line 
lose to L and j"j � 1.The fa
t that other arrangements are impossible easily follows from the 
lassi�
ationdue to Polotovskii [10; x3.1℄ of mutual arrangements of a 
oni
 and a 
ubi
 and fromBezout's theorem applied to an auxiliary line. �Proposition 1.2. Let C3 be a non-singular M-
ubi
 and C4 a quarti
 whi
h has asingularity of the type A6 at p. Suppose that C4 maximally meets the odd bran
h J ofC3. Then the arrangement of C3 [ C4 on RP 2 is one of those depi
ted in Figures 2.1 {2.5. Moreover, all these arrangements are realisable.
A 6

A 6A 6 A 6A 6Fig. 2.1 Fig. 2.2 Fig. 2.3 Fig. 2.4 Fig. 2.5



4 S.YU. OREVKOVProof. Apply fC;q to the arrangements from 1.1. �1.2. A smooth M-
ubi
 and a quarti
 with points A4 and A2.Lemma 1.3. Let p1, p2, q be points on the odd bran
h J of a non-singular M-
ubi
 C.Let us denote the lines (p1q), (p2q), and (p1p2) by L1, L2, and L3 respe
tively. Supposethat C is tangent to L1 at q. Then C is arranged with respe
t to L1, L2, L3 as in Figures3.1{ 3.5. Moreover, all these arrangements are realisable.Proof. The fa
t that there is no other arrangements is evident. To realise the arrangementin Figure 3.3, let us 
hoose p1 2 J , 
onstru
t a tangent L1 = (p1q) to J , and let L3 be aline 
lose to L1.To realise the arrangement in Figures 3.2 and 3.5, let us 
hoose p1 2 J and 
onstru
ttwo line L1 and L03 passing through p whi
h are tangent to J . Let L3 be a line 
lose toL03.To realise the remaining two arrangements, let us denote one of the in
e
tion points ofJ by a. Let us 
onstru
t su

essively the tangents to J as follows: ab (b is the tangen
ypoint), b
 ( is the tangen
y point), and 
d (d is the tangen
y point on the ar
 ab). Lete be a point on the ar
 ad and f a point on the ar
 bd 
lose to b. Then we obtain thearrangement in Figure 3.1 for p1 = b, p2 = e, q = 
 and the arrangement in Figure 3.4for p1 = 
, p2 = f , q = d. �
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qFig. 3.1 Fig. 3.2 Fig. 3.3 Fig. 3.4 Fig. 3.5Lemma 1.4. Let C be a non-singularM-
ubi
, E a 
oni
, and L1, L2 two lines. Supposethat E meets the odd bran
h J of C at 6 points. Let us denote two of these points by p1and p2. Suppose that Lj is tangent to E at pj, j = 1; 2, and L1 is tangent to J at a pointq. Suppose that L2 also passes through q. Then the arrangement of C [ E [ L1 [ L2 onRP 2 is one of those depi
ted in Figures 4.1{4.8. Moreover, all these arrangements arerealisable.
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CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 5
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Fig. 4.5 Fig. 4.6 Fig. 4.7 Fig. 4.8Proof. All possible mutual arrangements of C, E and L1 are des
ribed in Lemma 1.1. Itis impossible to add the line L2 to Figure 1.1 and the only way to add L2 to Figure 1.2(resp. 1.3; 1.4; 1.5) is as in Figure 4.1 (resp. 4.2{4.4; 4.5{4.6; 4.7{4.8). Let us show thatall these arrangements are realizable.The arrangements in Figures 4.3{4.7. In Lemma 1.3, let us set E = fl23 + "l1l2 = 0gwhere Lj = flj = 0g and j"j � 1.The arrangements in Figure 4.1. Let anM -
ubi
 C and two lines L and L1 be arrangedas in Figure 5. Consider the pen
il of 
ubi
s fE(t)g, passing through p1, r1, and r2 andtou
hing L1 at p1. Let I be the segment of this pen
il between L[L1 and (p1r1)[ (p1r2)passing through the position depi
ted in Figure 5. Let L2(t) be the tangent to E(t)passing through q and let p2(t) be the point of the tangen
y. When t runs through I , thepoint p2(t) moves 
ontinuously from L \ L1 to r1. Hen
e, it 
rosses C at some moment.
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E
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Fig. 5 Fig. 6 Fig. 7The arrangements in Figure 4.2. Let us �x aÆne 
oordinates x; y and set p2 = (0; 0),L0 = fy = xg. Let C(t), t > 0 be the M -
ubi
 de�ned by y2 = x(x + t)(x + 2t) and letJ(t) be its odd bran
h. Let p1(t) be the interse
tion point of C(t) and L0 whi
h has themaximal x-
oordinate. Let L1(t) be the tangent to J(t) passing through p1(t) and letq(t) be the point of the tangen
y. Let us denote the line through p2(t) and q(t) by L2(t).The 
ubi
 C(t) tends to C0 = fy2 = x3g as t! 0. Let us 
hoose the equations lj(t) = 0of the lines Lj(t), j = 0; 1; 2, so that lj(t)! lj(0) as t! 0. Let E(t) = fl20 + "l1l2 = 0g.Let us �x " su
h that the 
oni
 E(0) is arranged as in Figure 6. Then for 0 < t � j"jthe 
urves C(t), E(t), and Lj(t) are arranged as it is 
laimed.



6 S.YU. OREVKOVThe arrangements in Figure 4.8. Let us �x aÆne 
oordinates x; y and set q = (1; 1),p1 = (1=4;�1=8), p2 = (1=25; 1=125). These points lye on the 
urve C0 = fy2 = x3g.Let Lj = flj = 0g where l1 = 1� 3x+ 2y, l2 = 1� 31x+ 30y, l3 = 1� 19x� 30y, andlet E0 = ff0 = 0g where f0 = l23 � l1l2 = �4x � 92y + 270x2 + 988xy + 840y2. ThenE = ff0 � "l1l2 = 0g for 0 < " � 1 is arranged as in Figure 7. We de�ne C as a small(with respe
t to j"j) M -smoothing of C0. �Proposition 1.5. Let C3 be a smooth M-
ubi
 and C4 a quarti
 whi
h has two singularpoints of the types A4 and A2. Suppose that C4 maximally interse
ts the odd bran
h J3of C3. Then the arrangement of C3 [ C4 on RP 2 is one of those depi
ted in Figures8.1{8.8. Moreover, all these arrangements are realisable.
A2

A4
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A2 A2

A4
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A4Fig. 8.1 Fig. 8.2 Fig. 8.3 Fig. 8.4
A2

A4

A2 A4 A2 A4
A4

A2Fig. 8.5 Fig. 8.6 Fig. 8.7 Fig. 8.8Proof. We apply the hyperbolism hp;q;L1 to the 
urves from Lemma 1.4 where p is theinterse
tion point of L2 and C whi
h is di�erent from p2. �1.3. A smooth M-
ubi
 and a quarti
 with three points A2.Lemma 1.6. Let p1, p2, p3 be points lying on the odd bran
h J of a smooth M-
ubi
C. Let us denote the lines (p2p3), (p3p1), (p1p2) by L1, L2, L3 respe
tively. Let E bea 
oni
 tou
hing L1, L2, L3 at q1, q2, q3 respe
tively. Suppose that J meets E at sixpoints three of whi
h are q1, q2, q3. Then the arrangement of C with respe
t to E, L1,L2, L3 is as in Figure 9.1 up to a permutation of p1, p2, p3. Moreover, this arrangementis algebrai
ally realisable.
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Fig. 9.1 Fig. 9.2 Fig. 10



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 7Proof. Let us 
onsider two 
oni
s E and F and �ve lines L1; : : : ; L4, and L arranged asin Figure 10. Let l2l3l4 = 0 and lf = 0 be the equations of L2 [ L3 [ L4 and L [ Frespe
tively. Then, for a suitable 
hoi
e of the sign of a small parameter ", the 
urveC = fl2l3l4 + "lf = 0g is arranged with respe
t to L1, L2, L3, and E as in Figure 9.1All the arrangements di�erent from Figure 9.1 and Figure 9.2 are impossible. Thisfa
t easily follows from Bezout's theorem for an auxiliary line and the 
lassi�
ation dueto Polotovskii [10℄ of mutual arrangements of a 
oni
 and a 
ubi
. Let us show that thearrangement in Figure 9.2 is also impossible. Indeed, ea
h of the lines (p1q), where q runsthe segment2 [q1p2℄, meets J at three points. Hen
e, the oval O of C 
annot interse
tthe triangle T1 = [q1p1p2℄. Analogously, O 
annot interse
t the triangles T2 = [q2p2p3℄and T3 = [q3p3p1℄. But sin
e the lines (p1q1), (p2q2), and (p3q3) pass through the samepoint, the union of T1, T2, and T3 
oin
ides with the triangle [p1p2p3℄. �Proposition 1.7. Let C3 be a smooth M-
ubi
 and C4 a quarti
 whi
h has three singularpoints of the type A2. Suppose that C4 maximally interse
ts the odd bran
h J3 of C3.Then C3 [ C4 is arranged on RP 2 as in Figure 11.1, moreover, this arrangement isrealisable.Proof. Apply the quadrati
 transform (x1 : x2 : x3) 7! (x1x2 : x2x3 : x3x1) to the 
urvesfrom Lemma 1.6 where Li = fxi = 0g. �
Fig. 11.1 Fig. 11.2 Fig. 12 Fig. 13Remark 1.8. The tangents at the singular points of a real tri
uspidal quarti
 pass throughthe same point (see Figure 12). The unrealisability of Figure 11.2 means that the triplepoint in Figure 12 does not admit anyM -smoothing preserving all the other singularities.It is evident that su
h a smoothing is realisable by real pseudoholomorphi
 
urves (seea de�nition in [1,6,8℄). After smoothing the other singularities of the quarti
 in Figure11.2, one 
an obtain a pseudoholomorphi
 realisation of the arrangements of an M -
ubi
and an M -quarti
 depi
ted in Figure 13. Below, in Se
tion 6.3 (Proposition 6.8), weshall prove that this arrangement is algebrai
ally unrealisable.This 
onstru
tion provides a new example of an algebrai
ally unrealisable arrangementon RP 2 of two smooth real pseudoholomorphi
 
urves whi
h meet ea
h other transver-sally. Su
h examples 
an be found in [1℄, [8℄. However, Figure 13 is the �rst known to theauthor example of this kind su
h that both the 
onstru
tion and the proof of algebrai
unrealisability are elementary and do not require messy 
omputations.2When speaking of segments and triangles, we mean the aÆne 
hart 
orresponding to Figure 9.2.



8 S.YU. OREVKOV1.4. A 
uspidal 
ubi
 and a two-
omponent quarti
 with a point A4.Lemma 1.9. Let p1, p2, q be points on the odd bran
h J of a smooth M-
ubi
 C. Let usdenote the lines (p1q), (p2q), (p1p2) by L1, L2, L3 respe
tively. Suppose that C tou
hesL1 at q and tou
hes L2 at p2 Then C is arranged with respe
t to L1, L2, L3 either as inFigure 14.1 or as in Figure 14.2. Moreover, the both arrangements are realisable.
p

1

p
2

q

p
1

p
2

qFig. 14.1 Fig. 14.2Proof. The fa
t that there are no other arrangements is evident. Let us show that Figures14.1 and 14.2 are realisable. Let a be the 
ex point of a smooth M -
ubi
, L the tangentat a, and L0 the line passing through a and tou
hing the odd bran
h at some other point.Let q be a point 
lose to a. Choosing L2 as a tangent 
lose to L (resp. to L0), we obtainFigure 14.1 (resp. Figure 14.2). �Lemma 1.10. Let C be a smooth M-
ubi
, E a 
oni
, and L1, L2 two lines. Supposethat E meets the odd bran
h J of C at 6 points and let us denote two of them by p1 andp2. Suppose that L1 tou
hes E at p1 and tou
hes J at q. Suppose also that L2 tou
hesC at p2 and passes through q. Then the arrangement of C [E [L1 [L2 on RP 2 is oneof those depi
ted in Figures 15.1{15.13. Moreover, all these arrangements are realisable.
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CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 9Proof. All possible mutual arrangements of C, E, and L1 are des
ribed in Lemma 1.1.Figure 1.1 (resp. 1.2; 1.3; 1.4; 1.5) 
an provide only Figure 15.1 (resp. 15.2{15.3; 15.4{15.6; 15.7{15.10; 15.11{15.13). Let us show that all these arrangements are realisable.The arrangements in Figures 15.5{15.10, 15.12, 15.13. Let us set in Lemma 1.9:E = fl23 + "l1(l3 + Æl2) = 0g, where Lj = flj = 0g and jÆj � j"j � 1.The arrangements in Figures 15.1 and 15.4 Let us 
onsider two 
oni
s arranged withrespe
t to the 
oordinate axes as in Figure 16.1 (C is obtained as a perturbation of thedoubled line ab). Applying the quadrati
 transformation (x : y : z) 7! (xy : yz : zx), weobtain Figure 16.2 whose perturbations yield Figures 15.1 and 15.4.
p
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y
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p
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q
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a

b

c

a

b

C

Fig. 16.1 Fig. 16.2 Fig. 17The arrangements in Figures 15.2 and 15.11. Let us 
onsider an M -
ubi
 C arrangedwith respe
t to three lines L, L1, and L2 as in Figure 17. Let E be the 
oni
 passingthrough the points p1, p2, a, b whi
h is tangent to the line L1 at p1. Let p0 be the 
expoint on the ar
 qp2 and let L0 be the tangent at this point. Let us �x C and L and letus move 
ontinuously the point q along the ar
 qp0, 
hanging 
ontinuously L1, L2, p1,p2, and E preserving the in
iden
es and the tangen
ies. Then E ! L0 [ L as q ! p0,hen
e, after a 
ertain moment, we obtain the arrangement in Figure 15.2. When q passesthrough the 
ex point, we get Figure 15.11 (when this happens, the order of the pointsalong J be
omes: a, b, 
, p1, p2, q).The arrangement in Figure 15.3. Let us �x a non-singular M -
ubi
 C and a point qon its odd bran
h J . Let L1 be the tangent at q and let p1 be the point of its interse
tionwith J . Let L2 be the line through q tou
hing at p2 that ar
 qp1 whi
h 
ontains two 
expoints. Let a be a point on that ar
 qp2 whi
h does not 
ontain p1. Let us denote thelines (p1p2), (p1a), and (p2a) by L3, L4, and L5 respe
tively. Set E = fl1l5 + "l3l4 = 0gwhere Lj = flj = 0g and j"j � 1. �Proposition 1.11. Let C3 be a 
uspidal 
ubi
 and let C4 be a two-
omponent quarti
whi
h has a singular point of the type A4. Suppose that the odd bran
h of C4 interse
tsmaximally C3. Then the arrangement of C3 [ C4 on RP 2 is one of those depi
ted inFigures 19.1{19.13. Moreover, all these arrangements are realisable.
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A4
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2A
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A419.1 19.2 19.3 19.4 19.5 19.6 19.7
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A4

A2 A2

A4

A2

A4

A2

A4

A2

A4

A2

A419.8 19.9 19.10 19.11 19.12 19.13Proof. Apply the hyperbolism hp;q;L1 to the 
urves from Lemma 1.10, where p is theinterse
tion point of L2 and E whi
h is di�erent from p2. �1.5. A 
uspidal 
ubi
 and a two-
omponent quarti
 with two points A2.Lemma 1.12. Let C be a non-singular M -
ubi
 and L1, L2, L3 lines. Let us denotep1 = L2 \ L3, p2 = L3 \ L1, p3 = L1 \ L2. Let q1; q2; q3 be points on L1; L2; L3respe
tively whi
h are di�erent from p1; p2; p3. Let E be the 
oni
 through p1; q2; q3 whi
his tangent to L1 at q1. Suppose that E meets the odd bran
h J of C at 6 points in
ludingq1; q2; q3. Suppose also that J passes through p2, p3 and tou
hes L2, L3 at q2, q3. Thenthe arrangement of C [ E [ L1 [ L2 [ L3 on RP 2 is one of those depi
ted in Figures20.1{20.3 up to swapping the indi
es 2 and 3. Moreover, all these arrangements arerealisable.
p1

q3

p2

q2

p3
q1

p1

q3

p2

q2

q1 p3

p1

q3
q2

p3
q1p2Fig. 20.1 Fig. 20.2 Fig. 20.3Proof. The fa
t that other arrangements are impossible, easily follows from Polotovskii's
lassi�
ation [10℄ of mutual arrangements of a 
oni
 and a 
ubi
 and from Bezout'stheorem applied to an auxiliary line. Let us show that the arrangements in Figures20.1{20.3 are realisable.The arrangements in Figures 20.1 and 20.2. Let us �x aÆne 
oordinates x; y. Thenthe points p1 = (10=7; 2=7), p2 = (1;�1), p3 = (1=25; 1=125), q1 = (1=16;�1=64),q2 = (0; 0), q3 = (4; 8), the 
ubi
 C0 = fy2 = x3g, the 
oni
 E = f8y2�18xy+3x2+y =0g, and the lines L1 = (p2p3) = f21x + 20y = 1g, L2 = (p3p1) = fx � 5y = 0g,L3 = (p1p2) = f3x � y = �4g are arranged as in Figure 21. Perturbing the singularpoint of C0, we obtain Figures 20.1 and 20.2. The fa
t that the required perturbationsexist, 
an be 
he
ked dire
tly as follows. Namely, let us �x C0, L3, q2, q3, p2 as above.Let us 
onstru
t p3; q1; p1 a

ording to Figure 21, and let E be the 
oni
 through p1; p2; q2whi
h is tangent to L3 at q3. Then one has E = ft(5t� 1)x� (3t2 � t� 1)y + � � � = 0g.Hen
e, for t = 1=5 we obtain Figure 21, for 0 < t < 1=5 (resp. for 1=5 < t < 1=4) aperturbation of C0 yields Figure 20.1 (resp. Figure 20.2).The arrangement in Figure 20.3. Let L1; L2; L3, p1; p2; p3, q2, and q3 be arranged asit is required. Let us �x an aÆne 
hart 
orresponding to Figure 20.3. Let F = ff = 0gbe the ellipse whi
h is tangent to L2; L3 at q2; q3 and whi
h 
uts the segment [p2p3℄ at



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 11two points Let us 
hoose q1 2 [p2p3℄ so that L1 \ F � [q1p2℄ and let us tra
e E in therequired way. At last, we set C = fl1f + "l2l3l4 = 0g where j"j � 1 and fl4 = 0g is theline through q1 whi
h does not 
ut F . �Proposition 1.13. Let C3 be a 
uspidal 
ubi
 and let C4 be a two-
omponent quarti
one of whose bran
hes has two singular points of the type A2. Suppose that the singularbran
h of C4 maximally interse
ts C3. Then the arrangement of C3 [C4 on RP 2 is oneof those depi
ted in Figures 22.1{22.3. Moreover, all these arrangements are realisable.
q1

p3

p2

q3

p1
2q

A2

A2

A2

A2

A2

A2
A2

A2

A2Fig. 21 Fig. 22.1 Fig. 22.2 Fig. 22.3Proof. Apply the quadrati
 transformation (x : y : z) 7! (xy : yz : zx) to the 
urves fromLemma 1.12 (the 
oordinates are 
hosen so that the lines L1; L2; L3 are the 
oordinateaxes). �x2. Some maximal arrangements of a quarti
 and a 
ubi
 whi
h haveirredu
ible double points whose sum of Milnor numbers is equal to four2.1. Symmetri
 arrangements of an M-
ubi
 and a two-
omponent quarti
with two points A2. In this se
tion, we shall apply the method of 
onstru
tion usedfor the 
urve A2j---jA2 in the paper [7℄.Lemma 2.1. There exist mutual arrangements of a line L and three 
oni
s C, E, andH depi
ted in Figures 23.1{23.4.
LC

H

E

C

C

H
E

L

C

L

H
E

E

H C

LFig. 23.1 Fig. 23.2 Fig. 23.3 Fig. 23.4Proof. The �rst two arrangements are 
onstru
ted in the same way as in the paper [7℄:In the 
ase 23.1, one should 
hange the sign of Æ; in the 
ase 23.2, one should swap Cand H . The 
onstru
tions of 23.3 and 23.4 are evident. �



12 S.YU. OREVKOVProposition 2.2. Let C3 be an M-
ubi
 and let C4 be a two-
omponent quarti
 whi
hhas two singular points of the type A2 on the same bran
h and whi
h maximally interse
tsC3. Suppose that the both 
urves are symmetri
 with respe
t to the same axis L. Thenthe arrangement of C3 [ C4 [ L on RP 2 is one of those depi
ted in Figures 24.1{24.4.Moreover, all these arrangements are realisable.
A2

A2

A2

A2

A2

A2

A2

A2Fig. 24.1 Fig. 24.2 Fig. 24.3 Fig. 24.4Proof. Apply the 
onstru
tion from [7℄ to Figures 23.1{23.4. �2.2. A smooth M-
ubi
 and a two-
omponent quarti
 with a point A4.Proposition 2.3. Let C3 be a non-singular M-
ubi
 and let C4 be a two-
omponentquarti
 whi
h has a singular point of the type A4. Suppose that the singular bran
h ofC4 maximally interse
ts the odd bran
h J3 of C3. Then the arrangement of C3 [ C4on RP 2 is either one of those depi
ted in Figures 25.1 and 25.2, or it is one of the 31arrangements obtained from Figures 2.1{2.5, 8.1{8.8, 19.1{19.13 after modi�
ations inFigure 26.3 All these 2 + 31 = 33 arrangements are realisable.
A4 A4Fig. 25.1 Fig. 25.2

A6 A4 A2Fig. 26Proposition 2.4. Let C and C 0 be two non-singular M-
ubi
s whose odd bran
hes Jand J 0 have a simple tangen
y at a point p and transversally 
ut ea
h other at seven otherpoints. Suppose that p is a 
ex point of C 0 and let L be the tangent to C 0 at p. Thenthe arrangement of C [ C 0 [ L on RP 2 is one of those depi
ted in Figures 27.1{27.33.Moreover, all these arrangements are realisable. In Figures 27.1{27.33, we depi
t RP 23Ea
h of these modi�
ations 
an be applied in two ways be
ause of the re
e
tion with respe
t to thenon-singular bran
h.
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27.1 27.2 27.3 27.4 27.5 27.6
27.7 27.8 27.9 27.10 27.11 27.12
27.13 27.14 27.15 27.16 27.17 27.18 27.19
27.20 27.21 27.22 27.23 27.24 27.25 27.26
27.27 27.28 27.29 27.30 27.31 27.32 27.33as a dis
 whose opposite boundary points are identi�ed; the line L 
orresponds to theboundary of the dis
.Proof of Propositions 2.3 and 2.4. The transformation fC;p de�nes a one-to-one 
orre-sponden
e between arrangements from Propositions 2.4 and 2.3. Figure 27.1 and Figure27.2 are transformed into Figure 25.1 and Figure 25.2. Thus, it is suÆ
ient to realise onlyFigure 27.1 and 27.2. To this end, we �x C 0 and L satisfying the required 
onditions andset C = ff + "l1l2l3 = 0g, j"j � 1 where f = 0 is the equation of C 0 and Li = fli = 0g(i = 1; 2; 3) are lines ea
h of whi
h meets J 0 at three points and the lines L1 and L2 passthrough p.Let us prove that no other arrangement is possible under the hypothesis of Proposition2.4. Polotovskii [9℄ 
lassi�ed all mutual arrangements of two M -
ubi
s with maximally



14 S.YU. OREVKOVinterse
ting odd bran
hes. Cutting RP 2 along the odd bran
h of the �rst 
ubi
, weobtain a dis
. The se
ond 
ubi
 and the oval of the �rst one are arranged on this dis
.All su
h arrangements are presented in Figures 28.1{28.13 (swapping of the 
ubi
s de�nesthe 
orresponden
e 1 $ 10, 2 $ 11, 3 $ 3, 4 $ 4, 5 $ 5, 6 $ 12, 7 $ 13, 8 $ 8,9$ 9).
28.1 28.2 28.3 28.4 28.5 28.6 28.7

28.8 28.9 28.10 28.11 28.12 28.13All the arrangements whi
h 
ould satisfy the hypothesis of Proposition 2.4, must beobtained from Figure 28.1{28.13 by degeneration of one of the digons into a simpletangen
y followed by adding a line L whi
h has a 3rd order tangen
y with the boundaryof the dis
 and whi
h does not 
ut the ovals. Let us do it in all the possible ways so thatL 
uts the odd bran
h of ea
h of the 
ubi
s at three points (
ounting the multipli
ities).Immediately ex
luding the arrangements whi
h 
ontradi
ts Bezout's theorem for theauxiliary line passing through the tangen
y point and the oval of one of the 
ubi
s, weobtain Figures 27.1{27.33, and also Figures 29.1{29.13. The �gures 
orrespond to ea
hother as follows:28:1 ! 27:1 28:8 ! 27.20{27.24; 29.7{29.928:2 ! 27.3{27.6; 29:1 28:9 ! 27.2528:3 ! 27:7; 27:8; 29:2 28:10 ! 27.228:4 ! 27:9; 29:3 28:11 ! 27.27{27.30; 29:10; 29:1128:5 ! 27.10{27.12; 29:4 28:12 ! 27.26; 29:12; 29:1328:6 ! 27.13{27.15; 29:5 28:13 ! 27.31{27.33; 29:628:7 ! 27.16{27.19
p

q

p q p

p

p

p

q29.1 29.2 29.3 29.4 29.5 29.6
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p

p

q

q p

p

q

p

p

p

p

q29.7 29.8 29.9 29.10 29.11 29.12 29.13The arrangement in Figures 29.3, 29.5{29.9, 29.13 
ontradi
ts Bezout's theorem forthe auxiliary line pq.The remaining 6 arrangements 
an be ex
luded using the method proposed in [4℄.Let us 
hoose a point q inside the oval of C 0. Let Lq be the pen
il of lines through q.The arrangements 29.1, 29.2, 29.4, and 29.10{29.12 determine the arrangements of C,C 0, L with respe
t to Lq (Lq-arrangements) depi
ted in Figures 30.1{30.6 respe
tively(the lines of Lq 
orrespond to the verti
al lines in these �gures). The braids determinedby these Lq-arrangements 
oin
ide with the braids determined by 
urves obtained byany of the modi�
ations in Figures 31. None of these braids satis�es Murasugi-Tristraminequality (see details in [4℄). �
p

p p
pFig. 30.1 Fig. 30.2 Fig. 30.3 Fig. 30.4

p pFig. 30.5 Fig. 30.6 Fig. 31x3. Almost maximal arrangements of a quarti
 and a 
ubi
 whi
h haveirredu
ible double points with the total Milnor number equal to six3.1. A smooth M-
ubi
 and a quarti
 with points A4 and A2. (. . 1.2.)Lemma 3.1. Let C be a non-singular M-
ubi
, E a 
oni
, L1, L2 tangents to E at p1,p2 respe
tively, and let q = L1 \ L2. Suppose that the odd bran
h J of C meets E at sixpoints in
luding p1. Suppose also that J is tangent to L1 at q and 
uts L2 at two morepoints whi
h are di�erent from p2. Then the arrangements of C [ E [ L1 [ L2 on RP 2is either as in Figure 32, or it is obtained from Figure 4.1{4.8 by a perturbation of the
ubi
 near the point p2. Moreover, all these arrangements are realisable.Proof. Let J be the odd bran
h of an M -
ubi
 C and let L = (p1r) = fl = 0g be a linewhi
h is 
lose to the tangent at a 
ex point and whi
h 
uts J at three points. Then it is



16 S.YU. OREVKOV
p

1 p
1

q r

q

p
1

q

p
1

p
2

p
2p

2

q

Fig. 32 Fig. 33 Fig. 34.1 Fig. 34.2not diÆ
ult to 
onstru
t the lines Lj = flj = 0g, j = 1; 2, as in Figure 33. Adding the
oni
 E = fl2 = "l1l2g, j"j � 1, we obtain Figure 32.Combining Lemma 1.1 and Bezout's theorem for auxiliary lines, it is easy to ex
ludeall the arrangements ex
ept Figure 32, perturbations of Figures 4.1{4.8, and also Figures34.1 and 34.2. To ex
lude the two latter 
ases, we shall use Murasugi-Tristram inequalityas it was done in the proof of Propositions 2.3 and 2.4. The arrangement of C[E[L1[L2with respe
t to the pen
il of lines through a point inside the oval of the 
ubi
 has the form�22�55(�5�4�25)�23(�24�3�4) for Figure 34.1 and �24�5�3�32�23(�3�4�23)�25(�24�5�4)for Figure 34.2 (see [4℄, [6℄, or [7℄ for the des
ription of the en
oding; the subwords inparentheses 
orrespond to the points p1 and q). The rest of the proof is as in [4℄ or[7℄. �Proposition 3.2. Let C3 be a non-singular M-
ubi
 and C4 a quarti
 whi
h has twosingular points of the types A4 and A2. Suppose that C4 almost maximally interse
ts theodd bran
h J3 of C3 so that it has a maximal tangen
y at A2 and an almost maximaltangen
y at A4. Then the arrangement of C3 [C4 on RP 2 is either as in Figures 35.1{35.8, or it is obtained from Figures 8.1{8.8 by a modi�
ation depi
ted in Figure 36.Moreover, all these arrangements are realisable.
A2

A4

A2

A4 A4 A2

A2

A4

A4

A2 Fig. 35.1 Fig. 35.2 Fig. 35.3 Fig. 35.4 Fig. 35.5
A4 A2 A4 A2

A4 A4A2

A4Fig. 35.6 Fig. 35.7 Fig. 35.8 Fig. 36Proof. Apply the hyperbolism hp;q;L1 to the arrangements from Lemma 3.1, where pis an interse
tion point of L2 and C whi
h is di�erent from q (let us denote the third
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tion point by p0). In the 
ase when the 
omplement of C [E [L1[L2 
ontains a
urvilinear triangle adja
ent to the segment [p0p2℄, we obviously obtain the perturbationsof the 
urves in Figures 8.1{8.8.In the other 
ases, the 
orresponden
e between the �gures is following (prime denotesa perturbation) 4:10 ! 35:1{2; 4:20 ! 8:20; 4:30 ! 8:30; 4:40 ! 35:3; 4:50 ! 35:4;4:60 ! 35:5; 4:70 ! 35:6; 4:80 ! 35:7; 32! 35:8. �3.2. Almost maximal arrangements of a smooth M-
ubi
 and a quarti
 withthree points A2. (Cp. Se
tion 1.3.)Lemma 3.3. Let p1, p2, p3 be three points on the odd bran
h J of a non-singular M-
ubi
 C. Let us denote the lines (p2p3), (p3p1), (p1p2) by L1, L2, L3 respe
tively. LetE be a 
oni
 tou
hing L1, L2, L3 at points q1, q2, q3 respe
tively. Suppose that J doesnot pass through q1 and meets E at six points two of whi
h are q2, q3. Then (up to arenumbering of p1, p2, p3) one of the following possibilities for the arrangement of Cwith respe
t to E, L1, L2, L3 takes pla
e: (a) it is as in Figures 37.1{37.4; (b) it isobtained from Figure 9.1 by perturbing the 
ubi
 near one of the points q1, q2, q3; (
) itis obtained from Figure 9.2 by shifting the 
ubi
 to the right near q1; (d) it is obtainedfrom an arrangement 
orresponding to Cases (a){(
) applying (maybe, su

essively) themodi�
ation depi
ted in Figure 38. Moreover, the arrangements 
orresponding to Cases(a){(
) are realisable.Remark. We did not study the question of the realisability in Case (d).
p

2p

p

q

q

q

1

1

3

3

2
q2

p
3 q1

q3

p
2

p
1

p
2

q3

p
3

q1

1
p

q2

p
1

q3

3
p q1

p
2

q2

Fig. 37.1 Fig. 37.2 Fig. 37.3 Fig. 37.4
Lj

LiC

Lj

LiC

q1

p
2

q3

q2

p
1

p
3

A2

A2

Fig. 38 Fig. 39.2 Fig. 40Proof. Using Bezout's theorem for an auxiliary line and Polotovskii's 
lassi�
ation [10℄of mutual arrangements of a 
ubi
 and a 
oni
, it is not diÆ
ult to 
he
k that all theother arrangement are impossible ex
ept, maybe, the one whi
h is obtained from Figure9.2 by shifting the 
ubi
 to the left near q1. The latter arrangement 
an be ex
luded



18 S.YU. OREVKOVin the same way as in the proof of Lemma 1.6. Let us show that the arrangements inFigures 37.1{37.4 are realisable. Let Lj = fxj = 0g, j = 1; 2; 3, and let E = fe = 0gwhere e =Px2j � 2Pj<k xjxk.The arrangement in Figure 37.1. C = ffx3 + Æx22(x1 � x3) = 0g where f = x2x3 �"x1(x1 � 12x2 � x3) and 0� Æ � "� 1.The arrangement in Figure 37.2. C = f(l1 + Æx2)f = �x21l2g where f = x2x3 + "x1l2,l2 = x1 � x2 � x3, fl1 = 0g is a tangent to the 
oni
 ff = 0g passing through p1, andj�j � jÆj � "� 1.The arrangement in Figure 37.3. C = fx3(x3�x1)(x1�"x2) = Æx2(x3+x1)(x2�x1)gwhere jÆj � "� 1.The arrangement in Figure 37.4. C = fx3l1l2 = "x1x2(x1 + x2 � x3)g where j"j � 1and l1 = 0, l2 = 0 are the equations of the dashed lines in Figure 39.Finally, let us show that the 
ubi
 in Figure 9.2 
an be shifted to the right near q1.Indeed, repla
e the 
ubi
 by a small perturbation of the union of the lines (p1q01), (p2q2),and (p3q3) where q01 2℄q1; p2[. �Proposition 3.4. Let C3 be a non-singular M-
ubi
 and let C4 be a quarti
 whi
h hasthree singular points of the type A2. Suppose that C4 almost maximally interse
ts theodd bran
h J3 of C3. Then the arrangement of C3 [ C4 on RP 2 is either as in Figures41.1{41.5, or it is obtained from Figure 11.1 by a modi�
ation depi
ted in Figure 40.Moreover, all these arrangements are realisable.
Fig. 41.1 Fig. 41.2 Fig. 41.3 Fig. 41.4 Fig. 41.5Proof. Apply the quadrati
 transformation (x : y : z) 7! (xy : yz : zx) to the 
urves fromLemma 3.3. We 
hoose he 
oordinates so that the lines L1; L2; L3 are the 
oordinate axes.Then Figures 37.1{37.4 are transformed into Figure 41.1{41.4 respe
tively; a perturbationof Figure 9.2 (see Case (
) in Lemma 3.3) is transformed into Figure 41.5. It remains tonote that the modi�
ation in Figure 38 does not 
hange the isotopy type of the 
urveC3 [ C4. �3.3. Almost maximal arrangements of a 
uspidal 
ubi
 and a two-
omponentsquarti
 with a point A4. (Cp. Se
tion 1.4.)Lemma 3.5. Let C be a non-singularM-
ubi
, E a 
oni
, and L1, L2 two lines. Supposethat E meets the odd bran
h J of C at 6 points. Let us denote one of these points byp1. Let p2 be a point on J but not on E. Suppose that L1 is tangent to E at p1 andis tangent to J at q. Suppose also that L2 is tangent to C at p2, passes through q, and
uts E at two real points. Then either the arrangement of C [ E [ L1 [ L2 on RP 2 isobtained from Figure 32 by the rotation of L2 
lo
kwise around q till the �rst tangen
ywith J , or it is obtained from Figures 15.1{15.13 by a perturbation of the 
oni
 near p2.Moreover, all these arrangements are realisable.



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 19Proof. Combining Lemma 1.1 and Bezout's theorem for auxiliary lines, it is not diÆ
ultto ex
lude all the arrangements ex
ept those whi
h are listed in Lemma 3.5 and thosewhi
h would give Figures 34.1{34.2. by the rotation of L2 around q. The unrealisabilityof the two latter 
ases is already proved in Lemma 3.1.Proposition 3.6. Let C3 be a 
uspidal 
ubi
 and C4 a two-
omponent quarti
 whi
h hasa singular point of the type A4. Suppose that the singular bran
h of C4 almost maximallyinterse
ts C3 so that it has a maximal tangen
y at A2 and an almost maximal tangen
yat A4. Then either the arrangement of C3[C4 on RP 2 is as in Figures 42.1{42.16, or itis obtained from Figures 19.1{19.13 by a modi�
ation depi
ted in Figure 36. Moreover,all these arrangements are realisable.
A4

2A

A4

2A 2A

A4

2A

A4 2A

A4
2AA442.1 42.2 42.3 42.4 42.5 42.6

A4

2A
A4

2A2A

A4

2A
A4

A4

2A42.7 42.8 42.9 42.10 42.11
A4

2A

2A

A4 2A

A4

2A

A4 A4

2A42.12 42.13 42.14 42.15 42.16Proof. Apply the hyperbolism hp;q;L1 to the 
urves from Lemma 3.5 where p is one ofthe interse
tion points of L2 with E (let us denote the other one by p0). In the 
asewhen the 
omplement of C [E [ L1 [L2 
ontains o 
urvilinear triangle adja
ent to thesegment [p0p2℄, we evidently obtain the perturbations of the 
urve in Figures 19.1{19.13.In the other 
ases, the 
orresponden
e between the �gures is following (prime denotesa perturbation) 15.10 !42.1{2; 15.20 !42.3{4; 15.30 !42.5{6; 15.40 !42.7; 15.50 !19.50;15.60 !19.60; 15.70 !42.8; 15.80 !42.9; 15.90 !42.10; 15.100 !42.11; 15.110 !42.12{13;15.120 !42.14; 15.130 !42.15; 32! 42:16. �3.4. A 
uspidal 
ubi
 and a two-
omponent quarti
 with two points A2: anon-maximal tangen
y at the 
usp of the 
ubi
. (Cp. Se
tion 1.5.)



20 S.YU. OREVKOVLemma 3.7. Let C -be a non-singular M-
ubi
 and L1, L2, L3 lines. Let us denote p1 =L2 \L3, p2 = L3 \L1, p3 = L1 \L2, and let q1; q2; q3 be points on L1; L2; L3 respe
tivelywhi
h di�er from p1; p2; p3. Let E be the 
oni
 passing through p1; q2; q3 and tou
hing L1at q1. Suppose that E meets the odd bran
h J of C at 6 points in
luding q2; q3. Supposealso that J passes through p2, p3, does not pass through q1, and is tangent to L2, L3 at q2,q3. Then (up to swapping 2 and 3) either the arrangement of C[E[L1[L2[L3 on RP 2is as in Figures 43.1{43.3, or it is obtained from Figures 20.1{20.3 by a perturbation ofthe 
ubi
 near q1. Moreover, all these arrangements are realisable.
p1

q2

q1
p2 p3

q3

p1

q2

q1
p2 p3

q3

p1

q3
q2

q1 p3p2Fig. 43.1 Fig. 43.2 Fig. 43.3Proof. Using Polotovskii's 
lassi�
ation [10℄ of mutual arrangements of a 
oni
 and a
ubi
 and Bezout's theorem applied to an auxiliary line, it is easy to 
he
k that allarrangements are impossible ex
ept those whi
h are listed in this lemma and those whi
hare depi
ted in Figure 44.1 and in Figure 44.2. To ex
lude the two latter 
ases, we shallapply the Murasugi-Tristram inequality as we did it in the proofs of Propositions 2.3,2.4 and Lemma 3.1. The arrangement of C [E [L1 [L2 [L3 with respe
t to the pen
ilof lines through a point inside the oval of the 
ubi
 has the form(�5�6�5)(�25�6�5)�24(�22)�3(�2�3�2)�4�3�4(�5�6�5)�6(�25�6�5) [f.44.1℄;(�5�6�5)(�25�6�5)(�22)�3(�2�3�2)(�3�4�3)�4�4�35�4(�23�4�3) [f.44.2℄:the subwords in the parentheses 
orrespond to the points p1; q2; q1; p3; p2; q3 in this order.The rest of the proof is as in [4℄ or [7℄.Now let us show that the arrangements in Figures 43.1{43.3 are realisable.The arrangement in Figure 43.1. Let us �x aÆne 
oordinates x; y and set C = fy2 =x(x + 1)(x + 2)g and p1 = (x0; 0), x0 > 0. Let L2, L3 be tangents to J passing throughp1. Let us de�ne q2, q3, p2, p3, L1 a

ording to the 
onditions of the lemma. Let q1be the interse
tion point of L1 and fy = 0g. Then the hyperbola E passing throughp1; q2; q3 and tou
hing L1 at q1 is arranged in the required way.The arrangement in Figure 43.2. One 
an 
he
k that the points p1 = (3:6:4), p2 =(36:75:64), p3 = (0:0:1), q1 = (25:12:108), q2 = (1:2:1), q3 = (2:5:8), the lines L1 =f12y = 25xg, L2 = fy = 2xg, L3 = f16y = 28x+ 3zg, the 
ubi
 C = fy2z = x(x + 1)2gand the 
oni
 E = f12332x2�9336xy+1584y2�1121xz+564yz�3z2 = 0g are arrangedin the required way (the 
ubi
 C has an ordinary double point with non-real tangents at(�1:0:1); a perturbation of this point provides an oval).The arrangement in Figure 43.3. Let us �x C, L1, L2, and L3 as in Figure 43.3. Then,if we 
hoose a point q1 on the segment [p2p3℄ suÆ
iently 
lose to p3, then the 
oni
 E,passing through p1; q2; q3 and and tou
hing L1 at q1 is arranged in the required way. �



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 21Proposition 3.8. Let C3 be a 
uspidal 
ubi
 and C4 a two-
omponent quarti
 whi
hhas two singular points of the type A2. Suppose that the singular bran
h of C4 almostmaximally interse
ts the 
urve C3 so that it has a maximal tangen
y at the both 
usps ofC4 and an almost maximal tangen
y at the 
usp of C3. Then either the arrangement ofC3 [ C4 on RP 2 is as in Figure 45.1{45.2, or it is obtained from Figure 22.1{22.3 by amodi�
ation depi
ted in Figure 40. Moreover, all these arrangements are realisable.
p1

q3
q2

q1 p3p2

p1

q3
q2

p3
q1p2

A2 A2

A2 A2

A2

A2Fig. 44.1 Fig. 44.2 Fig. 45.1 Fig. 45.2Proof. Apply the quadrati
 transformation (x : y : z) 7! (xy : yz : zx) to the 
urves fromLemma 3.7. The 
oordinates are 
hosen so that the lines L1; L2; L3 are the 
oordinateaxes. Then Figure 43.3 is transformed into Figure 22.2 modi�ed as in Figure 40. �3.5. A 
uspidal 
ubi
 and a two-
omponent quarti
 with two points A2: anon-maximal tangen
y at one of the 
usps of the quarti
.(Cp. Se
tion 1.5, 3.4.)Lemma 3.9. Let C be a non-singular M-
ubi
 and L1, L2, L3 lines. Let us denotep1 = L2 \ L3, p2 = L3 \ L1, p3 = L1 \ L2, and let q1; q2; q3 be points on L1; L2; L3respe
tively whi
h di�er from p1; p2; p3. Let E be the 
oni
 passing through p1; q2; q3 andtou
hing L1 at q1. Suppose that E meets the odd bran
h J of C at 6 points in
luding q1; q2.Suppose also that J passes through p2, p3, is tangent to L2 at q2, and is tangent to L3 ata point di�erent from p1, p2, q3. Then either the arrangement of C [E[L1[L2[L3 onRP 2 is as in Figure 46.1{46.4, or it is obtained from Figure 20.1{20.3 by a perturbationof the 
ubi
 near q3 or q2. Moreover, all these arrangements are realisable, ex
ept maybeFigures 46.3{46.4.
p1

q3
q2

p3
q1p2

p1

p2

q2

q1 p3

q3

p1

q2

p3
q1

q3
p2

p1

p3
q1

q3
p2

q2Fig. 46.1 Fig. 46.2 Fig. 46.3 Fig. 46.4Proof. Using Polotovskii's 
lassi�
ation [10℄ of mutual arrangements of a 
oni
 and a
ubi
 and Bezout's theorem applied to an auxiliary line, it is easy to 
he
k that allarrangements are impossible ex
ept those whi
h are listed in this lemma and six more



22 S.YU. OREVKOVarrangements to ex
lude whi
h we shall apply the Murasugi-Tristram inequality as wedid it in the proofs of Propositions 2.3, 2.4, Lemma 3.1, and 3.7. The arrangements ofC [ E [ L1 [ L2 [ L3 with respe
t to the pen
il of lines through a point inside the ovalof the 
ubi
 have the form(�5�6�5)�4(�25)�34�5(�25�4�5)(�26�5�6)(�4�5�4);�5�4(�2�3�2)�4(�23�2�3)�23(�24)(�5�6�5)(�24�3�4)�5(�2�3�2)�4;(�2�3�2)�4(�23�2�3)�24(�5�6�5)(�24�5�4)�4�23�4�3(�2�3�2)�3;(�3�4�3)(�23�2�3)�43(�24�3�4)(�4�5�4)(�24)�3(�2�3�2);(�5�6�5)�4(�23)(�2�3�2)(�24�3�4)�24(�25�6�5)�25�4(�3�4�3)�4;(�5�6�5)�4(�23)(�2�3�2)(�24�3�4)(�25�6�5)�5�34�5(�3�4�3)�4:The subwords in the parentheses 
orrespond to the points p1; p2; p3; q1; q2, and the tan-gen
y point of L3 and C (not ne
essarily in this order). The rest of the proof is as in [4℄or [7℄.Now, let us show that the arrangements in Figures 46.1{46.2 are realisable.The arrangement in Figure 46.1. Let us 
onsider the 
oni
s E, F and the lines L1,L2, L3, arranged as in Figure 47.1 (p1 = E \ L2 \ L3; p2 = L1 \ L3; p3 = L1 \ L2;q2 = E \ F \ L2; E tou
hes L1 at q1; F tou
hes Lj at qj for j = 1; 2). Let us setC = fl1f + "l3l4l5g, where j"j � 1, F = ff = 0g, Lj = flj = 0g, and L3 = (q1q2),L2 = (q2q3).The arrangement in Figure 46.2. See Figure 47.2. �Proposition 3.10. Let C3 be a 
uspidal 
ubi
 and C4 a two-
omponent quarti
 whi
hhas two singular points of the types A2. Suppose that the singular bran
h of C4 almostmaximally interse
ts C3 so that it has a maximal tangen
y at the 
usp of C3 and at oneof the 
usps of C4, and it has a non-maximal tangen
y at the other 
usp of C4. Theneither the arrangement of C3 [ C4 on RP 2 is as in Figures 48.1{48.2, or it is obtainedfrom Figures 22.1{22.3 by a modi�
ation depi
ted in Figure 40. Moreover, all thesearrangements are realisable,.
q
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p
1

p3

q
1p2

A2

A2

A2

A2

A2

A2

p2

q
2

q
1

p
1

1L

2L

p3
q

3

3L q
3

E

FFig. 47.1 Fig. 47.2 Fig. 48.1 Fig. 48.2Proof. Apply the quadrati
 transformation (x : y : z) 7! (xy : yz : zx) to the 
urves fromLemma 3.9. The 
oordinates are 
hosen so that the lines L1; L2; L3 are the 
oordinateaxes. Then Figure s46.3{46.4 are transformed into Figures 22.1{22.2 modi�ed as inFigure 40. �



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 23x4. Other 
onstru
tions4.1. A singular quarti
, a 
oni
, and a line.Proposition 4.1. (a). There exist a quarti
 with a singular point A6 arranged withrespe
t to a line L and a 
oni
 C as in Figure 49.(b). There exist a quarti
 with singular points A4 and A2 arranged with respe
t to aline and a 
oni
 as in Figure 50.
A6

A2

A4 q

p

p

1

LFig. 49 Fig. 50 Fig. 51Proof. (a). fC;p transforms the quarti
 into a 
ir
le and it transforms L and C into twotangents.(b). hp;q;L transforms Figure 51 into Figure 50. �4.2. M-
ubi
 obtained by a perturbation of a simple and a double line, andan M-quarti
. Let O4 be an oval of an M -quarti
 C4. Suppose that ea
h of lines L1 =fl1 = 0g, L2 = fl2 = 0g meets O4 at four points. Up to isotopy, all su
h arrangementsare listed in Figures 52.1{52.11 (this easily follows from Polotovskii's 
lassi�
ation [9,10℄ of mutual arrangements of a quarti
 and a 
oni
).The �rst 
onstru
tion (see Figure 53). Let us �x a point p 2 L1 not on C4. Letfl3 = 0g and fl4 = 0g 
utting L1 near p. Set C2 = f
2 = 0g where 
2 = l1l2 + "l3l4and j"j � 1, and let C3 = f
2l1 + Æl32g where jÆj � j"j. A

ording to a 
hoi
e of theparameter ", we obtain two a priori di�erent arrangements of C4 and C3.
p

Fig. 53The se
ond 
onstru
tion (see Figure 54). Among the 
onne
ted 
omponents of RP 2 n(C4 [ L1 [ L2), let us 
hoose a digon D bounded by an ar
 of O4 and a segment of L1.It is easy to 
he
k that in all the 
ases, one 
an 
hoose another interse
tion point of O4and L1 so that a rotation of L1 around this point makes D to degenerate into a tangen
ypoint (let us denote it by p) and all other interse
tions remain real.
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a
b

c

d

1

5Fig. 52.9 Fig. 52.10 Fig. 52.11Let fl0 = 0g a line 
utting L1 at p. Let C2 = f
2 = 0g where 
2 = l1l2 + "l20 andj"j � 1, and let C 03 = f
2l1 + Æl30g where jÆj � j"j. A

ording to 
hoi
es of the signs of" and Æ, we obtain four a priori di�erent arrangements of C4 and C 03. The 
urve C 03 hasa singularity of the type A2 (ordinary 
usp) at p and it maximally interse
ts O4. Let usperturb this singularity as in the right hand side of Figure 26. Let us denote the obtainedM -
ubi
 by C3. One 
an apply this modi�
ation in two di�erent ways be
ause of there
e
tion with respe
t to O4. We shall always 
hoose that way when all the four newinterse
tions of O4 and J3 lye on J3 in the same order as on O4 (the other way redu
esto the �rst 
onstru
tion).4.3. One more 
onstru
tion. Let us 
onsider a 
oni
 C and three lines L0, L1, L2(Li = fli = 0g) arranged with respe
t to the 
oordinate axes x = 0, y = 0, z = 0as in Figure 55.1. Then for jÆj � j"j � 1, the 
oni
 E = fl20 + "l1l2 + Æl21 = 0g isarranged as it is depi
ted by a dashed line in Figure 55.1. Applying the transformation(x : y : z) 7! (yz : zx : xy), we obtain Figure 55.2 whi
h provides (by su

essiveperturbations of singularities) Figure 55.3 and Figure 55.4.
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p
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. . .

. . .Fig. 54
x = 0

z 
=
 0

y = 0

L

L1

2

C

L0

E

Fig. 55.1 Fig. 55.2 Fig. 55.3 Fig. 55.4x5. The list of all the 
onstru
ted arrangements of an M-
ubi
 and anM-quarti
 with maximally interse
ting an oval and the odd bran
hIn this se
tion, we present the list of all the mutual arrangements of an M -
ubi
and an M -quarti
 with maximally interse
ting an oval and the odd bran
h whi
h are
onstru
ted in Se
tions 4.2{4.3, and those whi
h are obtained by perturbing singular
urves 
onstru
ted in xx1{3 and in Se
tion 4.1. This list in
ludes all the arrangements
onstru
ted by other methods in the papers [11℄, [2℄, [3℄ (note, that the arrangementsno. 5, 10, and 11 in the paper [3℄ are depi
ted erroneously).5.1. Applied perturbations. In the 
ase of the arrangements in Figures 27.1{27.33,we apply the perturbations depi
ted in Figure 31.In the 
ase of a maximal tangen
y of a smooth bran
h with a bran
h having anirredu
ible double point, we apply (su

essively) the arrangements depi
ted in Figure 26and Figure 56.1 (see details in [7℄).In the 
ase of the arrangements in Figures 49 and 50 we apply the perturbationsdepi
ted in Figure 26 and Figure 56.1 followed by the perturbation in Figure 56.2.In the 
ase of a non-maximal tangen
y of a smooth bran
h with a bran
h having thesingularity A4, we apply the perturbations depi
ted in Figure 56.3.
A2

A4 A2 A4 A2Fig. 56.1 Fig. 56.2 Fig. 56.3



26 S.YU. OREVKOV5.2. En
oding of mutual arrangements of the interse
ting bran
hes. To denotethe isotopy type of a mutual arrangement of interse
ting bran
hes J3 and O4 (the oddbran
h of the 
ubi
 and an oval of the quarti
 respe
tively) we use the en
oding proposedby Polotovskii. Namely, let �1 be a pseudo-line (i.e. a simple 
losed 
urve in RP 2 whi
his homologi
ally nontrivial), disjoint fromO4 and 
utting J3 at a minimal possible numberof points (in all the 
onsidered 
ases, this number is equal to 1 or 3). We shall 
all thepoints of �1 \ J3 passages through the in�nity.Let us number the points of O4\J3 by digits4 1; : : : ; 9; a; b; 
 in their order along O4 sothat the point 1 is an endpoint of a 
onne
ted 
omponent of J3 n (O4 \ J3) 
rossing �1,but the point 2 is not. We shall en
ode the arrangement of O4 [ J3 on RP 2 by the word
omposed by digits 1; : : : ; 
 in their order along J3. Among all the words en
oding thesame isotopy type (if there are no symmetries, then the number of su
h words is twi
ethe number of passages through the in�nity), we shall always 
hoose the word whi
h isminimal in the lexi
ographi
 order. For the reader's 
onvenien
e, we shall denote thepassages through the in�nity by \/".First we list the arrangements whi
h have one passage through the in�nity and thenthose whi
h have three passages. The both lists are ordered lexi
ographi
ally (ignoring\/"). The arrangements with isotopi
 J3[O4 are ordered arbitrarily. The points 1; : : : ; 
are not indi
ated in the pi
tures but we always assume that they are lo
ated 
lo
kwisealong O4, the point 1 being the leftmost. In the 
ase of one passage through the in�nity,we do not depi
t the free ovals \at the in�nity" (i.e. in the 
onne
ted 
omponent of the
omplement of J3 [ O4 whose 
losure is non-orientable).5.3. En
oding of the 
onstru
tions. Under ea
h arrangement, we refer to its 
on-stru
tion(s). This is either a referen
e to the �gure with the perturbed 
urve, or areferen
e to the paper where the 
urve is 
onstru
ted,5 or one of the expressions 2+3,2+4, xy whose meaning is as follows.2+3. (see [11℄). C4 = f
22 = "fg where f
2 = 0g is a 
oni
 
utting J3 at six points.2+4. The 
ubi
 C3 is obtained as a small perturbation of C2 [ L where C2 is a 
oni
meeting O4 at eight points, and L is the line 
hosen as it was indi
ated in [11℄. These
onstru
tions were done by G.M. Polotovskii.xy where x = 1; : : : ; 11, y = 1; 2; : : : . The �rst 
onstru
tion from Se
tion 4.2 wherethe point denoted in Figure 52.x by the number y is 
hosen as the point p. For example,22 denotes the 
onstru
tion depi
ted in Figure 53.xy where x = 1; : : : ; 11, y = a; b; : : : . The se
ond 
onstru
tion from Se
tion 4.2 wherethe digon denoted in Figure 52.x by the letter y is 
hosen as the digon D. For example,8
 denotes the 
onstru
tion depi
ted in Figure 54.
4In the 
omputer programming, the 
hara
ters a; b; 
; d; e; f usually denote the hexade
imal digits10; : : : ; 15.5[3;n℄ Figure 5.n [3℄.



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 275.4. The list.123456789ab
:2.1; 19.1 24.1; 25.1; 27.1[11; 8.
℄ 25.2; 27.2 2.2; 8.1;19.2,3; 22.1; 42.2 49; [11; 7.1℄123456789
ba:2.1; 19.1 24.1; 25.1 1
; 25.2 1a; 19.12 2.3; 19.18.8; 19.2; 22.142.2 8.1; 19.11;27.8; 22.1; 42.2 12345678ba9
:2.5; 19.3 1234567ab
98:12; 19.8[3;3℄ 14; 19.9[3;7℄1234567
b89a:2.1; 19.1 25.1; 27.1; 49 25.2; 27.2 8.5 2.3; 8.4; 19.41234567
ba98:2.1; 19.1 2.1; 19.4 8.4 25.1 25.21b; 8.5; 19.9 1b; 19.8 50 1234569ab87
:8.3; 19.5 8.6123456ba789
:42; 19.10; [11; 7.2℄ 123456ba987
:8.3 4b; 8.6; 19.10 19.5 123458769ab
:2.2; 8.1; 19.2,322.1123458769
ba:4
; 8.1; 19.1122.1 12345876ba9
:2.5; 19.3 1234589ab
76:8.2; 19.8 1
9a; 19.6 1a; 42.161234589
ba76:1194; 8.2; 19.6,8;27.21; [11;10.1℄, [2;2℄ 15; 42.16; [2;4℄ 12345a9678b
:8.2; 19.6; 41.1 12345a9876b
:8.2; 41.1 19.6



28 S.YU. OREVKOV12345
789ab6:8.3,5; 19.9; 4a11
; 19.5 12345
987ab6:45114; 8.3,5;19.5,9; 27.11 12345
9ab876:4d; 8.5; 19.9 12345
b6789a:49
2.1; 19.4 8.4; 24.4 12345
b67a98:2a; 2.1; 27.3;19.4 2.3; 8.4; 24.4;27.29; 19.4 12345
b89a76:4d; 19.812345
ba9678:2.1; 19.4 2.3; 8.4; 19.1 49 123476589
ba:4e; 19.12 8.8; 19.2; 22.1123478965ab
:10a; 2.2; 8.1;19.2,3; 22.2 11.1; 22.3;35.3; 42.7 123478965
ba:10b; 19.12; 27.26 75; 8.8; 11.1;22.2,3; 19.2; 27.13,20 1234789ab65
:4a; 2.2; 19.13
8.7; 35.8 1234985
b67a:41 123498765ab
:2.2; 8.1; 19.2,322.2 11.1; 35.3 22.3; 42.7123498765
ba:19.12 8.8;11.1;19.2;22.2; 27.27 7a; 22.3; 27.5 1234987ab65
:3a; 2.2; 19.13 8.7; 35.812349ab8567
:258a; 27.22; 35.1;42.4,6; [11; 7.4℄ 12349ab8765
:2.2; 19.13; 27.28 2b; 27.4;8.7; 42.4 8d 42.11234ba98567
:35.1;42.4,6;[11; 7.11℄ 1234ba98765
:2.2; 19.13 8.7; 42.4 42.1 1236547ab
98:47; 19.91236547
b89a:8.5 1236549ab87
:8.6 123654ba789
:32; 19.10; [11;7.12℄ 123654ba987
:3b; 8.6; 19.10 1236789ab
54:27.8
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ba54:27.15 12367
b8549a:6986; [2;1℄ 123874569
ba:8.1; 19.1122.2 2+4; 108119; 11.1; 22.3;27.23,24; 35.3; 42.7; [3;9℄12387456ba9
:2.5; 19.3123876549
ba:8.1; 19.1122.2 10b11a; 27.3,622.3; 42.7 11.1; 27.29,30;35.3 12387654ba9
:2.5; 19.3 12389ab
7456:8.8; 11.1;19.11,12; 22.2
9a10a;
11
22.3; 12389
ba7456:94105;8114; 8.8; 11.1;19.11,12; 22.2,3; 27.9; [3;4℄123a9458b
76:22; [3;12℄ 123
56789ab4:8a; 27.8; 42.1 123
5678ba94:6a8d
42.6 123
76589ab4:2+4; 83; 27.15 123
7658ba94:6483; 27.17;42.1,6; [3;2℄ 123
9ab87456:48; 8.8;19.11,12; 22.1 123
b4567a98:2.3; 8.4;19.1,4123
b45a9678:2+3; 23; 2.3; 8.4;19.4; 24.4; 27.23; 49 123
b478965a:2+3; 355175; 8.3,5;19.5; 27.18,24 123
b498765a:8.3,5; 27.30; 3a5a7a; 19.5; 27.6; 123
b6789a54:8.2; 27.29,3041.1
19.6; 27.3,6 123
b67a9854:8.2; 19.6;27.23,24; 41.1 123
b874569a:410119; 8.2;19.6; 27.20 123
b876549a:8.2; 27.27 4e11a; 19.6; 27.5123
ba567894:8.3; 27.27 19.5; 27.5 123
ba765894:8.3; 19.5; 27.20 123
ba987456:24.1; 49 55.4
2.3; 19.1 13; 8.8; 19.11,12;22.1; 27.15; 42.2 1254367ab
98:49; 19.8 1254389ab
76:19.8 1254389
ba76:19.8; 27.16



30 S.YU. OREVKOV12543
789ab6:19.9 12543
987ab6:19.9; 27.32 1256743
9ab8:46; 42.16 1256789ab43
:2.4 1276543
9ab8:4
; 42.161276589ab43
:2.4 1278963
b45a:2+3; 2124516469;27.25 1278965ab43
:2+3; 2.4; [11; 8.b℄ 12789ab6345
:44; 19.7; [11; 7.3℄ 12789ab6543
:4b; 2.4; 19.71298763
b45a:2a5a6a 1298765ab43
:2.4 12987ab6345
:34; 19.7; [11; 7.15℄ 12987ab6543
:3b; 2.4; 19.7 129ab876345
:19.7;27.14;[11;7.13℄129ab876543
:2.4; 19.7; 27.7 12ba9876345
:19.7; [11;7.19℄ 12ba9876543
:2.4; 19.7 1432789ab65
:43; 2.5; 8.7;19.13; 35.8; [11;7.5℄ 1432985
b67a:2+3; 311432987ab65
:2+3; 33; 2.5; 8.7;19.13; 35.8; [11;7.9℄ 14329ab8567
:27.31; 35.1;42.13; [11;7.10℄ 14329ab8765
:2.5; 8.7; 19.13;27.12; 42.13; [11;7.7℄ 1432ba98567
:35.1; 42.13;[11;7.20℄ 1432ba98765
:2.5; 8.7; 19.13;42.13; [11;7.16℄1456329ab87
:19.10; 27.33;[11;7.14℄ 145632ba987
:19.10; [11;7.18℄ 1652349ab87
:2+3; 26; 8.6; 24.3;27.19; [11;7.5℄ 165234ba987
:8.6; 24.3; 19.10;27.10; [11;7.8℄ 165432ba987
:8.6; 24.3; 19.10;[11;7.17℄1234567
/98/ba:7b, 27.7 123456/b87
/9a:8b 12345
/76/9ab8:4d11b; 27.10,11;35.4; 41.2; 42.10 12345
/76/b89a:4d11b; 27.7; 42.9 12345
/76/ba98:1b9b; 35.4; 42.9
1b9b10d; 41.2;42.10; 12345
/9678/ba:2+4; 733b7b; 35.5;27.10{12; 41.4; 42.11 12345
/9876/ba:4b10d11d; 27.435.5; 41.4; 42.11; 7a; 27.28 12345
ba/76/98:8
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/98/ba:74; 27.14 1234/78/5ab
96:2+4; 898a 1234/78/5
9ab6:2+4;44113;42.8; 1234/78/5
ba96:4b11d; 42.8; 6a8d
8
 1234/789a/5
b6:4a11
; 42.15 24.2; 35.6 123478/b
/965a:52718b 1234/7a98/5
b6:2a5a6a; 27.26;35.6; 42.15
43112; 27.1342.15

1234/7ab
98/56:42102111; 27.22;42.11; [2;6℄ 1234/7
b89a/56:10
11
 35.5; 41.4; 1234/965ab
/78:9a10a10
1234/965ab
/78:41.3; 45.2 1234/965
ba/78:27.13; 41.3; 45.2 10b11a; 27.26 1234/987a/5
b6:24.2 1234/9ab87
/56:35.4, 41.21234/9ab
/5678:35.2; 11.5;42.3,5 1234/9ab
/5876:1a; 27.22; 35.2;11.5; 42.3,5,12 1
9a; 42.14 35.7; 42.3,5 1234/9
ba/5876:4
; 27.31; 35.2;11.5; 42.121234/9
ba/7658:27.4; 35.742.3 4e11a; 27.28;42.14 1234/ba789
/56:1491102; 42.10;[2;5℄ 1293; 42.9; 1234/ba9
/5876:1392; 27.17;35.7; 42.5,12,14123654/b87
/9a:2+4; 88 12367854/b
/9a:87 1236789
/54/ba:11b; 27.21; [3;8℄ 123874/ba9
/56:92103;6; 27.25;41.3; 45.2 123874/b
/569a:1071110; [2;3℄1238769
/54/ba:109118; 27.16 12389a74/b
/56:2+3; 93104107;[3; 1℄ 12389
/54/ba76:95109; [2;10℄ 12389
/5674/ba:1010117; 27.9;41.3; 45.2 123a9874/b
/56:9b10d
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/54/78ba96:27.17 123
/54/b8769a:49118; 27.1442.9; 123
/5674/b89a:2+4;48117;27.12;35.7;42.12,14; 123
/569874/ba:47116; 27.32,33;42.10; [2;7℄ 123
/5ab4/9678:24.2123
/765894/ba:27.18,19; 35.441.2 123
/945876/ba:103112; 27.18,19;35.5; 41.4 123
/965478/ba:2+4; 3272;27.31{33; 42.11; 123
/9678/b45a:2+3;3323546273;3a7a;27.9;35.6;42.15 123
98/54/7ab6:115; [2;8℄123
/98/b4567a:2+4; 62813b7b;27.21; 42.8; 123
/98/b4765a:2+4; 345574;27.16; 42.8; 123
/98/b6547a:2+4; 85 123
9ab4/78/56:2+4; 104113 123
ba94/78/56:10d11d12/56/389ab
74:2+4; 848b 12/56/389
ba74:2+4; 810; [3;6℄ 12/56/3a98b
74:2+4; 6382 12/56ba789
/34:2+4; 6887 12/56ba987
/34:6b8
12/56ba9
/3874:2+4; 6788 12/56b
/389a74:2+4; 25526566;884;9; [2;9℄ 12/56b
/3a9874:2b6b8
 821258943
/76/ba:101; 27.25 12/58b
76/3a94:2+4; 22556163610; [2;11℄ 1278/b43
/965a:2+3; 265367
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tions6.1. The 
ase of nested free ovals. Re
all that when speaking of a mutual arrange-ment of two 
urves, an oval of one of the 
urves is 
alled free if it does not meet the other
urve.Proposition 6.1. Suppose that the odd bran
h of an M-
ubi
 meets an oval of an M-quarti
 at 12 points so that at least one free oval of one of the 
urves is 
ontained insidea free oval of the other 
urve. Then the arrangements whi
h are not listed in Se
tion 5are impossible.Proof. We shall apply the method proposed in [6; x3.3℄. Let us 
onsider the pen
ilof lines through a point inside the innermost of the nested free ovals. Then the ar-rangement of the union of the 
urves with respe
t to this pen
il of lines has the form�2i1 : : :�2i5 �3�4 oj1oj2 �4�3, where i1; : : : ; i5 2 f3; 4g and j1; j2 2 f2; 3; 4; 5g (a des
rip-tion of the en
oding 
an be found in [4℄, [6℄, or [7℄). Computing the Alexander polynomialof the 
orresponding braid in ea
h of the 25 � 42 = 512 
ases, we obtain a 
ontradi
tionwith the generalised Fox-Milnor theorem in all the 
ases not listed in Se
tion 5. Seedetails (in
luding a 
omputer program for 
omputation of Alexander polynomial) in [6℄.6.2. Oval of the 
ubi
 is outside the oval of the quarti
 but "not at in�nity".Proposition 6.2. Suppose that the odd bran
h of an M-
ubi
 C3 meets the oval of anM-quarti
 C4 at 12 points. Suppose also that there exists a 
onne
ted 
omponent D ofRP 2 n (J3[C4) whose 
losure is non-orientable. If the oval O3 of C3 is outside the ovalsof the quarti
 and O3 6� D, then the arrangement of C3 [C4 is one of those listed in x5.Proof. We shall use the method from [4℄. The arrangement of C3 [ C4 with respe
t tothe pen
il of lines 
entered inside O3 has the form�3�2i1 : : :�2ia �3�2 oj1oj2oj3 �2�3�2k1 : : :�2kb�3;where a + b = 4, i1; : : : ; ia; k1; : : : ; kb 2 f2; 3g, j1; j2; j3 2 f2; 3; 5g. We shall 
onsiderall the 5 � 24 � 33 = 2160 
ases (by symmetry, the number of 
ases 
an be redu
ed). Forea
h 
hoi
e of (a; i1; : : : ; i4; j1; j2; j3), we 
ompute the braid 
orresponding to the pen
ilof lines 
entered inside O3. The exponent sum of ea
h of these braids is equal to 5. Inall the 
ases not 
orresponding to the arrangements listed in Se
tion 5, either Murasugi-Tristram inequality for the usual signature is not satis�ed, or the Alexander polynomialis not identi
ally zero.6.3. Algebrai
 unrealisability of the 
exible 
urve in Figure 13.De�nition 6.3. Let n be a positive integer and let R(X;Z) = Z3+b1(X)Z2+b2(X)Z+b3(X) where ak(X) is a polynomial in X of degree kn with real 
oeÆ
ients. Let us saythat an interval I = [X1; X2℄ is an alternating interval for the polynomial R, if thefollowing 
onditions hold:(1) ea
h of the polynomials R(X1; Z), R(X2; Z) has one simple root and one doubleroot;(2) the polynomial F (X0; Z) has exa
tly one real root when X1 < X0 < X2;(3) the double root is greater than the simple root for one of the polynomialsR(X1; Z),R(X2; Z), and the simple root is greater than the double root for the other poly-nomial.



34 S.YU. OREVKOVDe�nition 6.4. Let n be a positive integer and let F (X;Y ) = Y 4 + a1(X)Y 3 +a2(X)Y 2 + a3(X)Y + a4(X) where ak(X) is a polynomial in X of degree kn with real
oeÆ
ients. Let us say that an interval I = [X1; X2℄ is an alternating interval for thepolynomial F , if the following 
onditions hold:(1) ea
h of the polynomials F (X1; Y ), F (X2; Y ) has one double root and two simplereal roots;(2) the polynomial F (X0; Y ) has exa
tly two real roots when X1 < X0 < X2;(3) the double root is between the simple roots for one of the polynomials F (X1; Y ),F (X2; Y ) and the 
ontrary for the other polynomial.Lemma 6.5. Let R(Z) = Z3+ b2Z + b3 be a polynomial with real 
oeÆ
ients whi
h hasa simple root Z = Z1 and a double root Z = Z2. Then if Z1 < Z2 then b3 > 0, and ifZ2 < Z1 then b3 < 0.Proof. We have R(Z) = (Z � Z1)(Z � Z2)2. Then b3 = R(0) = �Z1Z22 , i.e. sign b3 =� signZ1. It remains to note that Z1+2Z2 = 0, be
ause the 
oeÆ
ient of Z2 vanishes �Lemma 6.6. Let R(X;Z) be as in De�nition 6.3. Then it 
annot have more than nalternating intervals.Proof. Performing if ne
essary the substitution Z 0 = Z � b1(X), we may assume thatb1 = 0. Let D(X) = 4 a32 + 27 a23 be the dis
riminant of R with respe
t to Z. Let[X1; X2℄ be an alternating interval for R. Then the 
onditions (1){(3) of De�nition 6.3and Lemma 6.5 imply that(4) D(X1) = D(X2) = 0;(5) D(X) > 0 for X1 < X < X2;(6) sign b3(X1) = � sign b3(X2).The 
ondition (6) implies that there exists X0 2 [X1; X2℄ su
h that b3(X0) = 0. Then,by (5) we have 4 b2(X0)3 = D(X0) � 27 b3(X0)2 = D(X0) > 0, hen
e, b2(X0) > 0.Moreover, it follows from (4) that for j = 1; 2 we have 4 b2(Xj)3 = D(Xj)�27 b3(Xj)2 =�27 b3(Xj)2 < 0, hen
e b2(Xj) < 0. Thus, the interval [X1; X2℄ 
ontains at least tworoots of b2(X): one between X1 and X0, and another between X0 and X2. It remains tore
all that deg b2(X) = 2n. �Lemma 6.7. Let F (X;Y ) be as in De�nition 6.4. Then it 
annot have more than 2nalternating intervals.Proof. Performing if ne
essary the substitution Y 0 = Y � a1(X), we may assume thata1 = 0. Let R(X;Y ) be the 
ubi
 resolvent of F (X;Y ) with respe
t to Y . Let us re
allits de�nition. For any �xed value of X , let us denote the roots of F (X;Y ) by Y1; : : : ; Y4and let us setZ1 = (Y1 � Y2)(Y3 � Y4); Z2 = (Y1 � Y3)(Y2 � Y4); Z3 = (Y1 � Y4)(Y2 � Y3);R = (Z � Z1)(Z � Z2)(Z � Z3) = Z3 + b1Z2 + b2Z + b3:The 
oeÆ
ients b1; b2; b3 are symmetri
 polynomials in Y1; : : : ; Y4, hen
e, they 
an beexpressed polynomially via a2; a3; a4 (see e.g. [12℄ for expli
ite formulas). Then bk is apolynomial in X of degree 2kn. Hen
e, by Lemma 6.6, R has at most 2n alternatingintervals.It remains to 
he
k that an interval is alternating for R(X;Z) if and only if it isalternating for F (X;Y ). This 
an be easily proved using the de�nition of Z1, Z2, Z3,and the relation Y1 + � � �+ Y4 = 0. �
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 M-
ubi
 C3 
annot be arranged with respe
t to a realalgebrai
 M-quarti
 C4 as in Figure 13.Proof. Suppose that C3 is arranged with respe
t to O4 as in Figure 13. Let us introdu
e
oordinates (x : y : z) on RP 2 so that the point (0 : 1 : 0) is inside the oval of the
ubi
. Let X = x=z, Y = y=z be the aÆne 
oordinates in the 
hart z 6= 0. The fa
tthat the X-
oordinate is monotone on all bran
hes of the 
ubi
 implies that (under asuitable 
hoi
e of the line at in�nity) the 
urve C4 is arranged as in Figure 57 withrespe
t to some six verti
al lines. Hen
e, there must be three alternating intervals forthe polynomial F (X;Y ) whi
h de�nes the 
urve C4. However, by Lemma 6.7, F (X;Y )
annot have more than two alternating intervals. �
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