CONSTRUCTION OF ARRANGEMENTS OF
AN M-QUARTIC AND AN M-CUBIC WITH A MAXIMAL
INTERSECTION OF AN OVAL AND THE ODD BRANCH!

S.Yu. Orevkov

Abstract. We construct 237 arrangements mentioned in the title. All the constructions consist
in perturbing singular curves. Almost in all cases, we prove that all the curves with the given set of
singularity types are considered under the condition that they could provide arrangements mentioned
in the title. We prove that a certain mutual arrangement of a cubic and a quartic is realisable pseudo-
holomorphically but unrealisable algebraically. The proof of the algebraic unrealisability is based on the

cubic resolvent.

— Qa c’est vrai, dit le petit prince. Et qu’en fais-tu?
— Je les gere. Je les compte et je les recompte, dit le businessman.
C’est difficile. Mais je suis un homme sérieux!

A. de Saint-Ezrupery. ”Le petit prince”

In this paper, we construct 237 arrangements mentioned in the title (see §5). They
include the arrangements which were constructed in [2, 3, 11]. All the constructions
consist in perturbing singular curves. Almost in all cases, we prove that all the curves
with the given set of singularity types are considered under the condition that they could
provide arrangements mentioned in the title. In particular, we give in §1 a complete
classification (up to isotopy) of arrangements of a quartic and a cubic with a maximal
intersection of an oval and the odd branch (see Definition 0.2) which have irreducible
double points with the total Milnor number equal to six. In §2, we give an analogous
classification in two cases when the total Milnor number is four: symmetric arrangements
with two Ay (Sect. 2.1) and quartic with A4 (Sect. 2.2). In §3, we give a classification
of arrangements of a quartic and a cubic with an almost maximal intersection of an oval
and the odd branch (see Definition 0.2) which have irreducible double points with the
total Milnor number equal to six, with two exceptions: (1) the quartic has a singularity
Ag and (2) the quartic has A4 and either the quartic or the cubic has A so that the
tangency at A, is not maximal. It is known a priori that these cases can add nothing
to the list in §5 because the corresponding smoothings can be obtained as smoothings of
curves from Sect. 2.2.

In Sections 1.3 and 6.3, we show (see. Remark 1.8 and Proposition 6.8) that a certain
mutual arrangement of a cubic and a quartic is pseudoholomorphically realisable but alge-
braically unrealisable. Other examples of algebraically unrealisable mutual arrangements
of two transversally intersecting non-degenerate real pseudoholomorphic curves have been
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2 S.YU. OREVKOV

known (see [1], [8]), however, Figure 13 is the first known to the author example of this
kind such that both the construction and the proof of the algebraic non-realisability are
obtained by simple arguments and do not require messy calculations.

I am grateful to G.M. Polotovskii for numerous discussions. This paper was written
because of his insistence.

Definitions and notation. Recall that a curve has a singularity of the type A, at a
point p if it is defined by the equation y2 = £z™*! in some local analytic coordinates
centered at p. Such points are called double. A double point A,, is reducible when n is odd
and irreducible when n is even. The integer n is its Milnor number. A branch of a real
algebraic curve is by definition the image of a connected component of its normalisation
(non-singular model). A branch of a curve in RP? is called even (odd) if it realises a zero
(non-zero) homology class in Hy (RP?;Z/2Z).

Definition 0.1. Suppose that one curve is non-singular at a point p and another curve
has a singularity of the type A, at this point. We shall say that the curves have a
mazimal (resp. almost mazimal) tangency at p if the local multiplicity of the intersection
isn+1 (resp. n).

Note, that if one curve is non-singular at a point p and another curve has a singularity
of the type A, at p then the intersection is maximal if and only if one of the curves curve
is arranged from the both sides of the other one when restricted to any neighbourhood
of p.

Definition 0.2. Let B; and B; be branches of algebraic curves C; and Cs of degrees d;
and dy respectively. Suppose that each of the curves C, Cs has only irreducible double
points as singularities. We shall say that the branches By and B are in mazimal mutual
arrangement if the following conditions hold:

(1) All the singularities of C, Cy are located on the branches By, Bs;
(2) CiNCy=B;NB,.

(3) C; and C> have no common singular points.

(4) The curves have a maximal intersection at each singular point.

Let us say that the branches B; and By are in almost mazimal mutual arrangement if
the condition (4) is replaced by

(4") the intersection is almost maximal at one singular point and maximal at all the
other singular points of each curve.

Notation 0.3. Let C be a curve in RP? and p a point on C' which is not a flex point.
Let us choose coordinates (z : y : z) so that p = (0 : 1 : 0) and the line z = 0 is the
tangent to C' at p. Let us choose a parameter a so that the conic yz = ax? intersects C
at p with multiplicity > 3. Let us denote by fc , the birational quadratic transformation
(x:y:2)— (zz:yz—azr?: 2%) (the mapping (X,Y) — (X,Y — aX?) in the affine
coordinates X = z/z, Y =y/z).

Notation 0.4. Let p and ¢ be points in RP? and let L be a line passing through ¢ and
not passing through p. Let us choose the coordinates (z : y : z) sothatp=(0:1:0),q =
(0:0:1), L ={y =0}. Let us denote by hy, 41, the birational quadratic transformation
(x :y:2)— (22 : zy : y2). In the literature on the topology of real algebraic curves,
this transformation is usually called the hyperbolism (O.Ya. Viro introduced this term
referring to Newton).



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 3

§1. MAXIMAL ARRANGEMENTS OF A CUBIC AND A QUARTIC WHICH HAVE
IRREDUCIBLE DOUBLE POINTS WHOSE SUM OF MILNOR NUMBERS IS EQUAL TO SIX

1.1. A smooth M-cubic and a quartic with a point Ag.

Lemma 1.1. Let C' be a non-singular M -cubic, E a conic, and L a line. Suppose that
E meets the odd branch J of C' at 6 points and let us denote one of these points by p.
Suppose that L is tangent to E at p and also L is tangent to J at some point q. Then the
arrangement of CUEUL on RP? is one of those depicted in Figures 1.1-1.5. Moreover,

all these arrangements are realisable.
p p b
q
O q O O
q

Fic. 1.1 Fig. 1.2 Fig. 1.3 Fig. 1.4 Fic. 1.5

Proof. Figure 1.1. Let z,y be affine coordinates. Let E = {z? +y> =1}, L = {5y =
122 +13},C = {(z> +y*> — Dy +af(y) =0}, p= (-12/13,5/13), and q = (z,, y,) where
f)=@W-2)2y—1)(dy —3), a = 2L — 18/19 ~ 0.0416769, z, = —(65 + /19)/72
and y, = (13 —1/19)/30.

To realise the arrangements in Figures 1.2 — 1.5, let us fix C, L = {I = 0}, p, and ¢ in
the required way, and let us construct E.

Figure 1.2. Let Ly = {l1 = 0} a line cutting J at three points which lie on the same
arc pq. Let us set E = {l1] + ef} where {f = 0} is the conic which is tangent to L at p
and which has no other real intersections with L;. Choose |¢| < 1.

Figure 1.3 — 1.5. Let {l; = 0} be the line passing through p and cutting J at two more
points. Set E = {1} + elsl} where {lo = 0} is a line close to L and |e] < 1.

The fact that other arrangements are impossible easily follows from the classification
due to Polotovskii [10; §3.1] of mutual arrangements of a conic and a cubic and from
Bezout’s theorem applied to an auxiliary line. O

Proposition 1.2. Let C3 be a non-singular M -cubic and Cy a quartic which has a
singularity of the type Ag at p. Suppose that Cy maximally meets the odd branch J of
C3. Then the arrangement of Cs U Cy on RP? is one of those depicted in Figures 2.1 —
2.5. Moreover, all these arrangements are realisable.

Fic. 2.1 Fic. 2.2 Fic. 2.3 Fic. 2.4 Fic. 2.5
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Proof. Apply fc,, to the arrangements from 1.1. O
1.2. A smooth M-cubic and a quartic with points A4 and A,.

Lemma 1.3. Let p1, p2, q be points on the odd branch J of a non-singular M -cubic C.
Let us denote the lines (p1q), (p2q), and (p1p2) by L1, Lo, and Ls respectively. Suppose
that C is tangent to Ly at q. Then C is arranged with respect to Ly, Lo, L3 as in Figures
3.1- 8.5. Moreover, all these arrangements are realisable.

Proof. The fact that there is no other arrangements is evident. To realise the arrangement
in Figure 3.3, let us choose p; € J, construct a tangent L; = (p1q) to J, and let L3 be a
line close to L.

To realise the arrangement in Figures 3.2 and 3.5, let us choose p; € J and construct
two line L; and L} passing through p which are tangent to J. Let Ls be a line close to
L.

To realise the remaining two arrangements, let us denote one of the inflection points of
J by a. Let us construct successively the tangents to J as follows: ab (b is the tangency
point), be ( is the tangency point), and ed (d is the tangency point on the arc ab). Let
e be a point on the arc ad and f a point on the arc bd close to b. Then we obtain the
arrangement in Figure 3.1 for p; = b, p» = e, ¢ = ¢ and the arrangement in Figure 3.4
forpr=c,p2=f,q=d. O

Fic. 3.1 Fic. 3.2 Fic. 3.3 Fic. 3.4 Fic. 3.5

Lemma 1.4. Let C be a non-singular M -cubic, E a conic, and L1, Lo two lines. Suppose
that E meets the odd branch J of C at 6 points. Let us denote two of these points by p;
and p>. Suppose that L; is tangent to E at pj, j = 1,2, and L, is tangent to J at a point
q. Suppose that Lo also passes through q. Then the arrangement of C U E U Ly U Ly on
RP? is one of those depicted in Figures 4.1-4.8. Moreover, all these arrangements are
realisable.

o P

D
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Q
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Fic. 4.1 Fic. 4.2 Fic. 4.3 Fic. 4.4
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P, P
q O q O q
p, P, O
Py
FiG. 4.5 FiG. 4.6 FiGc. 4.7 Fia. 4.8

Proof. All possible mutual arrangements of C, FE and Ly are described in Lemma 1.1. Tt
is impossible to add the line Ly to Figure 1.1 and the only way to add Ly to Figure 1.2
(resp. 1.3; 1.4; 1.5) is as in Figure 4.1 (resp. 4.2-4.4; 4.5-4.6; 4.7-4.8). Let us show that
all these arrangements are realizable.

The arrangements in Figures 4.3—4.7. In Lemma 1.3, let us set E = {I2 +¢el;ly = 0}
where L; = {l; = 0} and |¢] < 1.

The arrangements in Figure 4.1. Let an M-cubic C' and two lines L and L; be arranged
as in Figure 5. Consider the pencil of cubics {E(t)}, passing through py, 71, and r» and
touching Ly at p;. Let I be the segment of this pencil between LU Ly and (pyr1) U (p172)
passing through the position depicted in Figure 5. Let L2(t) be the tangent to E(t)
passing through ¢ and let p2(t) be the point of the tangency. When ¢ runs through I, the
point ps(t) moves continuously from L N L; to 1. Hence, it crosses C' at some moment.

Fic. 5 Fic. 6 Fic. 7

The arrangements in Figure 4.2. Let us fix affine coordinates z,y and set p, = (0,0),
Lo = {y = x}. Let C(t), t > 0 be the M-cubic defined by y*> = x(x + t)(z + 2t) and let
J(t) be its odd branch. Let p;(t) be the intersection point of C'(t) and Lo which has the
maximal z-coordinate. Let Li(t) be the tangent to J(t) passing through p; () and let
q(t) be the point of the tangency. Let us denote the line through po(¢) and ¢(t) by Lo(¢).
The cubic C(t) tends to Cop = {y* = 2®} as t — 0. Let us choose the equations /;(f) =0
of the lines L;(t), j =0,1,2, so that 1;(t) — 1;(0) as t — 0. Let E(t) = {12 + elyl> = 0}.
Let us fix £ such that the conic E(0) is arranged as in Figure 6. Then for 0 < ¢t < |¢]
the curves C(t), E(t), and L;(t) are arranged as it is claimed.
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The arrangements in Figure 4.8. Let us fix affine coordinates x,y and set ¢ = (1, 1),
p1 = (1/4,-1/8), p» = (1/25,1/125). These points lye on the curve Co = {y?> = z°}.
Let L; = {l; =0} where [y =1 -3z + 2y, l» =1 — 31z + 30y, I3 = 1 — 192 — 30y, and
let Eg = {fo = 0} where fo = I3 — l1lz = —4z — 92y + 270z% + 988zy + 840y>. Then
E = {fo —elily =0} for 0 < ¢ <« 1 is arranged as in Figure 7. We define C' as a small
(with respect to |e|) M-smoothing of Cp. O

Proposition 1.5. Let C5 be a smooth M -cubic and Cy a quartic which has two singular
points of the types Ay and As. Suppose that Cy mazimally intersects the odd branch J3
of Cs. Then the arrangement of Cs U Cy on RP? is one of those depicted in Figures
8.1-8.8. Moreover, all these arrangements are realisable.

Az

Fic. 8.5 Fic. 8.6 Fic. 8.7 Fic. 8.8

Proof. We apply the hyperbolism hy, , 1, to the curves from Lemma 1.4 where p is the
intersection point of Ly and C which is different from p,. O

1.3. A smooth M-cubic and a quartic with three points As.

Lemma 1.6. Let py, p2, ps be points lying on the odd branch J of a smooth M -cubic
C. Let us denote the lines (paps3), (p3p1), (pip2) by L1, La, L3 respectively. Let E be
a conic touching Ly, Lo, L3 at q1, g2, q3 respectively. Suppose that J meets E at six
points three of which are q1, q2, q3. Then the arrangement of C with respect to E, Ly,
Ly, L3 is as in Figure 9.1 up to a permutation of py, p2, ps. Moreover, this arrangement
is algebraically realisable.

Fic. 9.1 Fic. 9.2 Fic. 10
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Proof. Let us consider two conics E and F' and five lines Ly, ..., Ly, and L arranged as
in Figure 10. Let l5l3ly = 0 and If = 0 be the equations of L, U L3 U Ly and LU F
respectively. Then, for a suitable choice of the sign of a small parameter €, the curve
C = {ll3ly +elf =0} is arranged with respect to Ly, Lo, L3, and E as in Figure 9.1

All the arrangements different from Figure 9.1 and Figure 9.2 are impossible. This
fact easily follows from Bezout’s theorem for an auxiliary line and the classification due
to Polotovskii [10] of mutual arrangements of a conic and a cubic. Let us show that the
arrangement in Figure 9.2 is also impossible. Indeed, each of the lines (p;¢), where ¢ runs
the segment? [g1ps], meets J at three points. Hence, the oval O of C' cannot intersect
the triangle T = [g1p1p2]. Analogously, O cannot intersect the triangles To = [g2paps]
and T3 = [g3psp1]- But since the lines (p1q1), (p2g2), and (psgs) pass through the same
point, the union of Ty, Ty, and T3 coincides with the triangle [p1paps]. O

Proposition 1.7. Let C5 be a smooth M -cubic and Cy a quartic which has three singular
points of the type As. Suppose that Cy mazimally intersects the odd branch Js of Cs.
Then C3 U Cy is arranged on RP? as in Figure 11.1, moreover, this arrangement is
realisable.

Proof. Apply the quadratic transform (z1 : xs : x3) — (122 : Z223 : x321) to the curves
from Lemma 1.6 where L; = {z; =0}. O

F

Fic. 11.1 Fic. 11.2 Fic. 12 Fic. 13

\;f
\l

Remark 1.8. The tangents at the singular points of a real tricuspidal quartic pass through
the same point (see Figure 12). The unrealisability of Figure 11.2 means that the triple
point in Figure 12 does not admit any M-smoothing preserving all the other singularities.
It is evident that such a smoothing is realisable by real pseudoholomorphic curves (see
a definition in [1,6,8]). After smoothing the other singularities of the quartic in Figure
11.2, one can obtain a pseudoholomorphic realisation of the arrangements of an M-cubic
and an M-quartic depicted in Figure 13. Below, in Section 6.3 (Proposition 6.8), we
shall prove that this arrangement is algebraically unrealisable.

This construction provides a new example of an algebraically unrealisable arrangement
on RP? of two smooth real pseudoholomorphic curves which meet each other transver-
sally. Such examples can be found in [1], [8]. However, Figure 13 is the first known to the
author example of this kind such that both the construction and the proof of algebraic
unrealisability are elementary and do not require messy computations.

2When speaking of segments and triangles, we mean the affine chart corresponding to Figure 9.2.
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1.4. A cuspidal cubic and a two-component quartic with a point A,.

Lemma 1.9. Let p1, p2, q be points on the odd branch J of a smooth M -cubic C. Let us
denote the lines (p1q), (p2q), (p1p2) by L1, Lo, Lg respectively. Suppose that C touches
Ly at q and touches Ly at po Then C' is arranged with respect to Ly, Ly, L3 either as in
Figure 14.1 or as in Figure 14.2. Moreover, the both arrangements are realisable.

Fic. 14.1 Fic. 14.2

Proof. The fact that there are no other arrangements is evident. Let us show that Figures
14.1 and 14.2 are realisable. Let a be the flex point of a smooth M-cubic, L the tangent
at a, and L' the line passing through a and touching the odd branch at some other point.
Let ¢ be a point close to a. Choosing Lo as a tangent close to L (resp. to L'), we obtain
Figure 14.1 (resp. Figure 14.2). O

Lemma 1.10. Let C' be a smooth M -cubic, E a conic, and Ly, Lo two lines. Suppose
that E meets the odd branch J of C' at 6 points and let us denote two of them by p; and
p2. Suppose that Ly touches E at py and touches J at q. Suppose also that Ly touches
C at po and passes through q. Then the arrangement of CUEU Ly U Ly on RP? is one
of those depicted in Figures 15.1-15.13. Moreover, all these arrangements are realisable.

15.8 15.9 15.10 15.11 15.12 15.13
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Proof. All possible mutual arrangements of C, E, and L, are described in Lemma 1.1.
Figure 1.1 (resp. 1.2; 1.3; 1.4; 1.5) can provide only Figure 15.1 (resp. 15.2-15.3; 15.4—
15.6; 15.7-15.10; 15.11-15.13). Let us show that all these arrangements are realisable.

The arrangements in Figures 15.5-15.10, 15.12, 15.13. Let us set in Lemma 1.9:
E = {12 + el (I3 + 6l5) = 0}, where L; = {l; = 0} and |§| < |¢] < 1.

The arrangements in Figures 15.1 and 15.4 Let us consider two conics arranged with
respect to the coordinate axes as in Figure 16.1 (C is obtained as a perturbation of the
doubled line ab). Applying the quadratic transformation (z :y : 2) — (xy : yz : 2x), we
obtain Figure 16.2 whose perturbations yield Figures 15.1 and 15.4.

FiG. 16.1 FiG. 16.2 Fia. 17

The arrangements in Figures 15.2 and 15.11. Let us consider an M-cubic C arranged
with respect to three lines L, L1, and Lo as in Figure 17. Let E be the conic passing
through the points p;, po, a, b which is tangent to the line L; at p;. Let py be the flex
point on the arc ¢ps and let Lo be the tangent at this point. Let us fix C' and L and let
us move continuously the point ¢ along the arc ¢pg, changing continuously Li, Lo, p1,
p2, and E preserving the incidences and the tangencies. Then £ — Lo U L as g — po,
hence, after a certain moment, we obtain the arrangement in Figure 15.2. When ¢ passes
through the flex point, we get Figure 15.11 (when this happens, the order of the points
along J becomes: a, b, ¢, p1, p2, q)-

The arrangement in Figure 15.3. Let us fix a non-singular M-cubic C' and a point ¢
on its odd branch J. Let L; be the tangent at ¢ and let p; be the point of its intersection
with J. Let Ly be the line through ¢ touching at p» that arc gp; which contains two flex
points. Let a be a point on that arc gps which does not contain p;. Let us denote the
lines (p1p2), (p1a), and (pe2a) by Ls, L4, and Lj respectively. Set E = {l1l5 + elsly = 0}
where L; = {l; =0} and | < 1. O

Proposition 1.11. Let C3 be a cuspidal cubic and let Cy be a two-component quartic
which has a singular point of the type Ay. Suppose that the odd branch of Cy intersects
mazimally Cs. Then the arrangement of Cs U Cy on RP? is one of those depicted in
Figures 19.1-19.13. Moreover, all these arrangements are realisable.

7 @ AZO A Az
O
A
% o A 0 A & © Ae L 0 @-
Ay

19.1 19.2 19.3 19.4 19.5 19.6 19.7
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Ao Ao Ar

Ay Ay

19.8 19.9 19.10 19.11 19.12 19.13

Proof. Apply the hyperbolism h, 41, to the curves from Lemma 1.10, where p is the
intersection point of Ly and E which is different from p,. O

1.5. A cuspidal cubic and a two-component quartic with two points A,.

Lemma 1.12. Let C be a non-singular M-cubic and Ly, Ly, L3 lines. Let us denote
p1 = Lo N L3, pp = L3N Ly, p3 = L1 N Ly. Let qi,q2,q3 be points on Ly, Ly, L3
respectively which are different from p1,ps,ps. Let E be the conic through pi, q2,qs which
is tangent to Ly at q1. Suppose that E meets the odd branch J of C' at 6 points including
q1,q2,q3- Suppose also that J passes through ps, ps and touches Ly, L3 at g2, q3. Then
the arrangement of C U EU Ly U Ly U L3 on RP? is one of those depicted in Figures
20.1-20.3 up to swapping the indices 2 and 3. Moreover, all these arrangements are
realisable.

Fic. 20.1 Fic. 20.2 Fic. 20.3

Proof. The fact that other arrangements are impossible, easily follows from Polotovskii’s
classification [10] of mutual arrangements of a conic and a cubic and from Bezout’s
theorem applied to an auxiliary line. Let us show that the arrangements in Figures
20.1-20.3 are realisable.

The arrangements in Figures 20.1 and 20.2. Let us fix affine coordinates z,y. Then
the points py = (10/7,2/7), p» = (1,-1), p3 = (1/25,1/125), ¢z = (1/16,—1/64),
q2 = (0,0), g3 = (4,8), the cubic Cy = {y? = 23}, the conic E = {8y? — 18zy + 322 +y =
0}, and the lines Ly = (p2ps) = {21z + 20y = 1}, Ly, = (psp1) = {z — 5y = 0},
Ls; = (p1p2) = {3z —y = —4} are arranged as in Figure 21. Perturbing the singular
point of Cy, we obtain Figures 20.1 and 20.2. The fact that the required perturbations
exist, can be checked directly as follows. Namely, let us fix Cy, L3, g2, g3, p2 as above.
Let us construct ps, ¢, p1 according to Figure 21, and let E be the conic through py,p2, g2
which is tangent to L3 at g3. Then one has E = {t(5t — 1)z — (3t> =t — 1)y +--- = 0}.
Hence, for t = 1/5 we obtain Figure 21, for 0 < ¢ < 1/5 (resp. for 1/5 <t < 1/4) a
perturbation of Cy yields Figure 20.1 (resp. Figure 20.2).

The arrangement in Figure 20.8. Let Ly, Lo, L3, p1,p2,P3, g2, and g3 be arranged as
it is required. Let us fix an affine chart corresponding to Figure 20.3. Let F = {f = 0}
be the ellipse which is tangent to Lo, L3 at ¢2,¢s and which cuts the segment [p2ps] at
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two points Let us choose q; € [paps] so that L; N F' C [g1p»] and let us trace E in the
required way. At last, we set C' = {l1 f + elal3l4 = 0} where |¢| < 1 and {l4 = 0} is the
line through ¢; which does not cut F. O

Proposition 1.13. Let C3 be a cuspidal cubic and let Cy be a two-component quartic
one of whose branches has two singular points of the type As. Suppose that the singular
branch of Cy mazimally intersects Cs. Then the arrangement of Cs3 U Cy on RP? is one
of those depicted in Figures 22.1-22.3. Moreover, all these arrangements are realisable.

Az A A
{ o .
Az Ao
\’
G- A
A; Ar Ar
Fia. 21 Fig. 22.1 Fig. 22.2 Fig. 22.3

Proof. Apply the quadratic transformation (z : y : z) = (zy : yz : zz) to the curves from
Lemma 1.12 (the coordinates are chosen so that the lines Ly, Lo, L3 are the coordinate
axes). O

§2. SOME MAXIMAL ARRANGEMENTS OF A QUARTIC AND A CUBIC WHICH HAVE
IRREDUCIBLE DOUBLE POINTS WHOSE SUM OF MILNOR NUMBERS IS EQUAL TO FOUR

2.1. Symmetric arrangements of an M-cubic and a two-component quartic
with two points As. In this section, we shall apply the method of construction used
for the curve As|---|A4» in the paper [7].

Lemma 2.1. There exist mutual arrangements of a line L and three conics C, E, and
H depicted in Figures 23.1-23.4.

c
HOX)C
E
L E L
E
L
Fic. 23.1 Fic. 23.2 Fic. 23.3 Fic. 23.4

Proof. The first two arrangements are constructed in the same way as in the paper [7]:
In the case 23.1, one should change the sign of §; in the case 23.2, one should swap C
and H. The constructions of 23.3 and 23.4 are evident. O
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Proposition 2.2. Let C5 be an M-cubic and let Cy be a two-component quartic which
has two singular points of the type A on the same branch and which maximally intersects
Cs. Suppose that the both curves are symmetric with respect to the same axis L. Then
the arrangement of C3 U Cy U L on RP? is one of those depicted in Figures 24.1-24.4.
Moreover, all these arrangements are realisable.

. s A, 4

yan\
- J |\
Az Ap
A Az

Fic. 24.1 Fic. 24.2 Fic. 24.3 Fic. 24.4

Proof. Apply the construction from [7] to Figures 23.1-23.4. O
2.2. A smooth M-cubic and a two-component quartic with a point A,.

Proposition 2.3. Let C3 be a non-singular M -cubic and let Cy be a two-component
quartic which has a singular point of the type Ay. Suppose that the singular branch of
Cy mazimally intersects the odd branch Js3 of Cs3. Then the arrangement of C3 U Cy
on RP? is either one of those depicted in Figures 25.1 and 25.2, or it is one of the 31
arrangements obtained from Figures 2.1-2.5, 8.1-8.8, 19.1-19.13 after modifications in
Figure 26.3 All these 2 + 31 = 33 arrangements are realisable.

I TN
© ©

FiG. 25.1 FIG. 25.2
/Z\Tﬁ %{F 7342/9 7{
Fi1G. 26

Proposition 2.4. Let C and C' be two non-singular M -cubics whose odd branches J
and J' have a simple tangency at a point p and transversally cut each other at seven other
points. Suppose that p is a flex point of C' and let L be the tangent to C' at p. Then
the arrangement of C U C' UL on RP? is one of those depicted in Figures 27.1-27.33.
Moreover, all these arrangements are realisable. In Figures 27.1-27.33, we depict RP?

3Each of these modifications can be applied in two ways because of the reflection with respect to the
non-singular branch.
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27.7 27.8 27.9 27.10 27.11 27.12

27.13 27.14 27.15 27.16 27.17 27.18 27.19

27.20 27.21 27.22 27.23 27.24 27.25

27.27 27.28 27.29 27.30 27.31 27.32 27.33

as a disc whose opposite boundary points are identified; the line L corresponds to the
boundary of the disc.

Proof of Propositions 2.3 and 2.4. The transformation fc, defines a one-to-one corre-
spondence between arrangements from Propositions 2.4 and 2.3. Figure 27.1 and Figure
27.2 are transformed into Figure 25.1 and Figure 25.2. Thus, it is sufficient to realise only
Figure 27.1 and 27.2. To this end, we fix C' and L satisfying the required conditions and
set C' = {f +¢elilals = 0}, || < 1 where f = 0 is the equation of C' and L; = {l; = 0}
(1 =1,2,3) are lines each of which meets J' at three points and the lines Ly and Lo pass
through p.

Let us prove that no other arrangement is possible under the hypothesis of Proposition
2.4. Polotovskii [9] classified all mutual arrangements of two M-cubics with maximally
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intersecting odd branches. Cutting RP? along the odd branch of the first cubic, we
obtain a disc. The second cubic and the oval of the first one are arranged on this disc.
All such arrangements are presented in Figures 28.1-28.13 (swapping of the cubics defines
the correspondence 1 4> 10,2 < 11,3 < 3,4 < 4,5 5,6 < 12,7 & 13,8 & 8,

9 9).
b““. - \u“t &
ARG

28.1 28.2 28.3 28.4 28.5 28.6 28.7

I

28.8 28.9 28.10 28.11 28.12 28.13

All the arrangements which could satisfy the hypothesis of Proposition 2.4, must be
obtained from Figure 28.1-28.13 by degeneration of one of the digons into a simple
tangency followed by adding a line L which has a 3rd order tangency with the boundary
of the disc and which does not cut the ovals. Let us do it in all the possible ways so that
L cuts the odd branch of each of the cubics at three points (counting the multiplicities).
Immediately excluding the arrangements which contradicts Bezout’s theorem for the
auxiliary line passing through the tangency point and the oval of one of the cubics, we
obtain Figures 27.1-27.33, and also Figures 29.1-29.13. The figures correspond to each
other as follows:

281 — 271 28.8 —  27.20-27.24, 29.7-29.9
28.2 — 27.3-27.6, 29.1 28.9 —  27.25

283 — 27.7,278, 29.2 2810 — 272

284 — 279, 29.3 2811 — 27.27-27.30, 29.10,29.11
285 — 27.10-27.12, 29.4 28.12 — 27.26, 29.12, 29.13
28.6 — 27.13-27.15, 29.5 28.13 — 27.31-27.33, 29.6

287 —  27.16-27.19
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29.7 29.8 29.9 29.10 29.11 29.12 29.13

The arrangement in Figures 29.3, 29.5-29.9, 29.13 contradicts Bezout’s theorem for
the auxiliary line pq.

The remaining 6 arrangements can be excluded using the method proposed in [4].
Let us choose a point ¢ inside the oval of C'. Let £, be the pencil of lines through g.
The arrangements 29.1, 29.2, 29.4, and 29.10-29.12 determine the arrangements of C',
C’, L with respect to £, (L,-arrangements) depicted in Figures 30.1-30.6 respectively
(the lines of £, correspond to the vertical lines in these figures). The braids determined
by these L,-arrangements coincide with the braids determined by curves obtained by
any of the modifications in Figures 31. None of these braids satisfies Murasugi-Tristram
inequality (see details in [4]). O

N
> P > p
— 5 7 > 7

-

Fic. 30.1 Fic. 30.2 Fic. 30.3 Fic. 30.4
C G — : ] 3
C R U
= = = 5\%
- FeeNT T T
Fic. 30.5 Fic. 30.6 Fic. 31

§3. ALMOST MAXIMAL ARRANGEMENTS OF A QUARTIC AND A CUBIC WHICH HAVE
TRREDUCIBLE DOUBLE POINTS WITH THE TOTAL MILNOR NUMBER EQUAL TO SIX

3.1. A smooth M-cubic and a quartic with points 44 and A,. (. . 1.2))

Lemma 3.1. Let C be a non-singular M-cubic, E a conic, Ly, Ly tangents to E at py,
p2 respectively, and let ¢ = Ly N Ly. Suppose that the odd branch J of C' meets E at six
points including p,. Suppose also that J is tangent to Ly at q and cuts Ly at two more
points which are different from p>. Then the arrangements of C U E U L U Ly on RP?
is either as in Figure 32, or it is obtained from Figure 4.1-4.8 by a perturbation of the
cubic near the point ps. Moreover, all these arrangements are realisable.

Proof. Let J be the odd branch of an M-cubic C and let L = (p1r) = {l = 0} be a line
which is close to the tangent at a flex point and which cuts J at three points. Then it is
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b,
q ‘Fr
q VO
O -t
Py Py
Fig. 32 Fig. 33 Fig. 34.1 Fig. 34.2

not difficult to construct the lines L; = {l; = 0}, j = 1,2, as in Figure 33. Adding the
conic E = {I*> = elyl»}, |e| < 1, we obtain Figure 32.

Combining Lemma 1.1 and Bezout’s theorem for auxiliary lines, it is easy to exclude
all the arrangements except Figure 32, perturbations of Figures 4.1-4.8, and also Figures
34.1 and 34.2. To exclude the two latter cases, we shall use Murasugi-Tristram inequality
as it was done in the proof of Propositions 2.3 and 2.4. The arrangement of CUEUL; UL,
with respect to the pencil of lines through a point inside the oval of the cubic has the form
X3x3(x5x4x2)x2(xFx3x4) for Figure 34.1 and x3D5C3x3x3(x3x4X3)x2(xFx5x4)
for Figure 34.2 (see [4], [6], or [7] for the description of the encoding; the subwords in
parentheses correspond to the points p; and ¢). The rest of the proof is as in [4] or
[7]. O

Proposition 3.2. Let C3 be a non-singular M -cubic and Cy a quartic which has two
singular points of the types Ay and As. Suppose that Cy almost mazimally intersects the
odd branch Js of C3 so that it has a mazimal tangency at As and an almost mazimal
tangency at Ay. Then the arrangement of Cs U Cy on RP? is either as in Figures 35.1-
35.8, or it is obtained from Figures 8.1-8.8 by a modification depicted in Figure 36.
Moreover, all these arrangements are realisable.

.’ p ) o A

Ay
FiGc. 35.1 FiG. 35.2 FiG. 35.3 Fic. 35.4 FiG. 35.5

O N e

~)
Fic. 35.6 Fig. 35.7 Fig. 35.8 Fig. 36

Proof. Apply the hyperbolism h, , 1, to the arrangements from Lemma 3.1, where p
is an intersection point of Lo and C' which is different from ¢ (let us denote the third
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intersection point by p’). In the case when the complement of C'UE U L; U L contains a
curvilinear triangle adjacent to the segment [p'ps], we obviously obtain the perturbations
of the curves in Figures 8.1-8.8.

In the other cases, the correspondence between the figures is following (prime denotes
a perturbation) 4.1' — 35.1-2; 4.2" — 8.2'; 4.3' — 8.3'; 4.4' — 35.3; 4.5' — 35.4;
4.6' — 35.5; 4.7 — 35.6; 4.8’ — 35.7; 32 —» 35.8. O

3.2. Almost maximal arrangements of a smooth M-cubic and a quartic with
three points A,. (Cp. Section 1.3.)

Lemma 3.3. Let p1, p2, ps be three points on the odd branch J of a non-singular M -
cubic C. Let us denote the lines (pap3), (p3p1), (p1p2) by L1, Lo, L3 respectively. Let
E be a conic touching L1, Lo, L at points q1, g2, qs respectively. Suppose that J does
not pass through q; and meets E at siz points two of which are g2, q3. Then (up to a
renumbering of p1, p2, ps) one of the following possibilities for the arrangement of C
with respect to E, L1, Lo, L3 takes place: (a) it is as in Figures 37.1-87.4; (b) it is
obtained from Figure 9.1 by perturbing the cubic near one of the points q1, q2, q3; (¢) it
is obtained from Figure 9.2 by shifting the cubic to the right near qi; (d) it is obtained
from an arrangement corresponding to Cases (a)—(c) applying (maybe, successively) the
modification depicted in Figure 38. Moreover, the arrangements corresponding to Cases
(a)-(c) are realisable.

Remark. We did not study the question of the realisability in Case (d).

Fic. 37.1 FiGg. 37.2 Fia. 37.3 Fig. 37.4

%A.L
¢ ¢
C Li A2
Mlﬁ
Fic. 38 Fic. 39.2 Fic. 40

Proof. Using Bezout’s theorem for an auxiliary line and Polotovskii’s classification [10]
of mutual arrangements of a cubic and a conic, it is not difficult to check that all the
other arrangement are impossible except, maybe, the one which is obtained from Figure
9.2 by shifting the cubic to the left near ¢;. The latter arrangement can be excluded
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in the same way as in the proof of Lemma 1.6. Let us show that the arrangements in
Figures 37.1-37.4 are realisable. Let L; = {z; = 0}, j = 1,2,3, and let E = {e = 0}
where e = Y527 — 237,z

The arrangement in Figure 37.1. C' = {fwx3 + 6x3(zr1 — x3) = 0} where f = xaw3 —
exy (w1 — $22 —23) and 0 K 6 K £ K 1.

The arrangement in Figure 37.2. C' = {(I; + 6x3)f = na3ls} where f = xow3 +ex1l2,
lo =z —x2 — x3, {1 = 0} is a tangent to the conic {f = 0} passing through p;, and
In| < |0] € e < 1.

The arrangement in Figure 37.3. C = {x3(x3 —x1) (1 —ex2) = dxa(x3+21) (22 —21)}
where 0] € e < 1.

The arrangement in Figure 87.4. C = {x3lils = ex125(x1 + 22 — x3)} where |e] € 1
and [y =0, [ = 0 are the equations of the dashed lines in Figure 39.

Finally, let us show that the cubic in Figure 9.2 can be shifted to the right near ¢ .
Indeed, replace the cubic by a small perturbation of the union of the lines (p1q}), (p2q2),
and (p3qs) where ¢ €]qi,p2[. O

Proposition 3.4. Let C5 be a non-singular M -cubic and let Cy be a quartic which has
three singular points of the type As. Suppose that Cy almost maximally intersects the
odd branch Js of C3. Then the arrangement of C3 U Cy on RP? is either as in Figures
41.1-41.5, or it is obtained from Figure 11.1 by a modification depicted in Figure 40.
Moreover, all these arrangements are realisable.

A S o

Fic. 41.1 Fic. 41.2 Fic. 41.3 Fic. 41.4 Fic. 41.5

Proof. Apply the quadratic transformation (z : y : z) — (zy : yz : zz) to the curves from
Lemma 3.3. We choose he coordinates so that the lines Ly, Lo, L3 are the coordinate axes.
Then Figures 37.1-37.4 are transformed into Figure 41.1-41.4 respectively; a perturbation
of Figure 9.2 (see Case (c) in Lemma 3.3) is transformed into Figure 41.5. It remains to
note that the modification in Figure 38 does not change the isotopy type of the curve
CsUCy. O

3.3. Almost maximal arrangements of a cuspidal cubic and a two-components
quartic with a point A,. (Cp. Section 1.4.)

Lemma 3.5. Let C be a non-singular M -cubic, E a conic, and L1, Lo two lines. Suppose
that E meets the odd branch J of C' at 6 points. Let us denote one of these points by
p1- Let po be a point on J but not on E. Suppose that Ly is tangent to E at p; and
is tangent to J at q. Suppose also that Lo is tangent to C' at ps, passes through q, and
cuts E at two real points. Then either the arrangement of C UE U Ly U Ly on RP? is
obtained from Figure 32 by the rotation of Ly clockwise around q till the first tangency
with J, or it is obtained from Figures 15.1-15.18 by a perturbation of the conic near ps.
Moreover, all these arrangements are realisable.
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Proof. Combining Lemma 1.1 and Bezout’s theorem for auxiliary lines, it is not difficult
to exclude all the arrangements except those which are listed in Lemma 3.5 and those
which would give Figures 34.1-34.2. by the rotation of Lo around ¢. The unrealisability
of the two latter cases is already proved in Lemma 3.1.

Proposition 3.6. Let C5 be a cuspidal cubic and Cy a two-component quartic which has
a singular point of the type Ay. Suppose that the singular branch of Cy almost maximally
intersects C's so that it has a mazimal tangency at Ay and an almost mazimal tangency
at Ay. Then either the arrangement of C3UCy on RP? is as in Figures 42.1-42.16, or it
is obtained from Figures 19.1-19.183 by a modification depicted in Figure 36. Moreover,
all these arrangements are realisable.

42.1 42.2 42.3 42.4 42.5 42.6

o=
b
5
<29
o
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42.7 42.8 42.9 42.10 42.11

A

Ay

42.12 42.13 42.14 42.15 42.16

Proof. Apply the hyperbolism h, 4 1, to the curves from Lemma 3.5 where p is one of
the intersection points of Ly with E (let us denote the other one by p’). In the case
when the complement of C' U E'U Ly U Ls contains o curvilinear triangle adjacent to the
segment [p'po], we evidently obtain the perturbations of the curve in Figures 19.1-19.13.

In the other cases, the correspondence between the figures is following (prime denotes
a perturbation) 15.1" —42.1-2; 15.2" —42.3-4; 15.3' —42.5-6; 15.4" —42.7; 15.5" —19.5';
15.6" —19.6’; 15.7" —42.8; 15.8' —+42.9; 15.9" —42.10; 15.10" —42.11; 15.11' —42.12-13;
15.12" —42.14; 15.13" —42.15; 32 — 42.16. O

3.4. A cuspidal cubic and a two-component quartic with two points A4s: a
non-maximal tangency at the cusp of the cubic. (Cp. Section 1.5.)
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Lemma 3.7. Let C -be a non-singular M -cubic and Ly, Lo, L3 lines. Let us denote p; =
LoNLs, po = L3N Ly, p3 = L1 N Ly, and let q1,q=2,q3 be points on Ly, Lo, L3 respectively
which differ from p1,p2,p3. Let E be the conic passing through p1,qs, q3 and touching Ly
at q1. Suppose that E meets the odd branch J of C at 6 points including g2, qs. Suppose
also that J passes through p=, ps, does not pass through q1, and is tangent to Lo, L3 at g2,
q3. Then (up to swapping 2 and 3) either the arrangement of CUEUL; UL,UL3 on RP?
is as in Figures 43.1-43.3, or it is obtained from Figures 20.1-20.3 by a perturbation of
the cubic near q1. Moreover, all these arrangements are realisable.

Fic. 43.1 Fic. 43.2 Fic. 43.3

Proof. Using Polotovskii’s classification [10] of mutual arrangements of a conic and a
cubic and Bezout’s theorem applied to an auxiliary line, it is easy to check that all
arrangements are impossible except those which are listed in this lemma and those which
are depicted in Figure 44.1 and in Figure 44.2. To exclude the two latter cases, we shall
apply the Murasugi-Tristram inequality as we did it in the proofs of Propositions 2.3,
2.4 and Lemma, 3.1. The arrangement of C U EU L; U Ly U L3 with respect to the pencil
of lines through a point inside the oval of the cubic has the form

(X5X6X5)(X2x6X5)X7(X3)D3(XaX3X2)CaXgXa(X5XeX5)Xe(XE5x6x5) [f.44.1],
)

2
(X5X6X5)(XEx6X5)(X3)D3(XaXzX2)(X3X4X3)XqCaxX5xq(X5x4x3) [f.44.2].

the subwords in the parentheses correspond to the points p1, ¢s, ¢1, p3, P2, 3 in this order.
The rest of the proof is as in [4] or [7].

Now let us show that the arrangements in Figures 43.1-43.3 are realisable.

The arrangement in Figure 43.1. Let us fix affine coordinates x,y and set C' = {y* =
z(z + 1)(z +2)} and p1 = (20,0), 2o > 0. Let Lq, L3 be tangents to J passing through
p1- Let us define go, g3, p2, p3, L1 according to the conditions of the lemma. Let ¢
be the intersection point of L; and {y = 0}. Then the hyperbola E passing through
P1,q2,qs and touching Ly at ¢; is arranged in the required way.

The arrangement in Figure 43.2. One can check that the points p; = (3:6:4), ps =
(36:75:64), p3 = (0:0:1), 1 = (25:12:108), g2 = (1:2:1), g5 = (2:5:8), the lines Ly =
{12y = 25z}, Ly = {y = 22}, L3 = {16y = 28x + 3z}, the cubic C' = {y?z = z(z + 1)?}
and the conic E = {123322% — 9336y + 1584y — 112122 + 564yz — 322 = 0} are arranged
in the required way (the cubic C has an ordinary double point with non-real tangents at
(—1:0:1); a perturbation of this point provides an oval).

The arrangement in Figure 43.3. Let us fix C, Ly, Lo, and L3 as in Figure 43.3. Then,
if we choose a point ¢; on the segment [paps] sufficiently close to ps, then the conic E,
passing through p1, g2, ¢3 and and touching L, at ¢; is arranged in the required way. O



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 21

Proposition 3.8. Let C3 be a cuspidal cubic and Cy a two-component quartic which
has two singular points of the type As. Suppose that the singular branch of Cy almost
mazimally intersects the curve Cs so that it has a mazimal tangency at the both cusps of
Cy and an almost maximal tangency at the cusp of Cs. Then either the arrangement of
C3UCy on RP? is as in Figure 45.1-45.2, or it is obtained from Figure 22.1-22.3 by a
modification depicted in Figure 40. Moreover, all these arrangements are realisable.

Fia. 44.1 FiG. 44.2 Fiag. 45.1 FiG. 45.2

Proof. Apply the quadratic transformation (z : y : z) — (zy : yz : zz) to the curves from
Lemma 3.7. The coordinates are chosen so that the lines Ly, Lo, L3 are the coordinate
axes. Then Figure 43.3 is transformed into Figure 22.2 modified as in Figure 40. O

3.5. A cuspidal cubic and a two-component quartic with two points A,: a
non-maximal tangency at one of the cusps of the quartic.

(Cp. Section 1.5, 3.4.)

Lemma 3.9. Let C' be a non-singular M-cubic and Ly, Ly, L3 lines. Let us denote
p1 = LaN L3, po = L3N Ly, p3 = L1 N Ly, and let q1,q2,q3 be points on Ly, Ly, L3
respectively which differ from pi,ps,ps3. Let E be the conic passing through pi,q2,qs and
touching Ly at q,. Suppose that E meets the odd branch J of C at 6 points including qy, qo.
Suppose also that J passes through ps, ps, is tangent to Ly at g2, and is tangent to L3 at
a point different from py, p2, q3. Then either the arrangement of CUEU Ly ULy U L3 on
RP? is as in Figure 46.1-46.4, or it is obtained from Figure 20.1-20.8 by a perturbation
of the cubic near q3 or qa. Moreover, all these arrangements are realisable, except maybe
Figures 46.3-46.4.

Fic. 46.1 Fic. 46.2 Fic. 46.3 Fic. 46.4

Proof. Using Polotovskii’s classification [10] of mutual arrangements of a conic and a
cubic and Bezout’s theorem applied to an auxiliary line, it is easy to check that all
arrangements are impossible except those which are listed in this lemma and six more
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arrangements to exclude which we shall apply the Murasugi-Tristram inequality as we
did it in the proofs of Propositions 2.3, 2.4, Lemma 3.1, and 3.7. The arrangements of
CUEUL; ULy U L3 with respect to the pencil of lines through a point inside the oval
of the cubic have the form

(x5x6X5)Xa(X2) X3 x5(xExgx5)(X2x5%6)(XaX5X4);

X5 Xa(XaxXgXa)Xa(X2x2X3)X2(xT)(x5x6X5) (X3 x3%4)D5(XaxX3X2)Ca;
XoX3Xa)X4(XEXoX3)X5(X5X6X5) (X3 X5X4)X4XaX4D3(X2X3X2)Ca;
XX 4 X3)(X2X9X3)X5(X3x3x4)(Xgx5%4)(X])X3(X2X3X2);

(
( )
(x5%6x5)Xa(X2) (X2 X3X0)(XEx3x4) x5 (XEX6X5)XED4(X3X4%X3)Cy;
( )X a(X3)(XaX3X2) (X3 Xx3X4)(XEXeX5)X5X5D5(X3X4X3)Cy.

X5 X6 X5

The subwords in the parentheses correspond to the points p1, ps, ps3, q1, g2, and the tan-
gency point of Lz and C' (not necessarily in this order). The rest of the proof is as in [4]
or [7].

Now, let us show that the arrangements in Figures 46.1-46.2 are realisable.

The arrangement in Figure 46.1. Let us consider the conics E, F' and the lines L,
Lo, Lj, arranged as in Figure 47.1 (py = EN Ly N Ls; po = Ly N Ls; ps = Ly N Lo;
¢2 = ENF N Ly; E touches Ly at ¢1; F touches L; at ¢; for j = 1,2). Let us set
C = {lif + ¢€lslals}, where || €« 1, F = {f =0}, L; = {l; = 0}, and L3 = (q:1¢2),
Ly = (g23)-

The arrangement in Figure 46.2. See Figure 47.2. O

Proposition 3.10. Let C3 be a cuspidal cubic and Cy a two-component quartic which
has two singular points of the types Ay. Suppose that the singular branch of Cy almost
mazimally intersects C's so that it has a mazimal tangency at the cusp of C3 and at one
of the cusps of Cy, and it has a non-mazimal tangency at the other cusp of Cy. Then
either the arrangement of Cs U Cy on RP? is as in Figures 48.1-48.2, or it is obtained
from Figures 22.1-22.8 by a modification depicted in Figure 40. Moreover, all these
arrangements are realisable,.

Fia. 47.1 FiG. 47.2 FiG. 48.1 FiG. 48.2

Proof. Apply the quadratic transformation (z : y : z) — (zy : yz : zz) to the curves from
Lemma 3.9. The coordinates are chosen so that the lines L, Lo, L3 are the coordinate
axes. Then Figure s46.3-46.4 are transformed into Figures 22.1-22.2 modified as in
Figure 40. O
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§4. OTHER CONSTRUCTIONS
4.1. A singular quartic, a conic, and a line.

Proposition 4.1. (a). There exist a quartic with a singular point Ag arranged with
respect to a line L and a conic C as in Figure /9.

(b). There exist a quartic with singular points Ay and Ay arranged with respect to a
line and a conic as in Figure 50.

A
) SEN p

As

Fia. 49 Fia. 50 FiG. 51

Proof. (a). fc,p transforms the quartic into a circle and it transforms L and C' into two
tangents.
(b). hpq,r transforms Figure 51 into Figure 50. O

4.2. M-cubic obtained by a perturbation of a simple and a double line, and
an M-quartic. Let O4 be an oval of an M-quartic Cy. Suppose that each of lines L1 =
{ly = 0}, Ly = {l» = 0} meets O4 at four points. Up to isotopy, all such arrangements
are listed in Figures 52.1-52.11 (this easily follows from Polotovskii’s classification [9,
10] of mutual arrangements of a quartic and a conic).

The first construction (see Figure 53). Let us fix a point p € L; not on Cy. Let
{l3 = 0} and {l4 = 0} cutting Ly near p. Set Cy = {co = 0} where co = l1ly + €l3ly
and |e| < 1, and let C3 = {caly + 013} where |§| < |¢|- According to a choice of the
parameter £, we obtain two a priori different arrangements of Cy and Cj.

Fic. 53

The second construction (see Figure 54). Among the connected components of RP?\
(C4 U Ly U L), let us choose a digon D bounded by an arc of O, and a segment of L.
It is easy to check that in all the cases, one can choose another intersection point of Oy
and L, so that a rotation of Ly around this point makes D to degenerate into a tangency
point (let us denote it by p) and all other intersections remain real.
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Fic. 52.3 Fic. 52.4
5 OOQ 6C)©©

(a

3

e
Fic. 52.9 Fic. 52.10 Fic. 52.11

Let {lp = 0} a line cutting L; at p. Let Co = {ca = 0} where ¢y = I3l + €l2 and
le] < 1, and let C% = {caly + 613} where || < |e|. According to choices of the signs of
¢ and J, we obtain four a priori different arrangements of Cy and Cj. The curve C§ has
a singularity of the type A, (ordinary cusp) at p and it maximally intersects O4. Let us
perturb this singularity as in the right hand side of Figure 26. Let us denote the obtained
M-cubic by C5. One can apply this modification in two different ways because of the
reflection with respect to O4. We shall always choose that way when all the four new
intersections of O4 and J3 lye on J3 in the same order as on Oy (the other way reduces
to the first construction).

4.3. One more construction. Let us consider a conic C' and three lines Lo, L1, Lo
(L; = {l; = 0}) arranged with respect to the coordinate axes z = 0, y = 0, z = 0
as in Figure 55.1. Then for |§| < |¢| < 1, the conic E = {I3 + elils + §I? = 0} is
arranged as it is depicted by a dashed line in Figure 55.1. Applying the transformation
(x :y:2)— (yz : zz : xy), we obtain Figure 55.2 which provides (by successive
perturbations of singularities) Figure 55.3 and Figure 55.4.
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Fic. 55.1 FiGc. 55.2 Fic. 55.3 Fic. 55.4

§5. THE LIST OF ALL THE CONSTRUCTED ARRANGEMENTS OF AN M-CUBIC AND AN
M-QUARTIC WITH MAXIMALLY INTERSECTING AN OVAL AND THE ODD BRANCH

In this section, we present the list of all the mutual arrangements of an M-cubic
and an M-quartic with maximally intersecting an oval and the odd branch which are
constructed in Sections 4.2—4.3, and those which are obtained by perturbing singular
curves constructed in §§1-3 and in Section 4.1. This list includes all the arrangements
constructed by other methods in the papers [11], [2], [3] (note, that the arrangements
no. 5, 10, and 11 in the paper [3] are depicted erroneously).

5.1. Applied perturbations. In the case of the arrangements in Figures 27.1-27.33,
we apply the perturbations depicted in Figure 31.

In the case of a maximal tangency of a smooth branch with a branch having an
irreducible double point, we apply (successively) the arrangements depicted in Figure 26
and Figure 56.1 (see details in [7]).

In the case of the arrangements in Figures 49 and 50 we apply the perturbations
depicted in Figure 26 and Figure 56.1 followed by the perturbation in Figure 56.2.

In the case of a non-maximal tangency of a smooth branch with a branch having the
singularity A4, we apply the perturbations depicted in Figure 56.3.

/ZT%%{% %:?; %2’4‘975—

FiG. 56.1 FiG. 56.2 Fic. 56.3
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5.2. Encoding of mutual arrangements of the intersecting branches. To denote
the isotopy type of a mutual arrangement of intersecting branches J; and Oy (the odd
branch of the cubic and an oval of the quartic respectively) we use the encoding proposed
by Polotovskii. Namely, let ['o, be a pseudo-line (i.e. a simple closed curve in RP? which
is homologically nontrivial), disjoint from O4 and cutting J3 at a minimal possible number
of points (in all the considered cases, this number is equal to 1 or 3). We shall call the
points of [', N J3 passages through the infinity.

Let us number the points of O, NJ3 by digits* 1,...,9, a, b, ¢ in their order along Oy so
that the point 1 is an endpoint of a connected component of J3 \ (04 N J3) crossing I,
but the point 2 is not. We shall encode the arrangement of O, U J; on RP? by the word
composed by digits 1,...,c in their order along J3. Among all the words encoding the
same isotopy type (if there are no symmetries, then the number of such words is twice
the number of passages through the infinity), we shall always choose the word which is
minimal in the lexicographic order. For the reader’s convenience, we shall denote the
passages through the infinity by “/”.

First we list the arrangements which have one passage through the infinity and then
those which have three passages. The both lists are ordered lexicographically (ignoring
“/”). The arrangements with isotopic J3 U4 are ordered arbitrarily. The points 1,...,¢
are not indicated in the pictures but we always assume that they are located clockwise
along Oy, the point 1 being the leftmost. In the case of one passage through the infinity,
we do not depict the free ovals “at the infinity” (i.e. in the connected component of the
complement of J3 U O4 whose closure is non-orientable).

5.3. Encoding of the constructions. Under each arrangement, we refer to its con-
struction(s). This is either a reference to the figure with the perturbed curve, or a
reference to the paper where the curve is constructed,” or one of the expressions 2+3,
244, ¥ whose meaning is as follows.

2+3. (see [11]). Cy = {c = f} where {ca = 0} is a conic cutting J; at six points.

2+4. The cubic (5 is obtained as a small perturbation of Cs U L where C5 is a conic
meeting Oy at eight points, and L is the line chosen as it was indicated in [11]. These
constructions were done by G.M. Polotovskii.

z¥ where z = 1,...,11, y = 1,2,.... The first construction from Section 4.2 where
the point denoted in Figure 52.z by the number y is chosen as the point p. For example,
22 denotes the construction depicted in Figure 53.

¥ where x =1,...,11, y = a,b,.... The second construction from Section 4.2 where
the digon denoted in Figure 52.x by the letter y is chosen as the digon D. For example,
8¢ denotes the construction depicted in Figure 54.

4In the computer programming, the characters a,b, ¢, d, e, f usually denote the hexadecimal digits
10,...,15.
5[3;n] Figure 5.n  [3].
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5.4. The list.
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§6. SOME RESTRICTIONS

6.1. The case of nested free ovals. Recall that when speaking of a mutual arrange-
ment of two curves, an oval of one of the curves is called free if it does not meet the other
curve.

Proposition 6.1. Suppose that the odd branch of an M -cubic meets an oval of an M -
quartic at 12 points so that at least one free oval of one of the curves is contained inside
a free oval of the other curve. Then the arrangements which are not listed in Section 5
are impossible.

Proof. We shall apply the method proposed in [6; §3.3]. Let us consider the pencil
of lines through a point inside the innermost of the nested free ovals. Then the ar-
rangement of the union of the curves with respect to this pencil of lines has the form
X%l ><225 X324 05,05, Cq X3, where iq,...,i5 € {3,4} and ji,J2 € {2,3,4,5} (a descrip-
tion of the encoding can be found in [4], [6], or [7]). Computing the Alexander polynomial
of the corresponding braid in each of the 2° - 42 = 512 cases, we obtain a contradiction
with the generalised Fox-Milnor theorem in all the cases not listed in Section 5. See

details (including a computer program for computation of Alexander polynomial) in [6].
6.2. Oval of the cubic is outside the oval of the quartic but ”not at infinity”.

Proposition 6.2. Suppose that the odd branch of an M -cubic C3 meets the oval of an
M -quartic Cy at 12 points. Suppose also that there exists a connected component D of
RP2\ (J3UCy) whose closure is non-orientable. If the oval O3 of C3 is outside the ovals
of the quartic and O3 ¢ D, then the arrangement of C3 U Cy is one of those listed in §5.

Proof. We shall use the method from [4]. The arrangement of C3 U Cy with respect to
the pencil of lines centered inside O3 has the form

2 2 2 2
X3 Xy oo X5 X3D205,05,05; CaX3 X, ... X}, X3,

where a + b =4, i1,...,04,k1,..., ks € {2,3}, j41,72,J3 € {2,3,5}. We shall consider
all the 5-2* .33 = 2160 cases (by symmetry, the number of cases can be reduced). For
each choice of (a;i1,-..,%4; J1,j2,73), we compute the braid corresponding to the pencil
of lines centered inside Oz. The exponent sum of each of these braids is equal to 5. In
all the cases not corresponding to the arrangements listed in Section 5, either Murasugi-
Tristram inequality for the usual signature is not satisfied, or the Alexander polynomial
is not identically zero.

6.3. Algebraic unrealisability of the flexible curve in Figure 13.

Definition 6.3. Let n be a positive integer and let R(X,Z) = Z3+b,(X)Z2+by(X)Z +
bs(X) where a,(X) is a polynomial in X of degree kn with real coefficients. Let us say
that an interval I = [X1, X2] is an alternating interval for the polynomial R, if the
following conditions hold:

(1) each of the polynomials R(Xy,Z), R(X2, Z) has one simple root and one double
root;

(2) the polynomial F'(Xy, Z) has exactly one real root when X; < Xy < Xo;

(3) the double root is greater than the simple root for one of the polynomials R(X, Z),
R(X5,Z), and the simple root is greater than the double root for the other poly-
nomial.
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Definition 6.4. Let n be a positive integer and let F(X,Y) = Y* + a;(X)Y? +
az(X)Y? + az(X)Y + a4(X) where ay(X) is a polynomial in X of degree kn with real
coefficients. Let us say that an interval I = [X;, X3] is an alternating interval for the
polynomial F, if the following conditions hold:
(1) each of the polynomials F(X;,Y), F(X5,Y) has one double root and two simple
real roots;
(2) the polynomial F'(Xy,Y") has exactly two real roots when X; < Xo < Xo;
(3) the double root is between the simple roots for one of the polynomials F'(X;,Y),
F(X,,Y) and the contrary for the other polynomial.

Lemma 6.5. Let R(Z) = Z3 + by Z + bz be a polynomial with real coefficients which has
a simple root Z = Zy and a double root Z = Zs. Then if Z1 < Zy then bs > 0, and if
Zy < Zq then bz < 0.

Proof. We have R(Z) = (Z — Z1)(Z — Z2)?. Then b3 = R(0) = —Z,Z3, i.e. signbz =
—sign Z;. It remains to note that Z; +27Z, = 0, because the coefficient of Z2 vanishes O

Lemma 6.6. Let R(X,Z) be as in Definition 6.3. Then it cannot have more than n
alternating intervals.

Proof. Performing if necessary the substitution Z' = Z — b;(X), we may assume that
by = 0. Let D(X) = 4a3 + 27a2 be the discriminant of R with respect to Z. Let
[X1, X2] be an alternating interval for R. Then the conditions (1)—(3) of Definition 6.3
and Lemma 6.5 imply that

(4) D(X1) = D(X3) = 05

(5) D(X)>0for X1 < X < Xy;

(6) signbs(X;) = —signbs(Xs).
The condition (6) implies that there exists Xo € [X1, X2] such that b3(Xp) = 0. Then,
by (5) we have 4b2(Xo)® = D(Xp) — 27b3(Xo)? = D(Xp) > 0, hence, by(Xo) > 0.
Moreover, it follows from (4) that for j = 1,2 we have 4 b2(X;)* = D(X;) —27b3(X;)? =
—27b3(X;)? < 0, hence b2(X;) < 0. Thus, the interval [X;, X3] contains at least two
roots of by (X): one between X; and Xy, and another between Xy and X». It remains to
recall that degb2(X) =2n. O

Lemma 6.7. Let F(X,Y) be as in Definition 6.4. Then it cannot have more than 2n
alternating intervals.

Proof. Performing if necessary the substitution Y/ =Y — a;(X), we may assume that
a; = 0. Let R(X,Y") be the cubic resolvent of F(X,Y) with respect to Y. Let us recall
its definition. For any fixed value of X, let us denote the roots of F(X,Y) by Y7,...,Y}
and let us set

Zy=N -Y2)(Y3-Yy), Zp=(Y1-Y3)(Yo—VYy), Zz=(¥1—Yy)(Yo—Y3),
R=(Z-2\)(Z - 2:)(Z — Z3) = Z° + b 2% + bo Z + bs.

The coefficients by, bz, b3 are symmetric polynomials in Y7,...,Yy, hence, they can be
expressed polynomially via as,as,aq (see e.g. [12] for explicite formulas). Then by, is a
polynomial in X of degree 2kn. Hence, by Lemma 6.6, R has at most 2n alternating
intervals.

It remains to check that an interval is alternating for R(X,Z) if and only if it is
alternating for F(X,Y). This can be easily proved using the definition of Z;, Zs, Z3,
and the relation Y; +---+Y, =0. O
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Proposition 6.8. A real algebraic M -cubic C3 cannot be arranged with respect to a real
algebraic M -quartic Cy as in Figure 13.

Proof. Suppose that C3 is arranged with respect to Oy as in Figure 13. Let us introduce
coordinates (z : y : z) on RP? so that the point (0 : 1 : 0) is inside the oval of the
cubic. Let X = z/z, Y = y/z be the affine coordinates in the chart z # 0. The fact
that the X-coordinate is monotone on all branches of the cubic implies that (under a
suitable choice of the line at infinity) the curve C4 is arranged as in Figure 57 with
respect to some six vertical lines. Hence, there must be three alternating intervals for
the polynomial F(X,Y’) which defines the curve Cy. However, by Lemma 6.7, F'(X,Y")
cannot have more than two alternating intervals. O

Fic. 57
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