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Abstract. We construct 241 algebraic and 4 pseudoholomorphic arrangements of curves mentioned

in the title. All the constructions consist in perturbing singular curves. Almost in all cases, we prove

that all the curves with the given set of singularity types are considered under the condition that they

could provide arrangements mentioned in the title. We prove that a certain mutual arrangement of a

cubic and a quartic is realizable pseudoholomorphically but unrealizable algebraically. The proof of the

algebraic unrealizability is based on the cubic resolvent. In a forthcoming joint paper we prove that our

list of pseudoholomorphic arrangements is complete.

This is an extended version of my paper with the same title which was published in
Russian in Bulletin (Vestnik) of Nizhni Novgorod State Univ., 2002. In this paper, we
construct 241 algebraic and 4 pseudoholomorphic arrangements of curves mentioned in
the title (see §6). They include the arrangements which were constructed in [2, 3, 11].
With respect to the 2002 version, 6 algebraic and 3 pseudoholomorphic arrangements
are added, one algebraic arrangement is corrected, and 2 erroneous ones are removed.
All the constructions consist in perturbing singular curves. Almost in all cases, we
prove that all the curves with the given set of singularity types are considered under the
condition that they could provide arrangements mentioned in the title. In particular,
we give in §1 a complete classification (up to isotopy) of arrangements of a quartic and
a cubic with a maximal intersection of an oval and the odd branch (see Definition 0.2)
which have irreducible double points with the total Milnor number equal to six. In §2,
we give an analogous classification in two cases when the total Milnor number is four:
symmetric arrangements with two A2 (Sect. 2.1) and quartic with A4 (Sect. 2.2). In §3,
we give a classification of arrangements of a quartic and a cubic with an almost maximal
intersection of an oval and the odd branch (see Definition 0.2) which have irreducible
double points with the total Milnor number equal to six, with two exceptions: (1) the
quartic has a singularity A6 and (2) the quartic has A4 and either the quartic or the
cubic has A2 so that the tangency at A2 is not maximal. It is known a priori that these
cases can add nothing to the list in §6 because the corresponding smoothings can be
obtained as smoothings of curves from Sect. 2.2.

In Sections 1.3 and 7.3, we show (see. Remark 1.8 and Proposition 6.8) that a certain
mutual arrangement of a cubic and a quartic is pseudoholomorphically realizable but

1Corrected and completed version (November, 2011) of the English translation of the paper published

in Bulletin (vestnik) of Nizhni Novgorod State University (Lobaczewski University) ”Mathematical mod-
eling and optimal control”, issue 2(24), 2002.
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2 S.YU. OREVKOV

algebraically unrealizable. Other examples of algebraically unrealizable mutual arrange-
ments of two transversally intersecting non-degenerate real pseudoholomorphic curves
have been known (see [1], [8]), however, Figure 13 is the first known to the author
example of this kind such that both the construction and the proof of the algebraic non-
realizability are obtained by simple arguments and do not require messy calculations.

Three more pseudoholomorphic arrangements are constructed in Section 5.

I am grateful to G.M. Polotovskii for numerous discussions. This paper was written
because of his insistence. He also found several errors in the published version of the
paper.

Definitions and notation. Recall that a curve has a singularity of the type An at a
point p if it is defined by the equation y2 = ±xn+1 in some local analytic coordinates
centered at p. Such points are called double. A double point An is reducible when n is odd
and irreducible when n is even. The integer n is its Milnor number. A branch of a real
algebraic curve is by definition the image of a connected component of its normalization
(non-singular model). A branch of a curve in RP 2 is called even (odd) if it realizes a
zero (non-zero) homology class in H1(RP 2;Z/2Z).

Definition 0.1. Suppose that one curve is non-singular at a point p and another curve
has a singularity of the type An at this point. We shall say that the curves have a
maximal (resp. almost maximal) tangency at p if the local multiplicity of the intersection
is n+ 1 (resp. n).

Note, that if one curve is non-singular at a point p and another curve has a singularity
of the type An at p then the intersection is maximal if and only if one of the curves curve
is arranged from the both sides of the other one when restricted to any neighbourhood
of p.

Definition 0.2. Let B1 and B2 be branches of algebraic curves C1 and C2 of degrees d1
and d2 respectively. Suppose that each of the curves C1, C2 has only irreducible double
points as singularities. We shall say that the branches B1 and B2 are in maximal mutual
arrangement if the following conditions hold:

(1) All the singularities of C1, C2 are located on the branches B1, B2;
(2) C1 ∩ C2 = B1 ∩B2.
(3) C1 and C2 have no common singular points.
(4) The curves have a maximal intersection at each singular point.

Let us say that the branches B1 and B2 are in almost maximal mutual arrangement if
the condition (4) is replaced by

(4′) the intersection is almost maximal at one singular point and maximal at all the
other singular points of each curve.

Notation 0.3. Let C be a curve in RP 2 and p a point on C which is not a flex point.
Let us choose coordinates (x : y : z) so that p = (0 : 1 : 0) and the line z = 0 is the
tangent to C at p. Let us choose a parameter a so that the conic yz = ax2 intersects C
at p with multiplicity ≥ 3. Let us denote by fC,p the birational quadratic transformation
(x : y : z) 7→ (xz : yz − ax2 : z2) (the mapping (X, Y ) 7→ (X, Y − aX2) in the affine
coordinates X = x/z, Y = y/z).
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Notation 0.4. Let p and q be points in RP 2 and let L be a line passing through q and
not passing through p. Let us choose the coordinates (x : y : z) so that p = (0 : 1 : 0), q =
(0 : 0 : 1), L = {y = 0}. Let us denote by hp,q,L the birational quadratic transformation
(x : y : z) 7→ (x2 : xy : yz). In the literature on the topology of real algebraic curves,
this transformation is usually called the hyperbolism (O.Ya. Viro introduced this term
referring to Newton).

§1. Maximal arrangements of a cubic and a quartic which have

irreducible double points whose sum of Milnor numbers is equal to six

1.1. A smooth M-cubic and a quartic with a point A6.

Lemma 1.1. Let C be a non-singular M -cubic, E a conic, and L a line. Suppose that
E meets the odd branch J of C at 6 points and let us denote one of these points by p.
Suppose that L is tangent to E at p and also L is tangent to J at some point q. Then the
arrangement of C∪E∪L on RP 2 is one of those depicted in Figures 1.1–1.5. Moreover,
all these arrangements are realizable.
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q

p

q

q

p p

q

Fig. 1.1 Fig. 1.2 Fig. 1.3 Fig. 1.4 Fig. 1.5

Proof. Figure 1.1. Let x, y be affine coordinates. Let E = {x2 + y2 = 1}, L = {5y =
12x+13}, C = {(x2+y2−1)y+αf(y) = 0}, p = (−12/13, 5/13), and q = (xq, yq) where

f(y) = (y − 5

13
)(2y − 1)(4y − 3), α = 91

144
− 13

96

√
19 ≈ 0.0416769, xq = −(65 +

√
19)/72

and yq = (13−
√
19)/30.

To realize the arrangements in Figures 1.2 – 1.5, let us fix C, L = {l = 0}, p, and q in
the required way, and let us construct E.

Figure 1.2. Let L1 = {l1 = 0} a line cutting J at three points which lie on the same
arc pq. Let us set E = {l1l + εf} where {f = 0} is the conic which is tangent to L at p
and which has no other real intersections with L1. Choose |ε| ≪ 1.

Figure 1.3 – 1.5. Let {l1 = 0} be the line passing through p and cutting J at two more
points. Set E = {l21 + εl2l} where {l2 = 0} is a line close to L and |ε| ≪ 1.

The fact that other arrangements are impossible easily follows from the classification
due to Polotovskii [10; §3.1] of mutual arrangements of a conic and a cubic and from
Bezout’s theorem applied to an auxiliary line. �

Proposition 1.2. Let C3 be a non-singular M -cubic and C4 a quartic which has a
singularity of the type A6 at p. Suppose that C4 maximally meets the odd branch J of
C3. Then the arrangement of C3 ∪ C4 on RP 2 is one of those depicted in Figures 2.1 –
2.5. Moreover, all these arrangements are realizable.

Proof. Apply fC,q to the arrangements from 1.1. �
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Fig. 2.1 Fig. 2.2 Fig. 2.3 Fig. 2.4 Fig. 2.5

1.2. A smooth M-cubic and a quartic with points A4 and A2.

Lemma 1.3. Let p1, p2, q be points on the odd branch J of a non-singular M -cubic C.
Let us denote the lines (p1q), (p2q), and (p1p2) by L1, L2, and L3 respectively. Suppose
that C is tangent to L1 at q. Then C is arranged with respect to L1, L2, L3 as in Figures
3.1– 3.5. Moreover, all these arrangements are realizable.

Proof. The fact that there is no other arrangements is evident. To realize the arrange-
ment in Figure 3.3, let us choose p1 ∈ J , construct a tangent L1 = (p1q) to J , and let
L3 be a line close to L1.

To realize the arrangement in Figures 3.2 and 3.5, let us choose p1 ∈ J and construct
two line L1 and L′

3 passing through p which are tangent to J . Let L3 be a line close to
L′

3.
To realize the remaining two arrangements, let us denote one of the inflection points of

J by a. Let us construct successively the tangents to J as follows: ab (b is the tangency
point), bc ( is the tangency point), and cd (d is the tangency point on the arc ab). Let
e be a point on the arc ad and f a point on the arc bd close to b. Then we obtain the
arrangement in Figure 3.1 for p1 = b, p2 = e, q = c and the arrangement in Figure 3.4
for p1 = c, p2 = f , q = d. �
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Lemma 1.4. Let C be a non-singular M -cubic, E a conic, and L1, L2 two lines. Suppose
that E meets the odd branch J of C at 6 points. Let us denote two of these points by p1
and p2. Suppose that Lj is tangent to E at pj , j = 1, 2, and L1 is tangent to J at a point
q. Suppose that L2 also passes through q. Then the arrangement of C ∪ E ∪ L1 ∪ L2 on
RP 2 is one of those depicted in Figures 4.1–4.8. Moreover, all these arrangements are
realizable.

Proof. All possible mutual arrangements of C, E and L1 are described in Lemma 1.1. It
is impossible to add the line L2 to Figure 1.1 and the only way to add L2 to Figure 1.2
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(resp. 1.3; 1.4; 1.5) is as in Figure 4.1 (resp. 4.2–4.4; 4.5–4.6; 4.7–4.8). Let us show that
all these arrangements are realizable.

The arrangements in Figures 4.3–4.7. In Lemma 1.3, let us set E = {l23 + εl1l2 = 0}
where Lj = {lj = 0} and |ε| ≪ 1.

The arrangements in Figure 4.1. Let anM -cubic C and two lines L and L1 be arranged
as in Figure 5. Consider the pencil of cubics {E(t)}, passing through p1, r1, and r2 and
touching L1 at p1. Let I be the segment of this pencil between L∪L1 and (p1r1)∪ (p1r2)
passing through the position depicted in Figure 5. Let L2(t) be the tangent to E(t)
passing through q and let p2(t) be the point of the tangency. When t runs through I, the
point p2(t) moves continuously from L ∩ L1 to r1. Hence, it crosses C at some moment.
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The arrangements in Figure 4.2. Let us fix affine coordinates x, y and set p2 = (0, 0),
L0 = {y = x}. Let C(t), t > 0 be the M -cubic defined by y2 = x(x+ t)(x+ 2t) and let
J(t) be its odd branch. Let p1(t) be the intersection point of C(t) and L0 which has the
maximal x-coordinate. Let L1(t) be the tangent to J(t) passing through p1(t) and let
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q(t) be the point of the tangency. Let us denote the line through p2(t) and q(t) by L2(t).
The cubic C(t) tends to C0 = {y2 = x3} as t → 0. Let us choose the equations lj(t) = 0
of the lines Lj(t), j = 0, 1, 2, so that lj(t) → lj(0) as t → 0. Let E(t) = {l20 + εl1l2 = 0}.
Let us fix ε such that the conic E(0) is arranged as in Figure 6. Then for 0 < t ≪ |ε|
the curves C(t), E(t), and Lj(t) are arranged as it is claimed.

The arrangements in Figure 4.8. Let us fix affine coordinates x, y and set q = (1, 1),
p1 = (1/4,−1/8), p2 = (1/25, 1/125). These points lye on the curve C0 = {y2 = x3}.
Let Lj = {lj = 0} where l1 = 1− 3x+ 2y, l2 = 1− 31x+ 30y, l3 = 1− 19x− 30y, and
let E0 = {f0 = 0} where f0 = l23 − l1l2 = −4x − 92y + 270x2 + 988xy + 840y2. Then
E = {f0 − εl1l2 = 0} for 0 < ε ≪ 1 is arranged as in Figure 7. We define C as a small
(with respect to |ε|) M -smoothing of C0. �

Proposition 1.5. Let C3 be a smooth M -cubic and C4 a quartic which has two singular
points of the types A4 and A2. Suppose that C4 maximally intersects the odd branch J3
of C3. Then the arrangement of C3 ∪ C4 on RP 2 is one of those depicted in Figures
8.1–8.8. Moreover, all these arrangements are realizable.
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A4

A2 A2
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A4

Fig. 8.1 Fig. 8.2 Fig. 8.3 Fig. 8.4
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A4

A2 A4 A2 A4
A4

A2

Fig. 8.5 Fig. 8.6 Fig. 8.7 Fig. 8.8

Proof. We apply the hyperbolism hp,q,L1
to the curves from Lemma 1.4 where p is the

intersection point of L2 and C which is different from p2. �

1.3. A smooth M-cubic and a quartic with three points A2.

Lemma 1.6. Let p1, p2, p3 be points lying on the odd branch J of a smooth M -cubic
C. Let us denote the lines (p2p3), (p3p1), (p1p2) by L1, L2, L3 respectively. Let E be
a conic touching L1, L2, L3 at q1, q2, q3 respectively. Suppose that J meets E at six
points three of which are q1, q2, q3. Then the arrangement of C with respect to E, L1,
L2, L3 is as in Figure 9.1 up to a permutation of p1, p2, p3. Moreover, this arrangement
is algebraically realizable.

Proof. Let us consider two conics E and F and five lines L1, . . . , L4, and L arranged as
in Figure 10. Let l2l3l4 = 0 and lf = 0 be the equations of L2 ∪ L3 ∪ L4 and L ∪ F
respectively. Then, for a suitable choice of the sign of a small parameter ε, the curve
C = {l2l3l4 + εlf = 0} is arranged with respect to L1, L2, L3, and E as in Figure 9.1
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All the arrangements different from Figure 9.1 and Figure 9.2 are impossible. This
fact easily follows from Bezout’s theorem for an auxiliary line and the classification due
to Polotovskii [10] of mutual arrangements of a conic and a cubic. Let us show that the
arrangement in Figure 9.2 is also impossible. Indeed, each of the lines (p1q), where q runs
the segment2 [q1p2], meets J at three points. Hence, the oval O of C cannot intersect
the triangle T1 = [q1p1p2]. Analogously, O cannot intersect the triangles T2 = [q2p2p3]
and T3 = [q3p3p1]. But since the lines (p1q1), (p2q2), and (p3q3) pass through the same
point, the union of T1, T2, and T3 coincides with the triangle [p1p2p3]. �

Proposition 1.7. Let C3 be a smooth M -cubic and C4 a quartic which has three singular
points of the type A2. Suppose that C4 maximally intersects the odd branch J3 of C3.
Then C3 ∪ C4 is arranged on RP 2 as in Figure 11.1, moreover, this arrangement is
realizable.

Proof. Apply the quadratic transform (x1 : x2 : x3) 7→ (x1x2 : x2x3 : x3x1) to the curves
from Lemma 1.6 where Li = {xi = 0}. �

Fig. 11.1 Fig. 11.2 Fig. 12 Fig. 13

Remark 1.8. The tangents at the singular points of a real tricuspidal quartic pass through
the same point (see Figure 12). The unrealizability of Figure 11.2 means that the triple
point in Figure 12 does not admit any M -smoothing preserving all the other singularities.
It is evident that such a smoothing is realizable by real pseudoholomorphic curves (see
a definition in [1,6,8]). After smoothing the other singularities of the quartic in Figure
11.2, one can obtain a pseudoholomorphic realization of the arrangements of an M -cubic
and an M -quartic depicted in Figure 13. Below, in Section 7.3 (Proposition 6.8), we
shall prove that this arrangement is algebraically unrealizable.

2When speaking of segments and triangles, we mean the affine chart corresponding to Figure 9.2.
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This construction provides a new example of an algebraically unrealizable arrangement
on RP 2 of two smooth real pseudoholomorphic curves which meet each other transver-
sally. Such examples can be found in [1], [8]. However, Figure 13 is the first known to the
author example of this kind such that both the construction and the proof of algebraic
unrealizability are elementary and do not require messy computations.

1.4. A cuspidal cubic and a two-component quartic with a point A4.

Lemma 1.9. Let p1, p2, q be points on the odd branch J of a smooth M -cubic C. Let us
denote the lines (p1q), (p2q), (p1p2) by L1, L2, L3 respectively. Suppose that C touches
L1 at q and touches L2 at p2 Then C is arranged with respect to L1, L2, L3 either as in
Figure 14.1 or as in Figure 14.2. Moreover, the both arrangements are realizable.
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p
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q

Fig. 14.1 Fig. 14.2

Proof. The fact that there are no other arrangements is evident. Let us show that Figures
14.1 and 14.2 are realizable. Let a be the flex point of a smooth M -cubic, L the tangent
at a, and L′ the line passing through a and touching the odd branch at some other point.
Let q be a point close to a. Choosing L2 as a tangent close to L (resp. to L′), we obtain
Figure 14.1 (resp. Figure 14.2). �

Lemma 1.10. Let C be a smooth M -cubic, E a conic, and L1, L2 two lines. Suppose
that E meets the odd branch J of C at 6 points and let us denote two of them by p1 and
p2. Suppose that L1 touches E at p1 and touches J at q. Suppose also that L2 touches
C at p2 and passes through q. Then the arrangement of C ∪E ∪L1 ∪L2 on RP 2 is one
of those depicted in Figures 15.1–15.13. Moreover, all these arrangements are realizable.
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Proof. All possible mutual arrangements of C, E, and L1 are described in Lemma 1.1.
Figure 1.1 (resp. 1.2; 1.3; 1.4; 1.5) can provide only Figure 15.1 (resp. 15.2–15.3; 15.4–
15.6; 15.7–15.10; 15.11–15.13). Let us show that all these arrangements are realizable.

The arrangements in Figures 15.5–15.10, 15.12, 15.13. Let us set in Lemma 1.9:
E = {l23 + εl1(l3 + δl2) = 0}, where Lj = {lj = 0} and |δ| ≪ |ε| ≪ 1.
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The arrangements in Figures 15.1 and 15.4 Let us consider two conics arranged with
respect to the coordinate axes as in Figure 16.1 (C is obtained as a perturbation of the
doubled line ab). Applying the quadratic transformation (x : y : z) 7→ (xy : yz : zx), we
obtain Figure 16.2 whose perturbations yield Figures 15.1 and 15.4.
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Fig. 16.1 Fig. 16.2 Fig. 17

The arrangements in Figures 15.2 and 15.11. Let us consider an M -cubic C arranged
with respect to three lines L, L1, and L2 as in Figure 17. Let E be the conic passing
through the points p1, p2, a, b which is tangent to the line L1 at p1. Let p0 be the flex
point on the arc qp2 and let L0 be the tangent at this point. Let us fix C and L and let
us move continuously the point q along the arc qp0, changing continuously L1, L2, p1,
p2, and E preserving the incidences and the tangencies. Then E → L0 ∪ L as q → p0,
hence, after a certain moment, we obtain the arrangement in Figure 15.2. When q passes
through the flex point, we get Figure 15.11 (when this happens, the order of the points
along J becomes: a, b, c, p1, p2, q).

The arrangement in Figure 15.3. Let us fix a non-singular M -cubic C and a point q
on its odd branch J . Let L1 be the tangent at q and let p1 be the point of its intersection
with J . Let L2 be the line through q touching at p2 that arc qp1 which contains two flex
points. Let a be a point on that arc qp2 which does not contain p1. Let us denote the
lines (p1p2), (p1a), and (p2a) by L3, L4, and L5 respectively. Set E = {l1l5 + εl3l4 = 0}
where Lj = {lj = 0} and |ε| ≪ 1. �

Proposition 1.11. Let C3 be a cuspidal cubic and let C4 be a two-component quartic
which has a singular point of the type A4. Suppose that the odd branch of C4 intersects
maximally C3. Then the arrangement of C3 ∪ C4 on RP 2 is one of those depicted in
Figures 19.1–19.13. Moreover, all these arrangements are realizable.

Proof. Apply the hyperbolism hp,q,L1
to the curves from Lemma 1.10, where p is the

intersection point of L2 and E which is different from p2. �
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1.5. A cuspidal cubic and a two-component quartic with two points A2.

Lemma 1.12. Let C be a non-singular M -cubic and L1, L2, L3 lines. Let us denote
p1 = L2 ∩ L3, p2 = L3 ∩ L1, p3 = L1 ∩ L2. Let q1, q2, q3 be points on L1, L2, L3

respectively which are different from p1, p2, p3. Let E be the conic through p1, q2, q3 which
is tangent to L1 at q1. Suppose that E meets the odd branch J of C at 6 points including
q1, q2, q3. Suppose also that J passes through p2, p3 and touches L2, L3 at q2, q3. Then
the arrangement of C ∪ E ∪ L1 ∪ L2 ∪ L3 on RP 2 is one of those depicted in Figures
20.1–20.3 up to swapping the indices 2 and 3. Moreover, all these arrangements are
realizable.
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Fig. 20.1 Fig. 20.2 Fig. 20.3

Proof. The fact that other arrangements are impossible, easily follows from Polotovskii’s
classification [10] of mutual arrangements of a conic and a cubic and from Bezout’s
theorem applied to an auxiliary line. Let us show that the arrangements in Figures
20.1–20.3 are realizable.

The arrangements in Figures 20.1 and 20.2. Let us fix affine coordinates x, y. Then
the points p1 = (10/7, 2/7), p2 = (1,−1), p3 = (1/25, 1/125), q1 = (1/16,−1/64),
q2 = (0, 0), q3 = (4, 8), the cubic C0 = {y2 = x3}, the conic E = {8y2−18xy+3x2+y =
0}, and the lines L1 = (p2p3) = {21x + 20y = 1}, L2 = (p3p1) = {x − 5y = 0},
L3 = (p1p2) = {3x − y = −4} are arranged as in Figure 21. Perturbing the singular
point of C0, we obtain Figures 20.1 and 20.2. The fact that the required perturbations
exist, can be checked directly as follows. Namely, let us fix C0, L3, q2, q3, p2 as above.
Let us construct p3, q1, p1 according to Figure 21, and let E be the conic through p1, p2, q2
which is tangent to L3 at q3. Then one has E = {t(5t− 1)x− (3t2 − t− 1)y + · · · = 0}.
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Hence, for t = 1/5 we obtain Figure 21, for 0 < t < 1/5 (resp. for 1/5 < t < 1/4) a
perturbation of C0 yields Figure 20.1 (resp. Figure 20.2).

The arrangement in Figure 20.3. Let L1, L2, L3, p1, p2, p3, q2, and q3 be arranged as
it is required. Let us fix an affine chart corresponding to Figure 20.3. Let F = {f = 0}
be the ellipse which is tangent to L2, L3 at q2, q3 and which cuts the segment [p2p3] at
two points Let us choose q1 ∈ [p2p3] so that L1 ∩ F ⊂ [q1p2] and let us trace E in the
required way. At last, we set C = {l1f + εl2l3l4 = 0} where |ε| ≪ 1 and {l4 = 0} is the
line through q1 which does not cut F . �

Proposition 1.13. Let C3 be a cuspidal cubic and let C4 be a two-component quartic
one of whose branches has two singular points of the type A2. Suppose that the singular
branch of C4 maximally intersects C3. Then the arrangement of C3 ∪C4 on RP 2 is one
of those depicted in Figures 22.1–22.3. Moreover, all these arrangements are realizable.

q1

p3

p2

q3

p1
2q

A2

A2

A2

A2

A2

A2
A2

A2

A2

Fig. 21 Fig. 22.1 Fig. 22.2 Fig. 22.3

Proof. Apply the quadratic transformation (x : y : z) 7→ (xy : yz : zx) to the curves from
Lemma 1.12 (the coordinates are chosen so that the lines L1, L2, L3 are the coordinate
axes). �

§2. Some maximal arrangements of a quartic and a cubic which have

irreducible double points whose sum of Milnor numbers is equal to four

2.1. Symmetric arrangements of an M-cubic and a two-component quartic

with two points A2. In this section, we shall apply the method of construction used
for the curve A2|---|A2 in the paper [7].

Lemma 2.1. There exist mutual arrangements of a line L and three conics C, E, and
H depicted in Figures 23.1–23.4.

LC

H

E

C

C

H
E

L

C

L

H
E

E

H C

L

Fig. 23.1 Fig. 23.2 Fig. 23.3 Fig. 23.4
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Proof. The first two arrangements are constructed in the same way as in the paper [7]:
In the case 23.1, one should change the sign of δ; in the case 23.2, one should swap C
and H. The constructions of 23.3 and 23.4 are evident. �

Proposition 2.2. Let C3 be an M -cubic and let C4 be a two-component quartic which
has two singular points of the type A2 on the same branch and which maximally intersects
C3. Suppose that the both curves are symmetric with respect to the same axis L. Then
the arrangement of C3 ∪ C4 ∪ L on RP 2 is one of those depicted in Figures 24.1–24.4.
Moreover, all these arrangements are realizable.

A2

A2

A2

A2

A2

A2

A2

A2

Fig. 24.1 Fig. 24.2 Fig. 24.3 Fig. 24.4

Proof. Apply the construction from [7] to Figures 23.1–23.4. �

2.2. A smooth M-cubic and a two-component quartic with a point A4.

Proposition 2.3. Let C3 be a non-singular M -cubic and let C4 be a two-component
quartic which has a singular point of the type A4. Suppose that the singular branch of
C4 maximally intersects the odd branch J3 of C3. Then the arrangement of C3 ∪ C4

on RP 2 is either one of those depicted in Figures 25.1 and 25.2, or it is one of the 31
arrangements obtained from Figures 2.1–2.5, 8.1–8.8, 19.1–19.13 after modifications in
Figure 26.3 All these 2 + 31 = 33 arrangements are realizable.

A4 A4

Fig. 25.1 Fig. 25.2

A6 A4 A2

Fig. 26

3Each of these modifications can be applied in two ways because of the reflection with respect to the

non-singular branch.
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Proposition 2.4. Let C and C′ be two non-singular M -cubics whose odd branches J
and J ′ have a simple tangency at a point p and transversally cut each other at seven other
points. Suppose that p is a flex point of C′ and let L be the tangent to C′ at p. Then
the arrangement of C ∪ C′ ∪ L on RP 2 is one of those depicted in Figures 27.1–27.33.
Moreover, all these arrangements are realizable. In Figures 27.1–27.33, we depict RP 2

as a disc whose opposite boundary points are identified; the line L corresponds to the
boundary of the disc.

27.1 27.2 27.3 27.4 27.5 27.6

27.7 27.8 27.9 27.10 27.11 27.12

27.13 27.14 27.15 27.16 27.17 27.18 27.19

27.20 27.21 27.22 27.23 27.24 27.25 27.26

27.27 27.28 27.29 27.30 27.31 27.32 27.33



14 S.YU. OREVKOV

Proof of Propositions 2.3 and 2.4. The transformation fC,p defines a one-to-one corre-
spondence between arrangements from Propositions 2.4 and 2.3. Figure 27.1 and Figure
27.2 are transformed into Figure 25.1 and Figure 25.2. Thus, it is sufficient to realize only
Figure 27.1 and 27.2. To this end, we fix C′ and L satisfying the required conditions and
set C = {f + εl1l2l3 = 0}, |ε| ≪ 1 where f = 0 is the equation of C′ and Li = {li = 0}
(i = 1, 2, 3) are lines each of which meets J ′ at three points and the lines L1 and L2 pass
through p.

Let us prove that no other arrangement is possible under the hypothesis of Proposition
2.4. Polotovskii [9] classified all mutual arrangements of two M -cubics with maximally
intersecting odd branches. Cutting RP 2 along the odd branch of the first cubic, we
obtain a disc. The second cubic and the oval of the first one are arranged on this disc.
All such arrangements are presented in Figures 28.1–28.13 (swapping of the cubics defines
the correspondence 1 ↔ 10, 2 ↔ 11, 3 ↔ 3, 4 ↔ 4, 5 ↔ 5, 6 ↔ 12, 7 ↔ 13, 8 ↔ 8,
9 ↔ 9).

28.1 28.2 28.3 28.4 28.5 28.6 28.7

28.8 28.9 28.10 28.11 28.12 28.13

All the arrangements which could satisfy the hypothesis of Proposition 2.4, must be
obtained from Figure 28.1–28.13 by degeneration of one of the digons into a simple
tangency followed by adding a line L which has a 3rd order tangency with the boundary
of the disc and which does not cut the ovals. Let us do it in all the possible ways so that
L cuts the odd branch of each of the cubics at three points (counting the multiplicities).
Immediately excluding the arrangements which contradicts Bezout’s theorem for the
auxiliary line passing through the tangency point and the oval of one of the cubics, we
obtain Figures 27.1–27.33, and also Figures 29.1–29.13. The figures correspond to each
other as follows:

28.1 → 27.1 28.8 → 27.20–27.24, 29.7–29.9

28.2 → 27.3–27.6, 29.1 28.9 → 27.25

28.3 → 27.7, 27.8, 29.2 28.10 → 27.2

28.4 → 27.9, 29.3 28.11 → 27.27–27.30, 29.10, 29.11

28.5 → 27.10–27.12, 29.4 28.12 → 27.26, 29.12, 29.13

28.6 → 27.13–27.15, 29.5 28.13 → 27.31–27.33, 29.6

28.7 → 27.16–27.19
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p

q

p q p

p

p

p

q

29.1 29.2 29.3 29.4 29.5 29.6

p

p

q

q p

p

q

p

p

p

p

q

29.7 29.8 29.9 29.10 29.11 29.12 29.13

The arrangement in Figures 29.3, 29.5–29.9, 29.13 contradicts Bezout’s theorem for
the auxiliary line pq.

The remaining 6 arrangements can be excluded using the method proposed in [4].
Let us choose a point q inside the oval of C′. Let Lq be the pencil of lines through q.
The arrangements 29.1, 29.2, 29.4, and 29.10–29.12 determine the arrangements of C,
C′, L with respect to Lq (Lq-arrangements) depicted in Figures 30.1–30.6 respectively
(the lines of Lq correspond to the vertical lines in these figures). The braids determined
by these Lq-arrangements coincide with the braids determined by curves obtained by
any of the modifications in Figures 31. None of these braids satisfies Murasugi-Tristram
inequality (see details in [4]). �

p
p p

p

Fig. 30.1 Fig. 30.2 Fig. 30.3 Fig. 30.4

p p

Fig. 30.5 Fig. 30.6 Fig. 31



16 S.YU. OREVKOV

§3. Almost maximal arrangements of a quartic and a cubic which have

irreducible double points with the total Milnor number equal to six

3.1. A smooth M-cubic and a quartic with points A4 and A2. (cf. §1.2.)
Lemma 3.1. Let C be a non-singular M -cubic, E a conic, L1, L2 tangents to E at p1,
p2 respectively, and let q = L1 ∩ L2. Suppose that the odd branch J of C meets E at six
points including p1. Suppose also that J is tangent to L1 at q and cuts L2 at two more
points which are different from p2. Then the arrangements of C ∪ E ∪ L1 ∪ L2 on RP 2

is either as in Figure 32, or it is obtained from Figure 4.1–4.8 by a perturbation of the
cubic near the point p2. Moreover, all these arrangements are realizable.

p
1 p

1

q r

q

p
1

q

p
1

p
2

p
2p

2

q

Fig. 32 Fig. 33 Fig. 34.1 Fig. 34.2

Proof. Let J be the odd branch of an M -cubic C and let L = (p1r) = {l = 0} be a line
which is close to the tangent at a flex point and which cuts J at three points. Then it is
not difficult to construct the lines Lj = {lj = 0}, j = 1, 2, as in Figure 33. Adding the
conic E = {l2 = εl1l2}, |ε| ≪ 1, we obtain Figure 32.

Combining Lemma 1.1 and Bezout’s theorem for auxiliary lines, it is easy to exclude
all the arrangements except Figure 32, perturbations of Figures 4.1–4.8, and also Figures
34.1 and 34.2. To exclude the two latter cases, we shall use Murasugi-Tristram inequality
as it was done in the proof of Propositions 2.3 and 2.4. The arrangement of C∪E∪L1∪L2

with respect to the pencil of lines through a point inside the oval of the cubic has the form
×2

2×5
5(×5×4×2

5)×2
3(×2

4×3×4) for Figure 34.1 and ×2
4⊃5⊂3×3

2×2
3(×3×4×2

3)×2
5(×2

4×5×4)
for Figure 34.2 (see [4], [6], or [7] for the description of the encoding; the subwords in
parentheses correspond to the points p1 and q). The rest of the proof is as in [4] or
[7]. �

Proposition 3.2. Let C3 be a non-singular M -cubic and C4 a quartic which has two
singular points of the types A4 and A2. Suppose that C4 almost maximally intersects the
odd branch J3 of C3 so that it has a maximal tangency at A2 and an almost maximal
tangency at A4. Then the arrangement of C3 ∪C4 on RP 2 is either as in Figures 35.1–
35.8, or it is obtained from Figures 8.1–8.8 by a modification depicted in Figure 36.
Moreover, all these arrangements are realizable.

Proof. Apply the hyperbolism hp,q,L1
to the arrangements from Lemma 3.1, where p

is an intersection point of L2 and C which is different from q (let us denote the third
intersection point by p′). In the case when the complement of C ∪E ∪L1∪L2 contains a
curvilinear triangle adjacent to the segment [p′p2], we obviously obtain the perturbations
of the curves in Figures 8.1–8.8.
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A2

A4

A2

A4 A4 A2

A2

A4

A4

A2

Fig. 35.1 Fig. 35.2 Fig. 35.3 Fig. 35.4 Fig. 35.5

A4 A2 A4
A2

A4 A4A2

A4

Fig. 35.6 Fig. 35.7 Fig. 35.8 Fig. 36

In the other cases, the correspondence between the figures is following (prime denotes
a perturbation) 4.1′ → 35.1–2; 4.2′ → 8.2′; 4.3′ → 8.3′; 4.4′ → 35.3; 4.5′ → 35.4;
4.6′ → 35.5; 4.7′ → 35.6; 4.8′ → 35.7; 32 → 35.8. �

3.2. Almost maximal arrangements of a smooth M-cubic and a quartic with

three points A2. (Cf. Section 1.3.)

Lemma 3.3. Let p1, p2, p3 be three points on the odd branch J of a non-singular M -
cubic C. Let us denote the lines (p2p3), (p3p1), (p1p2) by L1, L2, L3 respectively. Let
E be a conic touching L1, L2, L3 at points q1, q2, q3 respectively. Suppose that J does
not pass through q1 and meets E at six points two of which are q2, q3. Then (up to a
renumbering of p1, p2, p3) one of the following possibilities for the arrangement of C
with respect to E, L1, L2, L3 takes place: (a) it is as in Figures 37.1–37.4; (b) it is
obtained from Figure 9.1 by perturbing the cubic near one of the points q1, q2, q3; (c) it
is obtained from Figure 9.2 by shifting the cubic to the right near q1; (d) it is obtained
from an arrangement corresponding to Cases (a)–(c) applying (maybe, successively) the
modification depicted in Figure 38. Moreover, the arrangements corresponding to Cases
(a)–(c) are realizable.

Remark. We did not study the question of the realizability in Case (d).

p
2p

p

q

q

q

1

1

3

3

2
q2

p
3 q1

q3

p
2

p
1

p
2

q3

p
3

q1

1
p

q2

p
1

q3

3
p q1

p
2

q2

Fig. 37.1 Fig. 37.2 Fig. 37.3 Fig. 37.4

Proof. Using Bezout’s theorem for an auxiliary line and Polotovskii’s classification [10]
of mutual arrangements of a cubic and a conic, it is not difficult to check that all the
other arrangement are impossible except, maybe, the one which is obtained from Figure
9.2 by shifting the cubic to the left near q1. The latter arrangement can be excluded
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Lj

LiC

Lj

LiC

q1

p
2

q3

q2

p
1

p
3

A2

A2

Fig. 38 Fig. 39.2 Fig. 40

in the same way as in the proof of Lemma 1.6. Let us show that the arrangements in
Figures 37.1–37.4 are realizable. Let Lj = {xj = 0}, j = 1, 2, 3, and let E = {e = 0}
where e =

∑
x2
j − 2

∑
j<k xjxk.

The arrangement in Figure 37.1. C = {fx3 + δx2
2(x1 − x3) = 0} where f = x2x3 −

εx1(x1 − 1

2
x2 − x3) and 0 ≪ δ ≪ ε ≪ 1.

The arrangement in Figure 37.2. C = {(l1 + δx2)f = ηx2
1l2} where f = x2x3 + εx1l2,

l2 = x1 − x2 − x3, {l1 = 0} is a tangent to the conic {f = 0} passing through p1, and
|η| ≪ |δ| ≪ ε ≪ 1.

The arrangement in Figure 37.3. C = {x3(x3−x1)(x1−εx2) = δx2(x3+x1)(x2−x1)}
where |δ| ≪ ε ≪ 1.

The arrangement in Figure 37.4. C = {x3l1l2 = εx1x2(x1 + x2 − x3)} where |ε| ≪ 1
and l1 = 0, l2 = 0 are the equations of the dashed lines in Figure 39.

Finally, let us show that the cubic in Figure 9.2 can be shifted to the right near q1.
Indeed, replace the cubic by a small perturbation of the union of the lines (p1q

′

1), (p2q2),
and (p3q3) where q′1 ∈]q1, p2[. �

Proposition 3.4. Let C3 be a non-singular M -cubic and let C4 be a quartic which has
three singular points of the type A2. Suppose that C4 almost maximally intersects the
odd branch J3 of C3. Then the arrangement of C3 ∪ C4 on RP 2 is either as in Figures
41.1–41.5, or it is obtained from Figure 11.1 by a modification depicted in Figure 40.
Moreover, all these arrangements are realizable.

Fig. 41.1 Fig. 41.2 Fig. 41.3 Fig. 41.4 Fig. 41.5

Proof. Apply the quadratic transformation (x : y : z) 7→ (xy : yz : zx) to the curves from
Lemma 3.3. We choose he coordinates so that the lines L1, L2, L3 are the coordinate axes.
Then Figures 37.1–37.4 are transformed into Figure 41.1–41.4 respectively; a perturbation
of Figure 9.2 (see Case (c) in Lemma 3.3) is transformed into Figure 41.5. It remains to
note that the modification in Figure 38 does not change the isotopy type of the curve
C3 ∪ C4. �



CONSTRUCTIONS OF ARRANGEMENTS OF AN M-QUARTIC AND AN M-CUBIC 19

3.3. Almost maximal arrangements of a cuspidal cubic and a two-components

quartic with a point A4. (Cf. Section 1.4.)

Lemma 3.5. Let C be a non-singular M -cubic, E a conic, and L1, L2 two lines. Suppose
that E meets the odd branch J of C at 6 points. Let us denote one of these points by
p1. Let p2 be a point on J but not on E. Suppose that L1 is tangent to E at p1 and
is tangent to J at q. Suppose also that L2 is tangent to C at p2, passes through q, and
cuts E at two real points. Then either the arrangement of C ∪ E ∪ L1 ∪ L2 on RP 2 is
obtained from Figure 32 by the rotation of L2 clockwise around q till the first tangency
with J , or it is obtained from Figures 15.1–15.13 by a perturbation of the conic near p2.
Moreover, all these arrangements are realizable.

Proof. Combining Lemma 1.1 and Bezout’s theorem for auxiliary lines, it is not difficult
to exclude all the arrangements except those which are listed in Lemma 3.5 and those
which would give Figures 34.1–34.2. by the rotation of L2 around q. The unrealizability
of the two latter cases is already proved in Lemma 3.1.

Proposition 3.6. Let C3 be a cuspidal cubic and C4 a two-component quartic which has
a singular point of the type A4. Suppose that the singular branch of C4 almost maximally
intersects C3 so that it has a maximal tangency at A2 and an almost maximal tangency
at A4. Then either the arrangement of C3∪C4 on RP 2 is as in Figures 42.1–42.16, or it
is obtained from Figures 19.1–19.13 by a modification depicted in Figure 36. Moreover,
all these arrangements are realizable.

A4

2A

A4

2A 2A

A4

2A

A4 2A

A4
2AA4

42.1 42.2 42.3 42.4 42.5 42.6

A4

2A
A4

2A2A

A4

2A
A4

A4

2A

42.7 42.8 42.9 42.10 42.11

A4

2A

2A

A4 2A

A4

2A

A4 A4

2A

42.12 42.13 42.14 42.15 42.16
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Proof. Apply the hyperbolism hp,q,L1
to the curves from Lemma 3.5 where p is one of

the intersection points of L2 with E (let us denote the other one by p′). In the case
when the complement of C ∪E ∪ L1 ∪ L2 contains o curvilinear triangle adjacent to the
segment [p′p2], we evidently obtain the perturbations of the curve in Figures 19.1–19.13.

In the other cases, the correspondence between the figures is following (prime denotes
a perturbation) 15.1′ →42.1–2; 15.2′ →42.3–4; 15.3′ →42.5–6; 15.4′ →42.7; 15.5′ →19.5′;
15.6′ →19.6′; 15.7′ →42.8; 15.8′ →42.9; 15.9′ →42.10; 15.10′ →42.11; 15.11′ →42.12–13;
15.12′ →42.14; 15.13′ →42.15; 32 → 42.16. �

3.4. A cuspidal cubic and a two-component quartic with two points A2: a

non-maximal tangency at the cusp of the cubic. (Cf. Section 1.5.)

Lemma 3.7. Let C -be a non-singular M -cubic and L1, L2, L3 lines. Let us denote p1 =
L2 ∩L3, p2 = L3 ∩L1, p3 = L1 ∩L2, and let q1, q2, q3 be points on L1, L2, L3 respectively
which differ from p1, p2, p3. Let E be the conic passing through p1, q2, q3 and touching L1

at q1. Suppose that E meets the odd branch J of C at 6 points including q2, q3. Suppose
also that J passes through p2, p3, does not pass through q1, and is tangent to L2, L3 at q2,
q3. Then (up to swapping 2 and 3) either the arrangement of C∪E∪L1∪L2∪L3 on RP 2

is as in Figures 43.1–43.3, or it is obtained from Figures 20.1–20.3 by a perturbation of
the cubic near q1. Moreover, all these arrangements are realizable.

p1

q2

q1
p2 p3

q3

p1

q2

q1
p2 p3

q3

p1

q3
q2

q1 p3p2

Fig. 43.1 Fig. 43.2 Fig. 43.3

Proof. Using Polotovskii’s classification [10] of mutual arrangements of a conic and a
cubic and Bezout’s theorem applied to an auxiliary line, it is easy to check that all
arrangements are impossible except those which are listed in this lemma and those which
are depicted in Figure 44.1 and in Figure 44.2. To exclude the two latter cases, we shall
apply the Murasugi-Tristram inequality as we did it in the proofs of Propositions 2.3,
2.4 and Lemma 3.1. The arrangement of C ∪E ∪L1 ∪L2 ∪L3 with respect to the pencil
of lines through a point inside the oval of the cubic has the form

(×5×6×5)(×2
5×6×5)×2

4(×2
2)⊃3(×2×3×2)⊂4×3×4(×5×6×5)×6(×2

5×6×5) [f.44.1],

(×5×6×5)(×2
5×6×5)(×2

2)⊃3(×2×3×2)(×3×4×3)×4⊂4×3
5×4(×2

3×4×3) [f.44.2].

the subwords in the parentheses correspond to the points p1, q2, q1, p3, p2, q3 in this order.
The rest of the proof is as in [4] or [7].

Now let us show that the arrangements in Figures 43.1–43.3 are realizable.
The arrangement in Figure 43.1. Let us fix affine coordinates x, y and set C = {y2 =

x(x+ 1)(x+ 2)} and p1 = (x0, 0), x0 > 0. Let L2, L3 be tangents to J passing through
p1. Let us define q2, q3, p2, p3, L1 according to the conditions of the lemma. Let q1
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be the intersection point of L1 and {y = 0}. Then the hyperbola E passing through
p1, q2, q3 and touching L1 at q1 is arranged in the required way.

The arrangement in Figure 43.2. One can check that the points p1 = (3:6:4), p2 =
(36:75:64), p3 = (0:0:1), q1 = (25:12:108), q2 = (1:2:1), q3 = (2:5:8), the lines L1 =
{12y = 25x}, L2 = {y = 2x}, L3 = {16y = 28x+ 3z}, the cubic C = {y2z = x(x+ 1)2}
and the conic E = {12332x2−9336xy+1584y2−1121xz+564yz−3z2 = 0} are arranged
in the required way (the cubic C has an ordinary double point with non-real tangents at
(−1:0:1); a perturbation of this point provides an oval).

The arrangement in Figure 43.3. Let us fix C, L1, L2, and L3 as in Figure 43.3. Then,
if we choose a point q1 on the segment [p2p3] sufficiently close to p3, then the conic E,
passing through p1, q2, q3 and and touching L1 at q1 is arranged in the required way. �

Proposition 3.8. Let C3 be a cuspidal cubic and C4 a two-component quartic which
has two singular points of the type A2. Suppose that the singular branch of C4 almost
maximally intersects the curve C3 so that it has a maximal tangency at the both cusps of
C4 and an almost maximal tangency at the cusp of C3. Then either the arrangement of
C3 ∪ C4 on RP 2 is as in Figure 45.1–45.2, or it is obtained from Figure 22.1–22.3 by a
modification depicted in Figure 40. Moreover, all these arrangements are realizable.

p1

q3
q2

q1 p3p2

p1

q3
q2

p3
q1p2

A2 A2

A2 A2

A2

A2

Fig. 44.1 Fig. 44.2 Fig. 45.1 Fig. 45.2

Proof. Apply the quadratic transformation (x : y : z) 7→ (xy : yz : zx) to the curves from
Lemma 3.7. The coordinates are chosen so that the lines L1, L2, L3 are the coordinate
axes. Then Figure 43.3 is transformed into Figure 22.2 modified as in Figure 40. �

3.5. A cuspidal cubic and a two-component quartic with two points A2: a

non-maximal tangency at one of the cusps of the quartic.

(Cf. Section 1.5, 3.4.)

Lemma 3.9. Let C be a non-singular M -cubic and L1, L2, L3 lines. Let us denote
p1 = L2 ∩ L3, p2 = L3 ∩ L1, p3 = L1 ∩ L2, and let q1, q2, q3 be points on L1, L2, L3

respectively which differ from p1, p2, p3. Let E be the conic passing through p1, q2, q3 and
touching L1 at q1. Suppose that E meets the odd branch J of C at 6 points including q1, q2.
Suppose also that J passes through p2, p3, is tangent to L2 at q2, and is tangent to L3 at
a point different from p1, p2, q3. Then either the arrangement of C ∪E ∪L1∪L2∪L3 on
RP 2 is as in Figure 46.1–46.4, or it is obtained from Figure 20.1–20.3 by a perturbation
of the cubic near q3 or q2. Moreover, all these arrangements are realizable, except maybe
Figures 46.3–46.4.

Proof. Using Polotovskii’s classification [10] of mutual arrangements of a conic and a
cubic and Bezout’s theorem applied to an auxiliary line, it is easy to check that all
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Fig. 46.1 Fig. 46.2 Fig. 46.3 Fig. 46.4

arrangements are impossible except those which are listed in this lemma and six more
arrangements to exclude which we shall apply the Murasugi-Tristram inequality as we
did it in the proofs of Propositions 2.3, 2.4, Lemma 3.1, and 3.7. The arrangements of
C ∪ E ∪ L1 ∪ L2 ∪ L3 with respect to the pencil of lines through a point inside the oval
of the cubic have the form

(×5×6×5)×4(×2
5)×3

4×5(×2
5×4×5)(×2

6×5×6)(×4×5×4);

×5×4(×2×3×2)×4(×2
3×2×3)×2

3(×2
4)(×5×6×5)(×2

4×3×4)⊃5(×2×3×2)⊂4;

(×2×3×2)×4(×2
3×2×3)×2

4(×5×6×5)(×2
4×5×4)×4×2

3×4⊃3(×2×3×2)⊂3;

(×3×4×3)(×2
3×2×3)×4

3(×2
4×3×4)(×4×5×4)(×2

4)×3(×2×3×2);

(×5×6×5)×4(×2
3)(×2×3×2)(×2

4×3×4)×2
4(×2

5×6×5)×2
5⊃4(×3×4×3)⊂4;

(×5×6×5)×4(×2
3)(×2×3×2)(×2

4×3×4)(×2
5×6×5)×5×3

4⊃5(×3×4×3)⊂4.

The subwords in the parentheses correspond to the points p1, p2, p3, q1, q2, and the tan-
gency point of L3 and C (not necessarily in this order). The rest of the proof is as in [4]
or [7].

Now, let us show that the arrangements in Figures 46.1–46.2 are realizable.
The arrangement in Figure 46.1. Let us consider the conics E, F and the lines L1,

L2, L3, arranged as in Figure 47.1 (p1 = E ∩ L2 ∩ L3; p2 = L1 ∩ L3; p3 = L1 ∩ L2;
q2 = E ∩ F ∩ L2; E touches L1 at q1; F touches Lj at qj for j = 1, 2). Let us set
C = {l1f + εl3l4l5}, where |ε| ≪ 1, F = {f = 0}, Lj = {lj = 0}, and L3 = (q1q2),
L2 = (q2q3).

The arrangement in Figure 46.2. See Figure 47.2. �

Proposition 3.10. Let C3 be a cuspidal cubic and C4 a two-component quartic which
has two singular points of the types A2. Suppose that the singular branch of C4 almost
maximally intersects C3 so that it has a maximal tangency at the cusp of C3 and at one
of the cusps of C4, and it has a non-maximal tangency at the other cusp of C4. Then
either the arrangement of C3 ∪ C4 on RP 2 is as in Figures 48.1–48.2, or it is obtained
from Figures 22.1–22.3 by a modification depicted in Figure 40. Moreover, all these
arrangements are realizable,.

Proof. Apply the quadratic transformation (x : y : z) 7→ (xy : yz : zx) to the curves from
Lemma 3.9. The coordinates are chosen so that the lines L1, L2, L3 are the coordinate
axes. Then Figure s46.3–46.4 are transformed into Figures 22.1–22.2 modified as in
Figure 40. �
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§4. Other constructions

4.1. A singular quartic, a conic, and a line.

Proposition 4.1. (a). There exist a quartic with a singular point A6 arranged with
respect to a line L and a conic C as in Figure 49.

(b). There exist a quartic with singular points A4 and A2 arranged with respect to a
line and a conic as in Figure 50.

A6

A2

A4 q

p

p

1

L

Fig. 49 Fig. 50 Fig. 51

Proof. (a). fC,p transforms the quartic into a circle and it transforms L and C into two
tangents.

(b). hp,q,L transforms Figure 51 into Figure 50. �

4.2. M-cubic obtained by a perturbation of a simple and a double line, and

an M-quartic. Let O4 be an oval of an M -quartic C4. Suppose that each of lines L1 =
{l1 = 0}, L2 = {l2 = 0} meets O4 at four points. Up to isotopy, all such arrangements
are listed in Figures 52.1–52.11 (this easily follows from Polotovskii’s classification [9,
10] of mutual arrangements of a quartic and a conic).

The first construction (see Figure 53). Let us fix a point p ∈ L1 not on C4. Let
{l3 = 0} and {l4 = 0} cutting L1 near p. Set C2 = {c2 = 0} where c2 = l1l2 + εl3l4
and |ε| ≪ 1, and let C3 = {c2l1 + δl32} where |δ| ≪ |ε|. According to a choice of the
parameter ε, we obtain two a priori different arrangements of C4 and C3.

The second construction (see Figure 54.1). Among the connected components ofRP 2\
(C4 ∪ L1 ∪ L2), let us choose a digon D bounded by an arc of O4 and a segment of L1.
It is easy to check that in all the cases, one can choose another intersection point of O4

and L1 so that a rotation of L1 around this point makes D to degenerate into a tangency
point (let us denote it by p) and all other intersections remain real.
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p

Fig. 53

Let {l0 = 0} a line cutting L1 at p. Let C2 = {c2 = 0} where c2 = l1l2 + εl20 and
|ε| ≪ 1, and let C′

3 = {c2l1 + δl30} where |δ| ≪ |ε|. According to choices of the signs of
ε and δ, we obtain four a priori different arrangements of C4 and C′

3. The curve C′

3 has
a singularity of the type A2 (ordinary cusp) at p and it maximally intersects O4. Let us
perturb this singularity as in the right hand side of Figure 26. Let us denote the obtained
M -cubic by C3. One can apply this modification in two different ways because of the
reflection with respect to O4. We shall always choose that way when all the four new
intersections of O4 and J3 lye on J3 in the same order as on O4 (the other way reduces
to the first construction).
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p

p

. . .

. . .

Fig. 54.1

The third construction (see Figure 54.2). Among the connected components of RP 2 \
(C4 ∪ L1 ∪ L2), let us choose a triangle T bounded by an arc of O4 and segments of L1

and L2 which does not contain free ovals of C4. It is easy to check that in all the cases,
one can choose another intersection point of O4 and one of the lines so that a rotation of
the line around the chosen point makes T to degenerate into a triple point (let us denote
it by p) and all other intersections remain real.

Let us choose lines l3 and l4 so that l3 crosses one of the lines l1, l2 (say, l1) at one
of its segments I adjacent to p and l4 passes through p being separated from l1 by l2
and the tangent to C4 at p (see Figure 54.2). There are for choices for l3 and l4 (four
segments adjacent to p). Let E = {l21 + εl3l4}, 0 < |ε| ≪ 1. Move slightly l2 out of p so
that it crosses I and perturb its union with E.

p

Fig. 54.2

4.3. Two more construction. 1). Let us consider a conic C and three lines L0, L1,
L2 (Li = {li = 0}) arranged with respect to the coordinate axes x = 0, y = 0, z = 0
as in Figure 55.1. Then for |δ| ≪ |ε| ≪ 1, the conic E = {l20 + εl1l2 + δl21 = 0} is
arranged as it is depicted by a dashed line in Figure 55.1. Applying the transformation
(x : y : z) 7→ (yz : zx : xy), we obtain Figure 55.2 which provides (by successive
perturbations of singularities) Figure 55.3 and Figure 55.4.

2). Let C3 be arranges with respect to a conic E as in Figure 56.1 where p is a
tangency point. Let p1, . . . , p5 be distinct points on the arc pq of E. Perturbing the
double of E by the lines (pp1), (pp2), (pp3), p4p5) we obtain a cuspidal quartic which
maximally intersects C3 and arranges as in 56.2. It can be perturbed as in 56.3.
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§5. Construction of Pseudoholomorphic arrangements

One pseudoholomorphic arrangement of C3 ∪ C4 is constructed in Section 1.3 (see
Figure 13). It is the only arrangement in Series 40 with 3 passages through infinity in
the list in Section 6. It is proven in Section 7.3 that this arrangement is algebraically
unrealizable. In this section we construct three more pseudoholomorphic arrangements.
We do not know if they are algebraically realizable or not.

Construction of arrangement 65-3. See Figure 57.1 – 57.3.

1L
3C’

1L
3C’

2L

E E

2L’

Figure 57.1 Figure 57.2 Figure 57.3

Construction of arrangements 89-2 and 91-2. The both arrangements are obtained by
a perturbation of smooth M -quartic and a cuspidal cubic which have maximal intersec-
tion (see Figure 58.1 – 58.3). In affine coordinates such that the tangent at the cusp is the
infinite line, Figure 58.1 corresponds to an Figure 58.4 with the cubic A = {y = x3} and
a quartic which has two asymptotically linear branches and one asymptotically quadratic
branch B near infinity.

The braid corresponding to this arrangement is b = bRb∞ where bR is as in [4], i. e.,

bR = σ−1
1 σ−1

2 σ−3
1 τ1,2σ

−1
2 τ2,3σ

−1
1 σ−1

2 σ−5
3 , where τk,k+1 = σk+1σ

−1

k ,
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but b∞ is the 4-braid whose strings are parametrized by t ∈ [0, π] as follows

y1(t), y2(t) = ±x(t), y3(t) = βx(t)2, y4(t) = αx(t)3, x(t) = eit, α > β > 1.

Thus, b∞ = 32112332132232 (here we write just k instead of σk).
The braid b is quasipositive. Indeed, b = a−1σ3a where a = σ2

2σ1σ
2
2 .

A

A

B
B

Figure 58.1 Figure 58.2 Figure 58.3 Figure 58.4

§6. The list of all the constructed arrangements of an M -cubic and an

M -quartic with maximally intersecting an oval and the odd branch

In this section, we present the list of all the mutual arrangements of an M -cubic
and an M -quartic with maximally intersecting an oval and the odd branch which are
constructed in Sections 4.2–4.3, and those which are obtained by perturbing singular
curves constructed in §§1–3 and in Section 4.1. This list includes all the arrangements
constructed by other methods in the papers [11], [2], [3] (note, that the arrangements
no. 5, 10, and 11 in the paper [3] are depicted erroneously).

6.1. Applied perturbations. In the case of the arrangements in Figures 27.1–27.33,
we apply the perturbations depicted in Figure 31.

In the case of a maximal tangency of a smooth branch with a branch having an
irreducible double point, we apply (successively) the arrangements depicted in Figure 26
and Figure 59.1 (see details in [7]).

In the case of the arrangements in Figures 49 and 50 we apply the perturbations
depicted in Figure 26 and Figure 59.1 followed by the perturbation in Figure 59.2.

In the case of a non-maximal tangency of a smooth branch with a branch having the
singularity A4, we apply the perturbations depicted in Figure 59.3.

A2
A4 A2 A4 A2

Fig. 59.1 Fig. 59.2 Fig. 59.3

6.2. Encoding of mutual arrangements of the intersecting branches. To denote
the isotopy type of a mutual arrangement of intersecting branches J3 and O4 (the odd
branch of the cubic and an oval of the quartic respectively) we use the encoding proposed
by Polotovskii. Namely, let Γ∞ be a pseudo-line (i.e. a simple closed curve in RP 2 which
is homologically nontrivial), disjoint from O4 and cutting J3 at a minimal possible number
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of points (in all the considered cases, this number is equal to 1 or 3). We shall call the
points of Γ∞ ∩ J3 passages through the infinity.

Let us number the points of O4 ∩ J3 by digits4 1, . . . , 9, a, b, c in their order along O4

so that the point 1 is an endpoint of a connected component of J3 \ (O4 ∩ J3) crossing
Γ∞, but the point 2 is not. We shall encode an arrangement of O4 ∪ J3 on RP 2 (a
series) by a word composed by digits 1, . . . , c in their order along J3. Among all words
encoding the same isotopy type (if there are no symmetries, then the number of such
words is twice the number of passages through the infinity), we shall always choose the
word which is minimal in the lexicographic order. For the reader’s convenience, we shall
denote the passages through the infinity by “/”.

First we list the arrangements which have one passage through the infinity and then
those which have three passages. The both lists are ordered lexicographically (ignoring
“/”). The arrangements with isotopic J3∪O4 are ordered arbitrarily. The points 1, . . . , c
are not indicated in the pictures but we always assume that they are located clockwise
along O4, the point 1 being the leftmost. In the case of one passage through the infinity,
we do not depict the free ovals “at the infinity” (i.e. in the connected component of the
complement of J3 ∪O4 whose closure is non-orientable).

6.3. Encoding of the constructions. Under each arrangement, we refer to its con-
struction(s). This is either a reference to the figure with the perturbed curve, or a
reference to the paper where the curve is constructed,5 or one of the expressions 2+3,
2+4, xy whose meaning is as follows.

2+3. (see [11]). C4 = {c22 = εf} where {c2 = 0} is a conic cutting J3 at six points.
2+4. The cubic C3 is obtained as a small perturbation of C2 ∪ L where C2 is a conic

meeting O4 at eight points, and L is the line chosen as it was indicated in [11]. These
constructions were done by G.M. Polotovskii.

xy where x = 1, . . . , 11, y = 1, 2, . . . . The first construction from Section 4.2 where
the point denoted in Figure 52.x by the number y is chosen as the point p. For example,
22 refers to the construction depicted in Figure 53.

xy where x = 1, . . . , 11, y = a, b, . . . . The second construction from Section 4.2 where
the digon denoted in Figure 52.x by the letter y is chosen as the digon D. For example,
8c refers to the construction depicted in Figure 54.1.

xt where x = 1, . . . , 10, x 6= 5. The third construction from Section 4.2 where the
gray triangle in Figure 52.x is chosen as T . For example, 3t refers to the construction
depicted in Figure 54.2.

6.4. Corrections and completions to the original version published in 2002.

1). Since the list is complete now, we numbered the series (isotopy types of J3 ∪O4).
We use independent numbering for the arrangements with one passage through infinity
and for those with three passages.

2). The erroneous arrangements 1234/987a/5cb6 and 123c/5ab4/9678 are removed.
3). Free ovals in the three-passage arrangements 23-3 and 60-2 are corrected.
4). The code 12345/b87c/9a is replaced by 123456/9a/7cb8.
5). The one-passage arrangements 51, 52, 67, 69, 84-2, 89-2, 84-2, 91-2 and the

three-passage arrangements 39-2, 40 are added.
6). Figure 35.7 is corrected.

4In the computer programming, a, b, c, d, e, f usually denote the hexadecimal digits 10, . . . , 15.
5[3;n] means Figure 5.n in the paper [3].
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6.5. The list.

1. 123456789abc:

2.1; 19.1 24.1; 25.1; 27.1

[11; 8.c]

25.2; 27.2 2.2; 8.1;

19.2,3; 22.1; 42.2

49; [11; 7.1]

2. 123456789cba:

2.1; 19.1 24.1; 25.1 1c; 25.2 1a; 19.12 2.3; 19.1

8.8; 19.2; 22.1

42.2

8.1; 19.11;

27.8; 22.1; 42.2

3. 12345678ba9c:

2.5; 19.3

4. 1234567abc98:

12; 19.8

[3;3]

14; 19.9

[3;7]

5. 1234567cb89a:

2.1; 19.1 25.1; 27.1; 49 25.2; 27.2 8.5 2.3; 8.4; 19.4

6. 1234567cba98:

2.1; 19.1 2.1; 19.4 8.4 25.1 25.2

1b; 8.5; 19.9 1b; 19.8 50

7. 1234569ab87c:

8.3; 19.5 8.6

8. 123456ba789c:

42; 19.10; [11; 7.2]

9. 123456ba987c:

8.3 4b; 8.6; 19.10 19.5

10. 123458769abc:

2.2; 8.1; 19.2,3

22.1

11. 123458769cba:

4c; 8.1; 19.11

22.1

12. 12345876ba9c:

2.5; 19.3

13. 1234589abc76:

8.2; 19.8 1c9a; 19.6 1a; 42.16

14. 1234589cba76:

1194; 8.2; 19.6,8;

27.21; [11;10.1], [2;2]

15; 42.16; [2;4]

15. 12345a9678bc:

8.2; 19.6; 41.1

16. 12345a9876bc:

8.2; 41.1 19.6
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17. 12345c789ab6:

8.3,5; 19.9; 4a11c; 19.5

18. 12345c987ab6:

45114; 8.3,5;

19.5,9; 27.11

19. 12345c9ab876:

4d; 8.5; 19.9

20. 12345cb6789a:

49

2.1; 19.4 8.4; 24.4

21. 12345cb67a98:

2a; 2.1; 27.3;

19.4

2.3; 8.4; 24.4;

27.29; 19.4

22. 12345cb89a76:

4d; 19.8

23. 12345cba9678:

2.1; 19.4 2.3; 8.4; 19.1 49

24. 123476589cba:

4e; 19.12 8.8; 19.2; 22.1

25. 123478965abc:

10a3t4t; 2.2; 8.1;

19.2,3; 22.2

11.1; 22.3;

35.3; 42.7

26. 123478965cba:

10b1t; 19.12; 27.26 75; 8.8; 11.1;

22.2,3; 19.2; 27.13,20

27. 1234789ab65c:

4a; 2.2; 19.13

8.7; 35.8

28. 1234985cb67a:

41

29. 123498765abc:

2.2; 8.1; 19.2,3

22.2

11.1; 35.3 22.3; 42.7

30. 123498765cba:

19.12 8.8;11.1;19.2;

22.2; 27.27

7a; 22.3; 27.5

31. 1234987ab65c:

3a; 2.2; 19.13 8.7; 35.8

32. 12349ab8567c:

258a2t; 27.22; 35.1

42.4,6; [11; 7.4]

33. 12349ab8765c:

2.2; 19.13; 27.28 2b; 27.4;

8.7; 42.4

8d 42.1

34. 1234ba98567c:

35.1;42.4,6;[11; 7.11]

35. 1234ba98765c:

2.2; 19.13 8.7; 42.4 42.1

36. 1236547abc98:

47; 19.9

37. 1236547cb89a:

8.5

38. 1236549ab87c:

8.6

39. 123654ba789c:

32; 19.10; [11;7.12]

40. 123654ba987c:

3b; 8.6; 19.10

41. 1236789abc54:

27.8
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42. 1236789cba54:

27.15

43. 12367cb8549a:

69862t; [2;1]

44. 123874569cba:

4t; 8.1; 19.11

22.2

2+4; 108119; 11.1; 22.3;

27.23,24; 35.3; 42.7; [3;9]

45. 12387456ba9c:

2.5; 19.3

46. 123876549cba:

8.1; 19.11

22.2

10b11a; 27.3,6

22.3; 42.7

11.1; 27.29,30;

35.3

47. 12387654ba9c:

2.5; 19.3

48. 12389abc7456:

8.8; 11.1;

19.11,12; 22.2

9a10a,c11c

22.3;

49. 12389cba7456:

94105,8114; 8.8; 11.1;

19.11,12; 22.2,3; 27.9; [3;4]

50. 123a9458bc76:

222t; [3;12]

51. 123abc569874:

3t

52. 123abc965478:

4t

53. 123c56789ab4:

8a; 27.8; 42.1

54. 123c5678ba94:

6a8d 42.6

55. 123c76589ab4:

2+4; 83; 27.15

56. 123c7658ba94:

64832t; 27.17;

42.1,6; [3;2]

57. 123c9ab87456:

48; 8.8;

19.11,12; 22.1

58. 123cb4567a98:

2.3; 8.4;

19.1,4

59. 123cb45a9678:

2+3; 23; 2.3; 8.4;

19.4; 24.4; 27.23; 49

60. 123cb478965a:

2+3; 355175; 8.3,5;

19.5; 27.18,24

61. 123cb498765a:

8.3,5; 27.30;

3a5a7a; 19.5; 27.6;

62. 123cb6789a54:

8.2; 27.29,30

41.1

19.6; 27.3,6

63. 123cb67a9854:

8.2; 19.6;

27.23,24; 41.1

64. 123cb874569a:

410119; 8.2;

19.6; 27.20

65. 123cb876549a:

8.2; 27.27 4e11a; 19.6; 27.5 ps.-hol.

66. 123cba567894:

8.3; 27.27 19.5; 27.5

67. 123cba569874:

4t

68. 123cba765894:

8.3; 19.5; 27.20

69. 123cba965478:

1t

70. 123cba987456:

24.1; 49 55.4
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2.3; 19.1 13; 8.8; 19.11,12;

22.1; 27.15; 42.2

71. 1254367abc98:

49; 19.8

72. 1254389abc76:

19.8

73. 1254389cba76:

9t; 19.8; 27.16

74. 12543c789ab6:

19.9

75. 12543c987ab6:

10t; 19.9; 27.32

76. 1256743c9ab8:

46; 42.16

77. 1256789ab43c:

2.4

78. 1276543c9ab8:

4c; 42.16

79. 1276589ab43c:

2.4

80. 1278963cb45a:

2+3; 2124516469;

27.25

81. 1278965ab43c:

2+3; 2.4; [11; 8.b]

82. 12789ab6345c:

44; 19.7; [11; 7.3]

83. 12789ab6543c:

4b; 2.4; 19.7

84. 1298763cb45a:

2a5a6a8t 56.3

85. 1298765ab43c:

2.4

86. 12987ab6345c:

34; 19.7; [11; 7.15]

87. 12987ab6543c:

3b; 2.4; 19.7

88. 129ab876345c:

19.7;27.14;[11;7.13]

89. 129ab876543c:

2.4; 19.7; 27.7 ps.-hol.

90. 12ba9876345c:

19.7; [11;7.19]

91. 12ba9876543c:

2.4; 19.7

ps.-hol.

92. 1432789ab65c:

43; 2.5; 8.7;

19.13; 35.8; [11;7.5]

93. 1432985cb67a:

2+3; 31

94. 1432987ab65c:

2+3; 33; 2.5; 8.7;

19.13; 35.8; [11;7.9]

95. 14329ab8567c:

27.31; 35.1;

42.13; [11;7.10]

96. 14329ab8765c:

2.5; 8.7; 19.13;

27.12; 42.13; [11;7.7]

97. 1432ba98567c:

35.1; 42.13;

[11;7.20]

98. 1432ba98765c:

2.5; 8.7; 19.13;

42.13; [11;7.16]

99. 1456329ab87c:

19.10; 27.33;

[11;7.14]

100. 145632ba987c:

19.10; [11;7.18]

101. 1652349ab87c:

2+3; 26; 8.6; 24.3;

27.19; [11;7.5]

102. 165234ba987c:

8.6; 24.3; 19.10;

27.10; [11;7.8]

103. 165432ba987c:

8.6; 24.3; 19.10;

[11;7.17]

1. 1234567c/98/ba:

7b, 27.7

2. 123456/9a/7cb8:

8b
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3. 12345c/76/9ab8:

4d11b; 27.10,11;

35.4; 41.2; 42.10

4. 12345c/76/b89a:

4d11b; 27.7; 42.9

5. 12345c/76/ba98:

1b9b; 35.4; 42.9 1b9b10d; 41.2;

42.10;

6. 12345c/9678/ba:

2+4; 733b7b; 35.5;

27.10–12; 41.4; 42.11

7. 12345c/9876/ba:

4b10d11d; 27.4

35.5; 41.4; 42.11;

7a; 27.28

8. 12345cba/76/98:

8c

9. 1234765c/98/ba:

74; 27.14

10.1234/78/5abc96:

2+4; 898a

11.1234/78/5c9ab6:

2+4;44113;42.8;

12.1234/78/5cba96:

4b11d; 42.8; 6a8d 8c

13.1234/789a/5cb6:

4a11c; 42.15

24.2; 35.6

14.123478/bc/965a:

52718b6t

15.1234/7a98/5cb6:

2a5a6a8t; 27.26;

35.6; 42.15

43112; 24.2;

27.13; 42.15

16.1234/7abc98/56:

42102111; 27.22;

42.11; [2;6]

17.1234/7cb89a/56:

10c11c 35.5; 41.4;

18.1234/965abc/78:

9a10a10c

19.1234/965abc/78:

41.3; 45.2

20.1234/965cba/78:

27.13; 41.3; 45.2

10b11a; 27.26

21.1234/9ab87c/56:

35.4, 41.2

22.1234/9abc/5678:

35.2; 11.5;

42.3,5

23.1234/9abc/5876:

1a9t; 27.22; 35.2;

11.5; 42.3,5,12

1c9a; 42.14

35.7; 42.3,5

24.1234/9cba/5876:

4c10t; 27.31; 35.2;

11.5; 42.12

25.1234/9cba/7658:

27.4; 35.7

42.3

4e11a; 27.28;

42.14

26.1234/ba789c/56:

1491102; 42.10;

[2;5]

1293; 42.9;

27.1234/ba9c/5876:

1392; 27.17;

35.7; 42.5,12,14

28.123654/b87c/9a:

2+4; 88

29.12367854/bc/9a:

87

30.1236789c/54/ba:

11b9t; 27.21

[3;8]
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31.123874/ba9c/56:

92103,6; 27.25;

41.3; 45.2

32.123874/bc/569a:

1071110; [2;3]

33.1238769c/54/ba:

109118; 27.16

34.12389a74/bc/56:

2+3; 93104107;

[3; 1]

35.12389c/54/ba76:

95109; [2;10]

36.12389c/5674/ba:

1010117; 27.9;

41.3; 45.2

37.123a9874/bc/56:

9b10d10t

38.123c/54/78ba96:

27.17; 9t

39.123c/54/b8769a:

49118; 27.14

42.9;

10t

40.123c/5674/9ab8:

ps.-hol.; 6 ∃ alg.

41.123c/5674/b89a:

2+4;48117;27.12;

35.7;42.12,14;

42.123c/569874/ba:

47116; 27.32,33;

42.10; [2;7]

43.123c/765894/ba:

27.18,19; 35.4

41.2

44.123c/945876/ba:

103112; 27.18,19;

35.5; 41.4

45.123c/965478/ba:

2+4; 32727t;

27.31–33; 42.11;

46.123c/9678/b45a:

2+3;3323546273;

3a7a;27.9;35.6;42.15

47.123c98/54/7ab6:

115; [2;8]

48.123c/98/b4567a:

2+4; 62813b7b6t;

27.21; 42.8;

49.123c/98/b4765a:

2+4; 3455746t;

27.16; 42.8;

50.123c/98/b6547a:

2+4; 858t

51.123c9ab4/78/56:

2+4; 104113

52.123cba94/78/56:

10d11d

53.12/56/389abc74:

2+4; 848b

54.12/56/389cba74:

2+4; 8108t; [3;6]

55.12/56/3a98bc74:

2+4; 6382

56.12/56ba789c/34:

2+4; 6887

57.12/56ba987c/34:

6b8c

58.12/56ba9c/3874:

2+4; 67886t

59.12/56bc/389a74:

2+4; 25526566,884,9

[2;9]

60.12/56bc/3a9874:

2b6b8c7t 82

61.1258943c/76/ba:

101; 27.25

62.12/58bc76/3a94:

2+4; 22556163610;

[2;11]

63.1278/b43c/965a:

2+3; 265367, 24.2
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§7. Some restrictions

7.1. The case of nested free ovals. Recall that when speaking of a mutual arrange-
ment of two curves, an oval of one of the curves is called free if it does not meet the other
curve.

Proposition 6.1. Suppose that the odd branch of an M -cubic meets an oval of an M -
quartic at 12 points so that at least one free oval of one of the curves is contained inside
a free oval of the other curve. Then the arrangements which are not listed in Section 6
are impossible.

Proof. We shall apply the method proposed in [6; §3.3]. Let us consider the pencil
of lines through a point inside the innermost of the nested free ovals. Then the ar-
rangement of the union of the curves with respect to this pencil of lines has the form
×2

i1
. . .×2

i5
×3⊃4 oj1oj2 ⊂4×3, where i1, . . . , i5 ∈ {3, 4} and j1, j2 ∈ {2, 3, 4, 5} (a descrip-

tion of the encoding can be found in [4], [6], or [7]). Computing the Alexander polynomial
of the corresponding braid in each of the 25 · 42 = 512 cases, we obtain a contradiction
with the generalized Fox-Milnor theorem in all the cases not listed in Section 6. See
details (including a computer program for computation of Alexander polynomial) in [6].

7.2. Oval of the cubic is outside the oval of the quartic but ”not at infinity”.

Proposition 6.2. Suppose that the odd branch of an M -cubic C3 meets the oval of an
M -quartic C4 at 12 points. Suppose also that there exists a connected component D of
RP 2 \ (J3∪C4) whose closure is non-orientable. If the oval O3 of C3 is outside the ovals
of the quartic and O3 6⊂ D, then the arrangement of C3 ∪C4 is one of those listed in §6.
Proof. We shall use the method from [4]. The arrangement of C3 ∪ C4 with respect to
the pencil of lines centered inside O3 has the form

×3 ×2
i1
. . .×2

ia
×3⊃2 oj1oj2oj3 ⊂2×3 ×2

k1
. . .×2

kb
×3,

where a + b = 4, i1, . . . , ia, k1, . . . , kb ∈ {2, 3}, j1, j2, j3 ∈ {2, 3, 5}. We shall consider
all the 5 · 24 · 33 = 2160 cases (by symmetry, the number of cases can be reduced). For
each choice of (a; i1, . . . , i4; j1, j2, j3), we compute the braid corresponding to the pencil
of lines centered inside O3. The exponent sum of each of these braids is equal to 5. In
all the cases not corresponding to the arrangements listed in Section 6, either Murasugi-
Tristram inequality for the usual signature is not satisfied, or the Alexander polynomial
is not identically zero.

7.3. Algebraic unrealizability of the flexible curve in Figure 13.

Definition 6.3. Let n be a positive integer and let R(X,Z) = Z3+b1(X)Z2+b2(X)Z+
b3(X) where ak(X) is a polynomial in X of degree kn with real coefficients. Let us say
that an interval I = [X1, X2] is an alternating interval for the polynomial R, if the
following conditions hold:

(1) each of the polynomials R(X1, Z), R(X2, Z) has one simple root and one double
root;

(2) the polynomial F (X0, Z) has exactly one real root when X1 < X0 < X2;
(3) the double root is greater than the simple root for one of the polynomialsR(X1, Z),

R(X2, Z), and the simple root is greater than the double root for the other poly-
nomial.
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Definition 6.4. Let n be a positive integer and let F (X, Y ) = Y 4 + a1(X)Y 3 +
a2(X)Y 2 + a3(X)Y + a4(X) where ak(X) is a polynomial in X of degree kn with real
coefficients. Let us say that an interval I = [X1, X2] is an alternating interval for the
polynomial F , if the following conditions hold:

(1) each of the polynomials F (X1, Y ), F (X2, Y ) has one double root and two simple
real roots;

(2) the polynomial F (X0, Y ) has exactly two real roots when X1 < X0 < X2;
(3) the double root is between the simple roots for one of the polynomials F (X1, Y ),

F (X2, Y ) and the contrary for the other polynomial.

Lemma 6.5. Let R(Z) = Z3 + b2Z + b3 be a polynomial with real coefficients which has
a simple root Z = Z1 and a double root Z = Z2. Then if Z1 < Z2 then b3 > 0, and if
Z2 < Z1 then b3 < 0.

Proof. We have R(Z) = (Z − Z1)(Z − Z2)
2. Then b3 = R(0) = −Z1Z

2
2 , i.e. sign b3 =

− signZ1. It remains to note that Z1+2Z2 = 0, because the coefficient of Z2 vanishes �

Lemma 6.6. Let R(X,Z) be as in Definition 6.3. Then it cannot have more than n
alternating intervals.

Proof. Performing if necessary the substitution Z ′ = Z − b1(X), we may assume that
b1 = 0. Let D(X) = 4 a32 + 27 a23 be the discriminant of R with respect to Z. Let
[X1, X2] be an alternating interval for R. Then the conditions (1)–(3) of Definition 6.3
and Lemma 6.5 imply that

(4) D(X1) = D(X2) = 0;
(5) D(X) > 0 for X1 < X < X2;
(6) sign b3(X1) = − sign b3(X2).

The condition (6) implies that there exists X0 ∈ [X1, X2] such that b3(X0) = 0. Then,
by (5) we have 4 b2(X0)

3 = D(X0) − 27 b3(X0)
2 = D(X0) > 0, hence, b2(X0) > 0.

Moreover, it follows from (4) that for j = 1, 2 we have 4 b2(Xj)
3 = D(Xj)−27 b3(Xj)

2 =
−27 b3(Xj)

2 < 0, hence b2(Xj) < 0. Thus, the interval [X1, X2] contains at least two
roots of b2(X): one between X1 and X0, and another between X0 and X2. It remains to
recall that deg b2(X) = 2n. �

Lemma 6.7. Let F (X, Y ) be as in Definition 6.4. Then it cannot have more than 2n
alternating intervals.

Proof. Performing if necessary the substitution Y ′ = Y − a1(X), we may assume that
a1 = 0. Let R(X, Y ) be the cubic resolvent of F (X, Y ) with respect to Y . Let us recall
its definition. For any fixed value of X , let us denote the roots of F (X, Y ) by Y1, . . . , Y4

and let us set

Z1 = (Y1 − Y2)(Y3 − Y4), Z2 = (Y1 − Y3)(Y2 − Y4), Z3 = (Y1 − Y4)(Y2 − Y3),

R = (Z − Z1)(Z − Z2)(Z − Z3) = Z3 + b1Z
2 + b2Z + b3.

The coefficients b1, b2, b3 are symmetric polynomials in Y1, . . . , Y4, hence, they can be
expressed polynomially via a2, a3, a4 (see e.g. [12] for explicit formulas). Then bk is a
polynomial in X of degree 2kn. Hence, by Lemma 6.6, R has at most 2n alternating
intervals.

It remains to check that an interval is alternating for R(X,Z) if and only if it is
alternating for F (X, Y ). This can be easily proved using the definition of Z1, Z2, Z3,
and the relation Y1 + · · ·+ Y4 = 0. �
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Proposition 6.8. A real algebraic M -cubic C3 cannot be arranged with respect to a real
algebraic M -quartic C4 as in Figure 13.

Proof. Suppose that C3 is arranged with respect to O4 as in Figure 13. Let us introduce
coordinates (x : y : z) on RP 2 so that the point (0 : 1 : 0) is inside the oval of the
cubic. Let X = x/z, Y = y/z be the affine coordinates in the chart z 6= 0. The fact
that the X-coordinate is monotone on all branches of the cubic implies that (under a
suitable choice of the line at infinity) the curve C4 is arranged as in Figure 60 with
respect to some six vertical lines. Hence, there must be three alternating intervals for
the polynomial F (X, Y ) which defines the curve C4. However, by Lemma 6.7, F (X, Y )
cannot have more than two alternating intervals. �

Fig. 60
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