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Introduction

Let Bn be the braid group with n strings. It is generated by σ1, . . . , σn−1 (called
standard or Artin generators) subject to the relations

σiσj = σjσi for |i− j| > 1; σiσjσi = σjσiσj for |i− j| = 1.

Let B′
n be the commutator subgroup of Bn. Vladimir Lin [16] posed a problem to

compute the group of automorphisms of B′
n. In this paper we solve this problem.

Theorem 1. If n ≥ 4, then the restriction mapping Aut(Bn) → Aut(B′
n) is an

isomorphism.

Dyer and Grossman [5] proved that Out(Bn) ∼= Z2 for any n. The only nontrivial
element of Out(Bn) corresponds to the automorphism Λ defined by σi 7→ σ−1

i for
all i = 1, . . . , n − 1. The center of Bn is generated by ∆2 where ∆ = ∆n =
∏n−1

i=1

∏n−i
j=1 σj is Garside’s half-twist. Thus Aut(Bn) ∼= (Bn/〈∆

2〉) ⋊ Z2. For an

element g of a group, we denote the inner automorphism x 7→ gxg−1 by g̃.

Corollary 1. If n ≥ 4, then Out(B′
n) is isomorphic to the dihedral group Dn(n−1) =

Zn(n−1) ⋊ Z2. It is generated by Λ and σ̃1 subject to the defining relations Λ2 =

σ̃
n(n−1)
1 = Λσ̃1Λσ̃1 = id.

For n = 3, the situation is different. It is proven in [11] that B′
3 is a free group

of rank two generated by u = σ2σ
−1
1 and t = σ−1

1 σ2 (in fact, the free base of B′
3

considered in [11] is u, v with v = t−1u). So, its automorphism group is well-known
(see [18; §3.5, Theorem N4]). In particular (see [18; Corollary N4]), there is an
exact sequence

1 −→ B′
3

ι
−→ Aut(B′

3)
π

−→ GL(2,Z) −→ 1

where ι(x) = x̃ and π takes each automorphism of B′
3 to the induced automorphism

of the abelianization of B′
3 (which we identify with Z2 by choosing the images of

u and t as a base). We have σ̃1(u) = t−1u, σ̃2(u) = ut−1, σ̃1(t) = σ̃2(t) = u,
Λ(u) = t−1, Λ(t) = u−1 whence

π(σ̃1) = π(σ̃2) =

(
1 1
−1 0

)

, π(Λ) =

(
0 −1
−1 0

)

.

Thus, again (as in the case n ≥ 4) the image of Aut(B3) in Out(B′
3)

∼= GL(2,Z) is
isomorphic to D6 but this time it is not the whole group Out(B′

3).
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Let Sn be the symmetric group and An its alternating subgroup. Let µ = µn :
Bn → Sn be the homomorphism which takes σi to the transposition (i, i+ 1) and
let µ′ be the restriction of µ to B′

n. Then Pn = kerµn is the group of pure braids.
Let Jn = B′

n∩Pn = kerµ′. Note that the image of µ′ is An. The following diagram
commutes where the rows are exact sequences and all the unlabeled arrows (except
“→ 1”) are inclusions:

1 −→ Jn −→ B′
n

µ′

−→ An −→ 1
|

↓
|

↓
|

↓

1 −→ Pn −→ Bn
µ

−→ Sn −→ 1

(1)

Recall that a subgroup of a group G is called characteristic if it is invariant under
each automorphism of G. Lin proved in [15; Theorem D] that Jn is a characteristic
subgroup of B′

n for n ≥ 5 (note that this fact is used in our proof of Theorem 1 for
n ≥ 5). By Theorem 1, this result extends to the case n = 4.

Corollary 2. J4 is a characteristic subgroup of B′
4.

Note that J3 is not a characteristic subgroup of B′
3. Indeed, let ϕ ∈ Aut(B′

3) be
defined by u 7→ u, t 7→ ut. Then ut ∈ J3 whereas ϕ−1(ut) = t 6∈ J3.

1. Preliminaries

Let e : Bn → Z be the homomorphism defined by e(σi) = 1 for all i = 1, . . . , n.
Then we have B′

n = ker e.

1.1. Groups. For a group G, we denote its unit element by 1, the center by Z(G),
the commutator subgroup by G′, the second commutator subgroup (G′)′ by G′′, and
the abelianization G/G′ by Gab. We denote x−1yx by yx (thus x̃(yx) = y) and we
denote the commutator xyx−1y−1 by [x, y]. For g ∈ G, we denote the centralizer of
g in G by Z(g, G). If H is a subgroup of G, then, evidently, Z(g,H) = Z(g, G)∩H.

Lemma 1.1. Let G be a group generated by a set A. Assume that there exists
a homomorphism e : G → Z such that e(A) = {1}. Let ē be the induced homo-
morphism Gab → Z. Let Γ be the graph such that the set of vertices is A and two
vertices a and b are connected by an edge when [a, b] = 1.

If the graph Γ is connected, then (ker e)ab ∼= ker ē.

Proof. Let K = ker e. Let us show that G′ ⊂ K ′. Since K ′ is normal in G, and G′

is the normal closure of the subgroup generated by [a, b], a, b ∈ A, it is enough to
show that [a, b] ∈ K ′ for any a, b ∈ A.

We define a relation ∼ on A by setting a ∼ b if [a, b] ∈ K ′. Since Γ is connected,
it remains to note that this relation is transitive. Indeed, if a ∼ b ∼ c, then
[a, c] = [a, b][bab−2, bcb−2][b, c] ∈ K ′.

Thus G′ ⊂ K ′ whence G′ = K ′ and we obtain Kab = K/K ′ = K/G′ = ker ē. �

Remark 1.2. The fact that B′′
n = B′

n for n ≥ 5 proven by Gorin and Lin [11]
(see also [15; Remark 1.10]) is an immediate corollary of Lemma 1.1. Indeed, if we
set G = Bn and A = {σi}

n−1
i=1 , then Γ is connected whence B′

n/B
′′
n = (ker e)ab ∼=

ker ē = {1}. In the same way we obtain G′′ = G′ when G is an Artin group of type
Dn (n ≥ 5), E6, E7, E8, F4, or H4.
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1.2. Pure braids. Recall that Pn is generated by the braids σ2
ij , 1 ≤ i < j ≤ n,

where σij = σji = σj−1 . . . σi+1σiσ
−1
i+1 . . . σ

−1
j−1. For a pure braid X , let us denote

the linking number of the i-th and j-th strings by lkij(X). If X is presented by a
diagram with under- and over-crossings, then lkij(X) is the half-sum of the signs
of those crossings where the i-th and j-th strings cross. Let Aij be the image of σ2

ij

in Pab
n . We have, evidently,

lkγ(i),γ(j)(X) = lki,j(X
γ), for any X ∈ Pn, γ ∈ Bn (2)

(here γ(i) = µ(γ)(i) which is coherent with the interpretation of Bn with a mapping
class group; see §3.1).

It is well known that Pab
n is freely generated by {Aij}1≤i<j≤n. This fact is

usually derived from Artin’s presentation of Pn (see [1; Theorem 18]) but it also
admits a very simple self-contained proof based on the linking numbers. Namely,
let L be the free abelian group with a free base {aij}1≤i<j≤n. Then it is immediate
to check that the mapping Pn → L, X 7→

∑

i<j lki,j(X)aij is a homomorphism

and that the induced homomorphism Pab
n → L is the inverse of L → Pab

n , aij 7→
Aij . In particular, we see that the quotient map Pn → Pab

n is given by X 7→
∑

i<j lki,j(X)Aij.

Lemma 1.3. If n ≥ 5, then the mapping Jn → Pab
n , X 7→

∑
lkij(X)Aij defines

an isomorphism Jab
n

∼= {
∑
xijAij |

∑
xij = 0} ⊂ Pab

n .

Proof. Follows from Lemma 1.1 with Pn, e|Pn
, and {σ2

ij}1≤i<j≤n standing for G,
e, and A respectively. �

So, when n ≥ 5, we identify Jab
n with its image in Pab

n . The following proposition
will not be used in the proof of Theorem 1.

Proposition 1.4. (a). Jab
n is a free abelian group and

rkJab

n =

(
n
2

)

+

{
1, n ∈ {3, 4},

−1, otherwise.

(b). E3 = {ūt̄, t̄ū, ū3, t̄3} and E4 = E3∪{c̄2, w̄2, (c̄w̄)2} are free bases of Jab
3 and Jab

4

respectively; u, t, w, c are defined in the beginning of Section 5.

(Here and below x̄ stands for the image of x under the quotient map Jn → Jab
n .)

(c). Let pn : Jab
n → Pab

n , n = 3, 4, be induced by the composition Jn → Pn → Pab
n .

Then
im pn = {

∑

xijAij |
∑

xij = 0}, ker pn = 〈ū3, t̄3〉.

Proof. (a). The result is obvious for n = 2 and it follows from Lemma 1.3 for n ≥ 5.
For n = 3, the result follows from the following argument proposed by the referee.

We have B′
3
∼= π1(Γ) where Γ is the bouquet S1 ∨ S1. Since |B′

3/J3| = 3 (see (1)),

we have Jab
3

∼= H1(Γ̃) where Γ̃ → Γ is a connected 3-fold covering. Then the Euler

characteristic of Γ̃ is χ(Γ̃) = 3χ(Γ) = −3 whence rkH1(Γ̃) = 4.
The group Jab

4 can be easily computed by the Reidemeister–Schreier method
either as kerµ′ using Gorin and Lin’s [11] presentation for B′

4, or as ker(e|P4
) using

Artin’s presentation [1] of P4. Here is the GAP code for the first method:
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Figure 1. The graphs Γ and Γ̃ in the proof of Proposition 1.4

f:=FreeGroup(4); u:=f.1; v:=f.2; w:=f.3; c:=f.4;

g:=f/[u*c/u/w, u*w/u/w*c/w/w, v*c/v/w*c, v*w/v/w*c*c/w*c/w*c/w*c];

u:=g.1; v:=g.2; w:=g.3; c:=g.4; # group B’(4) according to [11]

s:=SymmetricGroup(4); t1:=(1,2); t2:=(2,3); t3:=(3,4);

U:=t2*t1; V:=t1*t2; W:=t2*t3*t1*t2; C:=t3*t1; # U=mu(u),V=mu(v),...

mu:=GroupHomomorphismByImages(g,s,[u,v,w,c],[U,V,W,C]);

AbelianInvariants(Kernel(mu)); # should be [0,0,0,0,0,0,0]

(b) for n = 3. In Figure 1 we show the graphs Γ and Γ̃ discussed above. We see

that the loops in Γ̃ represented by the elements of E3 form a base of H1(Γ̃).

(c) for n = 3. The claim about im p3 is evident and a computation of the linking
numbers shows that p3(ū

3) = p3(t̄
3) = 0.

(b,c) for n = 4. The claim about im p4 is evident and a computation of the
linking numbers shows that p4(E4 \ {t̄3, ū3}) is a base of im p4. One can check
that the homomorphism B′

4 → B′
4/K4

∼= B′
3 maps J4 to J3. Hence it induces a

homomorphism Jab
4 → Jab

3 which takes ū3 and t̄3 of Jab
4 to ū3 and t̄3 of Jab

3 . Hence
rk(ker p4) ≥ rk〈ū3, t̄3〉 = 2. Since rkJab

4 = 7 and rk(im p4) = 5, we conclude that
ker p4 = 〈ū3, t̄3〉. �

Remark 1.5. Note that the braid closures of both u3 and t3 are Borromean links.
So, maybe, it could be interesting to study how the considered base of Jab

3 is related
to Milnor’s µ-invariant.

1.3. Mixed braid groups and the cabling map. Let n ≥ 1 and ~m =
(m1, . . . , mk), m1 + · · ·+mk = n, mi ∈ Z, mi > 0.

The mixed braid group B~m (see [19], [20], [10]) is defined as µ−1(S~m) where S~m

is the stabilizer of the following vector under the natural action of Sn on Zn:

( 1, . . . , 1
︸ ︷︷ ︸

m1

, 2, . . . , 2
︸ ︷︷ ︸

m2

, . . . , k, . . . , k
︸ ︷︷ ︸

mk

).

We emphasize two particular cases: B1,...,1 is the pure braid group and Bn−1,1 is
the Artin group corresponding to the Coxeter group of type Bn−1.

We define the cabling map ψ = ψ~m : Bk × (Bm1
× · · · ×Bmk

) → Bn by sending
(X ;X1, . . . , Xk) to the braid obtained by replacing each strand of X by a geometric
braid representing Xi embedded into a small tubular neighbourhood of this strand.

Note that ψ~m is not a homomorphism but its restriction to Pk ×
∏

i Bmi
is. We

have ψ(Pk ×
∏

i Pmi
) ⊂ Pn and ψ(Pk ×

∏

i Bmi
) ⊂ B~m.

2. Jab
n as an An-module and its automorphisms

Let n ≥ 5. As we mentioned already, by [15; Theorem D], Jn is a characteristic
subgroup of B′

n, i.e., Jn is invariant under any automorphism of B′
n (in fact a

stronger statement is proven in [15]).
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Lemma 2.1. Let ϕ ∈ Aut(B′
n) be such that µ′ϕ = µ′. Let ϕ∗ be the automorphism

of Jab
n induced by ϕ|Jn

. Then ϕ∗ = ± id.

Proof. The exact sequence 1 → Jn → B′
n → An → 1 (see (1)) defines an action

of An on Jab
n by conjugation. The condition µ′ϕ = µ′ implies that ϕ∗ is An-

equivariant. Let V be a complex vector space with base e1, . . . , en endowed with
the natural action of Sn induced by the action on the base. We identify Pab

n with
its image in the symmetric square Sym2 V by the homomorphism Aij 7→ eiej .
Then, by Lemma 1.3, we may identify Jab

n with {
∑
cijeiej |

∑
cij = 0}. These

identifications are compatible with the action of An.

For a partition λ = (λ1, . . . , λr), we denote the corresponding irreducible repre-
sentation of Sn over C (the CSn-module) by Vλ, see, e.g., [7; §4]. For an element
v of a CSn-module, let 〈v〉CSn

be the CSn-submodule generated by v. We set
e0 = e1 + · · · + en, U = 〈e0〉CSn

= Ce0, and U⊥ = 〈e1 − e2〉CSn
. Consider the

following CSn-submodules of Sym2 V :

W0 = 〈e21〉CSn
, W1 = 〈w〉CSn

= Cw where w =
∑

i<j

eiej ,

W2 = 〈(e1 − e2)(e3 + · · ·+ en)〉CSn
, W3 = 〈(e1 − e2)(e3 − e4)〉CSn

.

We have Sym2 V = Sym2(U ⊕ U⊥) = Sym2 U ⊕ Sym2 U⊥ ⊕ (U ⊗ U⊥) and U⊥ ∼=
Vn−1,1 (that is Vλ for λ = (n − 1, 1)). It is known (see [17; Lemma 2.1] or [7;

Exercise 4.19]) that Sym2 Vn−1,1
∼= U ⊕ Vn−1,1 ⊕ Vn−2,2

∼= V ⊕ Vn−2,2. Thus

Sym2 V ∼= V ⊕ V ⊕ Vn−2,2. (3)

Let W = Jab
n ⊗ C. It is clear that Sym2 V = W0 ⊕W1 ⊕W . Since W0

∼= V and
W1

∼= U , we obtain W ∼= U⊥ ⊕ Vn−2,2 by cancelling out U ⊕ V in (3). Note that
(e1−e2)(e3+ · · ·+en) = (e1−e2)(e0−(e1+e2)) = (e1−e2)e0−(e21−e

2
2), hence the

mapping ei − ej 7→ (ei − ej)e0 − (e2i − e2j ) induces an isomorphism of CSn-modules

U⊥ ∼=W2. The identity

(n− 2)(e1 − e2)e3 = (e1 − e2)(e3 + · · ·+ en) +
∑

i≥4

(e1 − e2)(e3 − ei) (4)

shows that W2 +W3 = 〈(e1 − e2)e3〉CSn
= W . One easily checks that W2 and W3

are orthogonal to each other with respect to the scalar product onW+W1 for which
{eiej}i,j is an orthonormal basis. Therefore W =W2 ⊕W3 is the decomposition of
W into irreducible factors.

We have W2
∼= Vn−1,1 and W3

∼= Vn−2,2. Since the corresponding Young di-
agrams are not symmetric, W2 and W3 are irreducible as CAn-modules (see [7;
§5.1]). Since dimW2 6= dimW3 and ϕ∗ is An-equivariant, Schur’s lemma implies
that ϕ∗|Wk

, k = 2, 3, is multiplication by a constant ck. Moreover, since ϕ∗ is an
automorphism of Jab

n (a discrete subgroup), we have ck = ±1. If c3 = −c2 = ±1,
then (4) contradicts the fact that ϕ∗((e1 − e2)e3) ∈ Jab

n . �

Let ν ∈ Aut(S6) be defined by (12) 7→ (12)(34)(56), (123456) 7→ (123)(45). It is
well known that ν represents the only nontrivial element of Out(S6).



6 S. YU. OREVKOV

Lemma 2.2. Let ϕ ∈ Aut(B′
6). Then µ′ϕ 6= νµ′.

Proof. Given a commutative ring k and a kA6-module V corresponding to a rep-
resentation ρ : A6 → GL(V, k), we denote the kA6-module corresponding to the
representation ρν by ν∗(V ). It is clear that ν∗ is a covariant functor which preserves
direct sums (hence irreducibility), tensor products, symmetric powers etc.

Suppose that µ′ϕ = νµ′. As in the proof of Lemma 2.1, we endow Jab
6 with the

action of A6. The condition µ′ϕ = νµ′ implies that ϕ induces an isomorphism of
A6-modules Jab

6
∼= ν∗(Jab

6 ). Let us show that these modules are not isomorphic.
We have Jab

6 ⊗C ∼= V5,1⊕V4,2 (see the proof of Lemma 2.1). Hence ν∗(Jab
6 )⊗C ∼=

ν∗(V5,1) ⊕ ν∗(V4,2). We have dimV5,1 = 5 6= 9 = dimV4,2, thus, to complete
the proof, it is enough to show that V5,1 6∼= ν∗(V5,1) (note that V4,2 ∼= ν∗(V4,2)).
Indeed, ν exchanges the conjugacy classes of the permutations a = (123) and b =
(123)(456), hence we have χ(a) = 2 6= −1 = χ(b) = χν(a) where χ and χν are the
characters of A6 corresponding to V5,1 and to ν∗(V5,1) respectively. �

3. Centralizers of pure braids

Centralizers of braids are computed by González-Meneses and Wiest [10]. For
pure braids the answer is much simpler and it can be easily obtained as a special-
ization of the results of [10].

3.1. Nielsen-Thurston trichotomy. The following definitions and facts we re-
produce from [10; Section 2] where they are taken from different sources, mostly
from the book [12] which can be also used as a general introduction to the subject.

Let D be a disk in C that contains Xn = {1, . . . , n}. The elements of Xn

will be called punctures. It is well known that Bn can be identified with the
mapping class group D/D0 where D is the group of diffeomorphisms β : D → D

such that β|∂D = id∂D and β(Xn) = Xn, and D0 is the connected component of the
identity. Sometimes, by abuse of notation, we shall not distinguish between braids
and elements of D. For A,B ⊂ D, we write A ∼ B if β0(A) = B for some β0 ∈ D0.

An embedded circle in D \ Xn is called an essential curve if it encircles more
than one but less than n points of Xn. A multicurve in D \Xn is a disjoint union
of embedded circles. It is called essential if all its components are essential.

Let β ∈ D. We say that a multicurve C in D \Xn is stabilized or preserved by β
if β(C) ∼ C (the components of C may be permuted by β). The braid represented
by β is called reducible if β stabilizes some essential multicurve.

A braid β is called periodic if some power of β belongs to Z(Bn). If a braid is
neither periodic nor reducible, then it is called pseudo-Anosov; see [12].

3.2. Canonical reduction systems. Tubular and interior braids. An essen-
tial curve C is called a reduction curve for a braid β if it is stabilized by some power
of β and any other curve stabilized by some power of β is isotopic in D \Xn to a
curve disjoint from C. An essential multicurve is called a canonical reduction sys-
tem (CRS) for β if its components represent all isotopy classes of reduction curves
for β (each class being represented once). It is known that there exists a canonical
reduction system for any braid and that it is unique up to isotopy, see [2], [12; §7],
[10; §2]. If a braid is periodic or pseudo-Anosov, the CRS is empty. The following
properties of CRS are immediate consequences of their existence and uniqueness.

Proposition 3.1. Let C be the CRS for β ∈ D. Then C is the CRS for β−1. �
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Proposition 3.2. Let β, γ ⊂ D and let C be the CRS for β. Then γ−1(C) is the
CRS for βγ . �

Proposition 3.3. Let β, γ ∈ D represent commuting braids. Then:

(a). γ preserves the CRS of β.

(b). If γ is pure, then it preserves each reduction curve of β.

Proof. (a). Follows from Proposition 3.2.
(b). Follows from (a). �

We say that a braid is in almost regular form if its CRS is a union of round
circles (‘almost’ because the definition of regular form in [10] includes some more
conditions which we do not need here). By Proposition 3.2 any braid is conjugate
to a braid in almost regular form.

Let β be an element of D which represents a reducible braid in almost regular
form and let C be a CRS for β. Without loss of generality we may assume that
β(C) = C and C is a union of round circles. Let R = R′∪R′′ where R′ is the union
of the outermost components of C and R′′ is the union of small circles around the
points of Xn not encircled by curves from R′. Let C1, . . . , Ck be the connected
components of R numbered from left to right.

Recall that the geometric braid (a union of strings in the cylinder [0, 1] × D)
is obtained from β as follows. Let {βt : D → D}t∈[0,1] be an isotopy such that
β0 = β, β1 = idD, and βt|∂D = id∂D for any t. Then the i-th string of the geometric
braid is the graph of the mapping t 7→ βt(i) and the whole geometric braid is
⋃

t

(
{t} × βt(Xn)

)
. Similarly, starting from the circles Ci, we define the embedded

cylinders (tubes)
⋃

t

(
{t} × βt(Ci)

)
, i = 1, . . . , k.

Let mi be the number of punctures encircled by Ci. Following [10; §5.1], we
define the interior braid β[i] ∈ Bmi

, i = 1, . . . , k, as the element of Bmi
corre-

sponding to the union of strings contained in the i-th tube, and we define the

tubular braid β̂ of β as the braid obtained by shrinking each tube to a single string.
Let ~m = (m1, . . . , mk) and let ψ~m be the cabling map (see §1.3). Then we have

β = ψ~m(β̂; β[1], . . . , β[k]).
Recall that C is a CRS for β. Let a be an open connected subset of D such

that ∂a ⊂ C ∪ ∂D. With each such a we associate the braid which is the union
of the strings of β starting at a and the strings obtained by shrinking the tubes
corresponding to the interior components of ∂a. We denote this braid by β[a]. For

example, if a is the exterior component of D \ C, then β[a] = β̂.

3.3. Periodic and reducible pure braids. The structure of the centralizers of
periodic and reducible braids becomes extremely simple if we restrict our attention
to pure braids only. The following fact immediately follows from a result due to
Eilenberg [6] and Kerékjártó [13] (see [10; Lemma 3.1]).

Proposition 3.4. A pure braid is periodic if and only if it is a power of ∆2. �

The following fact can be considered as a specialization of the results of [10].

Proposition 3.5. Let β be a pure n-braid.

(a). If β is periodic, then Z(β;Pn) = Pn.

(b). If β is pseudo-Anosov, then Z(β;Pn) is the free abelian group generated by
∆2 and some pseudo-Anosov braid which may or may not coincide with β.
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(c). If β is reducible non-periodic and in almost regular form, then ψ~m maps

Z(β̂;Pk)×Z(β[1];Pm1
)×· · ·×Z(β[k];Pmk

) isomorphically onto Z(β;Pn) (see §3.2).

Proof. (a). Follows from Proposition 3.4.
(b). Follows from [10; Proposition 4.1].
(c). (See also the proof of [10; Proposition 5.17]). By Proposition 3.3 we have

Z(β;Pn) ⊂ ψ~m(Pk ×
∏

Pmi
). The injectivity of the considered mapping and the

fact that ψ−1
~m (Z(β;Pn)) is as stated, are immediate consequences from the following

observation: if two geometric braids are isotopic, then the braids obtained from
them by removal of some strings are isotopic as well. �

Lemma 3.6. Let ~m = (m1, . . . , mk), m1 + · · · + mk = n, and p ∈ Z. Then
ψ~m(∆p

k; ∆
p
m1
, . . . ,∆p

mk
) = ∆p

n.

Proof. The result immediately follows from the geometric characterization of ∆ as
a braid all whose strings lie on a half-twisted band. Note that the sub-bands of
the half-twisted band arising from consecutive strings also consist of half-twisted
bands. �

If X is a periodic pure braid, then X = ∆2d, d ∈ Z, by Proposition 3.4. In this
case we set d = degX , the degree of X . It is clear that lkij(X) = d for any i < j.

Lemma 3.7. Let C be the CRS for a reducible pure braid represented by β ∈ D.
Let a and b be two neighboring components of D \C and let X = β[a] and Y = β[b]
be the braids associated to a and b (see the end of §3.2 ). Suppose that each of X
and Y is periodic. Then degX 6= deg Y .

Proof. Suppose that degX = deg Y = p, i. e., X = ∆2p
k and Y = ∆2p

m for some
k,m ≥ 2. Let Ci be the component of C that separates a and b. We may assume
that a is exterior to Ci. Let c be the closure of a ∪ b. Then we have

β[c] = ψ1,...,1,m,1,...,1(∆
2p
k ; 1, . . . , 1,∆2p

m , 1, . . . , 1) = ∆2p
k+m−1

by Lemma 3.6. Hence β[c] preserves any closed curve, in particular a curve which
separates some two strings of β[b] and encircles a string of β[c] not belonging to β[b].
Such a curve is not isotopic to any curve disjoint from Ci. This fact contradicts the
condition that Ci is a reduction curve. �

Lemma 3.8. Z(σ2
1σ

−2
3 ;Jn) ∼= Pn−2 × Z for n ≥ 4.

Proof. The CRS for σ2
1σ

−2
3 consists of two round circles: one of them encircles the

punctures 1 and 2, and the other one encircles the punctures 3 and 4. Then Proposi-
tion 3.4(c) implies that ψ = ψ~m : Pn−2×(P2×P2) → Pn, ~m = (2, 2, 1n−4), is injec-
tive and imψ = Z(σ2

1σ
−2
3 ;Pn). One easily checks that the mapping Pn−2 ×P2 →

Z(σ2
1σ

−2
3 ;Jn), (X, σ

k
1 ) 7→ ψ(X ; σk

1 , σ
−m
1 ), m = e(ψ(X ; 1, 1))+ k is an isomorphism.

Indeed, any element Y of Z(σ2
1σ

−2
3 ;Pn) is of the form Y = ψ(X ; σk

1 , σ
−m
1 ) and the

condition e(Y ) = 0 becomes e(ψ(X ; 1, 1)) + k −m = 0. �

Lemma 3.9. Let β be a reducible n-braid in almost regular form. Suppose that

β̂ ∈ Pk and that the β[i]’s (see §3.2) are pairwise non-conjugate. Then ψ~m maps

Z(β̂;Pk)× Z(β[1];Bm1
)× · · · × Z(β[k];Bmk

) isomorphically onto Z(β;Bn)

Proof. See the proof of Proposition 3.5(c). �
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4. Proof of Theorem 1 for n ≥ 5

4.1. Invariance of the conjugacy class of σ1σ
−1
3 . Suppose that n ≥ 5. Let

ϕ ∈ Aut(B′
n) be such that µ′ϕ = µ′ and ϕ∗ = id where ϕ∗ is as in Lemma 2.1.

Then we have

lki,j(X) = lki,j(ϕ(X)), X ∈ Jn, 1 ≤ i < j ≤ n. (5)

Let τ = ψ2,n−2(1; σ
(n−2)(n−3)
1 ,∆−2). We have τ ∈ Jn.

Lemma 4.1. Let X be σ2
1σ

−2
3 or τ . Let α ∈ D represent ϕ(X). Let C be a simple

closed curve preserved by α. Suppose that C encircles at least two punctures. Then
the punctures 1 and 2 are in the same component of D \ C.

Proof. Suppose that 1 and 2 are separated by C. Without loss of generality we
may assume that 1 is outside C and 2 is inside C. Let p be another puncture inside
C. Then we have lk1,p(α) = lk1,2(α) which contradicts (5) because lk1,2(X) 6= 0
and lk1,p(X) = 0 for any p 6= 2. �

Lemma 4.2. Let α ∈ D represent ϕ(σ2
1σ

−2
3 ). Then the CRS for α is invariant

under some element of D which exchanges {1, 2} and {3, 4}.

Proof. Follows from Propositions 3.1 and 3.2 because α is conjugate to α−1 and
the conjugating element of D exchanges {1, 2} and {3, 4}. �

Lemma 4.3. Let α ∈ D represent ϕ(τ). Let C be a component of the CRS for α.
Then C cannot separate i and j for all 3 ≤ i < j ≤ n.

Proof. Let β ∈ D represent ϕ(σ2
ijσ

−2
1 ). Since α and β commute, β preserves C by

Proposition 3.3(b). Hence C cannot separate i and j by Lemma 4.1 applied to β
(note that β is conjugate to σ2

1σ
−2
3 ; see the beginning of §4.2). �

Lemma 4.4. Let α ∈ D represent ϕ(σ2
1σ

−2
3 ). Suppose that n ≥ 6. Let C be a

component of the CRS for α. Then:

(a). C cannot separate 1 and 2. It cannot separate 3 and 4.

(b). C cannot separate i and j for 5 ≤ i < j ≤ n.

(c). C cannot separate {1, 2, 3, 4} from {5, . . . , n}.

(d). C cannot encircle 5, . . . , n.

Proof. (a). Follows from Lemma 4.1 and Lemma 4.2.

(b). Let β ∈ D represent ϕ(σ2
ijσ

−2
1 ). Since α and β commute, β preserves C by

Proposition 3.3(b). Hence C cannot separate i and j by Lemma 4.1 applied to β
(see the proof of Lemma 4.3).

(c). Suppose that C separates 1, 2, 3, 4 from 5, 6, . . . , n. Let β ∈ D represent
ϕ(σ2

1σ
−2
5 ). Then β is conjugate to α. Let γ ∈ D be a conjugating element. Then

γ(C) is a component of the CRS for β and it separates the punctures 1, 2, 5, 6 from
all the other punctures. Since α and β commute, β preserves C. This is impossible
because the geometric intersection number of C and γ(C) is nonzero.

(d). Combine (a), (c), and Lemma 4.2. �
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Lemma 4.5. Let α ∈ D represent ϕ(σ2
1σ

−2
3 ). Suppose that α is reducible non-

periodic. Then the CRS for α has exactly two components: one of them encircles 1
and 2, and the other one encircles 3 and 4.

Proof. If n ≥ 6, the result follows from Lemma 4.2 and Lemma 4.4. Suppose that
n = 5 and the CRS is not as stated. By combining Lemma 4.2 with Lemma 3.7, we
conclude that the CRS consists of a single circle which encircles 1,2,3,4. The interior
braid cannot be periodic by (5), hence it is pseudo-Anosov. Therefore, Z(α;P5) ∼=
Z2 by Proposition 3.5(b) whence Z(α;J5) = Z. This contradicts Lemma 3.8. �

Lemma 4.6. ϕ(σ1σ
−1
3 ) is conjugate in Bn to σ1σ

−1
3 .

Proof. Let α ∈ D represent ϕ(σ2
1σ

−2
3 ). If α is pseudo-Anosov, then Z(α;Pn) ∼= Z2

by Proposition 3.5(b), hence Z(α;Jn) is abelian which contradicts Lemma 3.8. If α
is periodic, then it is a power of ∆2 by Proposition 3.4. This contradicts (5), hence
α is reducible non-periodic and its CRS is as stated in Lemma 4.5.

Suppose that α̂ is pseudo-Anosov. Then Z(α̂;Pn) ∼= Z2 by Proposition 3.5(b)
whence Z(α;Pn) ∼= Z

4 by Proposition 3.5(c) and therefore Z(α;Jn) is abelian
which contradicts Lemma 3.8. Thus, α̂ is periodic. By Proposition 3.4 this means
that α̂ is a power of ∆2. This fact combined with (5) implies α̂ = 1. It follows

that ϕ(σ2
1σ

−2
3 ) is conjugate to σ2k

1 σ−2k
3 for some k, and we have k = 1 by (5). The

uniqueness of roots up to conjugation [9] implies that ϕ(σ1σ
−1
3 ) is conjugate to

σ1σ
−1
3 . �

Lemma 4.7. ϕ(τ) is conjugate in Pn to τ .

Proof. Let α ∈ D represent ϕ(τ). By Proposition 3.3, it cannot be pseudo-Anosov
because it commutes with ϕ(σ1σ

−1
3 ) which is reducible non-periodic by Lemma

4.6. If α were periodic, then it would be a power of ∆2 by Proposition 3.4. This
contradicts (5), hence α is reducible.

Let C be the CRS for α. By Lemmas 4.1 and 4.3, one of the following three
cases occurs.

Case 1. C is connected, the punctures 1 and 2 are inside C, all the other
punctures are outside C. Then the tubular braid α̂ cannot be pseudo-Anosov
because α commutes with ϕ(σ1σ

−1
3 ), hence it preserves a circle which separates

3 and 4 from 5, . . . , n. Hence α̂ is periodic which contradicts (5) combined with
Proposition 3.4. Thus this case is impossible.

Case 2. C is connected, the punctures 1 and 2 are outside C, all the other
punctures are inside C. This case is also impossible and the proof is almost the
same as in Case 1. To show that α̂ cannot be pseudo-Anosov, we note that α
preserves a curve which encircles only 1 and 2.

Case 3. C has two components: c1 and c2 which encircle {1, 2} and {3, . . . , n}
respectively. The interior braid α[2] cannot be pseudo-Anosov by the same reasons
as in Case 1, because α preserves a circle separating 3 and 4 from 5, . . . , n. Hence
α[2] is periodic. Using (5), we conclude that α is a conjugate of τ . Since the ele-
ments of Z(τ ;Bn) realize any permutation of {1, 2} and {3, . . . , n}, the conjugating
element can be chosen in Pn. �

Lemma 4.8. There exists γ ∈ Pn such that

ϕ(σ1σ
−1
i ) = (σ1σ

−1
i )γ for i = 3, . . . , n. (6)
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Proof. Due to Lemma 4.7, without loss of generality we may assume that ϕ(τ) = τ
and τ(C) = C where C is the CRS for τ consisting of two round circles c1 and c2
which encircle {1, 2} and {3, . . . , n} respectively.

By Lemma 3.9, ψ2,n−2 restricts to an isomorphism ψ : P2 × B2 × Bn−2 →
Z(τ) := Z(τ ;Bn). Let π1 : Z(τ) → P2 and π3 : Z(τ) → Bn−2 be defined as
πi = pri ◦ψ

−1.
Let H = π−1

1 (1)∩B′
n; note that the elements of π−1

1 (1) correspond to geometric
braids whose first two strings are inside the cylinder [0, 1]×c1 and the other strings
are inside the cylinder [0, 1]×c2. Then π3|H : H → Bn−2 is an isomorphism and its

inverse is given by Y 7→ ψ2,n−2(1, σ
−e(X)
1 , Y ), that is σi 7→ σ−1

1 σi+2, i = 1, . . . , n−3.
Let us show that ϕ(H) = H. Indeed, let X ∈ H. Since X ∈ Z(τ ;B′

n) and
ϕ(τ) = τ , we have ϕ(X) ∈ Z(τ ;B′

n). The fact that π1(X) = 1 follows from (5)
applied to a power ofX belonging to Jn. Hence ϕ(H) ⊂ H. By the same arguments
ϕ−1(H) ⊂ H.

Thus ϕ|H is an automorphism of H and we have H ∼= Bn−2. Hence, by Dyer and
Grossman’s result [5] cited after the statement of Theorem 1, there exists γ ∈ H
such that γ̃ϕ|H is either idH or Λ|H . The latter case is impossible by (5). Thus
there exists γ ∈ Bn such that (6) holds.

It remains to show that γ can be chosen in Pn. By replacing γ with σ1γ if
necessary, we may assume that 1 and 2 are fixed by γ. By combining (2), (5),
and (6), we conclude that γ({i, j}) = {i, j} for any i, j ∈ {3, . . . , n} and the result
follows. �

4.2. Conjugates of σ1 and simple curves which connect punctures. We fix
n ≥ 2 and we consider D and the set of punctures Xn = {1, . . . , n} ⊂ D as above.
Let I be the set of all smooth simple curves (embedded segments) I ⊂ D such that
∂I ⊂ Xn and I◦ ⊂ D \ Xn. Here we denote I◦ = I \ ∂I and ∂I = {a, b} where a
and b are the ends of I. Recall that we write I ∼ I1 if I1 = α(I) for some α ∈ D0

(see §3.1), i. e., if I and I1 belong to the same connected component of I.
Let I ∈ I and let β ∈ D be such that β(I) is the straight line segment [1, 2].

Then we define the braid σI as σβ
1 . It is easy to see that σI depends only on the

connected component of I that contains I. The CRS for σI is a single closed curve
which encloses I and separates it from Xn \ ∂I. By definition, all conjugates of σ1
are obtained in this way. In particular, we have σi = σ[i,i+1] and σij = σI for an
embedded segment I which connects i to j passing through the upper half-plane.

Lemma 4.9. For any β ∈ D, I ∈ I, we have σβ

β(I) = σI . �

With this notation, a corollary of Lemma 4.8 can be formulated as follows.

Lemma 4.10. Let n ≥ 5 and let ϕ ∈ Aut(B′
n) be as in §4.1.

(a). Let I, J ∈ I be such that Card(I ∩ J) = Card(∂I ∩ ∂J) = 1 (i.e., I ∩ J is
a common endpoint of I and J). Then there exist I1, J1 ∈ I such that I1 ∪ J1 is
homeomorphic to I ∪ J and

ϕ(σIσ
−1
J ) = σI1σ

−1
J1
, ϕ(σ−1

I σJ ) = σ−1
I1
σJ1

. (7)

(b). Let I, J ∈ I, I ∩ J = ∅. Then the conclusion is the same as in Part (a).

(c). Let I and J be as in Part (a) and let K ∈ I be such that K ∩ (I ∪ J) = ∅.
Then there exist I1, J1, K1 ∈ I such that I1∪J1∪K1 is homeomorphic to I∪J ∪K,
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and (7) holds as well as

ϕ(σKσ
−1
I ) = σK1

σ−1
I1
, ϕ(σKσ

−1
J ) = σK1

σ−1
J1
. (8)

Proof. (c). Let γ be as in Lemma 4.8 and let β ∈ D be such that β(K) = [1, 2],
β(I) = [3, 4], and β(J) = [4, 5]. We set K1 = α−1(K), I1 = α−1(I), J1 = α−1(J)
where α = β−1γϕ(β). Then we have

ϕ(σKσ
−1
I ) = ϕ((σ1σ

−1
3 )β) by definition of σI and σK

= (σ1σ
−1
3 )γϕ(β) by Lemma 4.8

= σK1
σ−1
I1

by Lemma 4.9

and, similarly, ϕ(σKσ
−1
J ) = σK1

σ−1
J1

. Since σK commutes with σI and σJ , we have

σε
Iσ

−ε
J = (σKσ

−1
I )−ε(σKσ

−1
J )ε, ε = ±1, thus (8) implies (7).

(a). Since Card(∂I ∪ ∂J) = 3 and n ≥ 5, we can choose K ∈ I disjoint from
I ∪ J (which is an embedded segment, hence its complement is connected) and the
result follows from (c).

(b). The same proof as for Part (c) but with β(I) = [1, 2] and β(J) = [3, 4]. �

Lemma 4.11. Let I, J, I1, J1 ∈ I be such that I ∩ J = I1 ∩ J1 = ∅. Suppose that
σIσ

−1
J = σI1σ

−1
J1

. Then I ∼ I1 and J ∼ J1.

Proof. It is enough to observe that the CRS for σIσ
−1
J is ∂UI ∪ ∂UJ where UI and

UJ are ε-neighbourhoods of I and J for 0 < ε ≪ 1 (this fact follows, for example,
from Lemma 4.5 and Proposition 3.2). �

Note that when [σI , σJ ] 6= 1, the statement of Lemma 4.11 is wrong. Indeed,
in this case by Lemma 4.9 we have σIσ

−1
J = σγ(I)σ

−1
γ(J) for γ = σIσ

−1
J whereas

σI 6= σγ(I) and σJ 6= σγ(J).

Given I, J ∈ I, the geometric intersection number I · J of I and J is defined
as the minimum of the number of intersection points of I◦1 and J◦

1 over all pairs
(I1, J1) ∈ I2 such that I ∼ I1, J ∼ J1, and I1 is transverse to J1. In this case we
say that I1 and J1 realize I · J .

p

Figure 2. Digon removal (p is a puncture)

If I, J ∈ I are transverse to each other, we say that a closed embedded disk D is
a digon between I and J if D is the closure of a component of D\ (I ∪J), and ∂D is
a union of an arc of I and an arc of J . The common ends of these arcs are called the
corners of D. We say that (I ′, J ′) is obtained from (I, J) by a digon removal if it is
obtained by one of the modifications in Figure 2 performed in a neighbourhood of
a digon between I and J one of whose corners is not in Xn. The inverse operation
is called a digon insertion.

The following two lemmas have a lot of analogs in the literature but it is easier
to write (and to read) a proof than to search for an appropriate reference.
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Lemma 4.12. Let I, J ∈ I be transverse to each other. Then a pair of segments
realizing I · J can be obtained from (I, J) by successive digon removals.

Proof. Isotopies of I and of J which transform (I, J) to a pair of segments realizing
I · J can be perturbed into a sequence of digon removals and digon insertions. So,
it is enough to prove the following “diamond lemma”: if (I1, J1) and (I2, J2) are
obtained from (I, J) by two different digon removals, then either the pair (I1∪J1, I1)
is isotopic to (I2 ∪ J2, I2), or (I1, J1) and (I2, J2) admit digon removals with the
same result. We leave it to the reader to check this statement (see Figure 3). �

Figure 3. Cases to consider in the diamond lemma

Lemma 4.13. Let I1, . . . , Im ∈ I. Then there exist I ′1, . . . , I
′
m ∈ I such that Ii ∼ I ′i

for any i = 1, . . . , m, and (I ′i, I
′
j) realizes Ii · Ij for any distinct i, j = 1, . . . , m.

Proof. Induction on the total number of intersection points. If (Ii, Ij) does not
realize Ii · Ij, then by Lemma 4.12 there is a digon D between Ii and Ij. We can
remove D so that the union of all segments is modified only near the corners of D.
Then the total number of intersection points strictly decreases. �

4.3. End of the proof. Now we are ready to complete the proof of Theorem 1 for
n ≥ 5. First note that the injectivity of the restriction homomorphism Aut(Bn) →
Aut(B′

n) is almost evident for any n ≥ 3. Indeed, Let ϕ be an automorphism of Bn

such that ϕ|B′

n
= id. By [5], we have ϕ = Λkβ̃ with β ∈ Bn and k = 0 or 1 (see the

introduction). Hence, for any X ∈ B′
n, we have Λ

kβ̃(X) = X , i. e., β̃(X) = Λk(X).

In particular, for Xi = σ
n(n−1)
i ∆−2, 1 ≤ i < n, we have β̃(Xi) = Xi because

Λ(Xi) = Xi. Hence the CRS of each Xi (which is a round circle containing the
punctures i and i+1) is preserved by β; see Proposition 3.2(b). Hence β commutes

with all σi for i = 1, . . . , n − 1 whence β ∈ Z(Bn), i. e., β̃ = id. Thus ϕ = Λk.
Since Λ|B′

n
6= id, we conclude that k = 0, i. e., ϕ = id.

Now let us prove that the restriction homomorphism Aut(Bn) → Aut(B′
n) is

surjective for n ≥ 5. So, let n ≥ 5 and let ϕ be an automorphism of B′
n. By [15;

Theorem C], we may assume that either µ′ϕ = µ′, or n = 6 and µ′ϕ = νµ′ where
ν is as in §2. However, µ′ϕ 6= νµ′ by Lemma 2.2. So, we assume that µ′ϕ = µ′.
Then Lemma 2.1 implies that the automorphism ϕ∗ of Jab

n induced by ϕ is ± id.
By composing ϕ with Λ if necessary, we may assume that ϕ∗ = id (recall that Λ is
the automorphism of Bn which takes each σi to σ

−1
i ). By Lemma 4.8 we may also

assume that

ϕ(σ1σ
−1
i ) = σ1σ

−1
i for all i = 3, . . . , n− 1 (9)

(otherwise we compose ϕ with γ̃ for the element γ given by Lemma 4.8). Hence

ϕ(σiσ
−1
j ) = σiσ

−1
j and ϕ(σ−1

i σj) = σ−1
i σj for all i, j ∈ {3, . . . , n− 1}. (10)

Indeed, σiσ
−1
j = (σ1σ

−1
i )−1(σ1σ

−1
j ) and σ−1

i σj = (σ1σ
−1
i )(σ1σ

−1
j )−1.
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Let I1, J1, K1 ∈ I be as in Lemma 4.10(c) where we set I = [1, 2], J = [2, 3], and
K = [4, 5]. By combining (8) with (9) for i = 4, we obtain σ1σ

−1
4 = σI1σ

−1
K1

. Hence
I1 ∼ [1, 2] and K1 ∼ [4, 5] by Lemma 4.11. Thus, if we set L = J1, then (7) reads
as

ϕ(σ1σ
−1
2 ) = σ1σ

−1
L and ϕ(σ−1

1 σ2) = σ−1
1 σL. (11)

By (5) for σ2
2σ

−2
4 and by the claim I1 ∪ J1 ∼= I ∪ J of Lemma 4.10(c) we also have

∂L = {2, 3} and L · [1, 2] = 0. (12)

By combining (9) with (11), we obtain

ϕ(σiσ
−1
2 ) = σiσ

−1
L and ϕ(σ−1

i σ2) = σ−1
i σL for all i = 3, . . . , n− 1. (13)

This fact combined with Lemma 4.10(b) and Lemma 4.11 implies

L · [i, i+ 1] = 0 for all i = 4, . . . , n− 1. (14)

Indeed, for any i = 4, . . . , n−1, by Lemma 4.10(b) we have ϕ(σ2σ
−1
i ) = σI1σ

−1
J1

for

some disjoint I1, J1 ∈ I. On the other hand, ϕ(σ2σ
−1
i ) = σLσ

−1
i by (13). Hence

I1 ∼ L and J1 ∼ [i, i+ 1] by Lemma 4.11 whence (14) because I1 ∩ J1 = ∅.
In the proof of the next lemma for any n ≥ 5, we use Lemma 6.1 whose proof is

based on Garside theory. However, for n ≥ 6 we also give another proof which uses
the material of this section only.

Lemma 4.14. L · [3, 4] = 0.

Proof. By Lemma 4.10(a) applied to I = [2, 3] and J = [3, 4], there exist I1, J1 such
that I1 ∪ J1 ∼= [2, 4] (thus I1 · J1 = 0) and ϕ(σ2σ

−1
3 ) = σI1σ

−1
J1

. By combining this

fact with (13) for i = 3, we obtain σLσ
−1
3 = σI1σ

−1
J1

. Hence, by Lemma 6.1, there

exists γ ∈ D such that σγ
L = σI1 and σγ

3 = σJ1
whence γ(I1) ∼ L and γ(J1) ∼ [2, 3]

by Lemma 4.9. Thus L · [3, 4] = I1 · J1 = 0. �

Proof of Lemma 4.14 for n ≥ 6 not using Garside theory. Let n ≥ 6. We apply
the same arguments that we used to obtain (11)–(13) but we set here I = [3, 4],
J = [2, 3], K = [5, 6]. So, let I1, J1, K1 be as in Lemma 4.10(c) for the given choice
of I, J,K. By combining (8) with (10) and (13), we obtain σI1σ

−1
K1

= σ3σ
−1
5 and

σJ1
σ−1
K1

= σLσ
−1
5 . Then Lemma 4.11 yields I1 = [3, 4], J1 = L, and K1 = [5, 6]. By

Lemma 4.10(c), I1 ∪ J1 is homeomorphic to I ∪ J , hence L · [3, 4] = I · J = 0. �

Further, Lemma 4.14 combined with (12) and (14), yields L · [i, i+1] = 0 for any
i ∈ {1} ∪ {3, . . . , n− 1}. By Lemma 4.13 this implies that L ∼ L1 where L1 ∈ I is
such that [1, 2]∪L1∪ [3, n] is homeomorphic to a segment. Hence, up to composing

ϕ with β̃ where β ∈ D, β([1, n]) = [1, 2] ∪ L1 ∪ [3, n], we may assume that σL = σ2
in (9)–(11) and (13). This means that ϕ(σε

i σ
−ε
j ) = σε

i σ
−ε
j for any ε = ±1 and any

i, j ∈ {1, . . . , n− 1}. To complete the proof of Theorem 1 for n ≥ 5, it remains to
note that the elements σε

i σ
−ε
j , ε = ±1, generate B′

n. Indeed, it is shown in [11] (see

also [15; §1.8]) thatB′
n is generated by u = σ2σ

−1
1 , v = σ1σ2σ

−2
1 = (σ−1

2 σ1)(σ2σ
−1
1 ),

w = (σ2σ
−1
1 )(σ3σ

−1
2 ), and ci = σiσ

−1
1 , i = 3, . . . , n− 1.

Remark 4.15. Our proof of Theorem 1 for n ≥ 5 essentially uses Lemma 4.8
which is based on Dyer-Grossman’s result [5] about Aut(Bn). If n ≥ 6, Lemma 4.8
can be replaced by Lemma 6.2 (see below).
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5. The case n = 4

Recall that B′
3 is freely generated by u = σ2σ

−1
1 and t = σ−1

1 σ2 (see the Intro-
duction). The group B′

4 was computed in [11], namely B′
4 = K4 ⋊ B′

3 where K4

is the kernel of the homomorphism B4 → B3, σ1, σ3 7→ σ1, σ2 7→ σ2. The group
K4 is freely generated by c = σ3σ

−1
1 and w = σ2c σ

−1
2 . The action of B′

3 on K4 by
conjugation is given by

ucu−1 = w, uwu−1 = w2c−1w, tct−1 = cw, twt−1 = cw2. (15)

Besides the elements c, w, u, t of B′
4, we consider also

d = ψ2,2(σ
−1
1 ; σ2

1, σ
2
1) = σ3

1σ
3
3∆

−1.

Lemma 5.1.

(a). Z(d2;B′
4) is a semidirect product of infinite cyclic groups 〈c〉 ⋊ 〈d〉 where d

acts on 〈c〉 by dcd−1 = c−1.

(b). 〈c〉 is a characteristic subgroup of Z(d2;B′
4).

Proof. Let G = Z(d2;B′
4).

(a). We have G = Z(d2;B4) ∩ ker e and, by [10; §5], Z(d2;B4) is the semidirect
product 〈σ1, σ3〉⋊ 〈d〉 where d acts on 〈σ1, σ3〉 by σ

d
1 = σ3, σ

d
3 = σ1.

(b). Let x be the image of c by an automorphism of G. Then (a) implies that
x generates a normal subgroup of G and x is not a power of another element of G.
It follows that x ∈ {c, c−1}. �

Lemma 5.2. All the conjugacy classes of B4 which are contained in B′
4 are pre-

sented in Table 1. The corresponding centralizers are isomorphic to the groups
indicated in this table.

Proof. First, note that B′
n is normal in Bn, hence for X ∈ B′

n, the centralizer
Z(X ;B′

n) depends only on the conjugacy class of X in Bn (though this class may
split into several classes in B′

n).
The centralizers in B4 can be computed by a straightforward application of [10;

Propositions 4.1] and Proposition 3.3. In the computation of Z(∆2k+1σ−12k−6
2 )

(which is, by the way, generated by ∆ and σ2), we use the fact that Z(∆
2k+1
3 ;B3) =

〈∆〉. This fact can be derived either from [10; Proposition 3.5] or from the unique-
ness of Garside normal form in B3.

In all the cases except, maybe, the following two ones, the computation of
Z(X ;B′

4) is evident.

1). X = Y k, Y = ψ3,1(σ
−2
1 ; ∆2

3, 1), k 6= 0. The group Z(X ;B4) is generated by
ψ3,1(σ

2
1 ; 1, 1), σ1, and σ2. Since ψ3,1(σ

2
1 ; 1, 1) = Y∆2

3 and ∆3 ∈ B3, we can choose
Y, σ1, σ2 for a generating set, and the result follows because e(Y ) = 0.

2). X = ∆2kσ−6k
1 , k 6= 0. The group Z(X ;B4) is the isomorphic image of

B2,1 × Z under the mapping f : (X,m) 7→ ψ2,1(X ; σm
1 , 1). Hence Z(X ;B′

4) is the
isomorphic image of B2,1 under the mapping X 7→ f(X,−e(f(X, 0))). �

Let ϕ ∈ Aut(B′
4).

Lemma 5.3. ϕ(d) is conjugate in B4 to d±1.

Proof. Let x = ϕ(d2). Since Z(x;B′
4)

∼= Z(d2;B′
4), we see in Table 1 that ϕ(〈d2〉) ⊂

〈d2〉. By the same reasons we have ϕ−1(〈d2〉) ⊂ 〈d2〉, thus ϕ(d2) = d±2 and the
result follows from the uniqueness of roots up to conjugation [9]. �
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Table 1. Centralizers of elements of B′
4;

white/grey region ⇒ the associated braid is periodic/pseudo-Anosov;
in Z(d2k;B4) we mean f : Z → Aut(Z× Z), f(1)(x, y) = (y, x).

CRS X Z(X ;B4) Z(X ;B′
4) Z(X ;B′

4)
ab

1 B4 B′
4

Z2 Z

ψ3,1(σ
−2k
1 ; ∆2k

3 , 1), k 6= 0 B3 × Z B′
3 × Z Z3

Z3 Z2

Z3 Z2

d2k, k 6= 0 Z
2
⋊f Z Z ⋊ Z Z× Z2

d2kcl, l 6∈ {0,±6k} Z3 Z2

d2k+1
Z
2

Z

∆2kσ−12k
1 , k 6= 0 B2,1 × Z B2,1 Z2

∆2k+1σ−12k−6
2 Z2 Z

Z3 Z2

Lemma 5.4. If ϕ(d) = d, then ϕ(c) = c±1.

Proof. If ϕ(d) = d, then ϕ(Z(d2;B′
4)) = Z(d2;B′

4), and we apply Lemma 5.1. �

Lemma 5.5. K4 is a characteristic subgroup in B′
4.

Proof. Lemma 5.3 combined with Lemma 5.4 imply that ϕ(c) is conjugate to c in
B4. Since K4 is the normal closure of c in B4, it follows that ϕ(c) ∈ K4. The same
arguments can be applied to any other automorphism of B′

4, in particular, to ϕσ̃2
whence ϕσ̃2(c) ∈ K4. It remains to recall that ϕσ̃2(c) = ϕ(w) and K4 = 〈c, w〉. �

Let

S1 =

(
1 −1
0 1

)

, S2 =

(
1 0
1 1

)

, T = S−1
1 S2 =

(
2 1
1 1

)

, U = S2S
−1
1 =

(
1 1
1 2

)

.

Lemma 5.6. T and U generate a free subgroup of SL(2;Z).

Proof. It is well known that the correspondence σ1 7→ S1, σ2 7→ S2 defines an
isomorphism B3/〈∆

2〉 → PSL(2,Z), see, e.g., [18; §3.5] (this mapping is also a
specialization of the reduced Burau representation). Since u 7→ U and t 7→ T , the
image of B′

3 = 〈u, t〉 is 〈U, T 〉. Hence 〈U, T 〉 is free. �

Lemma 5.7. If ϕ|K4
= id, then ϕ = id.

Proof. Let ϕ|K4
= id. Since B′

4 = K4 ⋊ B′
3, we may write ϕ(u) = u1a and

ϕ(t) = t1b with u1, t1 ∈ B′
3 and a, b ∈ K4. For x ∈ K4, we have ϕũ(x) =

ϕ(uxu−1) = u1axa
−1u−1

1 = ũ1ã(x). Since ũ(x) ∈ K4 and ϕ|K4
= id, we conclude

that ũ(x) = ϕũ(x) = ũ1ã(x). Similarly, t̃(x) = t̃1b̃(x). Thus,

ũ |K4
= ũ1b̃ |K4

and t̃ |K4
= t̃1ã |K4

(16)
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Consider the homomorphism π : B′
4 → Aut(Kab

4 ) = GL(2,Z), x 7→ (x̃)∗; here
we identify Aut(Kab

4 ) with GL(2,Z) by choosing the images of c and w as a base of
Kab

4 . It is clear that π(a) = π(b) = 1 and it follows from (15) that π(tu−1) = T and
π(t) = U . Thus, by Lemma 5.6, the restriction of π to B′

3 is injective. It follows
from (16) that π(u1) = π(u) and π(t1) = π(t). Hence u1 = u and t1 = t by the

injectivity of π. Then it follows from (16) that ã |K4
= b̃ |K4

= id. Since K4 is free,
its center is trivial, and we obtain a = b = 1. Thus ϕ = id. �

Proof of Theorem 1 for n = 4. The injectivity of the restriction homomorphism
Aut(B4) → Aut(B′

4) is already proven in the beginning of §4.3, so let us prove the
surjectivity. Let ϕ ∈ Aut(B′

4). By Lemma 5.3, we may assume that ϕ(d) = d±1.
Then, by Lemma 5.4, we may assume that ϕ(c) = c±1. Since c∆ = c−1, we may
further assume that ϕ(c) = c. By Lemma 5.5, ϕ(c) and ϕ(w) is a free base of K4.
Since ϕ(c) = c, it follows that ϕ(w) = cpw±1cq, p, q ∈ Z, see [18; §3.5, Problem
3]. We have σ̃1(c) = c and σ̃1(w) = 1231̄2̄1̄ = 1232̄1̄2̄ = 13̄231̄2̄ = c−1w. (here
1, 1̄, 2, . . . stand for σ1, σ

−1
1 , σ2, . . . ). Thus, by composing ϕ with a power of c̃ and

a power of σ̃1 if necessary, we may assume that ϕ(w) = w±1. For Φ = Λσ̃1σ̃3∆̃,
we have Φ(c) = c and Φ(w) = 1̄3̄2̄31̄213 = 1̄23̄2̄212̄3 = 1̄213̄2̄3 = 212̄23̄2̄ = w−1

hence, by composing ϕ with Φ if necessary, we may assume that ϕ(c) = c and
ϕ(w) = w, thus ϕ|K4

= id and the result follows from Lemma 5.7. �

6. Appendix. Garside-theoretic lemmas

Here, using Garside theory, we prove two statements one of which (Lemma 6.1)
is used only in the proof of Theorem 1 for n = 5, see the proofs of Lemma 4.14,
and the other one (Lemma 6.2) can be used in the proof of Theorem 1 for n ≥ 6
instead of Dyer-Grossman theorem, see Remark 4.15.

Let n ≥ 3 and let I and σI ∈ Bn for I ∈ I be as in §4.2.

Lemma 6.1. Let k, l ∈ Z \ {0} and I, J ∈ I. Suppose that σk
Iσ

l
J is conjugate to

σk
1σ

l
2. Then there exists u ∈ Bn such that σu

I = σ1 and σu
J = σ2, in particular,

I · J = 0.

Proof. It follows from Corollary 6.4 that there exists u ∈ Bn and p, q, r, s ∈ Z∩[1, n]
such that σu

I = σpq and σu
J = σrs, This means that σu

I = σI1 and σu
J = σJ1

where
I1, J1 ∈ I satisfy one of the following conditions:

(a) I1 ∩ J1 is a common endpoint of I1 and J1;
(b) Card(∂I1 ∪ ∂J1) = 4.

It is enough to exclude Case (b). Indeed, in this case β = σk
1σ

l
2 cannot be conjugate

to β1 = σk
I1
σl
J1
, because lki,j(β

2) = 0 for i 6∈ {1, 2, 3} and any j whereas lkp,q(β
2
1) =

k and lkr,s(β
2
1) = l for pairwise distinct p, q, r, s. �

Lemma 6.2. Let X and Y be two distinct conjugates of σ1 in Bn, n ≥ 3. If
XYX = Y XY , then there exists u ∈ Bn such that Xu = σ1 and Y u = σ2.

Proof. Follows from Lemma 6.5. �

When speaking of Garside structures on groups, we use the terminology and
notation from [21]. Let (G,P, δ) be a symmetric homogeneous square-free Garside
structure with set of atoms A (for example, Birman-Ko-Lee’s Garside structure [3]
on the braid group, i. e., G = Bn, A = {σij}1≤i<j≤n, P = {x1 . . . xm | xi ∈ A, m ≥
0}, δ = σn−1σn−2 . . . σ2σ1).
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For a, b ∈ G we set bG = {ba | a ∈ G}, and we write a ∼ b if a ∈ bG and a 4 b if
a−1b ∈ P. We define the set of simple elements of G as [1, δ] = {s ∈ G | 1 4 s 4 δ}.
For X ∈ G, the canonical length of X (denoted by ℓ(X)) is the minimal r such that
X = δpA1 . . . Ar for some p ∈ Z, A1, . . . , Ar ∈ [1, δ] \ {1}. The summit length of X
is defined as ℓs(X) = min{ℓ(Y ) | Y ∈ XG}. We denote the cyclic sliding of X and
the set of sliding circuits of X by s(X) and SC(X) respectively (these notions were
introduced in [8], see also [21; Definition 1.12]).

The following result was, in a sense, proven in [21] without stating it explicitly.

Theorem 6.3. Let k, l ∈ Z \ {0}, x, y ∈ A, and let Z = XY where X ∼ xk and
Y ∼ yl. Then there exists u ∈ G such that one of the following possibilities holds:

(i) Xu = xk1 and Y u = yl1 with x1 ∈ xG ∩ A and y1 ∈ yG ∩ A, or
(ii) ℓ(Zu) = ℓ(Xu) + ℓ(Y u) and Zu ∈ SC(Z).

Proof. If the statement is true for (k, l), then it is true for (−k,−l), therefore we
may assume that l > 0. Then the proof of [21; Corollary 3.5] may be repeated
almost word by word in our setting if we define Qm as {Zu | u ∈ Um} where
Um = {u | ℓ(Xu) ≤ 2m + |k|, ℓ(Y u) = l}. Namely, let m be minimal under the
assumption that Qm 6= ∅. If m = 0, then (i) occurs. If m > 0, then, similarly to
[21; Lemma 3.3] we show that if u ∈ Um, then ℓ(Zu) = ℓ(Xu)+ℓ(Y u), and similarly
to [21; Lemma 3.4] we show that s(Qm) ⊂ Qm. whence Qm ∩ SC(Z) 6= ∅ which
implies (ii). �

Corollary 6.4. With the hypothesis of Theorem 6.3, assume that Z is conjugate
to xkyl. Then there exists u ∈ G such that (i) holds.

Proof. Suppose that (ii) occurs. Since ℓ(Z) = ℓs(Z) ≤ ℓ(xkyl) ≤ |k|+ |l|, we have
ℓ(Xu)+ ℓ(Y u) ≤ |k|+ |l|. By combining this fact with ℓ(Xu) ≥ |k| and ℓ(Y u) ≥ |l|,
we obtain ℓ(Xu) = |k| and ℓ(Y u) = |l|, and the result follows from [21; Theorem
1a]. �

Lemma 6.5. Let X ∼ x and Y ∼ y where x, y ∈ A. If XYX = Y XY , then there
exists u ∈ G such that Xu, Y u ∈ A.

Proof. Without loss of generality we may assume that Y = y ∈ A. By [21; Theorem
1a], the left normal form ofX is δ−p·Ap·. . .·A1·x·B1·. . .·Bp where Ai, Bi ∈ [1, δ]\{1},
Aiδ

i−1Bi = δi for i = 1, . . . , p. By symmetry, the right normal form of X is
Cp · . . . · C1 · x · D1 · . . . · Dp · δ−p again with Ci, Di ∈ [1, δ] \ {1}, Ciδ

i−1Di = δi

for i = 1, . . . , p. We have sup yXy ≤ 2 sup y + supX = 3 + p. Thus, if p > 0, then
supX + sup y + supX = 3 + 2p > 3 + p = sup xY x = supY xY . Then, by [22;
Lemma 2.1b], either Bpy or yCp is a simple element. Without loss of generality we
may assume that Bpy ∈ [1, δ].

Since the Garside structure is symmetric and Bpy is simple, there exists an atom
y1 such that Bpy = y1Bp. Thus, for v = B−1

p , we have yv ∈ A and the left normal

form of Xv is δp−1 ·Ap−1 · . . . ·A1 · x ·B1 · . . . ·Bp−1. Therefore, the induction on p
yields Xu = x and Y u = z ∈ A for u = (B1 . . .Bp)

−1. �

Remark 6.6. (Compare with [4, 14]). Lemma 6.5 admits the following generali-
zation which can be proven using the results and methods of [21, 22]. Let X ∼ x
and Y ∼ y for x, y ∈ A. Then either X and Y generate a free subgroup of G,
or there exists u ∈ G such that Xu, Y u ∈ A. In the latter case, the subgroup
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generated by X, Y is either free or isomorphic to Artin group of type I2(p), p ≥ 2.
In particular, for G = Bn, if X and Y are two conjugates of σ1, then either X and

Y generate a free subgroup of Bn, or there exists u ∈ Bn such that Xu = σ1 and

Y u = σi for some i. Maybe, I will write a proof of this fact in a future paper.

Acknowledgement. I am grateful to the referee for many very useful remarks.
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9. J. González-Meneses, The nth root of a braid is unique up conjugacy, Algebraic and Geometric
Topology 3 (2003), 1103–1118.
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fläche, Math. Annalen 80 (1919), 3–7.

14. C. Leininger, D. Margalit, Two-generator subgroups of the pure braid group, Geom. Dedicata
147 (2010), 107–113.

15. V. Lin, Braids and permutations, arXiv:math/0404528.

16. V. Lin, Some problems that I would like to see solved, Abstract of a talk. Technion, 2015,
http://www2.math.technion.ac.il/̃ pincho/Lin/Abstracts.pdf.

17. K. Magaard, G. Malle, P.H. Tiep, Irreducibility of tensor squares, symmetric squares and
alternating squares, Pac. J. Math. 202 (2002), 379-427.

18. W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: presentations of groups in

terms of generators and relations, Interscience Publ., 1966.
19. S. Manfredini, Some subgroups of Artins braid group. Special issue on braid groups and related

topics (Jerusalem, 1995), Topology Appl. 78 (1997), 123–142.

20. S.Yu. Orevkov, Quasipositivity test via unitary representations of braid groups and its appli-
cations to real algebraic curves, J. Knot Theory Ramifications 10 (2001), 1005–1023.

21. S.Yu. Orevkov, Algorithmic recognition of quasipositive braids of algebraic length two, J. of
Algebra 423 (2015), 1080–1108.

22. S.Yu. Orevkov, Algorithmic recognition of quasipositive 4-braids of algebraic length three,

Groups, Complexity, Cryptology 7 (2015), no. 2, 157–173.

IMT, Univ. Paul Sabatier, Toulouse, France; Steklov Math. Inst., Moscow, Russia


