AUTOMORPHISM GROUP OF THE COMMUTATOR
SUBGROUP OF THE BRAID GROUP

S. Yu. OREVKOV

INTRODUCTION

Let B,, be the braid group with n strings. It is generated by o1, ...,0,_1 (called
standard or Artin generators) subject to the relations

oi0j = ojo; for |i — j| > 1; oi0j0; = o0jo;0; for i — j| = 1.

Let B!, be the commutator subgroup of B,,. Vladimir Lin [16] posed a problem to
compute the group of automorphisms of B . In this paper we solve this problem.

Theorem 1. If n > 4, then the restriction mapping Aut(B,) — Aut(B)) is an
1somorphism.

Dyer and Grossman [5] proved that Out(B,,) & Zs for any n. The only nontrivial
element of Out(B,,) corresponds to the automorphism A defined by o; + o; ! for
all i = 1,...,n — 1. The center of B, is generated by A? where A = A, =
H;:ll ;:11 o; is Garside’s half-twist. Thus Aut(B,,) = (B,,/(A?)) x Zy. For an
element g of a group, we denote the inner automorphism z ++ gzg~! by g.

Corollary 1. Ifn > 4, then Out(By,) is isomorphic to the dihedral group D, (,—1) =
Lp(n—1) X La. It is generated by A and o1 subject to the defining relations A% =

51D = A5 AGy = id.

For n = 3, the situation is different. It is proven in [11] that B} is a free group
of rank two generated by u = o20; ' and t = o] 'oy (in fact, the free base of Bj
considered in [11] is u, v with v = t~1u). So, its automorphism group is well-known
(see [18; §3.5, Theorem N4]). In particular (see [18; Corollary N4|), there is an
exact sequence

1 — By — Aut(Bj) — GL(2,Z) — 1

where ((z) = & and 7 takes each automorphism of Bj to the induced automorphism
of the abelianization of Bj (which we identify with Z? by choosing the images of
w and t as a base). We have d1(u) = tlu, da2(u) = ut™t, 61(t) = 52(t) = u,
Alu) =t A(t) = u~! whence

W(&l):ﬂ(52):(_11 (1)) W(A):<_01 _01).

Thus, again (as in the case n > 4) the image of Aut(B3) in Out(B%) = GL(2,Z) is
isomorphic to Dg but this time it is not the whole group Out(B%).

Typeset by ApS-TEX



2 S. YU. OREVKOV

Let S,, be the symmetric group and A, its alternating subgroup. Let pu = u, :
B,, — S,, be the homomorphism which takes o; to the transposition (i,7 4 1) and
let p/ be the restriction of p to B] . Then P,, = ker pu,, is the group of pure braids.
Let J,, = B/, NP,, = ker ii/. Note that the image of 1/ is A,,. The following diagram
commutes where the rows are exact sequences and all the unlabeled arrows (except
“— 1”) are inclusions:

1 — J, — B, Y A, — 1
| | | 1
! ! ! D
1 — P, — B, 5 S, — 1
Recall that a subgroup of a group G is called characteristic if it is invariant under
each automorphism of G. Lin proved in [15; Theorem D] that J,, is a characteristic

subgroup of B/, for n > 5 (note that this fact is used in our proof of Theorem 1 for
n > 5). By Theorem 1, this result extends to the case n = 4.

Corollary 2. J4 is a characteristic subgroup of B).

Note that J3 is not a characteristic subgroup of Bj. Indeed, let ¢ € Aut(Bj) be
defined by u + u, t — ut. Then ut € J3 whereas p~!(ut) =t ¢ Js.

1. PRELIMINARIES

Let e : B,, — Z be the homomorphism defined by e(o;) =1 for all i =1,...,n.
Then we have B] = kere.

1.1. Groups. For a group G, we denote its unit element by 1, the center by Z(G),
the commutator subgroup by G’, the second commutator subgroup (G')" by G”, and
the abelianization G/G’ by G*°*. We denote z~'yz by 3® (thus Z(y®) = y) and we
denote the commutator zyx~ty~! by [z,y]. For ¢ € G, we denote the centralizer of
gin G by Z(g,G). If H is a subgroup of G, then, evidently, Z(g, H) = Z(g9,G)N H.

Lemma 1.1. Let G be a group generated by a set A. Assume that there exists
a homomorphism e : G — Z such that e(A) = {1}. Let € be the induced homo-
morphism G®® — Z. Let T' be the graph such that the set of vertices is A and two
vertices a and b are connected by an edge when [a,b] = 1.

If the graph T is connected, then (kere)®® = kere.

Proof. Let K = kere. Let us show that G’ € K'. Since K’ is normal in G, and G’
is the normal closure of the subgroup generated by [a,b], a,b € A, it is enough to
show that [a,b] € K’ for any a,b € A.

We define a relation ~ on A by setting a ~ b if [a,b] € K’. Since I is connected,
it remains to note that this relation is transitive. Indeed, if a ~ b ~ ¢, then
la, c] = [a, b][bab™2, beb2][b, c] € K.

Thus G’ C K’ whence G’ = K’ and we obtain K** = K/K' = K/G' = kere. [

Remark 1.2. The fact that B] = B/, for n > 5 proven by Gorin and Lin [11]
(see also [15; Remark 1.10]) is an immediate corollary of Lemma 1.1. Indeed, if we
set G = B, and A = {0;}'"", then I is connected whence B/, /B! = (kere)®® =
keré = {1}. In the same way we obtain G” = G’ when G is an Artin group of type
Dn (’I’L Z 5), EG, E7, Eg, F4, or H4.
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1.2. Pure braids. Recall that P,, is generated by the braids 01-2]-, 1<i< g <n,
where 0;; = 0j; = 0j_1 .. .ai+1aiai_+11 .. .aj__ll. For a pure braid X, let us denote
the linking number of the i-th and j-th strings by lk;;(X). If X is presented by a
diagram with under- and over-crossings, then lk;;(X) is the half-sum of the signs
of those crossings where the i-th and j-th strings cross. Let A;; be the image of afj
in P2°. We have, evidently,

1k (X) =1k; ;(X7), for any X € P,,, v € B, (2)

v(1),7(4)
(here v(i) = p(7y)(¢) which is coherent with the interpretation of B,, with a mapping
class group; see §3.1).

It is well known that P2° is freely generated by {A;;}1<i<j<n. This fact is
usually derived from Artin’s presentation of P, (see [1; Theorem 18]) but it also
admits a very simple self-contained proof based on the linking numbers. Namely,
let L be the free abelian group with a free base {a;;}1<i<j<n. Then it is immediate
to check that the mapping P,, — L, X — ZKJ. Ik; ;(X)a;i; is a homomorphism
and that the induced homomorphism P%" — L is the inverse of L — P2, a;;

n

A;j. In particular, we see that the quotient map P,, — P2 is given by X
Zi<j lki,j (X)Aij-

Lemma 1.3. Ifn > 5, then the mapping J,, — P2, X — > 1k;;(X)A;; defines
an isomorphism J8° = {3z, A | S xi; = 0} C POP.

Proof. Follows from Lemma 1.1 with P,,, e|p,_, and {U?j}lgi<]‘§n standing for G,
e, and A respectively. [

So, when n > 5, we identify J%° with its image in P°. The following proposition
will not be used in the proof of Theorem 1.

Proposition 1.4. (a). J% is a free abelian group and

rkJab:(n)+{ 17 n€{374}7
" 2 —1, otherwise.

(b). E = {ut, tu,u3, 3} and £, = E3U{c%,w?, (cw)?} are free bases of J5° and J§°
respectively; u,t,w, c are defined in the beginning of Section 5.

(Here and below Z stands for the image of z under the quotient map J,, — J2°.)

(c). Let p, : J8° — P8° n =3 4, be induced by the composition J,, — P,, — PP,
Then
imp, = {Z xij A | inj =0}, ker p,, = (u®, ).

Proof. (a). The result is obvious for n = 2 and it follows from Lemma 1.3 for n > 5.
For n = 3, the result follows from the following argument proposed by the referee.
We have Bj = 7 (T') where I is the bouquet S* Vv S1. Since |B5/J3| = 3 (see (1)),

we have J$® = H;(T") where I' — T is a connected 3-fold covering. Then the Euler
characteristic of T is x(I') = 3x(T") = —3 whence rk H,(T") = 4.

The group J$° can be easily computed by the Reidemeister—Schreier method
either as ker 1 using Gorin and Lin’s [11] presentation for B}, or as ker(e|p,) using

Artin’s presentation [1] of P4. Here is the GAP code for the first method:
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FIGURE 1. The graphs T and T in the proof of Proposition 1.4

:=FreeGroup(4); u:=f.1; v:=f.2; w:=f.3; c:=f.4;
:=f/[uxc/u/w, wxw/u/wxc/w/w, vxc/v/wkc, vxw/v/wkxcxc/wkxc/wxc/wkxc];
i=g.1; v:=g.2; w:=g.3; c:=g.4; # group B’ (4) according to [11]
:=SymmetricGroup(4); t1:=(1,2); t2:=(2,3); t3:=(3,4);
:=t2%t1l; V:i=tlxt2; W:=t2%t3%tl1*t2; C:=t3*t1l; # U=mu(u),V=mu(v),...
mu : =GroupHomomorphismByImages(g,s, [u,v,w,c], [U,V,W,C]);
AbelianInvariants(Kernel (mu)); # should be [0,0,0,0,0,0,0]

(b) for n = 3. In Figure 1 we show the graphs I and T discussed above. We see
that the loops in T represented by the elements of £ form a base of H; (f‘)

o ®n £ 0@ Hh

(c) for n = 3. The claim about im p3 is evident and a computation of the linking
numbers shows that p3(i®) = p3(#3) = 0.

(b,c) for n = 4. The claim about imp, is evident and a computation of the
linking numbers shows that ps(E4 \ {#3,4}) is a base of imp,. One can check
that the homomorphism B, — B} /K, = B} maps J, to J3. Hence it induces a
homomorphism J§° — J5° which takes @ and 2 of J§° to @3 and 2 of J3°. Hence
rk(ker py) > rk(@3, %) = 2. Since rkJ4°* = 7 and rk(imp,) = 5, we conclude that
kerpy, = (u,t3). O

Remark 1.5. Note that the braid closures of both u* and t> are Borromean links.
So, maybe, it could be interesting to study how the considered base of J§° is related
to Milnor’s p-invariant.

1.3. Mixed braid groups and the cabling map. Let n > 1 and m =
(my,...,mg), mi+---+mg =n, my €2Z, m; > 0.

The mized braid group By (see [19], [20], [10]) is defined as p=1(S,;) where Sy
is the stabilizer of the following vector under the natural action of S,, on Z™:

We emphasize two particular cases: By . 1 is the pure braid group and B, _1; is
the Artin group corresponding to the Coxeter group of type B, _1.

We define the cabling map 1 = 3 : B X (B, X -+ x By, ) = By, by sending
(X; X1, ..., Xk) to the braid obtained by replacing each strand of X by a geometric
braid representing X; embedded into a small tubular neighbourhood of this strand.

Note that 1) is not a homomorphism but its restriction to Py x [, By, is. We
have ¥(Py x [[; Pm,) C Py, and ¢ (Py x [, Bim,) C Bs.

2. J% AS AN A,,-MODULE AND ITS AUTOMORPHISMS

Let n > 5. As we mentioned already, by [15; Theorem D], J,, is a characteristic
subgroup of B/ | i.e., J,, is invariant under any automorphism of B/ (in fact a
stronger statement is proven in [15]).
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Lemma 2.1. Let p € Aut(B)) be such that ' = p’. Let p, be the automorphism
of J8° induced by |3, . Then o, = +id.

Proof. The exact sequence 1 — J,, — B/, — A,, — 1 (see (1)) defines an action
of A, on J by conjugation. The condition p/¢p = u’ implies that o, is A,,-
equivariant. Let V be a complex vector space with base eq,...,e, endowed with
the natural action of S,, induced by the action on the base. We identify P2° with
its image in the symmetric square Sym?V by the homomorphism Aij — eiej.
Then, by Lemma 1.3, we may identify J%°* with {>" c;je;e; | > cij = 0}. These
identifications are compatible with the action of A,,.

For a partition A = (A1,..., \;), we denote the corresponding irreducible repre-
sentation of S,, over C (the CS,,-module) by V), see, e.g., [7; §4]. For an element
v of a CS,,-module, let (v)cs, be the CS,-submodule generated by v. We set
eg =€+ +en U= (e)cs, = Ceg, and U+ = (e; — ea)cs,. Consider the
following CS,,-submodules of Sym? V:

Wo = (ef)cs,, Wi = (w)cs, = Cw where w = Zeiej,
i<j
Wa = ((e1 —e2)(es+ - +en))cs,, Ws=((e1—ez2)(es —es))cs,,.

We have Sym* V = Sym?*(U @ U+) = Sym* U @ Sym* U+ @ (U @ U*) and U+ =
Vo—1,1 (that is Vy for A = (n — 1,1)). It is known (see [17; Lemma 2.1} or [7;
Exercise 4.19]) that Sym? Vicin 2UB V1@ V022V B V,_25. Thus

Sym’V=VaV oV, oo (3)

Let W = J% @ C. It is clear that Sym?V = Wy & W, @ W. Since Wy = V and
W, = U, we obtain W = U+ @ Vp—2,2 by cancelling out U @ V in (3). Note that
(e1—ez)(es+---+e,) = (e1—e2)(eg—(e1+e2)) = (e1 —ea)eg — (€3 —e3), hence the
mapping e; — e; — (e; — ej)eg — (e — €3) induces an isomorphism of CS,,-modules
U+t = W,. The identity

(n—2)(e; —ez)es = (e1 —ea)(es+ -+ +e,) + Z(el —ez)(es —€;) (4)

shows that Wy + W5 = ((e1 — e2)es)cs, = W. One easily checks that Wa and W3
are orthogonal to each other with respect to the scalar product on W+ W3 for which
{eie;}i,; is an orthonormal basis. Therefore W = W5 @ W3 is the decomposition of
W into irreducible factors.

We have Wy = V,,_11 and W3 = V,,_5 5. Since the corresponding Young di-
agrams are not symmetric, Wy and Wj are irreducible as CA,,-modules (see [7;
§5.1]). Since dim Wy # dim W3 and ¢, is A,-equivariant, Schur’s lemma implies
that ¢.|w,, k = 2,3, is multiplication by a constant c¢. Moreover, since ¢, is an
automorphism of J° (a discrete subgroup), we have ¢, = 1. If c3 = —cp = +1,
then (4) contradicts the fact that ¢.((e; — ez)es) € Jeb. O

Let v € Aut(Sg) be defined by (12) — (12)(34)(56), (123456) — (123)(45). It is
well known that v represents the only nontrivial element of Out(Sg).
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Lemma 2.2. Let ¢ € Aut(B§). Then p/¢ # vi'.

Proof. Given a commutative ring k and a kAg-module V' corresponding to a rep-
resentation p : Ag — GL(V, k), we denote the kAg-module corresponding to the
representation pv by v*(V'). It is clear that v* is a covariant functor which preserves
direct sums (hence irreducibility), tensor products, symmetric powers etc.

Suppose that p'¢ = vy’ As in the proof of Lemma 2.1, we endow Jg° with the
action of Ag. The condition /¢ = vy’ implies that ¢ induces an isomorphism of
Ag-modules J§° = v*(J2%). Let us show that these modules are not isomorphic.

We have JE*@C = V5 1 &V, 5 (see the proof of Lemma 2.1). Hence v*(J&°)@C =
v*(Vs1) @ v*(Vaz). We have dimVs; = 5 # 9 = dimVj 9, thus, to complete
the proof, it is enough to show that V51 % v*(V51) (note that Vio = v*(Vy2)).
Indeed, v exchanges the conjugacy classes of the permutations a = (123) and b =
(123)(456), hence we have x(a) =2 # —1 = x(b) = xv(a) where x and xv are the
characters of Ag corresponding to V51 and to v* (Vs 1) respectively. [

3. CENTRALIZERS OF PURE BRAIDS

Centralizers of braids are computed by Gonzélez-Meneses and Wiest [10]. For
pure braids the answer is much simpler and it can be easily obtained as a special-
ization of the results of [10].

3.1. Nielsen-Thurston trichotomy. The following definitions and facts we re-
produce from [10; Section 2] where they are taken from different sources, mostly
from the book [12] which can be also used as a general introduction to the subject.

Let D be a disk in C that contains X,, = {1,...,n}. The elements of X,
will be called punctures. It is well known that B, can be identified with the
mapping class group D/Dy where D is the group of diffeomorphisms g : D — D
such that §|sp = idsp and B(X,,) = X,,, and Dy is the connected component of the
identity. Sometimes, by abuse of notation, we shall not distinguish between braids
and elements of D. For A, B C D, we write A ~ B if 5y(A) = B for some [y € Dy.

An embedded circle in D\ X, is called an essential curve if it encircles more
than one but less than n points of X,,. A multicurve in D\ X,, is a disjoint union
of embedded circles. It is called essential if all its components are essential.

Let 8 € D. We say that a multicurve C' in D\ X, is stabilized or preserved by
if 5(C') ~ C (the components of C' may be permuted by /). The braid represented
by B is called reducible if 3 stabilizes some essential multicurve.

A braid f is called periodic if some power of 8 belongs to Z(B,,). If a braid is
neither periodic nor reducible, then it is called pseudo-Anosov; see [12].

3.2. Canonical reduction systems. Tubular and interior braids. An essen-
tial curve C'is called a reduction curve for a braid £ if it is stabilized by some power
of 8 and any other curve stabilized by some power of 3 is isotopic in D \ X,, to a
curve disjoint from C. An essential multicurve is called a canonical reduction sys-
tem (CRS) for g if its components represent all isotopy classes of reduction curves
for B (each class being represented once). It is known that there exists a canonical
reduction system for any braid and that it is unique up to isotopy, see [2], [12; §7],
[10; §2]. If a braid is periodic or pseudo-Anosov, the CRS is empty. The following
properties of CRS are immediate consequences of their existence and uniqueness.

Proposition 3.1. Let C be the CRS for B € D. Then C is the CRS for 3~1. O
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Proposition 3.2. Let 3,7 C D and let C be the CRS for 3. Then v~(C) is the
CRS for p7. O

Proposition 3.3. Let 3,7 € D represent commuting braids. Then:
(a). v preserves the CRS of 3.

(b). If v is pure, then it preserves each reduction curve of 3.

Proof. (a). Follows from Proposition 3.2.
(b). Follows from (a). O

We say that a braid is in almost regular form if its CRS is a union of round
circles (‘almost’ because the definition of regular form in [10] includes some more
conditions which we do not need here). By Proposition 3.2 any braid is conjugate
to a braid in almost regular form.

Let 8 be an element of D which represents a reducible braid in almost regular
form and let C be a CRS for . Without loss of generality we may assume that
B(C) = C and C is a union of round circles. Let R = R’U R’ where R’ is the union
of the outermost components of C and R” is the union of small circles around the
points of X,, not encircled by curves from R’. Let Ci,...,C}) be the connected
components of R numbered from left to right.

Recall that the geometric braid (a union of strings in the cylinder [0, 1] x D)
is obtained from f as follows. Let {8; : D — D}¢[p,1) be an isotopy such that
Bo = B, f1 = idp, and Bi|gp = idsp for any ¢. Then the i-th string of the geometric
braid is the graph of the mapping ¢t — (i) and the whole geometric braid is
U, ({t} x Be(Xy)). Similarly, starting from the circles C;, we define the embedded
cylinders (tubes) U, ({t} x B:(Cy)), i =1,...,k.

Let m; be the number of punctures encircled by C;. Following [10; §5.1], we
define the interior braid f;) € By, i« = 1,...,k, as the element of B,,, corre-
sponding to the union of strings contained in the i-th tube, and we define the
tubular braid 3 of B as the braid obtained by shrinking each tube to a single string.
Let m = (mq,...,my) and let ¢,5 be the cabling map (see §1.3). Then we have
B =858y, -, Biw)-

Recall that C' is a CRS for 8. Let a be an open connected subset of D such
that da C C U 0D. With each such a we associate the braid which is the union
of the strings of 3 starting at a and the strings obtained by shrinking the tubes
corresponding to the interior components of da. We denote this braid by 3[,. For

example, if a is the exterior component of D \ C, then S| = B
3.3. Periodic and reducible pure braids. The structure of the centralizers of
periodic and reducible braids becomes extremely simple if we restrict our attention

to pure braids only. The following fact immediately follows from a result due to
Eilenberg [6] and Kerékjart6 [13] (see [10; Lemma 3.1]).

Proposition 3.4. A pure braid is periodic if and only if it is a power of A?. O
The following fact can be considered as a specialization of the results of [10].

Proposition 3.5. Let 8 be a pure n-braid.
(a). If B is periodic, then Z(5;P,) = P,.

(b). If B is pseudo-Anosov, then Z(03;P,,) is the free abelian group generated by
A? and some pseudo-Anosov braid which may or may not coincide with f3.
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(c). If B is reducible non-periodic and in almost reqular form, then 1z maps
Z(B;Pr) X Z(B)s Py ) X+ - - X Z(Bi); Pomy,) isomorphically onto Z(B; Py,) (see §3.2).

Proof. (a). Follows from Proposition 3.4.

(b). Follows from [10; Proposition 4.1].

(c). (See also the proof of [10; Proposition 5.17]). By Proposition 3.3 we have
Z(B;Py) C Y (Pr X [[Pm,)- The injectivity of the considered mapping and the
fact that ¢~' (Z(8; P,)) is as stated, are immediate consequences from the following
observation: if two geometric braids are isotopic, then the braids obtained from
them by removal of some strings are isotopic as well. [J

Lemma 3.6. Let m = (mqy,...,my), my + -+ mg = n, and p € Z. Then
Y (AL AP AR )= AP,

Proof. The result immediately follows from the geometric characterization of A as
a braid all whose strings lie on a half-twisted band. Note that the sub-bands of
the half-twisted band arising from consecutive strings also consist of half-twisted
bands. [

If X is a periodic pure braid, then X = A%? d € Z, by Proposition 3.4. In this
case we set d = deg X, the degree of X. It is clear that lk;;(X) = d for any i < j.

Lemma 3.7. Let C' be the CRS for a reducible pure braid represented by 5 € D.
Let a and b be two neighboring components of D\ C and let X = B and Y = By,
be the braids associated to a and b (see the end of §3.2). Suppose that each of X
and Y s periodic. Then deg X # degY .

Proof. Suppose that deg X = degy = p, i. e., X = Aip and Y = A?P for some
k,m > 2. Let C; be the component of C' that separates a and b. We may assume
that a is exterior to C;. Let ¢ be the closure of ¢ Ub. Then we have

6[0] - ¢1,...,1,m,1,...,1(Aip; 17 ey ]-7 Agg: yeeey ]-) = Ai}—?i—m—l

by Lemma 3.6. Hence |, preserves any closed curve, in particular a curve which
separates some two strings of ;) and encircles a string of 5 not belonging to Sy
Such a curve is not isotopic to any curve disjoint from C;. This fact contradicts the
condition that C; is a reduction curve. O

Lemma 3.8. Z(0305%J,) 2P, 2 x Z forn > 4.

Proof. The CRS for 0303 % consists of two round circles: one of them encircles the
punctures 1 and 2, and the other one encircles the punctures 3 and 4. Then Proposi-
tion 3.4(c) implies that ©» = 3 : Pp_o X (PoxPsy) — Py, m = (2,2,1,,_4), is injec-
tive and im ) = Z(0?05 %; P,,). One easily checks that the mapping P,,_» x Py —
Z(0205%,3,), (X,0F) = ¢(X;0F,07™), m = e(p(X;1,1)) + k is an isomorphism.
Indeed, any element Y of Z(07032;P,,) is of the form Y = o (X; 0¥ 07 ™) and the
condition e(Y) = 0 becomes e(¢(X;1,1))+k—m=0. O

Lemma 3.9. Let 8 be a reducible n-braid in almost reqular form. Suppose that

~

B € Py and that the B ’s (see §3.2) are pairwise non-conjugate. Then 1z maps
Z(B; Pi) X Z(Bp); Bimy) X -+ X Z(B); Bi,,) isomorphically onto Z(3; By,)

Proof. See the proof of Proposition 3.5(c). O



AUTOMORPHISM GROUP OF B, 9

4. PROOF OF THEOREM 1 FOR n > 5

4.1. Invariance of the conjugacy class of 0103_1. Suppose that n > 5. Let
¢ € Aut(B!) be such that p'¢ = /' and ¢, = id where @, is as in Lemma 2.1.
Then we have

ki ;(X) =1k (¢(X)), XeJ, 1<i<j<n. (5)

Let 7 = 92 n—2(1; a§”‘2>(”‘3), A~2%). We have 7 € J,,.

Lemma 4.1. Let X be 07052 or 7. Let a € D represent p(X). Let C be a simple
closed curve preserved by . Suppose that C encircles at least two punctures. Then
the punctures 1 and 2 are in the same component of D\ C.

Proof. Suppose that 1 and 2 are separated by C. Without loss of generality we
may assume that 1 is outside C and 2 is inside C'. Let p be another puncture inside
C. Then we have lk; ,(a) = 1k 2(a) which contradicts (5) because lk; o(X) # 0
and lk; ,(X) =0 for any p #2. O

Lemma 4.2. Let o € D represent cp(a%agg). Then the CRS for « is invariant
under some element of D which exchanges {1,2} and {3,4}.

1

Proof. Follows from Propositions 3.1 and 3.2 because « is conjugate to o~ and

the conjugating element of D exchanges {1,2} and {3,4}. O

Lemma 4.3. Let a € D represent o(7). Let C' be a component of the CRS for «.
Then C' cannot separate © and j for all 3 <1 < j <n.

Proof. Let 8 € D represent cp(afjal_ 2). Since a and 8 commute, 3 preserves C' by
Proposition 3.3(b). Hence C' cannot separate i and j by Lemma 4.1 applied to
(note that § is conjugate to 0%03_2; see the beginning of §4.2). [

Lemma 4.4. Let a € D represent (0705 2). Suppose that n > 6. Let C be a
component of the CRS for a. Then:

(a). C cannot separate 1 and 2. It cannot separate 3 and 4.

(b). C cannot separate i and j for5 <i < j <mn.

(c). C cannot separate {1,2,3,4} from {5,...,n}.

(d). C cannot encircle 5, ..., n.

Proof. (a). Follows from Lemma 4.1 and Lemma 4.2.

(b). Let B € D represent 4,0(02-2]-01_ ?). Since o and § commute, § preserves C' by
Proposition 3.3(b). Hence C' cannot separate i and j by Lemma 4.1 applied to g
(see the proof of Lemma 4.3).

(¢c). Suppose that C separates 1,2,3,4 from 5,6,...,n. Let 8 € D represent
@(0%05_2). Then ( is conjugate to a. Let v € D be a conjugating element. Then
~(C) is a component of the CRS for 8 and it separates the punctures 1,2,5,6 from
all the other punctures. Since o and S commute, § preserves C. This is impossible
because the geometric intersection number of C' and «(C) is nonzero.

(d). Combine (a), (c), and Lemma 4.2. [



10 S. YU. OREVKOV

Lemma 4.5. Let a € D represent ¢(c3032). Suppose that « is reducible non-
periodic. Then the CRS for o has exactly two components: one of them encircles 1
and 2, and the other one encircles 3 and 4.

Proof. 1If n > 6, the result follows from Lemma 4.2 and Lemma 4.4. Suppose that
n = 5 and the CRS is not as stated. By combining Lemma 4.2 with Lemma 3.7, we
conclude that the CRS consists of a single circle which encircles 1,2,3,4. The interior
braid cannot be periodic by (5), hence it is pseudo-Anosov. Therefore, Z(a; P5) =
Z? by Proposition 3.5(b) whence Z(a;J5) = Z. This contradicts Lemma 3.8. [

Lemma 4.6. p(c105") is conjugate in B, to o105 ".

Proof. Let oo € D represent @(0%03_2). If « is pseudo-Anosov, then Z(a; P,,) = Z2
by Proposition 3.5(b), hence Z(«; J,,) is abelian which contradicts Lemma 3.8. If «
is periodic, then it is a power of A% by Proposition 3.4. This contradicts (5), hence
a is reducible non-periodic and its CRS is as stated in Lemma 4.5.

Suppose that & is pseudo-Anosov. Then Z(&;P,,) = Z? by Proposition 3.5(b)
whence Z(o;P,) = Z* by Proposition 3.5(c) and therefore Z(a;J,,) is abelian
which contradicts Lemma 3.8. Thus, & is periodic. By Proposition 3.4 this means
that & is a power of A2. This fact combined with (5) implies & = 1. It follows
that (o705 2) is conjugate to o7Foy 2 for some k, and we have k = 1 by (5). The
uniqueness of roots up to conjugation [9] implies that op(ci03 ) is conjugate to
0103 L0

Lemma 4.7. (1) is conjugate in P, to 7.

Proof. Let a € D represent (7). By Proposition 3.3, it cannot be pseudo-Anosov
because it commutes with (o103 ') which is reducible non-periodic by Lemma
4.6. If o were periodic, then it would be a power of A% by Proposition 3.4. This
contradicts (5), hence « is reducible.

Let C be the CRS for a. By Lemmas 4.1 and 4.3, one of the following three
cases occurs.

Case 1. (' is connected, the punctures 1 and 2 are inside C, all the other
punctures are outside C'. Then the tubular braid & cannot be pseudo-Anosov
because a commutes with ¢(oi03 1), hence it preserves a circle which separates
3 and 4 from 5,...,n. Hence & is periodic which contradicts (5) combined with
Proposition 3.4. Thus this case is impossible.

Case 2. (' is connected, the punctures 1 and 2 are outside C, all the other
punctures are inside C'. This case is also impossible and the proof is almost the
same as in Case 1. To show that & cannot be pseudo-Anosov, we note that «
preserves a curve which encircles only 1 and 2.

Case 3. C has two components: ¢; and ¢p which encircle {1,2} and {3,...,n}
respectively. The interior braid ajy cannot be pseudo-Anosov by the same reasons
as in Case 1, because « preserves a circle separating 3 and 4 from 5,...,n. Hence
9] is periodic. Using (5), we conclude that « is a conjugate of 7. Since the ele-
ments of Z(7;B,,) realize any permutation of {1,2} and {3,...,n}, the conjugating
element can be chosen in P,,. [

Lemma 4.8. There exists v € P,, such that

o(oro; ) = (o107 1) fori=3,...,n. (6)
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Proof. Due to Lemma 4.7, without loss of generality we may assume that ¢(7) = 7
and 7(C) = C where C is the CRS for 7 consisting of two round circles ¢; and ¢y
which encircle {1,2} and {3,...,n} respectively.

By Lemma 3.9, 13,2 restricts to an isomorphism ¢ : Py x By x B,_o —
Z(t) == Z(m;By,). Let my : Z(1) - Py and 73 : Z(7) — B, _2 be defined as
m; = PI; oL,

Let H = 77 *(1) NB/; note that the elements of 7, (1) correspond to geometric
braids whose first two strings are inside the cylinder [0, 1] x ¢; and the other strings
are inside the cylinder [0, 1] X ¢a. Then 73|y : H — B,,_5 is an isomorphism and its
inverse is given by Y +— 12 ,,_o(1, al_e(x), Y), that is o + 0] *0440,i=1,...,n—3.

Let us show that ¢(H) = H. Indeed, let X € H. Since X € Z(7;B]) and
o(1) = 7, we have ¢(X) € Z(m;B!). The fact that m(X) = 1 follows from (5)
applied to a power of X belonging to J,,. Hence ¢(H) C H. By the same arguments
¢ 1(H)CH.

Thus ¢| g is an automorphism of H and we have H = B,,_». Hence, by Dyer and
Grossman’s result [5] cited after the statement of Theorem 1, there exists v € H
such that ¢|g is either idy or A|gy. The latter case is impossible by (5). Thus
there exists 7 € B, such that (6) holds.

It remains to show that v can be chosen in P,. By replacing v with o1 if
necessary, we may assume that 1 and 2 are fixed by 7. By combining (2), (5),
and (6), we conclude that y({i,5}) = {i,j} for any i,j € {3,...,n} and the result
follows. [

4.2. Conjugates of 0; and simple curves which connect punctures. We fix
n > 2 and we consider D and the set of punctures X,, = {1,...,n} C D as above.
Let Z be the set of all smooth simple curves (embedded segments) I C I such that
0I C X,, and I° C D\ X,,. Here we denote I° = I\ 0 and 91 = {a,b} where a
and b are the ends of I. Recall that we write I ~ I if I; = «(I) for some a € Dy
(see §3.1), i. e., if I and I; belong to the same connected component of Z.

Let I € 7 and let 8 € D be such that 5(I) is the straight line segment [1,2].
Then we define the braid o; as af . It is easy to see that o; depends only on the
connected component of Z that contains I. The CRS for o7 is a single closed curve
which encloses I and separates it from X, \ 0I. By definition, all conjugates of o4
are obtained in this way. In particular, we have o; = o[; ;41) and 0;; = o7 for an
embedded segment I which connects ¢ to j passing through the upper half-plane.

Lemma 4.9. For any 5 € D, I € Z, we have ag(]) =o7. [

With this notation, a corollary of Lemma 4.8 can be formulated as follows.

Lemma 4.10. Let n > 5 and let ¢ € Aut(B],) be as in §4.1.

(a). Let I,J € T be such that Card(I NJ) = Card(0I N 9J) = 1 (i.e., INJ is
a common endpoint of I and J). Then there exist I, J1 € T such that I; U Jy is
homeomorphic to I U J and

0107 ) = onozl,  wlorios) = o7l (7)
(b). Let I,J € Z, INJ =@. Then the conclusion is the same as in Part (a).

(c). Let I and J be as in Part (a) and let K € T be such that KN (IUJ) = &.
Then there exist I, J1, K1 € T such that Iy UJ, UK is homeomorphic to ITUJUK,
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and (7) holds as well as

SO(O-KUI_1> = UK1UI_117 (P(O-K0-51> = UKlg;ll‘ (8)

Proof. (c). Let v be as in Lemma 4.8 and let § € D be such that S(K) = [1,2],
B(I) = [3,4], and B(J) = [4,5]. We set K1 = a " (K), I} = o~ (1), J; = a~1(J)
where a = 87 yp(B). Then we have

olorort) = (o105 H)P) by definition of o7 and ok
= (0105 1)7¢P) by Lemma 4.8
= 0K, 01_11 by Lemma 4.9

and, similarly, (,O(O'KO';1> =0K, 0}11. Since o commutes with o; and oy, we have
050,° = (oxo; ") S(oxo;')F, e = £1, thus (8) implies (7).
(a). Since Card(90l UdJ) = 3 and n > 5, we can choose K € T disjoint from

I'UJ (which is an embedded segment, hence its complement is connected) and the
result follows from (c).

(b). The same proof as for Part (c) but with 8(I) = [1,2] and 8(J) = [3,4]. O

Lemma 4.11. Let I,J, 1,,J, € Z be such that INJ =1 NJ; = @. Suppose that
010;1 = 0110;11. Then I ~ 1y and J ~ Jq.

Proof. Tt is enough to observe that the CRS for 010;1 is OUr U 0U; where Uy and
Uj are e-neighbourhoods of I and J for 0 < ¢ < 1 (this fact follows, for example,
from Lemma 4.5 and Proposition 3.2). O

Note that when [o7,0;] # 1, the statement of Lemma 4.11 is wrong. Indeed,
in this case by Lemma 4.9 we have 01051 = 07(1)0;(1]) for v = 01051 whereas
o1 # 0y and o5 # 0y ().

Given I,J € I, the geometric intersection number I - J of I and J is defined
as the minimum of the number of intersection points of I7 and J7 over all pairs
(I1,J7) € Z? such that I ~ I, J ~ J;, and I is transverse to J;. In this case we
say that Iy and Jy realize I - J.

P = = X = —<

FIGURE 2. Digon removal (p is a puncture)

If I, J € T are transverse to each other, we say that a closed embedded disk D is
a digon between I and J if D is the closure of a component of D\ (IU.J), and 0D is
a union of an arc of I and an arc of J. The common ends of these arcs are called the
corners of D. We say that (I’, J’) is obtained from (I, J) by a digon removal if it is
obtained by one of the modifications in Figure 2 performed in a neighbourhood of
a digon between I and J one of whose corners is not in X,,. The inverse operation
is called a digon insertion.

The following two lemmas have a lot of analogs in the literature but it is easier
to write (and to read) a proof than to search for an appropriate reference.
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Lemma 4.12. Let I,J € T be transverse to each other. Then a pair of segments
realizing I - J can be obtained from (I,J) by successive digon removals.

Proof. Isotopies of I and of J which transform (I, J) to a pair of segments realizing
I - J can be perturbed into a sequence of digon removals and digon insertions. So,
it is enough to prove the following “diamond lemma”: if (I, .J;) and (Io, J2) are
obtained from (I, J) by two different digon removals, then either the pair (1;U.Jy, I7)
is isotopic to (I U Ja, I2), or (I, J1) and (I3, J2) admit digon removals with the
same result. We leave it to the reader to check this statement (see Figure 3). O

XX X=X X X=X X X
XX <X o« —<"»
FI1GURE 3. Cases to consider in the diamond lemma

Lemma 4.13. LetIy,...,I,, € Z. Then there exist 11, ..., I}, € T such that I; ~ I

foranyi=1,...,m, and (I}, I}) realizes I; - I; for any distinct i,j =1,...,m.

Proof. Induction on the total number of intersection points. If (I;,I;) does not
realize I; - I;, then by Lemma 4.12 there is a digon D between I; and I;. We can
remove D so that the union of all segments is modified only near the corners of D.
Then the total number of intersection points strictly decreases. [J

4.3. End of the proof. Now we are ready to complete the proof of Theorem 1 for
n > 5. First note that the injectivity of the restriction homomorphism Aut(B,,) —
Aut(B]) is almost evident for any n > 3. Indeed, Let ¢ be an automorphism of B,,
such that p|g, =id. By [5], we have ¢ = A*B with 8 € B,, and k = 0 or 1 (see the
introduction). Hence, for any X € B/, we have A"’B(X) =X, i.e, B(X) = AF(X).
In particular, for X; = af(n_l)A_z, 1 < i < n, we have 5(X;) = X; because
A(X;) = X;. Hence the CRS of each X; (which is a round circle containing the
punctures ¢ and i+ 1) is preserved by f3; see Proposition 3.2(b). Hence 5 commutes
with all o; for i = 1,...,n — 1 whence 8 € Z(B,), i. e., B =id. Thus ¢ = AF.
Since A|p; # id, we conclude that & =0, i. e., ¢ = id.

Now let us prove that the restriction homomorphism Aut(B,,) — Aut(B}) is
surjective for n > 5. So, let n > 5 and let ¢ be an automorphism of B/,. By [15;
Theorem C], we may assume that either p'¢ = p/, or n = 6 and p'¢ = vy’ where
v is as in §2. However, u'¢ # vy’ by Lemma 2.2. So, we assume that p'¢ = u'.
Then Lemma 2.1 implies that the automorphism ¢, of J%° induced by ¢ is +id.
By composing ¢ with A if necessary, we may assume that ¢, = id (recall that A is
the automorphism of B,, which takes each o; to o, D). By Lemma 4.8 we may also
assume that

oloro; ) =007t foralli=3,...,n—1 (9)

(otherwise we compose ¢ with 4 for the element v given by Lemma 4.8). Hence

gp(aiaj_l) = aiaj_l and (o; o) =0, o; foralli,je{3,...,n—1}. (10)

Indeed, aiaj_l = (01051)_1(01051) and o, 'o; = (0107;_1)(0103._1)_1.



14 S. YU. OREVKOV

Let I, J1, K1 € Z be as in Lemma 4.10(c) where we set I = [1,2], J = [2, 3], and
K = [4,5]. By combining (8) with (9) for i = 4, we obtain 010, ' = o7, a;(i. Hence
I ~[1,2] and K; ~ [4,5] by Lemma 4.11. Thus, if we set L = J;, then (7) reads
as

oloroyt) =o10;t  and (o] ton) =0y tor. (11)

By (5) for 63052 and by the claim I; U.J; 22 TU.J of Lemma 4.10(c) we also have
OL ={2,3} and L-[1,2]=0. (12)
By combining (9) with (11), we obtain
(oo t) =007 and (o] 'oy) =0 'or foralli=3,....n—1. (13)
This fact combined with Lemma 4.10(b) and Lemma 4.11 implies
L-fi,i+1]=0 foralli=4,...,n—1. (14)

Indeed, for any i = 4,...,n — 1, by Lemma 4.10(b) we have @(0q0; ') = o7, Ujll for
some disjoint 1, J; € Z. On the other hand, ¢(oy0; ') = opo; ' by (13). Hence
Iy ~ L and J; ~ [i,i+ 1] by Lemma 4.11 whence (14) because I N J; = &.

In the proof of the next lemma for any n > 5, we use Lemma 6.1 whose proof is
based on Garside theory. However, for n > 6 we also give another proof which uses
the material of this section only.

Lemma 4.14. L-[3,4] = 0.

Proof. By Lemma 4.10(a) applied to I = [2,3] and J = [3, 4], there exist I, J; such
that I, UJ; = [2,4] (thus I, - J; = 0) and ¢(o205 ') = 0110;11. By combining this
fact with (13) for i = 3, we obtain 0L03_1 =oy 0}11. Hence, by Lemma 6.1, there
exists v € D such that o] = oy, and o = 05, whence v(I) ~ L and ~v(J;) ~ [2, 3]
by Lemma 4.9. Thus L-[3,4|=1,-J;=0. O

Proof of Lemma 4.14 for n > 6 not using Garside theory. Let n > 6. We apply
the same arguments that we used to obtain (11)—(13) but we set here I = [3,4],
J=12,3], K = [5,6]. So, let I, J1, K7 be as in Lemma 4.10(c) for the given choice
of I,J, K. By combining (8) with (10) and (13), we obtain 0110;(1 = 0305 © and
aJla;(i = 005 ". Then Lemma 4.11 yields I; = [3,4], J; = L, and K; = [5,6]. By
Lemma 4.10(c), I3 U J; is homeomorphic to I U J, hence L-[3,4]=1-J=0. O

Further, Lemma 4.14 combined with (12) and (14), yields L [i,7+1] = 0 for any
ie{1}U{3,...,n—1}. By Lemma 4.13 this implies that L ~ L, where L € Z is
such that [1,2]U Ly U[3,n] is homeomorphic to a segment. Hence, up to composing
¢ with 8 where 8 € D, B([1,n]) = [1,2] U Ly U[3,n], we may assume that o, = o
in (9)-(11) and (13). This means that ¢(oj0;°) = 070, for any € = £1 and any
i,j € {1,...,n—1}. To complete the proof of Theorem 1 for n > 5, it remains to
note that the elements o0, %, € = £1, generate B;,. Indeed, it is shown in [11] (see
also [15; §1.8]) that B/, is generated by u = go07 ', v = 010907 2 = (05 *01) (0207 1),
w = (0907 (o305 1), and ¢; = 007, i=3,...,n— 1.

Remark 4.15. Our proof of Theorem 1 for n > 5 essentially uses Lemma 4.8
which is based on Dyer-Grossman’s result [5] about Aut(B,,). If n > 6, Lemma 4.8
can be replaced by Lemma 6.2 (see below).
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5. THE CASEn = 4

Recall that BY is freely generated by u = 020, Vand t = o, Loy (see the Intro-
duction). The group B/, was computed in [11], namely B} = K4 x B%; where K4
is the kernel of the homomorphism B, — Bs, 01,03 — 01, 02 +— 03. The group
K, is freely generated by ¢ = 0301_1 and w = oac 02_1. The action of B on K4 by
conjugation is given by

ueu™ ! = w, vwu~t = w?e tw, tet™! = cw, twt™ = cw?. (15)

Besides the elements ¢, w, u,t of B}, we consider also
d=1p22(0y 01, 07) = oiof AT,
Lemma 5.1.
(a). Z(d*;BY)) is a semidirect product of infinite cyclic groups (c) x {d) where d
acts on (c) by ded™! = c71.
(b). (c) is a characteristic subgroup of Z(d*;BY).

Proof. Let G = Z(d?; B}).

(a). We have G = Z(d?; B4) Nkere and, by [10; §5], Z(d?; B4) is the semidirect
product (o1, 03) x (d) where d acts on (01, 03) by 0f = 03, 04 = 0.

(b). Let x be the image of ¢ by an automorphism of G. Then (a) implies that
x generates a normal subgroup of G and x is not a power of another element of G.
It follows that = € {c,c™}. O

Lemma 5.2. All the conjugacy classes of By which are contained in Bl are pre-
sented in Table 1. The corresponding centralizers are isomorphic to the groups
indicated in this table.

Proof. First, note that B/ is normal in B,,, hence for X € B/, the centralizer
Z(X;B!) depends only on the conjugacy class of X in B,, (though this class may
split into several classes in B).

The centralizers in B4 can be computed by a straightforward application of [10;
Propositions 4.1] and Proposition 3.3. In the computation of Z(AZF+1g, 12k~6)
(which is, by the way, generated by A and 05), we use the fact that Z(A3**; B3) =
(A). This fact can be derived either from [10; Proposition 3.5] or from the unique-
ness of Garside normal form in Bg.

In all the cases except, maybe, the following two ones, the computation of
Z(X;B)) is evident.

). X =Y* Y =431(07% A2, 1), k # 0. The group Z(X;By) is generated by
¥3.1(0%;1,1), 01, and o2. Since 131(0c?;1,1) = YAZ and A3 € B3, we can choose
Y, 01,04 for a generating set, and the result follows because e(Y') = 0.

2). X = A2k0'1_6k, k # 0. The group Z(X;By,) is the isomorphic image of
B2 1 x Z under the mapping f : (X, m) — 121(X;07",1). Hence Z(X;B)) is the
isomorphic image of By ; under the mapping X — f(X, —e(f(X,0))). O

Let ¢ € Aut(BY)).
Lemma 5.3. o(d) is conjugate in By to d**.

Proof. Let x = ¢(d?). Since Z(x; B}) = Z(d?; B)}), we see in Table 1 that ¢({d?)) C
(d?). By the same reasons we have o~ 1({d?)) C (d?), thus ¢(d?) = d*? and the
result follows from the uniqueness of roots up to conjugation [9]. [
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Table 1. Centralizers of elements of B;
white/grey region = the associated braid is periodic/pseudo-Anosov;
in Z(d**;B4) we mean f : Z — Aut(Z x Z), f(1)(x,y) = (y, ).

CRS X Z(X:By) Z(X;B,) Z(X;B})%®
Gee® 1 B4 B
@D 72 7
Yaa(o7 A% 1), k40 ByxZ  ByxZ 7P
73 72
73 72
d** Kk #0 72 %7 7 X7 Z X 7o
kel 1 ¢ {0, +6k} 73 72
d2k—|—1 ZQ 7
A%Ul_l%, k#0 By X Z Ba 7?2
A2k+102—12k—6 72 7
73 72

Lemma 5.4. If o(d) = d, then p(c) = ctt.
Proof. If ¢(d) = d, then p(Z(d?*;B})) = Z(d?*; B}), and we apply Lemma 5.1. [
Lemma 5.5. K, is a characteristic subgroup in B/.

Proof. Lemma 5.3 combined with Lemma 5.4 imply that ¢(c) is conjugate to ¢ in
B,. Since K4 is the normal closure of ¢ in By, it follows that ¢(c) € K4. The same
arguments can be applied to any other automorphism of B/, in particular, to ¢ds
whence ¢dy(c) € Ky. It remains to recall that paa(c) = ¢(w) and K4 = (c,w). O

Let

(1 -1 (10 Cel1e (21 w1 (11
Sl—<0 1),52_<1 1),T_S1 SQ_<1 1),U—S251 _<1 2).

Lemma 5.6. T and U generate a free subgroup of SL(2;Z).

Proof. 1t is well known that the correspondence o; — Sy, g2 +— S5 defines an
isomorphism Bs3/(A?) — PSL(2,Z), see, e.g., [18; §3.5] (this mapping is also a
specialization of the reduced Burau representation). Since u +— U and ¢ — T, the
image of B} = (u,t) is (U, T). Hence (U, T) is free. O

Lemma 5.7. If |k, = id, then ¢ = id.

Proof. Let |k, = id. Since B} = K, x B%, we may write p(u) = uja and
o(t) = t1b with uy,t; € Bj and a,b € Ky. For z € Ky, we have pu(z) =
o(uzu™) = uyara~'u]' = Gya(x). Since a(z) € Ky and |k, = id, we conclude
that @(z) = pi(z) = @ya(z). Similarly, £(z) = £,b(z). Thus,

ik, = i1b|k, and 1|k, = halk, (16)
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Consider the homomorphism 7 : B} — Aut(K$°) = GL(2,Z), z +— (Z).; here
we identify Aut(K$®) with GL(2,Z) by choosing the images of ¢ and w as a base of
K§°. Tt is clear that 7(a) = m(b) = 1 and it follows from (15) that 7(tu~!) = T and
m(t) = U. Thus, by Lemma 5.6, the restriction of © to B is injective. It follows
from (16) that m(u1) = 7(u) and 7(t;) = w(t). Hence u; = u and t; = ¢ by the
injectivity of 7. Then it follows from (16) that a |k, = b|k, = id. Since Ky is free,
its center is trivial, and we obtain a = b= 1. Thus ¢ =id. O

Proof of Theorem 1 for n = 4. The injectivity of the restriction homomorphism
Aut(B4) — Aut(B)) is already proven in the beginning of §4.3, so let us prove the
surjectivity. Let ¢ € Aut(B}). By Lemma 5.3, we may assume that o(d) = d*!.
Then, by Lemma 5.4, we may assume that ¢(c) = c¢*!. Since ¢® = ¢!, we may
further assume that ¢(c) = ¢. By Lemma 5.5, p(c) and p(w) is a free base of Kjy.
Since ¢(c) = ¢, it follows that ¢(w) = cPw*'c?, p,q € Z, see [18; §3.5, Problem
3]. We have ¢1(c) = c and &1(w) = 123121 = 123212 = 132312 = ¢ 'w. (here
1,1,2,... stand for o1, 01_1, 09, ...). Thus, by composing ¢ with a power of ¢ and
a power of & if necessary, we may assume that p(w) = w!l. For ® = AG1635A,
we have ®(c) = c and ®(w) = 13231213 = 12322123 = 121323 = 212232 = w!
hence, by composing ¢ with & if necessary, we may assume that ¢(c) = ¢ and
o(w) = w, thus |k, = id and the result follows from Lemma 5.7. O

6. APPENDIX. GARSIDE-THEORETIC LEMMAS

Here, using Garside theory, we prove two statements one of which (Lemma 6.1)
is used only in the proof of Theorem 1 for n = 5, see the proofs of Lemma 4.14,
and the other one (Lemma 6.2) can be used in the proof of Theorem 1 for n > 6
instead of Dyer-Grossman theorem, see Remark 4.15.

Let n > 3 and let Z and o7 € B,, for I € Z be as in §4.2.

Lemma 6.1. Let k,l € Z\ {0} and I,J € I. Suppose that o¥c'; is conjugate to

ovol. Then there exists u € B,, such that o% = o1 and 0% = o3, in particular,

I-J=0.

Proof. 1t follows from Corollary 6.4 that there exists u € B,, and p, ¢, 7, s € ZN[1,n]
such that o} = 0,4 and 0% = 0,,, This means that o} = o7, and 0% = 0;, where
Iy, J; € 1 satisty one of the following conditions:

(a) I; N Jy is a common endpoint of I; and Jy;

(b) Card(0l; UdJy) = 4.
It is enough to exclude Case (b). Indeed, in this case 3 = o¥o cannot be conjugate
to f1 = of ol , because lk; ;(8%) = 0 for i & {1,2,3} and any j whereas lk, 4(67) =
k and 1k, s(8%) = [ for pairwise distinct p,q,7,s. O

Lemma 6.2. Let X and Y be two distinct conjugates of o1 in B,, n > 3. If
XYX =YXY, then there exists u € B,, such that X" = o1 and YY" = 0.

Proof. Follows from Lemma 6.5. [J

When speaking of Garside structures on groups, we use the terminology and
notation from [21]. Let (G, P,d) be a symmetric homogeneous square-free Garside
structure with set of atoms A (for example, Birman-Ko-Lee’s Garside structure [3]
on the braid group, i. e., G =B, A= {o;; }hi<icj<n, P={21... 2 | i € A,m >
O}, 0= On—10n—92 .. .0'20'1).
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For a,b € G we set b = {b® | a € G}, and we write a ~ b if a € b% and a < b if
a"tb € P. We define the set of simple elements of G as [1,8] = {s € G |1 < s < §}.
For X € G, the canonical length of X (denoted by ¢(X)) is the minimal r such that
X =0PA;... A, forsome p € Z, Ay,..., A, € [1,6]\ {1}. The summit length of X
is defined as £4(X) = min{¢(Y) | Y € X%}. We denote the cyclic sliding of X and
the set of sliding circuits of X by s(X) and SC(X) respectively (these notions were
introduced in [8], see also [21; Definition 1.12]).

The following result was, in a sense, proven in [21] without stating it explicitly.

Theorem 6.3. Let k,1 € Z\ {0}, z,y € A, and let Z = XY where X ~ z¥ and
Y ~ y'. Then there exists u € G such that one of the following possibilities holds:
(i) X*=2F and Y =y} withzy € 2N A and y; € y“ N A, or
(ii) £(Z*) =0(X™) +0(Y™) and Z" € SC(Z).

Proof. If the statement is true for (k,[), then it is true for (—k, —I), therefore we
may assume that [ > 0. Then the proof of [21; Corollary 3.5] may be repeated
almost word by word in our setting if we define Q,, as {Z“ | u € U,,} where
Up = {u | L(X™) < 2m + |k|,£(Y™) = [}. Namely, let m be minimal under the
assumption that Q,, # @. If m = 0, then (i) occurs. If m > 0, then, similarly to
[21; Lemma 3.3] we show that if u € U,,,, then £(Z") = £(X™)+£(Y™), and similarly
to [21; Lemma 3.4] we show that §(Q,,) C Q,,. whence Q,, N SC(Z) # @ which
implies (ii). O

Corollary 6.4. With the hypothesis of Theorem 6.3, assume that Z is conjugate
to zy!. Then there exists u € G such that (i) holds.

Proof. Suppose that (ii) occurs. Since £(Z) = £4(Z) < £(xFy') < |k| + |I|, we have
(X)) +6(Y™) < |k|+|l|. By combining this fact with ¢(X") > |k| and £(Y") > |l
we obtain £(X*) = |k| and £(Y*) = |l|, and the result follows from [21; Theorem
la]. O

Lemma 6.5. Let X ~x andY ~y where x,y € A. If XY X =Y XY, then there
exists u € G such that X*,Y" € A.

Proof. Without loss of generality we may assume that Y = y € A. By [21; Theorem
1a], the left normal form of X is 07 7-A,-...-Ay-z-By-...-B, where A;, B; € [1,0]\{1},
A0 1B, = 6% for i = 1,...,p. By symmetry, the right normal form of X is
Cp-...-Cy-x-Dy-...-Dy- 6P again with C;, D; € [1,6] \ {1}, C;6"1D; = §°
fort=1,...,p. We have supyXy < 2supy +sup X = 3+ p. Thus, if p > 0, then
sup X +supy +supX =3+2p >3+ p =supaYx = supYzY. Then, by [22;
Lemma 2.1b], either B,y or yC,, is a simple element. Without loss of generality we
may assume that B,y € [1,d].

Since the Garside structure is symmetric and By is simple, there exists an atom
y1 such that By = y1 B,. Thus, for v = Bp_l, we have y” € A and the left normal
form of XV is 6P~1 “Ap_1-...-A1-x-By-...- Bp_1. Therefore, the induction on p
yields X =z and Y*=z2€ Aforu= (B;...By)"!. O

Remark 6.6. (Compare with [4, 14]). Lemma 6.5 admits the following generali-
zation which can be proven using the results and methods of [21, 22]. Let X ~ x
and Y ~ y for x,y € A. Then either X and Y generate a free subgroup of G,
or there exists u € G such that X“,Y"* € A. In the latter case, the subgroup
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generated by X,Y is either free or isomorphic to Artin group of type Is(p), p > 2.
In particular, for G = B,,, if X and Y are two conjugates of o1, then either X and
Y generate a free subgroup of B,,, or there exists u € B,, such that X" = o1 and
Y* = g; for some i. Maybe, I will write a proof of this fact in a future paper.

Acknowledgement. I am grateful to the referee for many very useful remarks.
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