MARKOV TRACES ON THE FUNAR ALGEBRA

S. Yu. Orevkov
С меня при цифре 37 в момент слетает хмель. (В. Высоцкий)

1. Introduction

Let B_{n} be the braid group with n strings and $\sigma_{1}, \ldots, \sigma_{n-1}$ its standard generators. Let k be a commutative ring with $1 \neq 0$. Given $\alpha, \beta \in k$, we define the k-algebra $K_{n}=K_{n}(\alpha, \beta)=K_{n}(\alpha, \beta ; k)$ as the quotient of the group algebra $k B_{n}$ by the relations

$$
\begin{equation*}
\sigma_{1}^{3}-\alpha \sigma_{1}^{2}+\beta \sigma_{1}-1=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
y \bar{x} y= & 2 \alpha-\beta^{2}-(x+y)-\left(\alpha^{2}-\beta\right)(\bar{x}+\bar{y})+\beta(x y+y x)+\alpha(x \bar{y}+y \bar{x}+\bar{x} y+\bar{y} x) \\
& +(\alpha \beta-1)(\bar{x} \bar{y}+\bar{y} \bar{x})-\alpha x y x-(\bar{x} y x+x \bar{y} x+x y \bar{x})-\beta(\bar{x} \bar{y} x+x \bar{y} \bar{x}) \\
& +\left(\alpha-\beta^{2}\right) \bar{x} \bar{y} \bar{x}, \tag{2}
\end{align*}
$$

where x, \bar{x}, y, \bar{y} in (2) stand for $\sigma_{1}, \sigma_{1}^{-1}, \sigma_{2}, \sigma_{2}^{-1}$ respectively. Up to a change of the sign of β (for the sake of symmetricity), our definition of K_{n} is equivalent to the definition given by Bellingeri and Funar in [1]. Our relation (2) is much shorter than the corresponding relation in [1] (see $\left[1 ;(2)\right.$ and Table 1]) because we use σ_{i}^{-1} instead of σ_{i}^{2}. Multiplying (2) by σ_{1} from the left or from the right, and simplifying the result using (1) and the braid group relations, we obtain

$$
\begin{align*}
\bar{y} x \bar{y}= & 2 \beta-\alpha^{2}-(\bar{x}+\bar{y})-\left(\beta^{2}-\alpha\right)(x+y)+\alpha(\bar{x} \bar{y}+\bar{y} \bar{x})+\beta(\bar{x} y+\bar{y} x+x \bar{y}+y \bar{x}) \\
& +(\alpha \beta-1)(x y+y x)-\beta \bar{x} \bar{y} \bar{x}-(x \bar{y} \bar{x}+\bar{x} y \bar{x}+\bar{x} \bar{y} x)-\alpha(x y \bar{x}+\bar{x} y x) \\
& +\left(\beta-\alpha^{2}\right) x y x . \tag{3}
\end{align*}
$$

Note that (3) is obtained from (2) by swapping $x \leftrightarrow \bar{x}, y \leftrightarrow \bar{y}, \alpha \leftrightarrow \beta$.
Using (1) - (3) together with the braid relations, it is easy to see that K_{n} are finitely generated k-modules. Following [2], we denote the image of σ_{i} in K_{n} by s_{i}.

Set $K_{\infty}=\lim K_{n}$. Contrary to the case of Hecke or BMW algebras, the morphisms $K_{n} \rightarrow K_{n+1}$ induced by the standard embeddings $B_{n} \subset B_{n+1}$ are not injective in general. We say that $t: K_{\infty} \otimes k[u, v] \rightarrow M$ is a Markov trace on K_{∞} if M is a $k[u, v]$-module and t is a morphism of $k[u, v]$-modules such that $t(x y)=t(y x), t\left(x s_{n}\right)=u t(x), t\left(x s_{n}^{-1}\right)=v t(x), x, y \in K_{n}, n=1,2, \ldots$

It is claimed in [3] and [1] that a nontrivial Markov trace is constructed on K_{n}. About 2004-2005 I indicated a gap in the proof of its well-definedness (see

Remark 2.11 below). As it is explained in [2], the gap was really serious: formally, the main result of [3] is wrong in the form it is stated. However, we show in this paper that the main idea in $[1,3]$ is correct: to construct a Markov trace on K_{n}, it suffices to check a finite number of identities though the number of them is much bigger than in $[1,3]$ and the algorithm of computation is much more complicated. Theoretically, this approach allows to compute the universal Markov trace on K_{∞}, i. e., the projection of $K_{\infty}(\alpha, \beta ; \mathbb{Z}[\alpha, \beta, u, v])$ onto its quotient by the submodule \bar{R} generated by

$$
\begin{equation*}
x y-y x, \quad x s_{n}-u x, \quad x s_{n}^{-1}-v x, \quad x, y \in K_{n}, n=1,2, \ldots \tag{4}
\end{equation*}
$$

The volume of computations is huge, so we performed them only in some cases. In particular, we found $K_{\infty}(0,0 ; A) / \bar{R}=A / I$ where $A=\mathbb{Z}[u, v], I=\left(16,4 u^{2}+\right.$ $\left.4 v, 4 v^{2}+4 u, u^{3}+v^{3}+u v-3\right)$. Note, that it was checked in [2] that $K_{5}(0,0 ; A) / \bar{R}_{5}=$ A / I where \bar{R}_{5} is the submodule generated by the elements of K_{5} of the form (4).

In a sense, the results of the present paper can be divided into two independent parts: the "theoretical part" (Theorem 2.4 which provides an algorithm for computing the ideal I) and the "computational part" (Corollaries 2.5 and 2.6 which present the results of computer-aided computations according to this algorithm, and Section 4 where we discuss some properties of the obtained link invariants). The explicit form of the coefficients in the right hand side of (2) and (3) is not really used in the "theoretical part". Theorem 2.4 can be applied to a quotient of $k B_{\infty}$ by (1) together with any two relations of the form

$$
\begin{equation*}
\sigma_{2} \sigma_{1}^{-1} \sigma_{2}=\sum_{i=1}^{21} \gamma_{i} X_{i}, \quad \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}=\sum_{i=1}^{21} \gamma_{i}^{\prime} X_{i}, \quad \gamma_{i}, \gamma_{i}^{\prime} \in k \tag{5}
\end{equation*}
$$

where X_{1}, \ldots, X_{21} are all the reduced words in $\sigma_{1}^{ \pm 1}, \sigma_{2}^{ \pm 1}$ (including the empty word 1) that do not contain any subword of the form $\sigma_{i}^{ \pm 2}$ or $\sigma_{2}^{ \pm 1} \sigma_{1}^{ \pm 1} \sigma_{2}^{ \pm 1}$. So, if we consider α, β and all the $\gamma_{i}, \gamma_{i}^{\prime}$ in (5) as indeterminates and compute the ideal I described in Theorem 2.4, then we obtain the universal Markov trace on a cubic Hecke algebra that can be specialized to both Funar and BMW algebras. However, the required computations seem to exceed the capacity of any computer. On the other hand, if one chooses a random specialization of the coefficients $\gamma_{i}, \gamma_{i}^{\prime}$ in (5), then the quotient A / I might well be trivial. So, the explicit form of (2) and (3) is important for the "computational part" of the present paper.
Acknowledgements. I am grateful to Andrey Levin and Alexey Muranov for useful discussions and advice. I am grateful to the referees for valuable remarks.

2. Definitions and statement of Results

2.1. K-reductions. Let F_{n}^{+}be the free monoid on generators $x_{1}^{ \pm 1}, \ldots, x_{n-1}^{ \pm 1}$ (the set of all not necessarily reduced words in $x_{i}^{ \pm 1}$) and $F_{\infty}^{+}=\bigcup F_{n}^{+}$. We denote the empty word by 1 . Let $k F_{n}^{+}$and $k F_{\infty}^{+}$be the corresponding free associative algebras over k (as k-modules, they are freely generated by F_{n}^{+}and by F_{∞}^{+}respectively).

We call basic replacements the pairs (U, V) with $U \in F_{\infty}^{+}, V \in k F_{\infty}^{+}$(which we denote by $U \rightarrow V$) from the following list:

$$
\text { (i) } x_{i} x_{i}^{-1} \longrightarrow 1, x_{i}^{-1} x_{i} \longrightarrow 1, i \geq 1
$$

(ii) $x_{i}^{2} \longrightarrow \alpha x_{i}-\beta+x_{i}^{-1}, i \geq 1$;
(iii) $x_{i}^{-2} \longrightarrow \beta x_{i}^{-1}-\alpha+x_{i}, i \geq 1$;
(iv) $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} x_{i+1}^{\varepsilon_{3}} \longrightarrow x_{i}^{\varepsilon_{3}} x_{i+1}^{\varepsilon_{2}} x_{i}^{\varepsilon_{1}}, \varepsilon_{2} \in\left\{\varepsilon_{1}, \varepsilon_{3}\right\} \subset\{-1,1\}, i \geq 1$;
(v) $x_{i+1} x_{i}^{-1} x_{i+1} \longrightarrow$ (the right hand side of (2) with $x=x_{i}, y=x_{i+1}$), $i \geq 1$;
(vi) $x_{i+1}^{-1} x_{i} x_{i+1}^{-1} \longrightarrow$ (the right hand side of (3) with $\left.x=x_{i}, y=x_{i+1}\right), i \geq 1$;
(vii) $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} W x_{i+1}^{\varepsilon_{3}} \longrightarrow V W$ where $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} x_{i+1}^{\varepsilon_{3}} \longrightarrow V$ is one of (iv)-(vi) and W is a word in $x_{1}^{ \pm 1}, \ldots, x_{i-1}^{ \pm 1}$;
(viii) $x_{j}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} \longrightarrow x_{i}^{\varepsilon_{2}} x_{j}^{\varepsilon_{1}},\left\{\varepsilon_{1}, \varepsilon_{2}\right\} \subset\{-1,1\}, j-1>i \geq 1$;

An elementary K-reduction of a monomial is $A U B \rightarrow A V B$ where $A U B \in F_{\infty}^{+}$ and $U \rightarrow V$ is a basic replacement. An elementary K-reduction of an element of $k F_{\infty}^{+}$is $\sum_{j=1}^{m} c_{j} W_{j} \rightarrow c_{1} W_{1}^{\prime}+\sum_{j=2}^{m} c_{j} W_{j}$ where $c_{1}, \ldots, c_{m} \in k, W_{1}, \ldots W_{m}$ are pairwise distinct elements of F_{∞}^{+}, and $W_{1} \rightarrow W_{1}^{\prime}$ is an elementary K-reduction of a monomial.

An element of F_{∞}^{+}(resp. of $k F_{\infty}^{+}$) is K-reduced if no K-reduction can be applied to it. We denote the set of such elements by $F_{\infty}^{\text {red }}$ (resp. $k F_{\infty}^{\text {red }}$). We set also $F_{n}^{\text {red }}=F_{n}^{+} \cap F_{\infty}^{\text {red }}$ and $k F_{n}^{\text {red }}=k F_{n}^{+} \cap k F_{\infty}^{\text {red }}$. Then $k F_{\infty}^{\text {red }}$ is a submodule (not a subalgebra) of $k F_{\infty}^{+}$. We denote $\pi: k F_{\infty}^{+} \rightarrow K_{\infty}$ and $\pi_{n}: k F_{n}^{+} \rightarrow K_{n}$ the morphisms of k-algebras induced by $x_{i} \mapsto s_{i}$.

We say that an element X of F_{∞}^{+}is almost K-reduced if there exists a sequence $X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{m}$ of elementary K-reductions of type (viii) such that X_{m} is K-reduced.

For $X=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{m}}^{\varepsilon_{m}} \in F_{\infty}^{+}, \varepsilon_{j}= \pm 1$, we define the weight $\mathrm{wt} X=\sum_{j} i_{j}$ and the auxiliary weight $\mathrm{wt}^{\prime} X=\sum_{j} j i_{j}$. It is clear that the set of all monomials of a given weight is finite. For $X \in k F_{\infty}^{+}$we set $\mathrm{wt} X=\max _{i}$ wt X_{i} if $X=\sum_{i} c_{i} X_{i}$ with $c_{i} \in k, c_{i} \neq 0$, and X_{1}, X_{2}, \ldots pairwise distinct elements of F_{∞}^{+}.

The following statement is easy and we omit its proof.

Proposition 2.1.

a). If $X \rightarrow X^{\prime}$ is an elementary K-reduction, then $\pi(X)=\pi\left(X^{\prime}\right)$ and $\mathrm{wt} X \geq$ wt X^{\prime}. If, moreover, X is a monomial, then $\mathrm{wt} X=\mathrm{wt} X^{\prime}$ if and only if $X \rightarrow X^{\prime}$ is a K-reduction of type (viii) and in this case we have $\mathrm{wt}^{\prime}(X)<\operatorname{wt}^{\prime}\left(X^{\prime}\right)$.
b). $\pi\left(F_{\infty}^{\text {red }}\right)$ generates K_{∞} as a k-module.
c). $k F_{\infty}^{\mathrm{red}}$ is a free k-module and $F_{\infty}^{\mathrm{red}}$ is a free base of $k F_{\infty}^{\mathrm{red}}$.
d). $F_{\infty}^{\mathrm{red}}$ is the set of all words $X_{1} X_{2} \ldots X_{m}$ where $X_{\nu}=x_{i_{\nu}}^{ \pm 1} x_{i_{\nu}-1}^{ \pm 1} \ldots x_{j_{\nu}}^{ \pm 1}$, $i_{\nu} \geq j_{\nu}(1 \leq \nu \leq m), i_{1}<\cdots<i_{m}$, and all the signs are mutually independent.
e). (Proven in [3]) π_{3} is an isomorphism of k-modules $k F_{3}^{\text {red }}$ and K_{3}.

Remark 2.2. Let

$$
\begin{equation*}
S_{i, j}=\left\{x_{i}^{ \pm 1} x_{i-1}^{ \pm 1} \ldots x_{j}^{ \pm 1}\right\} \quad \text { and } \quad S_{i}=\{1\} \cup S_{i, i} \cup S_{i, i-1} \cup \cdots \cup S_{i, 1} . \tag{6}
\end{equation*}
$$

Then Part (d) of Proposition 2.1 can be stated as follows: each element of $F_{n}^{\text {red }}$ can be represented in a unique way as a product $X_{1} X_{2} \ldots X_{n-1}$ with $X_{i} \in S_{i}$. Since $\left|S_{i}\right|=1+2+\cdots+2^{i}=2^{i+1}-1$, we obtain $\left|F_{n}^{\text {red }}\right|=\prod_{i=1}^{n}\left(2^{i}-1\right)$, in particular,
$\left|F_{2}^{\text {red }}\right|=3,\left|F_{3}^{\text {red }}\right|=3 \cdot 7=21,\left|F_{4}^{\text {red }}\right|=3 \cdot 7 \cdot 15=315,\left|F_{5}^{\text {red }}\right|=3 \cdot 7 \cdot 15 \cdot 31=9765$.

Remark 2.3. In basic replacements (vii), it is enough to consider only words W belonging to S_{i-1} (see (6) for the definition of S_{i-1}).

We define a k-linear mapping $\mathbf{r}: k F_{\infty}^{+} \rightarrow k F_{\infty}^{\text {red }}$ as follows. For each $X \in F_{\infty}^{+}$ we fix an arbitrary sequence of elementary K-reductions $X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow$ $X_{m} \in k F_{\infty}^{\text {red }}$ and we set $\mathbf{r}(X)=X_{m}$. Then we extend the mapping to $k F_{\infty}^{+}$by linearity.
2.2. Markov traces. Let $A=k[u, v]$ and $A K_{n}=K_{n}(\alpha, \beta ; A)$. Let $M=$ $M(\alpha, \beta ; k)$ be the quotient of $A K_{\infty}$ by the relations (4) and let $t: A K_{\infty} \rightarrow M$ be the quotient map. We call t the universal Markov trace on K_{∞} over k. It is indeed universal in the sense that any Markov trace on $K_{\infty}(\alpha, \beta ; A)$ with values in an A-module M^{\prime} is $f \circ t$ for some $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$.

We define A-linear mappings $\tau_{n}: A F_{n}^{+} \rightarrow A F_{n-1}^{\text {red }}$ called Markov reductions as follows. By Proposition 2.1(d), we have $F_{n}^{\mathrm{red}} \subset F_{n-1}^{\mathrm{red}} \cup\left(F_{n-1}^{\mathrm{red}} x_{n-1} F_{n-1}^{\mathrm{red}}\right) \cup$ $\left(F_{n-1}^{\mathrm{red}} x_{n-1}^{-1} F_{n-1}^{\mathrm{red}}\right)$. So, we set $\tau_{n}(X)=X, \tau_{n}\left(X x_{n-1} Y\right)=u \mathbf{r}(X Y)$, and $\tau_{n}\left(X x_{n-1}^{-1} Y\right)=$ $v \mathbf{r}(X Y)$ for $X, Y \in F_{n-1}^{+}$and then we extend τ_{n} to $A F_{n}^{\text {red }}$ by linearity and to $A F_{n}^{+}$ by setting $\tau_{n}(X)=\tau_{n}(\mathbf{r}(X))$. Finally, we define $\tau: F_{\infty}^{+} \rightarrow A F_{1}^{+}=A$ by setting $\tau(X)=\tau_{2} \circ \cdots \circ \tau_{n}(X)$ for $X \in A F_{n}^{+}$.

By definition of t and τ, we have $t(\pi(X))=t(\pi(\tau(X)))$, thus $M=t\left(K_{\infty}\right)$ is generated by $t(1)$. Let $I=I(\alpha, \beta ; k)$ be the annihilator of M. Thus we have $M \cong A / I$.
2.3. Statement of the main result. Let $\operatorname{sh}^{n}: A F_{\infty}^{+} \rightarrow A F_{\infty}^{+}, n \in \mathbb{Z}$, be the A-algebra endomorphism (the n-shift) induced by

$$
\operatorname{sh}^{n} x_{i}= \begin{cases}x_{i+n}, & i+n>0 \\ 0, & i+n \leq 0\end{cases}
$$

We set $\mathrm{sh}=\mathrm{sh}^{1}$.
For $X \in F_{5}^{+}$, we define $\rho_{X} \in \operatorname{End}_{A}\left(A F_{4}^{\text {red }}\right)$ by setting $\rho_{X}(Y)=\tau_{5}(X \operatorname{sh} Y)$. Let $J_{4}=J_{4}(\alpha, \beta ; k)$ be the minimal submodule of $A F_{4}^{\text {red }}$ satisfying the following properties (recall that the sets $S_{i, j}$ and S_{i} are defined in (6)):
(J1) $\mathbf{r}\left(\mathbf{r}\left(X_{3} X_{2}\right) X_{1}\right)-\mathbf{r}\left(X_{3} \mathbf{r}\left(X_{2} X_{1}\right)\right) \in J_{4}$ for any $X_{j} \in \operatorname{sh}^{3-j} S_{j} \backslash\{1\}, j=1,2,3$;
(J2) $\rho_{X}\left(J_{4}\right) \subset J_{4}$ for any $X \in S_{4}$.
In a similar way we define a module L. Let $N=A F_{2}^{\text {red }} \otimes_{A} A F_{2}^{\text {red }}$. We define A-linear mappings $\tau_{N}: N \rightarrow A$ and $\rho_{\delta}: N \rightarrow N, \delta=\left(\delta_{1}, \delta_{2}\right) \in\{-1,0,1\}^{2}$, by setting for any $Y=x_{1}^{\varepsilon_{1}} \otimes x_{1}^{\varepsilon_{2}}\left(\varepsilon_{1}, \varepsilon_{2} \in\{-1,0,1\}\right)$

$$
\tau_{N}(Y)=\tau\left(x_{1}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}}\right), \quad \rho_{\delta}(Y)=x_{1}^{\delta_{1}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}}\right)
$$

and we define L as the minimal submodule of N satisfying the conditions:
(L1) $\tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}\right) \otimes x_{1}^{\varepsilon_{4}}-x_{1}^{\varepsilon_{2}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}\right) \in L$ for any $\varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}$ and for any $\varepsilon_{2}, \varepsilon_{4} \in\{-1,0,1\}$;
(L2) $\rho_{\delta}(L) \subset L$ for any $\delta \in\{-1,0,1\}^{2}$.
Theorem 2.4. (Main Theorem). $I=\tau\left(J_{4}\right)+\tau_{N}(L)$.
The theorem is proved in $\S 3$ (see Proposition 3.2 for the inclusion " \supset " and Proposition 3.7 for the reverse inclusion).

This result allows (at least theoretically) to compute I. Indeed, we start with the A-module $J_{4}^{(0)}$ generated by the elements in (J1) and and we set $J_{4}^{(i+1)}=$ $\sum_{X \in S_{4}} \rho_{X}\left(J_{4}^{(i)}\right)$. Then the Gröbner bases $G^{(i)}$ of the modules $J_{4}^{(i)}$ can be computed recursively using the fact that $J_{4}^{(i+1)}$ is the module generated by $\bigcup_{X \in S_{4}} \rho_{X}\left(G^{(i)}\right)$. So, we construct an increasing sequence of submodules $J_{4}^{(0)} \subset J_{4}^{(1)} \subset \ldots$. Since the subring of A generated by α, β, u, v is noetherian, there exists m_{0} such that $J_{4}^{\left(m_{0}\right)}=J_{4}^{\left(m_{0}+1\right)}=\ldots\left(m_{0}\right.$ is determined by the condition $\left.G^{\left(m_{0}\right)}=G^{\left(m_{0}+1\right)}\right)$. The module L can be computed in a similar way as the limit of $L^{(0)} \subset L^{(1)} \subset \ldots$ where $L^{(0)}$ is generated by the elements in (L1) and $L^{(i+1)}=\sum_{\delta} \rho_{\delta}\left(L^{(i)}\right)$.

Performing in practice this computation for $\alpha=\beta=0, k=\mathbb{Z}$ (the case considered in [3] and [2]) and in some other special cases, we obtain the following results. To compute the Gröbner bases, we used Singular 3-1-3 and Macaulay2 software; see details on the web page [6].
Corollary 2.5. $I(0,0 ; \mathbb{Z})=\left(16,4 u^{2}+4 v, 4 v^{2}+4 u, u^{3}+v^{3}+u v-3\right)$.
Corollary 2.6. Let $k=\mathbf{k}[\alpha]$ for a ring \mathbf{k} specified below and let $I=I(\alpha, 0, k)$. Let \mathcal{G} be the reduced Gröbner base of I with respect to the lexicographic order such that $v>u>\alpha$ (the Gröbner bases in (e) - (g) also correspond to this order). Let

$$
\begin{aligned}
f_{1}= & \gamma_{1} \gamma_{2} \gamma_{3}, \quad \text { where } \gamma_{1}=\alpha^{3}+8, \gamma_{2}=2 \alpha^{3}+1, \gamma_{3}=3 \alpha^{3}+8 \\
f_{2}= & \gamma_{1} \gamma_{3}(u-\alpha) \\
f_{3}= & \gamma_{3}\left(6 u^{3}-3 \alpha^{2} u+\alpha^{3}+2\right) \\
f_{4}= & 336 u^{4}-792 \alpha u^{3}+12\left(15 \alpha^{3}+106\right) \alpha^{2} u^{2}+6\left(141 \alpha^{3}+544\right) u \\
& -114 \alpha^{7}-1405 \alpha^{4}-3152 \alpha \\
f_{5}= & 288 v+336 \alpha^{2} u^{3}+72\left(3 \alpha^{3}+28\right) u^{2}-48\left(9 \alpha^{3}+44\right) \alpha u-6 a^{8}+53 a^{5}+472 a^{2} .
\end{aligned}
$$

a). If $\mathbf{k}=\mathbb{F}_{2}$, then $\mathcal{G}=\left\{\alpha^{4}, \alpha^{2}\left(u^{3}+1+\alpha u^{2}\right), \alpha^{2}\left(v+u^{2}\right), v^{3}+u^{3}+u v+1+\right.$ $\left.\alpha\left(u v^{2}+v+\alpha u\right)\right\}$, hence $\operatorname{dim}_{\mathbf{k}}(A / I)=\infty$ and the base of A / I over \mathbf{k} is $\left\{\alpha^{l} u^{m} v^{n} \mid l \leq 1, n \leq 2\right\} \cup\left\{\alpha^{l} u^{m} \mid 2 \leq l \leq 3, m \leq 2\right\}$.
b). If $\mathbf{k}=\mathbb{F}_{3}$, then $\mathcal{G}=\left\{\alpha^{3}-1,\left(u^{2}-\alpha^{2}\right)\left(u^{2}-\alpha u-\alpha^{2}\right), v+u^{2}\right\}$, hence $\operatorname{dim}_{\mathbf{k}}(A / I)=12$.
c). If $\mathbf{k}=\mathbb{Q}$ or $\mathbf{k}=\mathbb{F}_{p}$ for a prime p in the range $5 \leq p \leq 599$, $p \neq 37$ (conjecturally, for any prime $p \notin\{2,3,37\}$), then $I=\left(f_{1}, \ldots, f_{5}\right)$. We have $\mathcal{G}=$ $\left\{f_{1}, \ldots, f_{5}\right\}$ and hence $\operatorname{dim}_{\mathbf{k}}(A / I)=24$ except the case $\mathbf{k}=\mathbb{F}_{7}$ where we have $\mathcal{G}=\left\{f_{1}, f_{2}, u^{3}+2 \alpha u\left(\gamma_{1} u+\gamma_{3} \alpha\right)+3 \alpha^{6}-3 \alpha^{3}, f_{5}\right\}$ and hence $\operatorname{dim}_{\mathbf{k}}(A / I)=21$.
d). If $\mathbf{k}=\mathbb{F}_{37}$, then we have $I=\left(f_{1}, f_{2}, f_{3},(u+7 \alpha) f_{4}, f_{5}-14 \alpha f_{4}\right)$ and $\mathcal{G}=$ $\left\{f_{1}, f_{2}, f_{3}, f_{4,37}, f_{5,37}\right\}$ where

$$
\begin{aligned}
& f_{4,37}=u^{5}+2 \alpha u^{4}+7 \alpha^{2} u^{3}-9\left(\alpha^{3}-1\right) u^{2}+\left(6 \alpha^{3}+2\right) \alpha u-12 a^{8}+9 a^{5} \\
& f_{5,37}=v-4 \alpha u^{4}+15 \alpha^{2} u^{3}-\left(14 \alpha^{3}+16\right) u^{2}-\left(\alpha^{3}+18\right) \alpha u-4 \alpha^{8}+2 \alpha^{5}-2 \alpha^{2}
\end{aligned}
$$

and hence $\operatorname{dim}_{\mathbf{k}}(A / I)=27$.
e). If $\mathbf{k}=\mathbb{Z} / 32 \mathbb{Z}$, then $\left\{8 \alpha^{3}, 4 \alpha^{4}, \alpha^{5}+8 \alpha^{2}, 16 \alpha u^{3}+16 \alpha^{2} u^{2}+4 \alpha^{3} u+2 \alpha^{4}, 8 \alpha^{2} u^{3}-\right.$ $12 \alpha^{3} u^{2}+8 \alpha^{2}, 2 \alpha^{3} u^{3}+16 u^{3}+16 \alpha^{2} u+6 \alpha^{3}+16, \alpha^{4} u^{3}+8 \alpha u^{3}+4 \alpha^{5} u^{2}+16 \alpha^{2} u^{2}+\alpha^{4}+$
$8 \alpha, 16 u^{4}-8 \alpha u^{3}+8 \alpha^{2} u^{2}-6 \alpha^{3} u+\alpha^{4}+16 \alpha, 4 \alpha^{2} u^{4}+7 \alpha^{3} u^{3}-8 u^{3}-2 \alpha^{4} u^{2}-4 \alpha^{2} u-$ $9 \alpha^{3}-8,8 \alpha u^{5}+16 u^{3}+\alpha^{4} u^{2}+8 \alpha^{2} u+6 \alpha^{3}, \alpha^{3} u^{5}-8 u^{5}-8 \alpha u^{4}-4 \alpha^{2} u^{3}-5 \alpha^{3} u^{2}+$ $8 u^{2}-13 \alpha^{4} u+16 \alpha u-4 \alpha^{2}, 4 \alpha u^{6}-9 \alpha^{3} u^{4}+8 u^{4}+3 \alpha^{3} u+8 u-3 \alpha^{4}+4 \alpha, 16 v+8 \alpha u^{4}+$ $12 \alpha^{2} u^{3}+16 u^{2}+3 \alpha^{4} u-12 \alpha^{2}, 8 \alpha v+10 \alpha^{4} u^{2}-8 \alpha u^{2}+16 \alpha^{2} u+2 \alpha^{3}+16,4 \alpha^{2} v-$ $12 \alpha^{2} u^{2}+12 \alpha^{3} u-13 \alpha^{4}-8 \alpha, \alpha^{3} v-8 v+\alpha^{3} u^{2}-8 u^{2}, 2 \alpha^{2} u v+8 v+4 \alpha u^{4}-12 \alpha^{2} u^{3}-$ $4 \alpha^{3} u^{2}-8 u^{2}+13 \alpha^{4} u+12 \alpha u-2 \alpha^{2}, 4 \alpha u^{3} v+12 \alpha v-12 \alpha u^{5}+13 \alpha^{3} u^{3}+8 u^{3}-10 \alpha^{4} u^{2}+$ $12 \alpha u^{2}+3 \alpha^{3}-8,4 v^{2}-2 \alpha u v+3 \alpha^{2} v+\alpha^{2} u^{2}+4 u-2 \alpha, 2 \alpha v^{2}+15 \alpha^{2} u v-4 v+15 \alpha^{3} u^{2}-$ $4 u^{2}+2 \alpha u+15 \alpha^{2}, \alpha^{2} v^{2}+4 u v-2 \alpha v-4 \alpha u^{5}+15 \alpha^{4} u^{2}-2 \alpha u^{2}-7 \alpha^{2} u+13 a^{3}-4, v^{3}-$ $\left.15 \alpha u v^{2}-3 u v-7 \alpha v+u^{3}+6 \alpha u^{2}+\alpha^{2} u+2 \alpha^{3}-15\right\}$ is a Gröbner base of I.
f). If $\mathbf{k}=\mathbb{Z} / 3^{r} \mathbb{Z}$ for $r \leq 6$ (conjecturally, for any r), then $I=(\mathcal{F})$ for $\mathcal{F}=$ $\left\{f_{1}, f_{2}, f_{3}, 2 u^{4}+\alpha u^{3}-\alpha^{2} u^{2}+2 u-\alpha, v+u^{2}\right\}$. If, moreover, $r \geq 2$, then $\mathcal{F} \cup$ $\left\{3^{r-1}\left(\alpha^{3}-1\right)\right\}$ is a Gröbner base of I, hence $|A / I|=3^{12 r}$. By (b), this implies that A / I is a free \mathbf{k}-module of rank 12.
g). If $\mathbf{k}=\mathbb{Z} / 37 p \mathbb{Z}$ for a prime $p \leq 67, p \notin\{2,3,7\}$ (conjecturally, for any prime $p \notin\{2,3,7\})$, then $\left\{f_{1}, f_{2}, f_{3}, 37 f_{4},(u+7 \alpha) f_{4}, f_{5}-14 \alpha f_{4}\right\}$ is a Gröbner base of I.

Remark 2.8. The Markov trace t over k defines an invariant of oriented links $P(L)=P_{\alpha, \beta, k}(L)=u^{(1-n-e) / 2} v^{(1-n+e) / 2} t(b) \in k\left[u^{ \pm 1 / 2}, v^{ \pm 1 / 2}\right] / I(\alpha, \beta ; k)$ where b is a representation of a link L by a braid with n strings and e is the sum of exponents of b. It is shown in [2] that $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}$ is determined by the HOMFLY polynomial (see Section 4.5 below). In the first arxiv version of this paper (arxiv:1206.0765v1) it was claimed that $P_{\alpha, 0 ; \mathbb{Q}[\alpha]}$ and $P_{\alpha, 0 ; \mathbb{F}_{3}[\alpha]}$ detect the chirality of the knot 10_{71}. Unfortunately, this is not so. However, $P_{\alpha, 0 ; \mathbb{F}_{37}[\alpha]}$ detects the chirality of the knots $10_{48}, 10_{91}$ and it distinguishes many other pairs of knots with equal HOMFLY polynomials. In the cases computed so far, the invariants $P_{\alpha, 0 ; k}$ do not distinguish any pair of knots up to 11 crossings with equal Kauffman polynomials. It is shown in Proposition 4.1(f) below that $P_{\alpha, \beta ; k}$ never distinguishes mutant links.

Remark 2.9. According to [4; Theorem 1.5], we have $I(\alpha, \beta ; \mathbb{Q}(\alpha, \beta))=(1)$. This is equivalent to say that $I(\alpha, \beta ; \mathbb{Q}[\alpha, \beta])$ contains a nonzero polynomial in α and β (observe that the same phenomenon takes place in Corollaries 2.5 and 2.6).

Remark 2.10. Our main motivation for studying quotients of cubic Hecke algebras and their Markov traces stems from the Markov-type theorem for transversal links proved in [7]. If u, v were zero divisors in A / I then one might possibly obtain transversal links invariants which distinguish isotopic links with the same Bennequin invariants. In the cases computed so far, however, u and v are not zero divisors.

We say that $t \in \operatorname{Hom}_{k[u]}\left(K_{\infty} \otimes k[u], M\right)$ is a semi-Markov trace on K_{∞} if $t(x y)=$ $t(y x)$ and $t\left(x s_{n}\right)=u t(x)$ for $x, y \in K_{n}, n>0$. Due to [7], any semi-Markov trace provides an invariant of transversal links. In [5], the methods of the present paper are adapted for studying the universal semi-Markov trace on K_{n}.

Remark 2.11. The main error in [3] (which was repeated also in [1]) is that the modules $J_{4}^{(0)}$ and $L^{(0)}$ were considered instead of J_{4} and L.

3. Proof of Main Theorem

The idea of the proof is as follows. Given $X \in A F_{n}^{+}$, the element of A representing $\tau(X)$ is computed by successive reductions (i)-(viii), Markov relations, and
cyclic permutations. We have to find the minimal possible ideal I such that the result does not depend on the order of these operations. It is easy to observe (though not so easy to formalize this observation) that the main sources of the ambiguity are as follows. First, the reduction of a subword $W=x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{1}^{\varepsilon_{3}} x_{3}^{\varepsilon_{4}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}$ can be started either with $x_{3}^{\varepsilon_{4}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}$ or (after commuting $x_{1}^{\varepsilon_{3}}$ and $x_{3}^{\varepsilon_{4}}$) with $x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{3}^{\varepsilon_{4}}$. Thus $\tau\left(J_{4}^{(0)}\right)$ should be included in I. Second, the reduction of a word $x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}}$ can be started either by $x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}$ or (after a cyclic permutation) by $x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}$. Thus $\tau_{N}\left(L^{(0)}\right)$ should be included into I.

Let us focus on the first case. So, let Y be an element of $J_{4}^{(0)}$. Then, for any X and any n, we should have $\tau\left(X \operatorname{sh}^{n} Y\right) \in I$. In particular, for any $X \in F_{5}^{+}$, we should have $\tau\left(\rho_{X}(Y)\right) \in I$, i. e., $\tau\left(J_{4}^{(1)}\right) \subset I$. By iterating this process, we conclude that $\tau\left(J_{4}\right) \subset I$. Similarly, $\tau_{N}(L) \subset I$. This is the easy part of the proof which is formally exposed in Section 3.1.

The difficult part of the proof (formally exposed in Section 3.2) consists in checking that any choice of the reduction process leads to the same result modulo $I^{\prime}=\tau\left(J_{4}\right)+\tau_{N}(L)$. We use induction on the weight (see the definition of the weight function wt in Section 2.1). As we pointed out above, there are two main sources of the ambiguity. Again, we discuss here only the first one. So, we have to prove that $\tau\left(X \operatorname{sh}^{n} Y\right) \in I^{\prime}$ for any X when $Y \in J_{4}$. By additivity, we may assume that X is a monomial. If any reduction can be applied to X, then we do it and we use the induction hypothesis. So, we may assume that $X \in A F_{n+4}^{+}$. If $X=X_{1} X_{2}$ where X_{2} commutes with $\operatorname{sh}^{n} Y$, then we replace $X \operatorname{sh}^{n} Y$ by $X_{2} X_{1} \operatorname{sh}^{n} Y$. Thus we arrive to the case when $X=X^{\prime} \operatorname{sh}^{n-1} X_{1}$ with $X^{\prime} \in F_{n+3}^{+}, X_{1} \in F_{5}^{+}$, and we apply the induction hypothesis to $X^{\prime} \operatorname{sh}^{n-1} Y^{\prime}$ where $Y^{\prime}=\rho_{X_{1}}(Y)$.

3.1. Easy part: $\tau\left(J_{4}\right)+\tau_{N}(L) \subset I$.

Let $J_{4}^{(0)} \subset J_{4}^{(1)} \subset \ldots$ and $L^{(0)} \subset L^{(1)} \subset \ldots$ be as defined in $\S 2.3$.
For $n \geq 4$ and $a \in A K_{n}$, we define $t_{n, a} \in \operatorname{Hom}_{A}\left(F_{4}^{\text {red }}, A\right)$ by setting $t_{n, a}(X)=$ $t\left(a \pi\left(\operatorname{sh}^{n-4} X\right)\right)$. Similarly, for $n \geq 1$ and $a, b \in A K_{n}$, we define $t_{n, a, b} \in \operatorname{Hom}_{A}(N, A)$ by setting $t_{n, a, b}(X \otimes Y)=t\left(\pi\left(\operatorname{sh}^{n-1} X\right) a \pi\left(\operatorname{sh}^{n-1} Y\right) b\right)$.

Lemma 3.1.

a). $J_{4} \subset \operatorname{ker} t_{n, a}$ for any $n \geq 4$ and any $a \in K_{n}$.
b). $L \subset \operatorname{ker} t_{n, a, b}$ for any $n \geq 1$ and any $a, b \in K_{n}$.

Proof. We prove by induction that a) $J_{4}^{(i)} \subset \operatorname{ker} t_{n, a}$ and b) $L^{(i)} \subset \operatorname{ker} t_{n, a, b}$. For $i=0$, the statement is evident. Suppose that it is true for $i-1$ and let us prove it for i. Note that we have

$$
\begin{equation*}
t\left(a \pi\left(\operatorname{sh}^{p} \tau_{n-p}(X)\right) b\right)=t\left(a \pi\left(\operatorname{sh}^{p} X\right) b\right) \quad \text { for } \quad a, b \in K_{n-1}, X \in A F_{n}^{+} \tag{7}
\end{equation*}
$$

a). It is enough to check that $\rho_{X}(Y) \in \operatorname{ker} t_{n, a}$ for any $Y \in J_{4}^{(i-1)}, X \in S_{4}$. $n \geq 4, a \in K_{n}$. Indeed,

$$
\begin{aligned}
t_{n, a}\left(\rho_{X}(Y)\right) & =t\left(a \pi\left(\operatorname{sh}^{n-4} \rho_{X}(Y)\right)\right) & & \text { by definition of } t_{n, a} \\
& =t\left(a \pi\left(\operatorname{sh}^{n-4} \tau_{5}(X \operatorname{sh} Y)\right)\right) & & \text { by definition of } \rho_{X} \\
& =t\left(a \pi\left(\left(\operatorname{sh}^{n-4} X\right)\left(\operatorname{sh}^{n-3} Y\right)\right)\right) & & \text { by }(7) \\
& =t_{n+1, a^{\prime}}(Y) & & \text { for } a^{\prime}=a \pi\left(\operatorname{sh}^{n-4} X\right) \in K_{n+1} \\
& =0 & & \text { by the induction hypothesis }
\end{aligned}
$$

b). It is enough to check that $\rho_{\delta}(Y) \in \operatorname{ker} t_{n, a, b}$ for any $Y \in L^{(i-1)}, \delta=\left(\delta_{1}, \delta_{2}\right) \in$ $\{-1,0,1\}^{2}, n \geq 1, a, b \in K_{n}$. Indeed, let $Y=\sum_{j} c_{j} x_{1}^{\varepsilon_{1}(j)} \otimes x_{1}^{\varepsilon_{2}(j)}$. Then

$$
\begin{array}{rll}
t_{n, a, b}\left(\rho_{\delta}(Y)\right)=t_{n, a, b}\left(\sum c_{j} x_{1}^{\delta_{1}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)\right) & \text { def. of } \rho_{\delta} \\
\quad=\sum c_{j} t\left(\pi\left(\operatorname{sh}^{n-1} x_{1}^{\delta_{1}}\right) a \pi\left(\operatorname{sh}^{n-1} \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)\right) b\right) & \text { def. of } t_{n, a, b} \\
\quad=\sum c_{j} t\left(s_{n}^{\delta_{1}} a s_{n+1}^{\varepsilon_{1}(j)} s_{n}^{\delta_{2}} s_{n+1}^{\varepsilon_{2}(j)} b\right) & \text { by }(7) \\
\quad=\sum c_{j} t\left(s_{n+1}^{\varepsilon_{1}(j)} s_{n}^{\delta_{2}} s_{n+1}^{\varepsilon_{2}(j)} b s_{n}^{\delta_{1}} a\right) & t(x y)=t(y x) \\
=\sum c_{j} t\left(\pi\left(\operatorname{sh}^{n} x_{1}^{\varepsilon_{1}(j)}\right) s_{n}^{\delta_{2}} \pi\left(\operatorname{sh}^{n} x_{1}^{\varepsilon_{2}(j)}\right) b s_{n}^{\delta_{1}} a\right) & \\
=t_{n+1, a^{\prime}, b^{\prime}}(Y) & a^{\prime}=s_{n}^{\delta_{2}}, b^{\prime}=b s_{n}^{\delta_{1}} a
\end{array}
$$

$$
=0
$$

by induction hypothesis

Proposition 3.2. $\tau\left(J_{4}\right)+\tau_{N}(L) \subset I$.
Proof. Indeed, by Lemma 3.1, we have $t(\tau(X))=t_{4,1}(X)=0$ for any $X \in J_{4}$ and $t\left(\tau_{N}(X)\right)=t_{1,1,1}(X)=0$ for any $X \in L$. Thus $\tau\left(J_{4}\right)+\tau_{N}(L) \subset \operatorname{ker}\left(\left.t\right|_{A}\right)=I$.

3.2. Difficult part: $I \subset \tau\left(J_{4}\right)+\tau_{N}(L)$.

Let, as above, \bar{R} be the submodule of K_{∞} generated by the elements (4). Set $R=\pi^{-1}(\bar{R})$. Then we have $I=A \cap \bar{R}=A \cap R$. Let wt : $A F_{\infty}^{+} \rightarrow \mathbb{Z}_{\geq 0}$ be the weight function defined in §2.1. It defines a filtration on $A F_{\infty}^{+}$, namely, $A=A F_{[0]}^{+} \subset$ $A F_{[1]}^{+} \subset A F_{[2]}^{+} \subset \ldots$ where $A F_{[w]}^{+}=\left\{X \in A F_{\infty}^{+} \mid\right.$wt $\left.X \leq w\right\}$.

We shall work with the following set of generators $\mathcal{R}=\mathcal{R}_{T} \cup \mathcal{R}_{M} \cup \mathcal{R}_{N} \cup \mathcal{R}_{H}$ of R as an A-module (we set here $u_{+}=u, u_{-}=v$):

$$
\begin{array}{ll}
\mathcal{R}_{T}=\left\{X Y-Y X \mid X, Y \in F_{\infty}^{+}\right\}, & \text {trace relations; } \\
\mathcal{R}_{M}=\left\{x_{n}^{ \pm 1} X-u_{ \pm} X \mid X \in F_{n}^{+}, n \geq 1\right\}, & \text { Markov relations; } \\
\mathcal{R}_{N}=\left\{U X-V X \mid X, U \in F_{\infty}^{+}, U \xrightarrow{(i)-(v i)} V\right\}, & \text { nonhomogeneous } K \text {-relations; } \\
\mathcal{R}_{H}=\left\{U X-V X \mid X, U \in F_{\infty}^{+}, U \xrightarrow{(v i i i)} V\right\}, & \text { homogeneous } K \text {-relations. }
\end{array}
$$

Let $\mathcal{R}_{[w]}=\mathcal{R} \cap A F_{[w]}^{+}$, let $R_{[w]}$ be the A-submodule of R generated by $\mathcal{R}_{[w]}$, and let H be the submodule generated by $\mathcal{R}_{T} \cup \mathcal{R}_{H}$ (the elements of $H \cap R_{[w]}$ are wt-homogeneous for any w). Note, that by Proposition 2.1(a) we have

$$
\begin{equation*}
X \equiv \mathbf{r}(X) \equiv \tau_{n}(X) \equiv \tau(X) \quad \bmod R_{[\mathrm{wt} X]} \quad \text { for } X \in A F_{n}^{+} \tag{8}
\end{equation*}
$$

In what follows, a notation like $X_{1} \equiv X_{2} \equiv X_{3} \equiv \ldots$ means that $X_{i} \equiv X_{i+1}$ $\bmod R_{\left[\mathrm{wt} X_{i}\right]}$ and wt $X_{i+1} \geq \mathrm{wt} X_{i}$, in particular, in this case we always have $X_{1} \equiv$ $X_{2} \equiv X_{3} \equiv \ldots \bmod R_{\left[\mathrm{wt} X_{1}\right]}$.
Lemma 3.3. Let $Z=X \operatorname{sh}^{n-4} Y$ for $X \in A F_{\infty}^{+}, Y \in J_{4} \cap \operatorname{sh}^{4-n} A F_{\infty}^{+}, n \geq 1$. Then $Z \in R_{[w]}+\tau\left(J_{4}\right)$ where $w=\mathrm{wt} Z$.

Proof. We denote $\operatorname{sh}^{n-4} Y$ by Y_{n}. If $X \in A F_{m}^{+}$with $m>n$, then

$$
X Y_{n} \equiv \tau_{m}(X) Y_{n} \equiv \tau_{m-1}\left(\tau_{m}(X)\right) Y_{n} \equiv \cdots \equiv \tau_{n+1} \circ \cdots \circ \tau_{m-1} \circ \tau_{m}(X) Y_{n}
$$

hence it is enough to prove the statement of the lemma under the additional hypothesis $X \in A F_{n}^{+}$. We prove it by induction.

If $n=1$, then $X \in A F_{1}^{+}=A$ and $Y \in J_{4} \cap \operatorname{sh}^{3} A F_{\infty}^{+}=J_{4} \cap A \subset \tau\left(J_{4}\right)$, so, the statement is trivial.

Suppose that $n \geq 2$, the statement is true for $n-1$, and let us prove it for n. By linearity, it is enough to consider the case when $X \in F_{n}^{+}$and since $X \equiv \mathbf{r}(X)$, we may assume that $X \in F_{n}^{\text {red }}$. Let $X=X_{1} X_{2} \ldots X_{n-1}, X_{i} \in S_{i}$ (see Remark 2.2). We have $X_{n-1}=\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right) X_{n-5}^{\prime \prime}$ with $X_{4}^{\prime} \in S_{4} \cap \operatorname{sh}^{5-n} A F_{\infty}^{+}$and $X_{n-5}^{\prime \prime} \in S_{n-5}$ (we assume here that $S_{i}=\{1\}$ when $i \leq 0$). Note that Y_{n} may involve only $x_{n-4+i}^{ \pm 1}$, $i=1,2,3$, whereas $X_{n-5}^{\prime \prime}$ may involve only $x_{i}^{ \pm 1}, i \leq n-5$, hence they commute. Therefore, denoting $X_{1} \ldots X_{n-2}$ by $X_{n-2}^{\prime \prime \prime}$, we obtain

$$
\begin{aligned}
Z & =X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right) X_{n-5}^{\prime \prime}\left(\operatorname{sh}^{n-4} Y\right) \equiv X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right)\left(\operatorname{sh}^{n-4} Y\right) X_{n-5}^{\prime \prime} \\
& \equiv X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right)\left(\operatorname{sh}^{n-4} Y\right)=X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \operatorname{sh}^{n-5}\left(X_{4}^{\prime} \operatorname{sh} Y\right) \\
& \equiv X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \operatorname{sh}^{n-5}\left(\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right)\right)=X^{\prime} \operatorname{sh}^{n-5} Y^{\prime}
\end{aligned}
$$

where $X^{\prime}=X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \in A F_{n-1}^{+}$and $Y^{\prime}=\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right)=\rho_{X_{4}^{\prime}}(Y) \in J_{4}$.
To complete the proof, it remains to check that $Y^{\prime} \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$. Indeed, we have $X_{4}^{\prime} \in \operatorname{sh}^{5-n} A F_{\infty}^{+}, Y \in \operatorname{sh}^{4-n} A F_{\infty}^{+}$, hence sh $Y \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$and we obtain $X_{4}^{\prime} \operatorname{sh} Y \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$whence $Y^{\prime}=\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right) \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$.

The next lemma is similar. For $n \geq 1$ and $X_{1}, X_{2} \in A F_{n}^{+}$we define $\varphi_{n, X_{1}, X_{2}} \in$ $\operatorname{Hom}_{A}\left(N, A F_{n+1}^{+}\right)$by setting $\varphi_{n, X_{1}, X_{2}}\left(Y_{1} \otimes Y_{2}\right)=X_{1}\left(\operatorname{sh}^{n-1} Y_{1}\right) X_{2}\left(\operatorname{sh}^{n-1} Y_{2}\right)$.

Lemma 3.4. Let $Z=\varphi_{n, X_{1}, X_{2}}(Y)$ for $n \geq 1, X_{1}, X_{2} \in A F_{n}^{+}, Y \in L$. Then $Z \in R_{[w]}+\tau_{N}(L)$ where $w=\mathrm{wt} Z$.

Proof. It is enough to consider the case when $X_{1}, X_{2} \in F_{n}^{\text {red }}$. Then there exist $X_{i}^{\prime}, X_{i}^{\prime \prime} \in F_{n-1}^{\mathrm{red}}$ and $\delta_{i} \in\{-1,0,1\}$ such that $X_{i}=X_{i}^{\prime} x_{n-1}^{\delta_{i}} X_{i}^{\prime \prime}(i=1,2)$. Let

$$
\begin{equation*}
Y=\sum_{j} c_{j} x_{1}^{\varepsilon_{1}(j)} \otimes x_{1}^{\varepsilon_{2}(j)} \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
Z & =\sum c_{j} X_{1} x_{n}^{\varepsilon_{1}(j)} X_{2} x_{n}^{\varepsilon_{2}(j)}=\sum c_{j} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} x_{n}^{\varepsilon_{1}(j)} X_{2}^{\prime} x_{n-1}^{\delta_{2}} X_{2}^{\prime \prime} x_{n}^{\varepsilon_{2}(j)} \\
& \equiv \sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} x_{n}^{\varepsilon_{1}(j)} x_{n-1}^{\delta_{2}} x_{n}^{\varepsilon_{2}(j)} \\
& =\sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} \operatorname{sh}^{n-2}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right) \\
& \equiv \sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} \operatorname{sh}^{n-2} \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)=\varphi_{n-1, \bar{X}_{1}, \bar{X}_{2}}(\bar{Y})
\end{aligned}
$$

where $\bar{X}_{1}=X_{2}^{\prime \prime} X_{1}^{\prime}, \bar{X}_{2}=X_{1}^{\prime \prime} X_{2}^{\prime}, \bar{Y}=\rho_{\delta}(Y)$. So, we have $Z \equiv \bar{Z}=\varphi_{n-1, \bar{X}_{1}, \bar{X}_{2}}(\bar{Y})$ where $\bar{X}_{1}, \bar{X}_{2} \in A F_{n-1}^{+}, \bar{Y} \in L$.

Thus, by induction we reduce the problem to the case $n=1$. In this case we have $X_{1}, X_{2} \in A F_{1}^{+}=A$, hence, for Y as in (9), we have $Z=\varphi_{1, X_{1}, X_{2}}(Y)=$ $\sum c_{j} x_{1}^{\varepsilon_{1}(j)} x_{1}^{\varepsilon_{2}(j)}$, hence $Z \equiv \tau_{2}(Z)=\tau_{N}(Y) \in \tau_{N}(L)$.

The next statement can be considered as an improvement of the Pentagon Lemma from [3].
Lemma 3.5 (Pentagon Lemma). Let $Z_{1}, Z_{2} \in \mathcal{R}_{N} \cup \mathcal{R}_{M}$ and $Z_{1}-Z_{2} \in H+$ $A F_{[w-1]}^{+}$where $w=\mathrm{wt} Z_{1}=\mathrm{wt} Z_{2}$. Then $Z_{1}-Z_{2} \in H+R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$. Proof. Let $X_{i} \in F_{\infty}^{+}$be the leading monomial of $Z_{i}, i=1,2$, i. e., wt $X_{i}=\mathrm{wt} Z_{i}$ and $\mathrm{wt}\left(Z_{i}-X_{i}\right) \leq w-1$. Then $X_{1}-X_{2} \in H$, hence there exists a sequence of words $X_{1}=W_{1}, \ldots, W_{m}=X_{2}$ such that W_{i+1} is obtained from W_{i} either by a cyclic permutation or by exchanging two consecutive commuting letters. By definition of \mathcal{R}_{M} and \mathcal{R}_{N} we have $X_{i}=U_{i} X_{i}^{\prime}$ and $Z_{i}=\left(U_{i}-V_{i}\right) X_{i}^{\prime}, i=1,2$, where $U_{i} \rightarrow V_{i}$ is an elementary K-reduction of types $(i)-(v i)$ if $Z_{i} \in \mathcal{R}_{N}$ and $U_{i}=x_{n}^{ \pm 1}, V_{i}=u_{ \pm}$, $X_{i}^{\prime} \in F_{n}^{+}$if $Z_{i} \in \mathcal{R}_{M}$.

Following [3] and [1], we represent such sequences W_{1}, \ldots, W_{m} by diagrams. A diagram is a union of mutually transversal curves in the cylinder $S^{1} \times[0,1]$, each curve being labeled by a letter $x_{i}^{ \pm 1}$. In pictures we represent the cylinder by a rectangle whose vertical sides are supposed to be identified, so, the fibers of the projection $\operatorname{pr}_{2}: S^{1} \times[0,1] \rightarrow[0,1]$ will be called horizontal circles. Each curve is monotone, i. e., its projection onto $[0,1]$ is bijective. We say that a diagram is admissible if two curves labeled by $x_{i}^{ \pm 1}$ and $x_{j}^{ \pm 1}$ may cross only if $|i-j| \geq 2$. The words W_{i} (up to cyclic permutation) are read on horizontal circles.

We say that curves $\Gamma_{1}, \ldots, \Gamma_{m}$ form a bunch of parallel curves or just a bunch if they are pairwise disjoint and all the crossings lying on $\bigcup \Gamma_{i}$ can be covered by disks whose intersections with the diagram are as in Figure 1 up to symmetry.

In our case, the first and the last word of the sequence are X_{1} and X_{2}. So, on the boundary of the cylinder we indicate (by a bold line) segments corresponding to U_{1} and U_{2}. As in [3] and [1], a diagram is called interactive if it contains a curve which joins the bold segments. We also say that a curve is active if it meets at least one bold segment.
Step 1. If all active curves form a single bunch all whose ends are on the bold segments, then $Z_{1}-Z_{2} \in H$.

In this case we have $U_{1}=U_{2}$. Let $V_{1}=\mathbf{r}\left(U_{1}\right)=\sum c_{j} W_{j}, c_{j} \in A, W_{j} \in F_{\infty}^{+}$. For each j we consider the diagram obtained from the initial diagram by replacing the bunch of active curves by a bunch of curves labeled by W_{j}. If a curve crosses the bunch, its label commutes with all letters occurring in U_{1}, hence it commutes with all letters in W_{j}, i. e., the new diagram is admissible and it defines a congruence $W_{j} X_{1}^{\prime} \equiv W_{j} X_{2}^{\prime} \bmod H$. Hence (recall that $X_{1}-X_{2} \in H$) we have $Z_{1}-Z_{2}=$ $\left(X_{1}-V_{1} X_{1}^{\prime}\right)-\left(X_{2}-V_{1} X_{2}^{\prime}\right) \equiv V_{1} X_{2}^{\prime}-V_{1} X_{1}^{\prime}=\sum c_{j} W_{j}\left(X_{2}^{\prime}-X_{1}^{\prime}\right) \equiv 0 \bmod H$.

Step 2. If $Z_{1}, Z_{2} \in \mathcal{R}_{M}$, then $Z_{1}-Z_{2} \in H$.
In this case there is only one active curve, so we apply the result of Step 1.
Step 3. If the diagram is non-interactive, then $Z_{1}-Z_{2} \in H+R_{[w-1]}$.
Due to Step 2, we may suppose that $Z_{1} \in \mathcal{R}_{N}$. Then $U_{1}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{3}}$ with $\varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}$ and $\varepsilon_{2} \in\{-1,0,1\}$.

Let A and B be the points on the lower bold segment that correspond to the letters $x_{n}^{\varepsilon_{1}}$ and $x_{n}^{\varepsilon_{3}}$ of U_{1} and let $A D$ and $B C$ be the corresponding active curves (see Figure 2). They cut the cylinder into two halves. Let Q be that half whose side $A B$ is contained in the bold segment (the quadrangle $A B C D$ in Figure 2).

Figure 1

Figure 2

Let Γ be the curve outcoming from U_{1} and labeled by $x_{n-1}^{\varepsilon_{2}}$ if $\varepsilon_{2} \neq 0$ or a generic monotone curve in Q if $\varepsilon_{2}=0$. Let us choose a horizontal circle (the dashed line in Figure 2) so that all crossings are below it and let us choose points E and F on it so that the segment $E F$ which crosses Γ has no other intersections with the diagram. We may suppose that the intersection of the diagram with the upper half-cylinder (above $E F$) is a union of segments of vertical lines.

Let Δ be the diagram obtained by replacing $A D$ and $B C$ with monotone curves $A E D$ and $B F C$ where $E D, F C$ are straight line segments and $A E, B F$ are curves in Q which are chosen so close to Γ that the active curves outcoming from U_{1} form a bunch in the lower half-cylinder (below $E F$). The label of any curve $\Gamma^{\prime} \neq \Gamma$ entering Q is not $x_{i}^{ \pm 1}$ with $|n-i| \leq 1$ (indeed, since Γ^{\prime} attains the lower boundary outside the bold segment, it crosses $A D$ or $B C)$. Hence Δ is admissible.

Let Y be the word read from Δ along the circle $E F$. The bunch of active curves in the lower half-cylinder ensures that $Y=U_{1} Y^{\prime}$ and the result of Step 1 yields

$$
\begin{equation*}
Z_{1} \equiv\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y^{\prime} \quad \bmod H \tag{10}
\end{equation*}
$$

Now, let us study the upper part of Δ (above $E F$). All the possible crossings in this part are on $E D$ and $F C$. Hence, up to cyclic permutation, we have $X_{2}=$ $x_{n}^{\varepsilon_{1}} X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} x_{n}^{\varepsilon_{3}} X_{5}$ and $Y=U_{1} Y^{\prime}=U_{1} X_{4} X_{5} X_{3}$ (see Figure 2). Since the diagram is not interactive, U_{2} is a subword of one of X_{3}, X_{4}, X_{5}, hence the active curves outcoming from U_{2} form a bunch and $Y^{\prime}=Y_{1} U_{2} Y_{2}$, i. e., $Y=U_{1} Y_{1} U_{2} Y_{2}, Y_{1}, Y_{2} \in$ F_{∞}^{+}. Hence, by Step 1, we have

$$
\begin{equation*}
Z_{2} \equiv U_{1} Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) Y_{2} \quad \bmod H \tag{11}
\end{equation*}
$$

We have also

$$
U_{1} Y_{1} \mathbf{r}\left(U_{2}\right) Y_{2} \equiv \mathbf{r}\left(U_{1}\right) Y_{1} \mathbf{r}\left(U_{2}\right) Y_{2} \equiv \mathbf{r}\left(U_{1}\right) Y_{1} U_{2} Y_{2} \quad \bmod R_{[w-1]}
$$

Combining this with (10) and (11), we obtain

$$
Z_{1} \equiv\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y_{1} U_{2} Y_{2} \equiv U_{1} Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) Y_{2} \equiv Z_{2} \quad \bmod H+R_{[w-1]} .
$$

Step 4. Consider the open intervals obtained after removing all endpoints of all active curves. If at least one of the words corresponding to these intervals is not almost K-reduced (see the definition in §2.1), then $Z_{1}-Z_{2} \in H+R_{[w-1]}$.

Suppose that the word which is not almost K-reduced is a subword Y of X_{2}. Since it is disjoint from the active curves, we can write $X_{2}=U_{2} X_{3} Y X_{4}$. The fact
that Y is not almost K-reduced means that there exists a sequence $Y=Y_{0} \rightarrow Y_{1} \rightarrow$ $\cdots \rightarrow Y^{\prime} U_{3} Y^{\prime \prime}$ of exchanges of commuting letters such that U_{3} is the left hand side of an elementary replacement of type $(i)-(v i)$. The fact that Y does not meet any active curve means that the diagrams corresponding to the both chains

$$
\begin{aligned}
X_{1} \rightarrow \cdots \rightarrow X_{2} & =U_{2} X^{\prime} Y_{0} X^{\prime \prime} \rightarrow U_{2} X^{\prime} Y_{1} X^{\prime \prime} \rightarrow \cdots \rightarrow U_{2} X^{\prime}\left(Y^{\prime} U_{3} Y^{\prime \prime}\right) X^{\prime \prime}, \\
X_{2} & =U_{2} X^{\prime} Y_{0} X^{\prime \prime} \rightarrow U_{2} X^{\prime} Y_{1} X^{\prime \prime} \rightarrow \cdots \rightarrow U_{2} X^{\prime}\left(Y^{\prime} U_{3} Y^{\prime \prime}\right) X^{\prime \prime}
\end{aligned}
$$

are non-interactive. By Step 3 this implies $Z_{1} \equiv Z_{3} \equiv Z_{2} \bmod H+R_{[w-1]}$ where $Z_{3}=U_{2} X^{\prime} Y^{\prime}\left(U_{3}-\mathbf{r}\left(U_{3}\right)\right) Y^{\prime \prime} X^{\prime \prime}$.

Step 5. Suppose that $Z_{1} \in \mathcal{R}_{N}$ and the diagram is interactive but not as in Step 1. Then the active curves are arranged up to symmetry either as in Figure 3.1 or as in Figure 3.2 where each of the dashed lines may or may not be included into the diagram, $n \geq 1$.

Figure 3.1

Figure 3.2

Indeed, we draw the curves adjacent to one of the bold segments and we try all the possibilities to complete the picture to an admissible diagram. It is easy to see that the pictures that could arise this way are the two pictures from the statement of Step 5 .

Step 6. If the active curves are as in Figure 3.1, then $Z_{1}-Z_{2} \in H+R_{[w-1]}+\tau\left(J_{4}\right)$.
Suppose that the active curves are as in Figure 3.1 (the bottom boundary corresponds to X_{1}). Then $U_{1}=x_{n}^{\varepsilon_{4}} x_{n-1}^{\varepsilon_{5}} x_{n}^{\varepsilon_{6}}, U_{2}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{4}}, X_{2}=U_{2} Y x_{n-1}^{\varepsilon_{5}} X_{3} x_{n}^{\varepsilon_{6}} X_{4}$ where $\varepsilon_{1}, \varepsilon_{4}, \varepsilon_{6}= \pm 1$ and $\varepsilon_{2}, \varepsilon_{5} \in\{-1,0,1\}$.

We begin as in Step 3. Let Q be the curvilinear quadrangle adjacent to the lower bold segment and bounded by the active x_{n}-curves outcoming from U_{1}. Let C_{1} be a horizontal circle such that the part of the diagram above C_{1} is a union of segments of vertical lines. Let Γ be either the (x_{n-1})-curve outcoming from U_{1} (if it exists) or just a generic monotone curve in Q. Then we push the x_{n}-curves inside the domain Q from its boundary so that they form (together with Γ) a bunch below C_{1}, and so that the portions of the pushed curves above C_{1} are segments of straight lines (see Figure 4.1).

Since all curves outcoming from Y cross an x_{n}-curve, Y does not contain $x_{i}^{ \pm 1}$ for $n-1 \leq i \leq n+1$. By Step 4, we may suppose that Y is almost K-reduced, hence Y has at most one occurrence of $x_{n-2}^{ \pm 1}$, i. e., $Y=Y_{1} x_{n-2}^{\varepsilon_{3}} Y_{2}$ with $\varepsilon_{3} \in\{-1,0,1\}$ and Y_{1}, Y_{2} do not contain $x_{i}^{ \pm 1}$ for $n-2 \leq i \leq n+1$.

Figure 4.1

Figure 4.2

We choose horizontal circles C_{2} and C_{3} so that the intersection point of the x_{n}-curve and the (x_{n-2})-curve (if it exists) is between them and we modify the diagram as it is shown in Figure 4.2. If we apply the result of Step 1 to the part of the diagram which is below C_{2} and to that which is above C_{3}, we obtain:

$$
\begin{array}{ll}
Z_{1} \equiv Y_{1} x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n-2}^{\varepsilon_{3}}\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y_{2} X_{3} X_{4} \quad \bmod H \\
Z_{2} \equiv Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) x_{n-2}^{\varepsilon_{3}} x_{n-1}^{\varepsilon_{5}} x_{n}^{\varepsilon_{6}} Y_{2} X_{3} X_{4} \bmod H . & \text { (below } C_{2} \text {), }
\end{array}
$$

Hence $Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \bmod H$ where $X^{\prime}=Y_{2} X_{3} X_{4} Y_{1}$ and

$$
Y^{\prime}=\mathbf{r}\left(x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{3}^{\varepsilon_{4}}\right) x_{1}^{\varepsilon_{3}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}-x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{1}^{\varepsilon_{3}} \mathbf{r}\left(x_{3}^{\varepsilon_{4}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}\right)
$$

If $\varepsilon_{2} \neq 0$, then $\mathbf{r}\left(Y^{\prime}\right) \in J_{4}$ by Condition (J1) of the definition of J_{4}. Thus, using Lemma 3.3 and observing that $\mathrm{wt}\left(X^{\prime} \operatorname{sh}^{n-3} Y^{\prime}\right)<w$, we obtain

$$
Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \equiv X^{\prime} \operatorname{sh}^{n-3} \mathbf{r}\left(Y^{\prime}\right) \equiv 0 \quad \bmod H+R_{[w-1]}+\tau\left(J_{4}\right)
$$

If $\varepsilon_{2}=0$, then $X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \equiv X^{\prime} \operatorname{sh}^{n-3}\left(x_{1}^{\varepsilon_{3}} Y^{\prime \prime}\right) \bmod H$ where $\mathbf{r}\left(Y^{\prime \prime}\right) \in J_{4}$, thus
$Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3}\left(x_{1}^{\varepsilon_{3}} Y^{\prime \prime}\right) \equiv X^{\prime} x_{n-2}^{\varepsilon_{3}} \operatorname{sh}^{n-3} \mathbf{r}\left(Y^{\prime \prime}\right) \equiv 0 \quad \bmod H+R_{[w-1]}+\tau\left(J_{4}\right)$.
Step 7. If the active curves are as in Figure 3.2, then $Z_{1}-Z_{2} \in H+R_{[w-1]}+\tau_{N}(L)$.

Figure 5
Again, as in the beginning of Steps 3 and 6, we transform the diagram as in Figure 5 and we obtain

$$
Z_{1} \equiv X_{3}\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) X_{4} x_{n-1}^{\varepsilon_{4}} \quad \text { and } Z_{2} \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) \quad \bmod H
$$

where $U_{1}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{3}}, U_{2}=x_{n}^{\varepsilon_{3}} x_{n-1}^{\varepsilon_{4}} x_{n}^{\varepsilon_{1}}, \varepsilon_{1}, \varepsilon_{3}= \pm 1, \varepsilon_{2}, \varepsilon_{4} \in\{-1,0,1\}$. Hence

$$
\begin{equation*}
Z_{1}-Z_{2} \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \mathbf{r}\left(U_{2}\right)-X_{3} \mathbf{r}\left(U_{1}\right) X_{4} x_{n-1}^{\varepsilon_{4}} \quad \bmod H \tag{12}
\end{equation*}
$$

Note that $x_{i}^{ \pm 1}$ for $n-1 \leq i \leq n+1$ does not occur in $X_{j}, j=3,4$. Indeed, if it does, then the diagram $x_{i}^{ \pm 1}$-curve starting at a point from the upper circle corresponding to the letter $x_{i}^{ \pm 1}$ in X_{j} cannot attain the opposite side of the cylinder outside the bold segment because it cannot cross the x_{n}-curves. Thus,
$X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \mathbf{r}\left(U_{2}\right) \equiv X_{3}^{\prime} x_{n-1}^{\varepsilon_{2}} X_{4}^{\prime} \mathbf{r}\left(U_{2}\right) X_{5} \equiv X_{3}^{\prime} x_{n-1}^{\varepsilon_{2}} X_{4}^{\prime} \mathbf{r}\left(U_{2}\right) \tau\left(X_{5}\right) \quad \bmod H+R_{[w-1]}$
where $X_{3}^{\prime}, X_{4}^{\prime} \in F_{n-1}^{+}$and $X_{5} \in \operatorname{sh}^{n+1} F_{\infty}^{+}$(the same for other term in (12)). So, replacing, if necessary, X_{j} by $X_{j}^{\prime}(j=3,4)$, we may assume that $X_{3}, X_{4} \in F_{n-1}^{+}$. Then we can pass from (12) to

$$
\begin{aligned}
Z_{1}-Z_{2} & \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \tau_{n+1}\left(U_{2}\right)-X_{3} \tau_{n+1}\left(U_{1}\right) X_{4} x_{n-1}^{\varepsilon_{4}} \bmod H+R_{[w-1]} \\
& =\varphi_{n-1, X_{3}, X_{4}}(Y)
\end{aligned}
$$

where $Y=x_{1}^{\varepsilon_{2}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}\right)-\tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}\right) \otimes x_{1}^{\varepsilon_{4}} \in L$. Thus if $n>1$, then the result follows from Lemma 3.4. If $n=1$, then $\varepsilon_{2}=\varepsilon_{4}=0, X_{3}=X_{4}=1$, and (12) yields $Z_{1}-Z_{2} \equiv 0$.

Lemma 3.6. $R_{[w]} \cap A F_{[w-1]}^{+} \subset H+R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$
Proof. For $Z \in R_{[w]} \cap A F_{[w-1]}^{+}$, let $m=m(Z)$ be the minimal number such that $Z \equiv c_{1} Z_{1}+\cdots+c_{m} Z_{m} \bmod H+R_{[w-1]}$ with $c_{i} \in A, Z_{i} \in \mathcal{R}_{N} \cup \mathcal{R}_{M}$, wt $Z_{i}=w$. To prove that $Z \in H+R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$, we use induction on m. The statement is trivial for $m=0$.

Suppose that $m>0$ and the statement is true for all smaller values of m. Let X_{i} be the leading monomial of Z_{i}, i. e., $X_{i} \in F_{\infty}^{+}$and $\mathrm{wt}\left(Z_{i}-X_{i}\right)<w$. Then $\sum c_{i} X_{i} \equiv 0 \bmod H$. The term $c_{m} X_{m}$ of this congruence should be cancelled by other terms. Hence there exists $j<m$ such that $X_{m}-X_{j} \in H$. Then $c_{m}\left(Z_{m}-Z_{j}\right) \in$ $H+R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$ by Lemma 3.5 and $Z-c_{m}\left(Z_{m}-Z_{j}\right) \in H+R_{[w-1]}+$ $\tau\left(J_{4}\right)+\tau_{N}(L)$ by the induction hypothesis.

Proposition 3.7. $I \subset \tau\left(J_{4}\right)+\tau_{N}(L)$.
Proof. Let $I^{\prime}=\tau\left(J_{4}\right)+\tau_{N}(L)$. Since $I=R \cap A$ and $R=\bigcup_{w} R_{[w]}$, it is enough to prove that $R_{[w]} \cap A \subset I^{\prime}$ for any w. For $w=0$ we have $R_{[0]}=0$, hence $R_{[0]} \cap A \subset I^{\prime}$. Suppose that $R_{[w-1]} \cap A \subset I^{\prime}$. Let $Z \in R_{[w]} \cap A$. Since $R_{[w]} \cap A \subset R_{[w]} \cap A F_{[w-1]}^{+}$, by Lemma 3.6 we have $Z \in H+R_{[w-1]}+I^{\prime}$, i. e., $Z=Z_{H}+Z^{\prime}+Z_{0}$ with $Z_{H} \in H$, $Z^{\prime} \in R_{[w-1]}, Z_{0} \in I^{\prime}$. Since $Z_{H}=Z-Z^{\prime}-Z_{0} \in A F_{[w-1]}^{+}$and H is homogeneous, we have $Z_{H} \in R_{[w-1]}$, thus $Z=Z^{\prime \prime}+Z_{0}$ with $Z^{\prime \prime}=Z^{\prime}+Z_{H} \in R_{[w-1]}$ and $Z_{0} \in I^{\prime}$. Since $Z^{\prime \prime}=Z-Z_{0} \in A$, we have $Z^{\prime \prime} \in R_{[w-1]} \cap A$ and by the induction hypothesis we obtain $Z^{\prime \prime} \in I^{\prime}$ whence $Z=Z^{\prime \prime}+Z_{0} \in I^{\prime}$. Thus $R_{[w]} \cap A \subset I^{\prime}$.

Our main Theorem follows from Propositions 3.2 and 3.7.

4. The Link invariant $P_{\alpha, \beta ; k}$

4.1. Some general properties. As we mentioned in Remark 2.8, the Markov trace on $A K_{\infty}$ defines an invariant of oriented links $P=P_{\alpha, \beta ; k}$ which takes its values in \tilde{A} / I where $\tilde{A}=k\left[u^{ \pm 1 / 2}, v^{ \pm 1 / 2}\right]$. If u and v are not zero divisors (this is so in all the cases computed so far; see Remark 2.10), then A embeds into \tilde{A}.

Proposition 4.1. a). $P($ unknot $)=1$.
b). P satisfies the skein relation coming from (1):

$$
\begin{equation*}
u^{3 / 2} P\left(入^{1}\right)-\alpha u v^{1 / 2} P\left(\lambda_{1}\right)+\beta u^{1 / 2} v P(\bigwedge)-v^{3 / 2} P(\nmid)=0 \tag{13}
\end{equation*}
$$

Similarly, (2) and (3) yield skein relations for tangles with 6 endpoints.
c). $P\left(L_{1} \sqcup L_{2}\right)=(u v)^{-1 / 2} P\left(L_{1}\right) P\left(L_{2}\right)$ (disjoint union).
d). $P\left(L_{1} \# L_{2}\right)=P\left(L_{1}\right) P\left(L_{2}\right)$ (connected sum).
e). If \bar{L} is the mirror image of L, then $P_{\alpha, \beta}(\bar{L})(u, v)=P_{\beta, \alpha}(L)(v, u)$.
f). If L_{2} is obtained from L_{1} by a mutation (i. e., a rotation of a tangle with 4 endpoints by 180° such that no endpoint is fixed), then $P\left(L_{1}\right)=P\left(L_{2}\right)$.
g). $P(L) \equiv 1 \bmod \left(u-1, v-1, \alpha-\beta, 2(\alpha-2)^{2}\right)$.
h). If L can be represented by an n-braid, then $P(L)$ can be represented by a Laurent polynomial $f \in \tilde{A}$ such that $1-n \leq \operatorname{deg}_{u, v}(T) \leq 0$ for any monomial T of f.
Proof. a) - e) and h). Immediate from the definition of P.
f). Mutant links L_{1} and L_{2} can be represented by braids $Z_{1}=X \operatorname{sh}^{n-2} Y$ and $Z_{2}=X \operatorname{sh}^{n-2}\left(\sigma_{1} Y \sigma_{1}^{-1}\right)$ respectively where $X \in B_{n}, Y \in B_{m}$. Hence we have $t\left(Z_{1}\right)=t\left(\tau_{n+1} \circ \tau_{n+2} \circ \cdots \circ \tau_{n+m-2}\left(Z_{1}\right)\right)=t\left(X \operatorname{sh}^{n-2} Y_{2}\right)$ where $Y_{2}=\tau_{3} \circ \cdots \circ$ $\tau_{m}(Y) \in A B_{2}$ and, similarly, $t\left(Z_{2}\right)=t\left(X \operatorname{sh}^{n-2}\left(\sigma_{1} Y_{2} \sigma_{1}^{-1}\right)\right)$. It remains to note that $Y_{2}=\sigma_{1} Y_{2} \sigma_{1}^{-1}$ because the group B_{2} is abelian.
g). If we set $x=y=\bar{x}=\bar{y}=1$ in (1) and (2), then we obtain identities modulo the ideal $\left(\alpha-\beta, 2(\alpha-2)^{2}\right)$.

From now on we assume that $k=\mathbf{k}[\alpha, \beta]$ where \mathbf{k} is a commutative ring and each of α and β is either zero or transcendent over \mathbf{k}. For a monomial in α, β, u, v we define its degree modulo 3 (denoted by deg_{3}) by setting $\operatorname{deg}_{3}(u)=\operatorname{deg}_{3}(\alpha)=1$ and $\operatorname{deg}_{3}(v)=\operatorname{deg}_{3}(\beta)=-1$. We denote the deg_{3}-homogeneous component of A (resp. of \tilde{A}) of degree d by A_{d} (resp. by \tilde{A}_{d}). So, we have $A=A_{0} \oplus A_{1} \oplus A_{2}$ and $\tilde{A}=\tilde{A}_{0} \oplus \tilde{A}_{1 / 2} \oplus \cdots \oplus \tilde{A}_{5 / 2}$. The following fact follows immediately from the definitions.

Proposition 4.2. The ideal I is deg_{3}-homogeneous. $P(L) \in \tilde{A}_{0} / I$ for any L.
4.2. Normal form of elements of $k\left[u^{ \pm 1}, v^{ \pm 1}\right] / I$. In fact, the square roots of u and v in the definition of the invariant P are needed only for writing the skein relation (13) in a nice form. Otherwise, for a μ-component link L represented by an n-braid X, we can set

$$
P(L)=u^{(p-n-e) / 2} v^{(p-n+e) / 2} t(X) \quad \text { where } \quad p= \begin{cases}1, & \mu \text { is odd } \tag{14}\\ 0, & \mu \text { is even }\end{cases}
$$

which ensures that $P(L)$ belongs to $k\left[u^{ \pm 1}, v^{ \pm 1}\right] / I$ for any link L. Note that Proposition 4.2 still holds for $P(L)$ defined by (14). So, from now on we forget about fractional powers of u and v and we discuss the normal form of elements of the ring $k\left[u^{ \pm 1}, v^{ \pm 1}\right]$.

Assume that $k=\mathbf{k}[\alpha, \beta]$ as in the previous subsection. We have a natural identification of $k\left[u^{ \pm 1}, v^{ \pm 1}\right]$ with \bar{A} / \bar{I} where $\bar{A}=A[\bar{u}, \bar{v}]$ (\bar{u} and \bar{v} are new independents variables) and $\bar{I}=I+(u \bar{u}-1, v \bar{v}-1)$. So, to define a normal form in $k\left[u^{ \pm 1}, v^{ \pm 1}\right]$, it is enough to compute a Gröbner base $\overline{\mathcal{G}}$ of \bar{I}.

We assume that the monomial order is chosen so that \bar{u} and \bar{v} are greater than any monomial in α, β, u, v. In this case, the following conditions are equivalent:
(1) A / I embeds into $\bar{A} / \bar{I} \cong k\left[u^{ \pm 1}, v^{ \pm 1}\right] / I$;
(2) u and v are not zero divisors in A / I;
(3) $\overline{\mathcal{G}}$ contains a Gröbner base of I.

Condition (3) holds in all the cases computed so far (see Remark 2.10).
If \mathbf{k} is a field, then the normal form in \bar{A} / \bar{I} defined by $\overline{\mathcal{G}}$ is evident: it is just a \mathbf{k}-linear combination of monomials which are not divisible by the leading terms of elements of $\overline{\mathcal{G}}$. In the case when \mathbf{k} is \mathbb{Z} or $\mathbb{Z} / m \mathbb{Z}$, the situation is more delicate. For any monomial T, we have to fix canonical representatives in \mathbf{k} for elements of $\mathbf{k} / I(T)$ where $I(T)$ is the ideal of \mathbf{k} consisting of the leading coefficients of elements of \bar{A} whose leading monomial is T. When $I(T) \neq 0$, we choose them in $\{0, \ldots, m(T)-1\}$ where $m(T)$ is the positive generator of $I(T)$. Thus the normal form is a k-linear combination of monomials T with coefficients belonging to $\{0, \ldots, m(T)-1\}$. Note that $m(T)$ is the gcd of the leading coefficients of those elements $\overline{\mathcal{G}}$ whose leading monomials divide T.

4.3. The case $\mathbf{k}=\mathbb{Q}$ or \mathbb{F}_{p} and $\beta=0$.

Proposition 4.3. Let the notation be as in the respective parts of Corollary 2.6 and let $\overline{\mathcal{G}}$ be the reduced Gröbner base of \bar{I} with respect to the lexicographic order such that $\bar{v}>\bar{u}>v>u>\alpha$. Then:

$$
\begin{aligned}
& \text { a). } \quad\left(\mathbf{k}=\mathbb{F}_{2}\right) . \quad \overline{\mathcal{G}}=\mathcal{G} \cup\left\{u \bar{u}+1, v \bar{v}+1, \alpha^{2}\left(\bar{u}+u^{2}+\alpha u\right), \alpha^{2}(\bar{v}+u+\alpha),\right. \\
& \left.u^{3} \bar{v}+v^{2}+u+\alpha\left(u v+1+\alpha u^{2}+\alpha^{2} u\right), \bar{u} \bar{v}+\bar{u} v^{2}+1+\alpha\left(\bar{u}+v+\alpha u+\alpha^{2}\right)\right\} . \\
& b) .\left(\mathbf{k}=\mathbb{F}_{3}\right) . \overline{\mathcal{G}}=\mathcal{G} \cup\left\{\bar{u}+\alpha^{2} u^{3}-u^{2}+\alpha u+\alpha^{2}, \bar{v}+\alpha u^{3}+\alpha^{2} u^{2}-u\right\} . \\
& c) .\left(\mathbf{k}=\mathbb{Q} \text { or } \mathbb{F}_{p}, p \notin\{2,3,37\}\right) . \overline{\mathcal{G}}=\mathcal{G} \cup\left\{f_{6}, f_{7}\right\} \text { where } \\
& f_{6}=\bar{u}+\frac{7}{12} \alpha^{2} u^{3}+\left(\frac{7}{8} \alpha^{3}+6\right) u^{2}-\left(\frac{9}{8} \alpha^{3}+\frac{20}{3}\right) \alpha u+\frac{1}{48} \alpha^{8}+\frac{163}{288} \alpha^{5}+\frac{28}{9} \alpha^{2}, \\
& f_{7}=\bar{v}+\frac{35}{6} \alpha u^{3}-\left(\frac{69}{32} \alpha^{3}+\frac{71}{4}\right) \alpha^{2} u^{2}-\left(\frac{75}{8} \alpha^{3}+\frac{152}{3}\right) u+\frac{155}{96} \alpha^{7}+\frac{2867}{144} \alpha^{4}+\frac{433}{9} \alpha . \\
& \text { d). }\left(\mathbf{k}=\mathbb{F}_{37}\right) . \overline{\mathcal{G}}=\mathcal{G} \cup\left\{f_{6,37}, f_{7,37}\right\} \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& f_{6,37}=\bar{u}-3 \alpha u^{4}-6 \alpha^{2} u^{3}+\left(6 \alpha^{3}-2\right) u^{2}-10\left(\alpha^{3}-1\right) \alpha u-2 \alpha^{8}+15 \alpha^{5}+14 \alpha^{2} \\
& f_{7,37}=\bar{v}+14 u^{4}+16 \alpha u^{3}-\left(12 \alpha^{3} u^{2}+11\right) \alpha^{2} u^{2}+\left(12 \alpha^{3}-1\right) u-12 \alpha^{7}-6 \alpha^{4}-\alpha .
\end{aligned}
$$

Thus, in the setting of Corollary 2.6(c) $\left(\mathbf{k}=\mathbb{Q}\right.$ or $\left.\mathbb{F}_{p}, p \notin\{2,3,37\}\right)$, the normal form of elements of \bar{A} / \bar{I} always belongs to A and we have $\bar{A} / \bar{I} \cong A / I$, in particular, $\operatorname{dim}_{\mathbf{k}} \bar{A} / \bar{I}=24$ (or 21 if $\mathbf{k}=\mathbb{F}_{7}$). By Proposition 4.2, the invariant $P(L)$ takes its values in \tilde{A}_{0} / I. So, its normal form is a linear combination of the eight monomials indicated in the header line of Table 1 (without u^{3} in the case $\mathbf{k}=\mathbb{F}_{7}$). The values of
$P_{0,0, \mathbf{k}[\alpha]}$ for knots up to 9 crossings are presented in Table 2 (the choice between the "right" knots $3_{1}, 5_{1}, 5_{2}, \ldots$ and their mirror images $\overline{3}_{1}, \overline{5}_{1}, \overline{5}_{2} \ldots$ is done according to the database "The Knot Atlas" http://katlas.org).

The most interesting case is $\mathbf{k}=\mathbb{F}_{p}$ for $p=37$. Up to now this is the only case when the invariant P distinguishes knots with equal HOMFLY polynomials. In this case the normal form has one more monomial: $\alpha^{2} u^{4}$.

4.4. The case $\mathrm{k}=\mathbb{Z}, \alpha=\beta=0$.

Proposition 4.4. Let $\mathbf{k}=\mathbb{Z}$ and $\alpha=\beta=0$. We introduce the monomial order on \bar{A} by saying that $u^{a_{1}} v^{b_{1}} \bar{u}^{c_{1}} \bar{v}^{d_{1}}>u^{a_{2}} v^{b_{2}} \bar{u}^{c_{2}} \bar{v}^{d_{2}}$ if and only if one of the following conditions holds:

- either $d_{1}>d_{2}$, or $d_{1}=d_{2}$ and $c_{1}>c_{2}$,
- $\left(d_{1}, c_{1}\right)=\left(d_{2}, c_{2}\right)$ and $a_{1}+b_{1}>a_{2}+b_{2}$,
- $\left(d_{1}, c_{1}, a_{1}+b_{1}\right)=\left(d_{2}, c_{2}, a_{2}+b_{2}\right)$ and $b_{1}>b_{2}$.

Let $\mathcal{G}=\left\{16,4 u^{2}+4 v, 4 v^{2}+4 u, 4 u v-4, v^{3}+u v+u^{3}-3\right\}$ and
$\overline{\mathcal{G}}=\mathcal{G} \cup\left\{4 \bar{u}-4 v, 4 \bar{v}-4 u, u \bar{u}-1, v \bar{v}-1, u^{3} \bar{v}-3 \bar{v}+v^{2}+u, \bar{u} \bar{v}+u^{2} \bar{v}+\bar{u} v^{2}-3\right\}$.
Then \mathcal{G} and $\overline{\mathcal{G}}$ are Gröbner bases of I and \bar{I} respectively.
Remark 4.5 The monomial order used in Proposition 4.4 can be defined by saying that this is the lexicographic order with $\bar{v}>\bar{u}>w>v^{\prime}>u^{\prime}$ under the change of variables $u=u w^{\prime}, v=v w^{\prime}$.

Thus, in the normal form of an element of \bar{A} / \bar{I}, the coefficients of the monomials $1, u, v$ range in $\{0, \ldots, 15\}$ (note that u and v do not appear in $P(L)$ by Proposition 4.2), the coefficients of

$$
u^{n+1}, u^{n} v, u^{n-1} v^{2}, \bar{u}^{n}, v \bar{u}^{n}, v^{2} \bar{u}^{n}, \bar{v}^{n}, u \bar{v}^{n}, u^{2} \bar{v}^{n}, \quad n \geq 1
$$

range in $\{0,1,2,3\}$, and all the other coefficients vanish. Due to Proposition 4.1(h), this fact implies the following nice property of the normal form of $P(L)$. Let us define the degree of an element of \bar{A} / \bar{I} represented by $f \in \bar{A}$ as $\min _{g \in f+\bar{I}} \max _{T} \operatorname{deg} T$ where T runs over all monomials of g and $\operatorname{deg} u^{a} v^{b} \bar{u}^{c} \bar{v}^{d} \stackrel{\text { def }}{=} a+b-c-d$.

Proposition 4.6. If $f(u, v, \bar{u}, \bar{v})$ is the normal form of an element of \bar{A} / \bar{I} of degree ≤ 2, then $f(v, u, \bar{v}, \bar{u})$ is the normal form of the corresponding element. In particular, if \bar{L} is the mirror image of a link L, then the normal form of $P_{0,0 ; \mathbb{Z}}(\bar{L})$ is obtained from the normal form of $P_{0,0 ; \mathbb{Z}}(L)$ by swapping u with v and \bar{u} with \bar{v}.

Note that if the degree of an element of \bar{A} / \bar{I} is greater than two, then the swapping of u and v can drastically change the normal form. For example, u^{3} is already in its normal form whereas the normal form of v^{3} is $3 u v+3 u^{3}+3$.

In Table 2 we give the normal forms of the invariant $P_{0,0 ; \mathbb{Z}}(K)$ for all knots K up to 10 crossings. We see in this table that there are many repetitions. In Table 3 , for each $n=0,1, \ldots, 12$, we give the number of different values (up to exchange of u and v) that $P_{0,0, ; \mathbb{Z}}$ takes on knots with $\leq n$ crossings.

Table 1. $P_{\alpha, 0 ; \mathbb{Q}}(K)$ for knots K up to 9 crossings (\bar{K} is the mirror of K)

Table 1 (continued-1)

Table 1 (continued-2)

	1	α^{3}	α^{6}	$\alpha^{2} u$	$\alpha^{5} u$	αu^{2}	$\alpha^{4} u^{2}$	u^{3}	1	α^{3}	α^{6}	$\alpha^{2} u$	$\alpha^{5} u$	αu^{2}	$\alpha^{4} u^{2}$	u^{3}	
9_{38}	$\frac{125}{3}$	$\frac{1033}{12}$	$\frac{157}{32}$	$\frac{411}{4}$	$\frac{855}{32}$	$\frac{-304}{1}$	$\frac{-261}{8}$	$\frac{196}{1}$	$\frac{111548}{6561}$	$\frac{524689}{26244}$	$\frac{48191}{8748}$	$\frac{-137809}{2187}$	$\frac{-146401}{5832}$	$\frac{6278}{81}$	$\frac{20291}{648}$	$\frac{7385}{2187}$	
$\overline{9}_{39}$	$\frac{308}{27}$	$\frac{2011}{27}$	$\frac{2857}{288}$	$\frac{-8437}{36}$	$\frac{-3223}{96}$	$\frac{261}{1}$	$\frac{267}{8}$	$\frac{-679}{9}$	$\frac{-1882}{729}$	$\frac{-14795}{2916}$	$\frac{-10757}{7776}$	$\frac{17957}{972}$	$\frac{16763}{2592}$	$\frac{-635}{27}$	$\frac{-1715}{216}$	$\frac{371}{243}$	
9_{40}	$\frac{-103}{27}$	$\frac{-727}{54}$	$\frac{-503}{288}$	$\frac{1331}{36}$	$\frac{533}{96}$	$\frac{-41}{1}$	$\frac{-23}{4}$	$\frac{98}{9}$	$\frac{-3302}{729}$	$\frac{-9667}{2916}$	$\frac{-1759}{1944}$	$\frac{1336}{243}$	$\frac{2467}{648}$	$\frac{-65}{9}$	$\frac{-181}{36}$	$\frac{-749}{243}$	
$\overline{9}_{41}$	$\frac{163}{81}$	$\frac{233}{324}$	$\frac{77}{216}$	$\frac{-176}{27}$	$\frac{-167}{72}$	$\frac{94}{9}$	$\frac{55}{18}$	$\frac{-56}{27}$	$\frac{-61}{81}$	$\frac{-5789}{324}$	$\frac{-265}{108}$	$\frac{1709}{27}$	$\frac{325}{36}$	$\frac{-74}{1}$	$\frac{-9}{1}$	$\frac{644}{27}$	
9_{42}	$\frac{148}{81}$	$\frac{2165}{324}$	$\frac{755}{864}$	$\frac{-1475}{108}$	$\frac{-497}{288}$	$\frac{10}{1}$	$\frac{1}{1}$	$\frac{-35}{27}$									
9_{43}	$\frac{-505}{729}$	$\frac{-553}{1458}$	$\frac{301}{1944}$	$\frac{-607}{243}$	$\frac{-205}{162}$	$\frac{3}{1}$	$\frac{13}{8}$	$\frac{182}{243}$	$\frac{41}{9}$	$\frac{1651}{36}$	$\frac{151}{24}$	$\frac{-460}{3}$	$\frac{-89}{4}$	$\frac{173}{1}$	$\frac{177}{8}$	$\frac{-154}{3}$	
9_{44}	$\frac{52}{27}$	$\frac{631}{54}$	$\frac{509}{288}$	$\frac{-1841}{36}$	$\frac{-755}{96}$	$\frac{65}{1}$	$\frac{67}{8}$	$\frac{-203}{9}$	$\frac{418}{243}$	$\frac{2705}{972}$	$\frac{1133}{2592}$	$\frac{-2069}{324}$	$\frac{-1091}{864}$	$\frac{17}{3}$	$\frac{29}{24}$	$\frac{-35}{81}$	
9_{45}	$\frac{137}{9}$	$\frac{3409}{36}$	$\frac{149}{12}$	$\frac{-829}{3}$	$\frac{-313}{8}$	$\frac{295}{1}$	$\frac{303}{8}$	$\frac{-238}{3}$	$\frac{-761}{729}$	$\frac{-5267}{1458}$	$\frac{-1717}{1944}$	$\frac{3103}{243}$	$\frac{320}{81}$	$\frac{-425}{27}$	$\frac{-1019}{216}$	$\frac{406}{243}$	
9_{46}	$\frac{-16}{9}$	$\frac{-311}{9}$	$\frac{-491}{96}$	$\frac{1823}{12}$	$\frac{737}{32}$	$\frac{-194}{1}$	$\frac{-99}{4}$	$\frac{203}{3}$	$\frac{340}{243}$	$\frac{446}{243}$	$\frac{923}{2592}$	$\frac{-2399}{324}$	$\frac{-1313}{864}$	$\frac{82}{9}$	$\frac{59}{36}$	$\frac{-203}{81}$	
$\overline{9}_{47}$	$\frac{-80}{27}$	$\frac{-556}{27}$	$\frac{-889}{288}$	$\frac{3301}{36}$	$\frac{1363}{96}$	$\frac{-120}{1}$	$\frac{-31}{2}$	$\frac{385}{9}$	$\frac{-620}{243}$	$\frac{-1355}{486}$	$\frac{-1105}{2592}$	$\frac{709}{324}$	$\frac{859}{864}$	$\frac{-4}{3}$	$\frac{-7}{6}$	$\frac{-119}{81}$	
9_{48}	$\frac{-71}{27}$	$\frac{-397}{108}$	$\frac{-101}{144}$	$\frac{191}{18}$	$\frac{133}{48}$	$\frac{-125}{9}$	$\frac{-233}{72}$	$\frac{28}{9}$	$\frac{95}{27}$	$\frac{3251}{54}$	$\frac{1283}{144}$	$\frac{-4739}{18}$	$\frac{-1907}{48}$	$\frac{333}{1}$	$\frac{339}{8}$	$\frac{-1036}{9}$	
$\overline{9}_{49}$	$\frac{191}{3}$	$\frac{4015}{12}$	$\frac{41}{1}$	$\frac{-773}{1}$	$\frac{-825}{8}$	$\frac{705}{1}$	$\frac{741}{8}$	$\frac{-126}{1}$	$\frac{12389}{2187}$	$\frac{10621}{2187}$	$\frac{8287}{5832}$	$\frac{-9835}{729}$	$\frac{-3151}{486}$	$\frac{49}{3}$	$\frac{199}{24}$	$\frac{2366}{729}$	

Example 4.7. Let us compute $P_{0,0, \mathbb{Z}}(K)$ where K is the figure-eight knot 4_{1}. We represent K by the 3 -braid $X=\bar{x} y \bar{x} y$ where x, \bar{x}, y, \bar{y} are as in Introduction. Then

$$
\begin{aligned}
t(X) & =t(\bar{x}(-x-y-\bar{x} \bar{y}-\bar{y} \bar{x}-\bar{x} y x-x \bar{y} x-x y \bar{x})) & & \text { by }(2) \\
& =t\left(-1-\bar{x} y-\bar{x}^{2} \bar{y}-\bar{x} \bar{y} \bar{x}-\bar{x}^{2} y x-\bar{y} x-y \bar{x}\right) & & \\
& =t\left(-1-u \bar{x}-v \bar{x}^{2}-v \bar{x}^{2}-u \bar{x}-v x-u \bar{x}\right) & & \text { by the Markov relation } \\
& =t(-1-3 u \bar{x}-3 v x) & & \text { since } \bar{x}^{2}=x \text { by (1) } \\
& =-1-3 u v-3 u v=-1-6 u v & & \text { by the Markov relation }
\end{aligned}
$$

whence

$$
\begin{aligned}
P(K) & =u^{(1-3-0) / 2} v^{(1-3+0) / 2} t(X) & & \text { by the definition of } P \\
& =-\bar{u} \bar{v}-6 & & \text { see } t(X) \text { computed above } \\
& =7+u^{2} \bar{v}+\bar{u} v^{2} & & \text { Gröbner reduction }-\bar{u} \bar{v} \rightarrow u^{2} \bar{v}+\bar{u} v^{2}-3
\end{aligned}
$$

Table 3. Here \mathcal{K}_{n} is the set of knots with $\leq n$ crossings; $f(u, v) \sim f(v, u)$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{Card} \mathcal{K}_{n}$	1	1	1	2	3	5	8	15	36	85	250	802	2978
$\operatorname{Card} P_{0,0 ; \mathbb{Z}}\left(\mathcal{K}_{n}\right) / \sim$	1	1	1	2	3	4	5	7	11	19	29	47	86

4.5. Relation between $P_{0,0 ; \mathbb{Z}}$ and the HOMFLY polynomial. It was discovered by Cabanes and Marin [2] that $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}$ is a specialization of the HOMFLY polynomial. In this subsection we reproduce their arguments in another form, and then we show that if links L_{1} and L_{2} have equal HOMFLY polynomials, than

Table 2. $P_{0,0, \mathbb{Z}}(K)$ for knots K up to 10 crossings

K	$P_{0,0, \mathbb{Z}}(K)$
$\begin{aligned} & 0_{1} 6_{2} 6_{3} 8_{6} 8_{7} 8_{8} 8_{9} 8_{16} 8_{17} 9_{26} 9_{27} 9_{32} 9_{33} 10_{12} 10_{16} 10_{20} \\ & 10_{22} 10_{23} 10_{26} 10_{27} 10_{34} 10_{41} 10_{43} 10_{48} 10_{52} 10_{54} 10_{79} \\ & 10_{81} 10_{83} 10_{86} 10_{91} 10_{94} 10_{102} 10_{109} 10_{110} 10_{116} \\ & 10_{118} 10_{123} 10_{125} 10_{129} 10_{135} 10_{153} 10_{155} 10_{156} 10_{162} \end{aligned}$	1
$\begin{aligned} & \overline{3}_{1} 8_{5} 8_{10} \overline{8}_{11} \overline{8}_{20} \overline{8}_{21} \overline{9}_{24} \overline{9}_{28} \overline{9}_{29} 10_{5} 10_{9} \overline{10}_{32} 10_{40} 10_{59} \\ & 10_{62} 10_{64} 10_{76} 0_{10} \overline{10}_{82} 10_{84} \overline{10}_{{ }_{25}} 10_{88}{ }_{10}^{103} 10_{106} \\ & \overline{10}_{112} 10_{113} \overline{10}_{114} 10_{122} 10_{136} \overline{10}_{141} \overline{10}_{143} 10_{147} \overline{10}_{159} \end{aligned}$	$\bar{u}^{2} v$
$\begin{array}{\|l} \hline 4_{1} 8_{4} 8_{13} 9_{22} 9_{30} 9_{42} 9_{44} 10_{11} 10_{15} 10_{17} \\ 10_{28} 10_{37} 10_{70} 10_{71} 10_{90} 10_{93} 10_{104} 10_{119} \\ \hline \end{array}$	$7+\bar{u} v^{2}+u^{2} \bar{v}$
	$3+3 \bar{u}^{3}+3 \bar{u}^{2} v$
$\begin{aligned} & \overline{\overline{6}}_{1} 7_{7} \overline{9}_{17} \overline{9}_{34} 10_{4}{ }_{10}{ }_{10} \overline{10}_{19} \overline{\overline{10}}_{29} \overline{10}_{31} \overline{10}_{42} \\ & \overline{10}_{68} \overline{10}_{107} 10_{108} \overline{10}_{146} 10_{158} \overline{10}_{164} \\ & \hline \end{aligned}$	$4+3 \bar{u}^{2} v+\bar{u} v^{2}+u^{2} \bar{v}$
	$2+2 \bar{u}^{3}+2 \bar{u}^{2} v+3 \bar{u}^{4} v^{2}$
$7_{4} 9_{11} 9_{15} \overline{10}_{14} \overline{10}_{21} \overline{10}_{36} \overline{10}_{67} 10_{69} \overline{10}_{89} 10_{160} 10_{165}$	$5+\bar{u}^{3}+3 \bar{u}^{4} v^{2}$
$\overline{8}_{1} 9_{14} \overline{9}_{41} \overline{10}_{60} \overline{10}_{137} 10_{138}$	$13+\bar{u}^{3}+\bar{u}^{2} v+\bar{u} v^{2}+u^{2} \bar{v}$
$8_{3} 8_{12} 9_{19} 10_{33} 10_{45} 10_{88}$	$15+3 \bar{u}^{2} v+2 \bar{u} v^{2}+2 u^{2} \bar{v}+3 u \bar{v}^{2}$
$\overline{8}_{15} 8_{19} \overline{9}_{1} \overline{9}_{6} 9_{16} \overline{9}_{23} \overline{9}_{38} \overline{10}_{66} \overline{10}_{78} 10_{139}$	$3 \bar{u}^{2} v+3 \bar{u}^{5} v+3 \bar{u}^{4} v^{2}$
$8_{18} 10_{99}$	$11+3 \bar{u} v^{2}+3 u^{2} \bar{v}$
$\overline{9}_{2} \overline{9}_{4} 9_{10} \overline{10}_{145}$	$5+\bar{u}^{3}+2 \bar{u}^{2} v+\bar{u}^{5} v$
9_{5}	$7+3 \bar{u}^{3}+3 \bar{u}^{2} v+\bar{u}^{5} v+3 \bar{u}^{4} v^{2}$
$9_{21} 9_{39} \overline{10}_{30}$	$12+\bar{u}^{3}+\bar{u}^{2} v+3 \bar{u}^{4} v^{2}$
9_{35}	$2+2 u \bar{v}^{2}+2 \bar{v}^{3}+2 u^{2} \bar{v}^{4}+u \bar{v}^{5}$
9_{37}	$13+3 \bar{u}^{2} v+3 \bar{u} v^{2}+3 u^{2} \bar{v}+3 u \bar{v}^{2}$
$\overline{9}_{40} 10_{61} 10_{65} \overline{10}_{140} \overline{10}_{144} 10_{163}$	$12+3 \bar{u}^{3}+2 \bar{u}^{2} v$
$\overline{9}_{46} 9_{47} 10_{75}$	$15+\bar{u}^{3}+\bar{u}^{2} v$
$9_{48} \overline{10}_{74}$	$5+2 \bar{u}^{3}+2 \bar{u}^{2} v$
10_{1}	$10+\bar{u} v^{2}+u^{2} \bar{v}+2 u \bar{v}^{2}+2 \bar{v}^{3}+u^{2} \bar{v}^{4}$
$\overline{10}_{3} 10_{35}$	$1+\bar{u}^{3}+2 \bar{u} v^{2}+2 u^{2} \bar{v}+3 u \bar{v}^{2}$
$10_{13} 10_{58}$	$7+3 \bar{u}^{2} v+3 \bar{u} v^{2}+3 u^{2} \bar{v}+\bar{v}^{3}$
$\begin{array}{\|l} \overline{\overline{10}}_{49} \overline{10}_{53} \overline{10}_{55} \overline{10}_{80} 10_{101} 10_{124} 10_{128} 10_{134} \\ \overline{10}_{152} 10_{154} \end{array}$	$9+2 \bar{u}^{3}+\bar{u}^{6}+2 \bar{u}^{2} v+2 \bar{u}^{5} v+\bar{u}^{4} v^{2}$
$\overline{10}_{63} 10_{142}$	$8+\bar{u}^{3}+\bar{u}^{6}+2 \bar{u}^{2} v+3 \bar{u}^{5} v+2 \bar{u}^{4} v^{2}$
10_{96}	$12+\bar{u}^{3}+2 \bar{u} v^{2}+2 u^{2} \bar{v}$
10_{97}	$10+3 \bar{u}^{3}+2 \bar{u}^{2} v+2 \bar{u}^{4} v^{2}$
10_{98}	$u^{2} \bar{v}^{4}$
10_{115}	$9+3 \bar{u}^{2} v+\bar{u} v^{2}+u^{2} \bar{v}+3 u \bar{v}^{2}$
10_{120}	$11+3 u \bar{v}^{2}+u^{2} \bar{v}^{4}+u \bar{v}^{5}+\bar{v}^{6}$

$P_{0,0 ; \mathbb{Z}}\left(L_{1}\right)-P_{0,0 ; \mathbb{Z}}\left(L_{2}\right) \in\{0,8\}$. So, $P_{0,0 ; \mathbb{Z}}$ can be thought of as a sort of spin of a certain specialization of the HOMFLY polynomial.

Let $k=\mathbb{Z} / 4 \mathbb{Z}, K_{\infty}=K_{\infty}(0,0 ; k), A=k[u, v]$, and $I=I(0,0 ; k)$. Let $\hat{k}=$ $k[j] /\left(j^{3}-1\right)$ and let $\hat{A}=\hat{k}[u, v]=k[j, u, v] /\left(j^{3}-1\right)$. Let H_{∞} be the Hecke algebra $\hat{k} B_{\infty} /\left(\sigma_{1}^{2}+j \sigma_{1}+j^{2}\right)$ (we denote the image of σ_{i} in H_{∞} by $\left.g_{i}\right)$. A straightforward computation using (1) and (2) shows that the correspondence $s_{i} \mapsto g_{i}$ defines a ring homomorphism $p: K_{\infty} \rightarrow H_{\infty}$. Let $t_{H}: H_{\infty} \otimes_{\hat{k}} \hat{A} \rightarrow M_{H} \stackrel{\text { def }}{=} \hat{A} /\left(v+j u+j^{2}\right) \cong \hat{k}[u]$ be the Markov trace on H_{∞}. The ring M_{H} is the quotient of $k[j, u, v]$ by the ideal $\left(j^{3}-1, v+j u+j^{2}\right)$. For the lexicographic monomial order with $j>w>v^{\prime}>u^{\prime}$ ($u=w u^{\prime}, v=w v^{\prime}$; see Remark 4.5), the reduced Gröbner base \mathcal{G}_{H} of this ideal is
$\left\{v^{3}+u^{3}+u v+1, j\left(u^{2}-v\right)+u v-1, j(u v-1)+v^{2}-u, j\left(v^{2}-u\right)-u^{2}+v, j^{2}+j u+v\right\}$.
Since $I=\left(v^{3}+u^{3}+u v+1\right)$, it follows that we can identify A / I with the subring of M_{H} generated by u and v. Then we have $t=t_{H} \circ p$, i. e., the Markov trace on $K_{\infty}(0,0 ; \mathbb{Z} / 4 \mathbb{Z})$ is determined by the Markov trace on H_{∞}, hence $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}$ is determined by the HOMFLY polynomial. For example, if we normalize the latter (we denote it $h(a, z)$) by $h($ unknot $)=1, a h\left(\Upsilon_{\star}\right)-z h(\underset{\sim}{\prime})-a^{-1} h\left(\lambda_{\star}\right)=0$, then we have:

Proposition 4.8. $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}(u, v)=h\left(i j^{2} u^{1 / 2} v^{-1 / 2},-i\right)$ where $i=\sqrt{-1}$.
If we plug $a=i j^{2} u^{1 / 2} v^{-1 / 2}, z=-i$ into $h(a, z)$, we obtain a Laurent polynomial in $i, j, u^{1 / 2}, v^{1 / 2}$. To get rid of the square roots of u, v, and -1 , we just multiply the result by $(-u v)^{-1 / 2}$ in the case of a link L with an even number of components (this corresponds to the normalization (14) of $P(L)$). To eliminate j and to put the result to the canonical form, we reduce it using the Gröbner base $\overline{\mathcal{G}}_{H}$ of the ideal $\left(j^{3}-1, v+j u+j^{2}, u \bar{u}-1, v \bar{v}-1\right)$ of the ring $k[j, u, v, \bar{u}, \bar{v}]$ for the lexicographic monomial order with $j>\bar{v}>\bar{u}>w>v^{\prime}>u^{\prime}\left(u=w u^{\prime}, v=w v^{\prime}\right.$; see Remark 4.5). We have $\overline{\mathcal{G}}_{H}=\mathcal{G}_{H} \cup\left\{\bar{u} u-1, \bar{v} v-1, u^{3} \bar{v}+\bar{v}+v^{2}+u, \bar{u} \bar{v}+u^{2} \bar{v}+v^{2} \bar{u}+1\right.$, $\left.j(\bar{u}-v)-v^{2} \bar{u}+1, j(\bar{v}-u)+u \bar{v}-v\right\}$.
Example 4.9. Let K be the trefoil knot given by the 2 -braid σ_{1}^{-3}. Then $h(K)=$ $-a^{4}+a^{2} z^{2}+2 a^{2}$, hence $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}(K)=-j^{2} u^{2} \bar{v}^{2}-j u \bar{v}$ by Proposition 4.8. The following code for Singular reduces $P(K)$ to $u \bar{v}^{2}$.

```
> ring r=(integer,4),(j,V,U,v,u),(lp(3),dp(2));
> ideal I=j3-1,v+ju+j2,uU-1,vV-1; reduce(-j2u2V2-juV,std(I));
V2u
```

Proposition 4.10. If $h\left(L_{1}\right)=h\left(L_{2}\right)$, then $P_{0,0 ; \mathbb{Z}}\left(L_{1}\right)-P_{0,0 ; \mathbb{Z}}\left(L_{2}\right) \in\{0,8\}$.
Proof. We have shown in Section 4.4 that the coefficients of all monomials in the normal form of $P(L)$ except the constant term are in $\{0,1,2,3\}$. Thus they are determined by $h(L)$ due to Proposition 4.8. The constant term is determined mod 8 by the other coefficients due to Proposition 4.1(g).

References

[^0]3. L. Funar, On cubic Hecke algebras, Commun. Math. Phys. 173 (1995), 513-558.
4. I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Appl. Algebra 216 (2012), 2754-2782.
5. S. Yu. Orevkov, Cubic Hecke Algebras and Invariants of Transversal Links, Doklady Math. 89 (2014), 115-118.
6. S. Yu. Orevkov, Files related to this paper, http://picard.ups-tlse.fr/ orevkov/fu.html.
7. S. Yu. Orevkov, V. V. Shevchishin, Markov theorem for transversal links, J. of Knot Theory and Ramifications 12 (2003), 905-913.

IMT, Université Paul Sabatier, Toulouse, France

Steklov Mathematical Institute, Moscow, Russia

[^0]: 1. P. Bellingeri, L. Funar, Polynomial invariants of links satisfying cubic skein relations, Asian J. Math. 8 (2004), 475-509.
 2. M. Cabanes, I. Marin, On ternary quotients of cubic Hecke algebras, Commun. Math. Phys. 314 (2012), 57-92.
