
A FLEXIBLE AFFINE M-SEXTIC WHICHIS ALGEBRAICALLY UNREALIZABLES. Fiedler-Le Touz�e, S.Yu. OrevkovAbstrat. We prove that the union of a real algebrai urve of degree six and areal line on RP2 annot be isotopi to the arrangement in Figure 1. Previously,the seond author [5℄ realized this arrangement with exible urves. Here we showthat these exible urves are pseudo-holomorphi in a suitable tame almost omplexstruture on CP2.For the proof of the algebrai non-realizability we onsider all possible positionsof the urve with respet to ertain penils of lines. Using the Murasugi-Tristraminequality for ertain links in S3, we show that all the positions but one are unreal-izable. Then, we prohibit the last position (the one whih is realizable by a exibleurve) by studying its behaviour with respet to an auxiliary penil of ubis.

Fig. 1 Fig. 2IntrodutionThe main result of the paper is:Theorem. Let C6 be a real algebrai urve of degree 6 and L a line, where C6; L �RP2. Then there does not exist an ambient isotopy of RP2 whih deforms C6 andL into the urve and the line in Figure 1.Sine the line L an be onsidered as the line at in�nity, Theorem 1 is equivalentto the fat that a real aÆne sexti an not be arranged on R2 as in Figure 2. Thisresult ontinues the lassi�ation of aÆne M -sextis started in [7,4,5,6℄. In ouropinion, the main interest of this theorem is that the urve in Figure 1 is realizableby a real pseudo-holomorphi urve (see the de�nition in Setion 1). This meansthat the methods ommonly used to obtain restritions for real algebrai urvesTypeset by AMS-TEX1



2 S. FIEDLER-LE TOUZ�E, S.YU. OREVKOVannot be suÆient for the proof of the Theorem beause almost all of them provenon-existane of real pseudo-holomorphi urves (see Setion 1 for details).We prove the Theorem in three steps. In Setion 2, using link-theoretial meth-ods from [5℄, we show that a urve C6 [ L isotopi to Fig. 1 an be arranged ina unique way with respet to ertain penils of lines. In Setion 3, using Bezout'stheorem for auxiliary lines and onis, quadrati transformations et., we �nd theunique position of C6 [ L with respet to a ertain auxiliary nodal ubi N . InSetion 5, we prohibit this arrangement of C6, L, andN (whih is realizable pseudo-holomorphially!). The results of Setions 2 and 3 are valid in pseudo-holomorphiase (hene, something in Setion 5 annot work for pseudo-holomorphi urves).In Setion 6, we give two pseudo-holomorphi realizations of Figure 1 as theunion of a line and a sexti. The onstrution in Setion 6.1 is more general (inessential, it was given already in [5; Set. 7.2, urve B2(1; 4; 5)℄ not mentioning thatthe onstruted urve is pseudo-holomorphi). In the onstrution in Setion 6.2,the pseudo-holomorphi urve C6 [ L is obtained as a deformation of an algebraiurve.As we already mentioned, the most of known topologial restritions for realalgebrai urves are also valid for real pseudo-holomorphi urves. Thus, to provethe Theorem, we need a tool whih might distinguish these objets. As suh atool we use an auxiliary penil of ubis. Choosing 8 real base points in a suitableway, we onsider the penil fCtg of all real ubis passing through them. Thearrangement of one of the ubis of this penil (let it be C0) with respet to C6, L,and N an be determined very preisely. Then we determine the position of the 9thbase point of the penil (note that its existene is ruial for our proof beause theontinuous family of pseudo-holomorphi ubis through 8 �xed points, in general,does not have any other base points). Now we hange the parameter t and see howCt transforms. If the base points are hosen in general position, the penil of ubismust have at least 8 nodal ubis and when we pass through them, we perform aMorse bifuration. Bezout's theorem bounding the number of real intersetions ofCt with C6, L, N , and some auxiliary lines imposes very strong restritions whihallow us to trae the penil of ubis (i.e. to �nd the arrangement of the nodalubis we pass suessively) up to a ertain moment and to show that a furtherbifuration is impossible. This method was developed in [1℄.We mention in Setion 1 some known examples of algebraially unrealizablereal pseudo-holomorphi urves. However, the methods used to prove the non-realizability of these examples work in very speial ases whereas the method usedin this paper (Bezout's theorem for an auxiliary penil of ubis) seems to be moregeneral. Note that auxiliary penils of ubis were used (in another way) by Rokhlin[9; Setion 3.6℄.The results of Setions 3 { 5 are obtained by the �rst author; The results ofSetions 2 and 6 are obtained by the seond author.1. Real pseudo-holomorphi urvesWe say that a Riemann surfae C, embedded (or immersed) in CP2, is a realpseudo-holomorphi urve if C is a J-holomorphi urve in some tame almost om-plex struture J (see [3℄) suh that Conj(C) = C and Conj� ÆJ = J�1 Æ Conj� :Tx ! T�x for all x 2 CP2 (here Conj : CP2 ! CP2 denotes omplex onjugationx 7! �x).



A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE 3It is easy to show that any exible urve ompatible with a penil of lines in thesense of [5; Setion 3.1℄ is J-holomorphi in a suitable Conj-anti-invariant almostomplex struture J (see Set. 6.1). Hene, all exible urves onstruted in [5℄ arerealizable by real pseudo-holomorphi urves. In fat, a omplete lassi�ation upto isotopy of real aÆne pseudo-holomorphi M -sextis is obtained in [5℄.1Viro [11℄ de�ned a exible urve of degree m as a smooth embedded Conj-invariant surfae C in CP2 suh that [C℄ = m[CP1℄ 2 H2(CP2), the genus ofC is (m� 1)(m� 2)=2, and the planes tangent to C at real points are the omplex-i�ations of real lines. A lot of restritions for the topology of real algebrai urvesare valid for exible urves (see [11℄ where suh restritions are alled topologial),e.g., Harnak inequality, Petrovski inequalities, Gudkov-Arnold-Rokhlin ongru-ene, Arnold inequalities, formulas for omplex orientations, et. Real pseudo-holomorphi urves form a sublass (in our opinion, the most important one) ofexible urves. Moreover, they satisfy Bezout's theorem beause all intersetionsare positive. Due to results of Gromov [3℄, there exists a real pseudo-holomorphiline (resp. oni) through any 2 (resp. 5) real points. This means that the restri-tions oming from Bezout's theorem for auxiliary lines and onis also are validfor real pseudo-holomorphi urves (for instane, if the set of a real points of areal pseudo-holomorphi quarti has two ovals one inside another then it has noother ovals). The behaviour of pseudo-holomorphi urves in penils of pseudo-holomorphi lines is the same as in holomorphi ase, thus, almost all of the knownrestritions in the literature for the topology of real algebrai urves are valid inthe pseudo-holomorphi ase.
Fig. 3 Fig. 4 Fig. 5However, reduible real pseudo-holomorphi urves in RP2 algebraially unreal-izable were known long ago. To get the simplest example, onsider a line arrange-ment where triple points are dependent, and perturb one of them into 3 doublepoints (for instane, the Pappus arrangement of 9 real lines with 9 triple pointsperturbed as in Fig. 3). A less trivial example is provided by the Pappus-Ringelarrangement of pseudo-lines [8℄ (see Fig. 4) whih is also a perturbation of thePappus arrangement. Another example is provided by a smooth M -perturbationof four tangent real branhes (Fig. 5) whih was prohibited by Shustin in the 80'sin his thesis (unpublished) using the Hilbert-Rohn-Gudkov approah (see Set. 6.3for a pseudo-holomorphi realization).1There is a misprint in [5℄. The line " 1 4 5 " in the table orresponding to A3(�1; �2; �) inFigure 1 (page 781) should be replaed by " 4 1 5 ".



4 S. FIEDLER-LE TOUZ�E, S.YU. OREVKOVQuestion. Does there exist a smooth (hene, irreduible) real pseudo-holomorphiurve in CP2 suh that the isotopy lass of the set of its real points (with or withoutomplex orientations) is not realizable by a real algebrai urve?2. Arrangement of the urve with respet to penils of linesThe following fat easily follows from Bezout's theorem for a oni through 5points in di�erent empty ovals.Lemma 2.1. Let O be the non-empty oval of an M-sexti C6.a). If one hooses a point in eah interior oval of C6 then there exists a onvexpolygon ontained inside O whose verties are the hosen points.b). A line ` through two exterior ovals of C6 annot separate interior ovals, i.e.all interior ovals lie in the same onneted omponent of IntO n `.). Let points p, p1, p2 lie in 3 di�erent interior ovals of C6. Then all theexterior ovals are in the same onneted omponent of RP2 n ((pp1) [ (pp2)). �Suppose that there exists a sexti C6 arranged with respet to a line L (up toan isotopy) as in Figure 1.Lemma 2.2. The urve C6 is arranged with respet to the dashed lines as in Fig. 6,where 4 exterior ovals are in the shaded zone. In partiular, if we hoose pointsB;C; : : : ; H on empty ovals aording to Fig. 6 (where D is in some of the 4 exte-rior ovals in the shaded zone) then the penils of lines sweep out the points in thefollowing orders:a). B;E; F;G;H;C;D for the penil of lines through A;b). A;F;G;H;C;D;E for the penil of lines through B;). B;F;G;H;D;A;E for the penil of lines through C.
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A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE 5Proof. Choose the points A;B;C; F;G;H aording to Fig. 6 obeying the order inthe penil through A.a). The order of the empty ovals in the penil through C is the required one. Thisis proved in [5; Set. 5.2℄ using link-theoretial methods (the Murasugi-Tristraminequality). For the reader's onveniene, let us outline the proof omitting every-thing whih does not onern the arrangement from Fig. 1. The arrangement ofthe urve with respet to the penil of lines through C is depited in Fig. 7, whereC is the in�nite point of vertial lines, A is the in�nite point of L, and 9 emptyovals are somehow distributed in the areas indiated by digits 2; 3; 4 (this pitureshould be onsidered up to transformations desribed in [5; Proposition 3.6℄).Let O1; : : : ; O9 be the empty ovals absent in Fig. 7, numbered from left to right.Let [i1 : : : id℄[id+1 : : : i9℄, 0 � d � 9, 2 � ij � 4, be the sequene of their heights,i.e. ij is the digit in Fig.7 indiating the area ontaining Oj , and d is the numberof ovals to the left of the middle vertial line. We may always assume that eitherd = 0 or id = 3 (otherwise we may push Od to the right by [5; Proposition 3.6℄).By Bezout's theorem for auxiliary onis and lines and the formula of omplexorientations for C6 and C6[L (see [5; Lemma 5.4 and Corollary 5.6℄), we exlude allthe possibilities for [i1 : : : id℄[id+1 : : : i9℄ exept [℄[432224444℄ (orresponds to Fig. 6)and [℄[222344444℄ [3333℄[22234℄ [℄[444322244℄ [℄[444443222℄[33℄[2223444℄ [33℄[4422234℄ [℄[442223444℄ [℄[444422234℄In eah of the last 8 ases, we ompute the braid b = Qnj=1 �ejkj aording to[5; Proposition 3.8℄. Let e(b) = P ej , m be the number of strings, and det b bethe determinant of the symmetrized Seifert matrix of the losure of b in S3. Inour ase, e(b) = 5, m = 7, hene e(b) < m � 1. Thus, by [5; Corollary 2.2℄,det b must vanish if an arrangement is realizable by real algebrai (in fat, realpseudo-holomorphi!) urves. The omputation shows that det b 6= 0 in all 8ases (to simplify the omputation, one an use the fat that det b is equal to thedeterminant of a Goeritz matrix; see [2℄). The orret order of F;G;H is providedby Lemma 2.1(a).b,). Applying Lemma 2.1(a), we also obtain the required order of all pointsexept E in the other two penils.The arrangement of the urve with respet to the penil of lines through B isdepited in Fig. 8, where B is the in�nite point of vertial lines, A is the in�nitepoint of L, and the oval ontaining E is not shown (this piture should also beonsidered up to transformations desribed in [5; Proposition 3.6℄). Our goal is toprove that E is ontained in the shaded zone.
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6 S. FIEDLER-LE TOUZ�E, S.YU. OREVKOVIf E is below L in Fig. 8 then it must be in the shaded zone beause otherwiseED separates B from C, whih ontradits Lemma 2.1(b). If E is above L in Fig. 8then it must be either to the right of C or to the left of F beause otherwise BDand BE separate C from F , whih ontradits Lemma 2.1(). Both latter aseswill be prohibited by omplex orientations.Let C7 be the 7th degree urve obtained by a smoothing of C6 [ L oherentwith omplex orientations. C7 is depited in Fig. 9 in the ase when E is to theleft of F . The orientation of the oval ontaining B (the hyperbola) must be as inFig. 9 beause of the formula of omplex orientations (see [9℄) for C6. But Fig. 9ontradits the formula of omplex orientations for C7. The ase where E is to theright of C but above L is analogous. �3. Auxiliary nodal ubi NAssume that there exist C6 and L ontraditing the Theorem. Denote thenonempty oval of C6 by O and let A; : : : ; H be as in Lemma 2.2. Let N be thenodal ubi passing through the points A;B;C;D;E; F;G, with a double point inC.Lemma 3.1. N is arranged with respet to A; : : : ; H; L;O up to isotopy as inFig. 10.Let T1 and T2 be two of the 4 triangles de�ned by A;B;C and let X 2 T1 andY 2 T2. Denote the segment of the line XY utting the ommon edge of T1 andT2 by [XY ℄, and the other segment by [XY ℄0.Lemma 3.2. Let ` be the line whih supports the ommon edge of T1 and T2,and let `1, `2 be the other two lines amongst AB, BC, CA. Let C2 be a onipassing through X and Y , and let � be one of the 2 ars of C2 joining X and Y .If [XY ℄ � IntC2 then � uts ` one and uts eah of `1, `2 in 0 or 2 points. If[XY ℄0 � IntC2 then � uts ` in 0 or 2 points and uts eah of `1,`2 one. �
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N Fig. 10 Fig. 11Proof of Lemma 3.1.Step 1. Let us prove that N is arranged with respet to O [ L and the pointsA; : : : ; G (not H yet) as in Fig. 10.Let us perform a Cremona transformation r : (x0 : x1 : x2) ! (x1x2 : x0x2 :x0x1), with base points A;B;C. We shall denote the respetive images of the lines



A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE 7BC;AC and AB by A;B and C. For the other points we shall use the same notationas for their preimages under r.By Lemma 2.2, the 3 onis ABFCD, ABGCD and ABFGC are transformedinto 3 lines as in Fig. 11. After the transformation, let us study the oni C2 passingthrough D;F;G;E, and C.From now on, when speaking of onvexity, we refer to an aÆne plane where thepoints F , G, H are inside the triangle ABC and the points D and E are arrangedwith respet to the lines AB, BC, CA as in the left-hand parts of Figures 12{13(suh an aÆne plane exists by Lemma 2.2). Denote the triangle ABC ontainingF , G, H by T . We distinguish the 2 ases depending on whether G is separatedfrom A in the triangle ABC by DF , or not.Case 1. G is separated from A by the line DF in T . Clearly, the quadrangleDFCE is onvex. The diagonals divide it into four triangles. By Lemma 2.2(a,),G lies in the one adjaent to DF . Hene, C2 meets D;G; F;E;C in this order.Moreover, by Lemma 3.2, eah of the ars DG, GF , FE has 0 or 2 intersetionswith the line BC, hene, the seond point of C2 \ BC is on the ar ECD of C2.Thus, there are two possibilities for C2, depending on the order in whih the arFE intersets the lines AB and AC (see Fig. 12 where the tangeny at C may beperturbed in the two ways).
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Fig. 12Case 2. G is not separated from A by the line DF in T . Clearly, the pointsD;G; F;C;E lie in a onvex position, hene they are arranged in this order on C2(see Fig. 13). By Lemma 3.2, eah of the ars ED, DG, GF has 0 or 2 intersetionswith the line AC, hene, the seond point of C2 \ AC is on the ar FCE of C2.Thus, there are two possibilities for C2, depending on the order in whih the arED intersets the lines AB and BC (see Fig. 13 where, as above, the tangeny atC may be perturbed in two ways).Thus, we found that there are only four possibilities for the oni C2 (two pos-sibilities in eah ase). They are marked by digits 1; : : : ; 4 in the left-hand parts ofFigures 12 and 13.Now, we perform the inverse Cremona transformation. The oni C2 is trans-formed into N . The orresponding possibilities for N are marked by the same digitsin the right-hand parts of Figures 12 and 13 (again, the tangenies at A or B maybe perturbed in the two ways). Cases 1, 2, and 4 are impossible beause N wouldut C6 at � 20 points. Hene, N follows the ar marked by 3 in Fig. 13.
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4Fig. 13Clearly, N uts L in A, and 2 other points X , Y , situated respetively on thears BF , and CAE of N (see Fig. 13). Y annot be on the ar AE (if it were, Nwould ut C6 in 20 points), hene, Y is on the ar CA.Step 2. Let us prove that H is arranged as in Fig. 10.By Lemma 2.2 and the result of Step 1, this is equivalent to the fat that H 2IntC2 after the transformation r. Replaing F , G by G, H in the arguments inStep 1, one gets that H is not separated from A by the line DG in T . Hene, byLemma 2.2(), H lies in the shaded zone in Fig. 14.
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Fig. 14Suppose that H 62 IntC2, and onsider the oni C 02 passing through D;E; F;G,H . It may be arranged only in the two ways (see Fig. 14). Indeed, if we trae itstarting from the shaded zone, eah time we have no other hoie beause C 02 anross C2 and the solid lines in Fig. 14 only at D;E; F;G. Then r�1(C 02) is a quartidepited in Fig. 14 (on the right). In both ases it uts C6 at � 26 points. �4. Penils of real ubisLet CP9 be the spae of all plane ubis. A penil of ubis is a line in this CP9.A penil of ubis C3 is real if this line is real; in this ase we denote the set of realubis from C3 by C3(R). All of the ubis of a generi penil C3 interset in 9distint points (alled the base points of the penil), and are disjoint elsewhere. Forany 8 generi points on CP2 there exists a unique penil of ubis whih has these



A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE 9points as base points. If the 8 points are real then the penil is real and hene, the9th base point is also.We say that simple double point (node) of a real urve is solitary if the tangentsare not real and non-solitary otherwise. If C3 is a real nodal ubi with a non-solitary double point P then C3 n fPg = J [O where [J [P ℄ 6= 0 and [O[P ℄ = 0in H1(RP2). We say that O is the loop and J the odd branh of C3.In the spae CP9 of all the ubis, the degree of the disriminant hypersurfaeis 12. Therefore, if a penil C3 is generi, it ontains exatly 12 singular ubis, allnodal. We denote the number of real ubis among them by n.If C3 2 C3(R) is nodal, it may belong to 3 di�erent types:(1) C3 has an solitary double point;(2) C3 has a non-solitary double point, and the loop of C3 ontains no basepoints;(3) C3 has a non-solitary double point, and the loop of C3 ontains some basepoints.We denote the number of ubis of eah type by n1; n2; n3. The ubis of thethird type will be alled distinguished ubis. (It is easily seen that if a ubi ofC3(R) has an oval or a loop O3, then O3 ontains an even number of base points.)The following observation was ommuniated to us by V. Kharlamov. Let usompute the Euler harateristi of RP2 by �bering RP2 by the ubis of C3(R).Eah of the 9 base points and the n1 solitary double points ontributes 1; eahof the n � n1 non-solitary double points ontributes �1. Hene, 1 = �(RP2) =9 + n1 � (n� n1), i.e. n� 2n1 = 8. Thus, n = 8; 10 or 12 whih implies n1 = 0; 1or 2.Consider a motion in C3(R) from a nodal ubi of type 1 (with an solitary node)to the next nodal ubi. If we hoose the diretion of the motion properly thenan oval appears, grows, and attahes itself to the odd omponent forming a loopwhih has no base points. Conversely, starting with any nodal ubi of type 2, wean perform this proess in the opposite diretion. Thus, n2 = n1 and n3 = 8independently of n.5. Auxiliary penil of ubis (proof of the Theorem)5.1. Choie of base points. We shall prohibit C6 using a penil of ubis C3with base points A;B;C;D;E; F;G;H , and an unknown ninth point P . We shallonstrut the sequene of suessive distinguished ubis of this penil until weare no longer able to ontinue beause of Bezout's theorem. This will give us theontradition proving the Theorem.De�nition. 1) We all A;B;C;D;E; F;G;H the prinipal base points of C3.2) Let Ct be a ubi of C3. If X and Y are 2 base points (resp. prinipal basepoints) of C3, a base ar (resp. prinipal ar) XY of Ct is an ar of Ct onnetingX and Y whih does not ontain any other base point (resp. prinipal base points).5.2. Starting ubi C0. Let C0 be a generi ubi of C3 passing through asupplementary exterior oval of C6. Let us denote by the odd omponent of C0 byJ 0 and the oval of C0 (if it exists) by O0.Lemma 5.1. (a). C0 is arranged as in Fig. 15.
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DFig. 15 Fig. 16(b). the 9th base point P lies on O0Proof. Note, that by Bezout's theorem, C0 uts O in at most 2 points (reall thatO is the non-empty oval of C6). Indeed, C0 uts 8 empty ovals in � 2 points eah,but the total number of real points where C0 uts C6 is � 18.Step 1. A 2 J 0.Suppose A 2 O0. All of B;C; F;G;H annot lie on O0 beause O0 is onvexand #(O0 \ O) � 2. Hene, one of these points is on J 0, hene, J 0 meets O,and O0 � IntO. Sine O0 is onvex, B;C 2 J 0. By Lemma 2.2(a), J 0 intereptsC;D;B;E in this order, hene, it uts O in 4 points. Contradition.Step 2. F;G;H , and C lie on J 0.Suppose X = F;G;H or C is on O0. Then O0 � IntO. The line AE uts C0in 3 points of J 0, and separates X from B in O. Hene, B is on J 0. The pointsA;E;B;D are arranged in this order on J 0, given by the penil of lines through X(see Lemma 2.2). Hene, J 0 uts O in 4 points. Contradition.Step 3. B 2 O0.Suppose B 2 J 0. Bezout's theorem for C0 and L yields that A and B arethe extremal points amongst A;B;C; F;G;H on J 0 \ IntO, hene, fX;Y g �fA;B; F;G;Hg where CX and CY are the prinipal ars of J 0. Hene, X orY oinides with B or H (otherwise the ar XCY would meet the line BH in 2points) and the last point of C0 \ N is on the ar BDE, hene, CH annot be aprinipal ar (see Fig. 16). Thus, CB and CZ (Z = F or G) are prinipal ars ofJ 0 (we already know that one of CB, CH must be prinipal). Sine C is separatedfrom B and Z by the line AH in O, this line uts both prinipal ars CB and CZ,thus, C0 �AH � 4. Contradition.Step 4. It remains to apply Lemma 2.2(b) and Bezout's theorem. �5.3. Constrution of the penil. Let us parametrize our penil of ubis C3 =fCtg, t 2 R[f1g so that C0 is as in Setion 5.2 and C1; C2; : : : are the suessivedistinguished ubis.In Fig. 17 we show C0; : : : ; C4 by solid lines. A ubi Ck+", 0 < " � 1, k =0; : : : ; 4 is depited near Ck by the dashed line. We denote the base points B andP by B1 and B2 when we annot distinguish them. To pass from Ck to Ck+1, wehave to hoose a pair of base ars of Ck+" (they are onneted by the dotted line)whih join eah other when " ! 1. Note that during the passage from Ck+" toCk+1, the mutual positions of all base ars do not hange even if we pass througha pair of non-distinguished nodal ubis.
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LFig. 17Remark 5.2. If Ck+" is an M -ubi then one of the two hosen base ars mustbelong to its oval and the other to the odd omponent.The hoie of the ars an atually be made eah time in a unique way (exeptthe last time when this is impossible at all). The reasons why the other pairs ofars annot be joined are explained in Setion 5.4.5.4. Comments to Figure 17. Pj , j = 1; 2; : : : always means \a point of thear number j". When we pass from Ck to Ck+1, we suppose k < t < k + 1, andwe use the abbreviation: \(x1; x2 : : : ==y1; y2; : : : ) by Z" means that eah ar xi isseparated from eah ar yj by Ck [ Z.From C0 to C1. (See Remark 5.2).(8==2; 7) by CH beause A is separated from F in O by the line CH , hene,CH \ Ct = fC;H; P6g; see Fig. 18.(8==3; 5) by L (L \ Ct = fA;P1; Pkg where k = 6 or 7);(8==4; 6) by O (to avoid C0, we need to ross O twie!)From C1 to C2.(1; 3; 5; 7==6; 8), (4==5; 7), by O.(1; 3==4; 5) by CH beause F is separated from A in O by the line CH , heneCH \ Ct = fC;H; P8g; see Fig. 19.(1==3), (4==6; 8), (5==7) by B1H ; (6==8) by B1G (for X = H;G, we have B1X\Ct = fB1; X; Pkg where k = 1; 2, or 3). All the other pairs of ars exept (3; 7) areseparated by L beause L \ Ct = fA;P3; P8g.From C2 to C3. (See Remark 5.2).(6==1; 2; 3; 5) by O. (7==1; : : : ; 5) by N . Indeed, let J t be the odd omponent ofCt. Sine the intersetion of Jt and N is odd, the single non-base point of N \ Ctis on J t. Hene, the oval of Ct is arranged as in Fig. 20.From C3 to C4.(1==3), (6==1; 8) by CB2 beause CB2 \ Ct = fC;B2; P5g. All the other pairsof ars exept (5; 7) are separated by L [ O beause L \ Ct = fA;P3; P8g.From C4 to the ontradition. (See Remark 5.2).(8==2; 3; 4; 5) by O;
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NFig. 18 Fig. 19 Fig. 20 Fig. 21(8==1; 6; 7) by N beause either 8 is inside the loop of N or the non-base pointof N \ Ct is on the loop of N ; see Fig. 21 where the tangeny of C4 and Ct at Bmay be perturbed in the two ways.6. Pseudo-holomorphi realizations
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...Fig. 22 Fig. 236.1. The �rst realization of the urve in Fig. 1. Let us �x a smooth urveC6 and a line L arranged on the real aÆne plane (x; y) as in Figure 22 (omparewith Fig. 8). Let (xj ; yj), j = 1; : : : ; 28 be the points where C6 either meets Lor has a vertial tangent. Denote the diss fjx � xj j � "2g in C by Uj and letU0 = fjxj � Rg � C. Choose R and " suh that U0; : : : ; U28 are pairwise disjoint,and set U = S28j=0 Uj , D = fImx � 0g n U .We may suppose that the part of C6 over U \R is the union of segments of linesand ars of parabolas of the form (x� xj) = �(y � yj)2. In other words, this partof C6 [ L is F \R2, where F is the graph of a 7-valued funtion f de�ned on U ,all of whose branhes are either linear or of the form y = yj �px� xj . Along C6we an extend f to a half S1 of R n U , but only 5 branhes of F an be extendedto the other half S2. On eah [xj + "2; xk � "2℄ � S2, de�ne the 2 missing branhesf� linearly, setting f�(xj + "2) = yj � i" and f�(xk � "2) = yk � i". It is easy tohek (see [5; Set. 3℄) that f j�D is the braidb = ��13 ��24 ��13 ��12 ��53 �3;4 ��14 �4;3 ��44 ��12 �4;3 ��13 � (1)where �3;4 = ��14 �3, �4;3 = ��13 �4, and � (it orresponds to �U0) is the Gar-side element � = (�1 : : : �6)(�1 : : : �5)(�1 : : : �4)(�1�2�3)(�1�2)�1: The braid b is



A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE 13quasipositive: one an hek thatb = (a�11 �5a1)(a�12 �6a2)(a�13 �1a3)(a�14 �4a4) (2)where a1 = �4a, a2 = �5a, a3 = �2�3, a4 = �5�6, and a = �24�3�2�4�23 .Let us hoose pairwise disjoint diss Vj inside D entred on points zj and seg-ments �j as in Fig. 23 (j = 1; : : : ; 4). De�ne f in eah Vj : two branhes �px� zjand �ve onstant branhes suh that the braids over �V1; : : : ; �V4 are respetively�5, �6, �1, �4. Extend f to �j to get the braid aj over it, and �ll D n (V [Sj �j),V = Sj Vj by an isotopy between the right-hand sides of (1) and (2). Extend f tothe lower half-plane by f(�x) = f(x), and smooth it preserving this symmetry andthe omplex analyity near x1; : : : ; x28 and z1; : : : ; z4.Let ! = (dx ^ d�x + dy ^ d�y)=2i be the standard sympleti form on C2. SetM = 2maxDnV j�f=��xj, and let F1 be the graph of f1 = f=M with the orientationindued by the projetion (x; y) 7! x. Then j�f1=��xj � 1=2 everywhere, hene!jF1 > 0. If we embed C2 ! CP2 by (x; y) 7! (x : y :M1) with a suÆiently largeonstantM1 then the Fubini-Studi sympleti form will also be positive on F1, andsine the double points of F1[L are positive, we an �nd a tame Conj-anti-invariantalmost omplex struture where F1 and L are pseudo-holomorphi.6.2. The seond realization of the urve in Fig. 1. The zig-zag on O betweenC and D in Fig. 22 is not oasional. In fat, the onstrution in Set. 6.1 gives apseudo-holomorphi realization of a rational singular sexti and a line depited inFig. 24 (see also [5; Remark 7.2℄; reall that E8 and An are singularities de�ned byy3 = x5 and y2 = xn+1 respetively in suitable loal oordinates). Smoothing E8in two ways, one obtains our urve B2(1; 4; 5) (the urve in Fig. 1) and the urveB2(1; 8; 1) whih was realized algebraially in [6; Part I℄.
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Fig. 24 Fig. 25The theorem proved in Setions 2{5 implies that Fig. 24 is not realizable by areal algebrai sexti (if it were, it ould be algebraially smoothed into Fig. 1 dueto [10; Lemma℄), however, Fig. 25 is (see Proposition below). Given an algebraiurve as in Fig. 25, we an "pull" A8 through the line keeping the urve sympleti(hene, J-holomorphi in a suitable tame J).This pseudo-holomorphi realization of Fig. 1 is better than that in Set. 6.1beause it shows immediately that the onstruted arrangement C6 [ L is isotopi(via pseudo-holomorphi urves) to a omplex algebrai arrangement. Indeed, if weforget the Conj-invariane while we pull A8, then we an avoid its meeting with L.Proposition. There exist a real algebrai rational urve of degree 6 and a real linearranged in RP2 as in Fig. 25.



14 S. FIEDLER-LE TOUZ�E, S.YU. OREVKOVProof. Let C6 be a rational urve parametrized by t 7! (x : y : z),x = t2(1 + t)2(1 + bt+ t2); y = t2(1 + (b+ 2)t); z = (1 + t)2(1 + at);a = �; b = (10�2 + 19�+ 10)=3;  = �(130�2 + 232�+ 160)=15where � = �0:61351::: is the unique real root of 5�3 + 12�2 + 12� + 4 = 0. LetL be the line u = 0 where u = (a � 1)x + ( � b + 1)z. One an hek thatdegt(ay � (b+ 2)z) = 1, ordt=�1 u(t) = 3, andordt=0(yz3 � xz3 � g2x2z2 � g3x3z � g4x4) = 9; g2 = (10�2 + 14�+ 15)=5;g3 = (1060�2 + 1804�+ 1363)=75; g4 = (1490�2 + 2626�+ 1923)=25:Hene, C6 has singularities of the types E8, A2, A8 at t = 1;�1; 0 respetively.One an verify (for instane, as in [6℄) that C6 [ L is arranged as in Fig. 25. �6.3. Realization of the urve in Fig. 4. As in Set. 6.1, it suÆes to hek��53 �3;2 ��12 �2;1 ��41 �2 = (a�11 �3a1)(a�12 �1a2)where �3;2 = ��12 �3, �2;1 = ��11 �2, � = �1�2�3�1�2�1, a2 = �3�2�43 , and a1 =�2��21 ��23 �2 � a2 (sine all the 4 branhes tends to parabolas far from the singularpoint, we have �2 instead of �). Referenes1. S. Fiedler-Le Touz�e, Orientations omplexes des ourbes alg�ebriques r�eelles, Th�ese dotorale(1999).2. C.MA. Gordon, R.A. Litherland, On the signature of a link, Invent. Math. 47 (1978), 53{69.3. M. Gromov, Pseudo holomorphi urves in sympleti manifolds, Invent. Math. 82 (1985),307{347.4. A.B. Korhagin, E.I. Shustin, AÆne urves of degree 6 and smoothing of non-degeneratesix-fold singular points, Math. USSR-Izvestia 33 (1989), 501{520.5. S.Yu. Orevkov, Link theory and oval arrangements of real algebrai urves, Topology 38(1999), 779{810.6. S.Yu. Orevkov, A new aÆne M-sexti, Funt. Anal. and Appl. 32 (1998), 141{143; II. Russ.Math. Surv. 53 (1999), 1099{1101.7. G.M. Polotovskii, (M � 2)-urves of 8-th order: onstrutions, open questions, DeponentVINITI, N1185-85, 1984, 1{194.8. G. Ringel, Teilungen der Ebene durh Geraden oder topologishe Geraden, Math. Z. 64 (1956),79{102.9. Rokhlin V.A., Complex topologial harateristis of real algebrai urves, Russ. Math. Surv.33:5 (1978), 85{98.10. E.I. Shustin, New M-urve of 8th degree, Math. Notes 42 (1987), 606{610.11. O.Ya. Viro, Progress in the topology of real algebrai varieties over the last six years, RussianMath. Surveys 41 (1986), 55{82.Laboratoire E. Piard, UFR MIG, Universit�e Paul Sabatier, 118 route de Nar-bonne, 31062, Toulouse, FraneLaboratoire E. Piard, UFR MIG, Universit�e Paul Sabatier, 118 route de Nar-bonne, 31062, Toulouse, Frane and Steklov Mathematial Institute, Gubkina 6,Mosow


