A FLEXIBLE AFFINE M-SEXTIC WHICH IS ALGEBRAICALLY UNREALIZABLE

S. Fiedler-Le Touzé, S.Yu. Orevkov

Abstract. We prove that the union of a real algebraic curve of degree six and a real line on $\mathbf{R P}^{2}$ cannot be isotopic to the arrangement in Figure 1. Previously, the second author [5] realized this arrangement with flexible curves. Here we show that these flexible curves are pseudo-holomorphic in a suitable tame almost complex structure on $\mathbf{C P}{ }^{2}$.

For the proof of the algebraic non-realizability we consider all possible positions of the curve with respect to certain pencils of lines. Using the Murasugi-Tristram inequality for certain links in S^{3}, we show that all the positions but one are unrealizable. Then, we prohibit the last position (the one which is realizable by a flexible curve) by studying its behaviour with respect to an auxiliary pencil of cubics.

Fig. 1

Fig. 2

Introduction

The main result of the paper is:
Theorem. Let C_{6} be a real algebraic curve of degree 6 and L a line, where $C_{6}, L \subset$ $\mathbf{R P}^{2}$. Then there does not exist an ambient isotopy of $\mathbf{R} \mathbf{P}^{2}$ which deforms C_{6} and L into the curve and the line in Figure 1.

Since the line L can be considered as the line at infinity, Theorem 1 is equivalent to the fact that a real affine sextic can not be arranged on \mathbf{R}^{2} as in Figure 2. This result continues the classification of affine M-sextics started in [7,4,5,6]. In our opinion, the main interest of this theorem is that the curve in Figure 1 is realizable by a real pseudo-holomorphic curve (see the definition in Section 1). This means that the methods commonly used to obtain restrictions for real algebraic curves
cannot be sufficient for the proof of the Theorem because almost all of them prove non-existance of real pseudo-holomorphic curves (see Section 1 for details).

We prove the Theorem in three steps. In Section 2, using link-theoretical methods from [5], we show that a curve $C_{6} \cup L$ isotopic to Fig. 1 can be arranged in a unique way with respect to certain pencils of lines. In Section 3, using Bezout's theorem for auxiliary lines and conics, quadratic transformations etc., we find the unique position of $C_{6} \cup L$ with respect to a certain auxiliary nodal cubic N. In Section 5, we prohibit this arrangement of C_{6}, L, and N (which is realizable pseudoholomorphically!). The results of Sections 2 and 3 are valid in pseudo-holomorphic case (hence, something in Section 5 cannot work for pseudo-holomorphic curves).

In Section 6, we give two pseudo-holomorphic realizations of Figure 1 as the union of a line and a sextic. The construction in Section 6.1 is more general (in essential, it was given already in [5; Sect. 7.2, curve $B_{2}(1,4,5)$] not mentioning that the constructed curve is pseudo-holomorphic). In the construction in Section 6.2, the pseudo-holomorphic curve $C_{6} \cup L$ is obtained as a deformation of an algebraic curve.

As we already mentioned, the most of known topological restrictions for real algebraic curves are also valid for real pseudo-holomorphic curves. Thus, to prove the Theorem, we need a tool which might distinguish these objects. As such a tool we use an auxiliary pencil of cubics. Choosing 8 real base points in a suitable way, we consider the pencil $\left\{C^{t}\right\}$ of all real cubics passing through them. The arrangement of one of the cubics of this pencil (let it be C^{0}) with respect to C_{6}, L, and N can be determined very precisely. Then we determine the position of the 9 th base point of the pencil (note that its existence is crucial for our proof because the continuous family of pseudo-holomorphic cubics through 8 fixed points, in general, does not have any other base points). Now we change the parameter t and see how C^{t} transforms. If the base points are chosen in general position, the pencil of cubics must have at least 8 nodal cubics and when we pass through them, we perform a Morse bifurcation. Bezout's theorem bounding the number of real intersections of C^{t} with C_{6}, L, N, and some auxiliary lines imposes very strong restrictions which allow us to trace the pencil of cubics (i.e. to find the arrangement of the nodal cubics we pass successively) up to a certain moment and to show that a further bifurcation is impossible. This method was developed in [1].

We mention in Section 1 some known examples of algebraically unrealizable real pseudo-holomorphic curves. However, the methods used to prove the nonrealizability of these examples work in very special cases whereas the method used in this paper (Bezout's theorem for an auxiliary pencil of cubics) seems to be more general. Note that auxiliary pencils of cubics were used (in another way) by Rokhlin [9; Section 3.6].

The results of Sections 3-5 are obtained by the first author; The results of Sections 2 and 6 are obtained by the second author.

1. Real pseudo-holomorphic curves

We say that a Riemann surface C, embedded (or immersed) in $\mathbf{C P}^{2}$, is a real pseudo-holomorphic curve if C is a J-holomorphic curve in some tame almost complex structure J (see [3]) such that $\operatorname{Conj}(C)=C$ and $\operatorname{Conj}_{*} \circ J=J^{-1} \circ$ Conj $_{*}$: $T_{x} \rightarrow T_{\bar{x}}$ for all $x \in \mathbf{C P}^{2}$ (here Conj : $\mathbf{C P}{ }^{2} \rightarrow \mathbf{C} \mathbf{P}^{2}$ denotes complex conjugation $x \mapsto \bar{x})$.

It is easy to show that any flexible curve compatible with a pencil of lines in the sense of [5; Section 3.1] is J-holomorphic in a suitable Conj-anti-invariant almost complex structure J (see Sect. 6.1). Hence, all flexible curves constructed in [5] are realizable by real pseudo-holomorphic curves. In fact, a complete classification up to isotopy of real affine pseudo-holomorphic M-sextics is obtained in [5]. ${ }^{1}$

Viro [11] defined a flexible curve of degree m as a smooth embedded Conjinvariant surface C in $\mathbf{C P}^{2}$ such that $[C]=m\left[\mathbf{C P}^{1}\right] \in H_{2}\left(\mathbf{C P}^{2}\right)$, the genus of C is $(m-1)(m-2) / 2$, and the planes tangent to C at real points are the complexifications of real lines. A lot of restrictions for the topology of real algebraic curves are valid for flexible curves (see [11] where such restrictions are called topological), e.g., Harnack inequality, Petrovski inequalities, Gudkov-Arnold-Rokhlin congruence, Arnold inequalities, formulas for complex orientations, etc. Real pseudoholomorphic curves form a subclass (in our opinion, the most important one) of flexible curves. Moreover, they satisfy Bezout's theorem because all intersections are positive. Due to results of Gromov [3], there exists a real pseudo-holomorphic line (resp. conic) through any 2 (resp. 5) real points. This means that the restrictions coming from Bezout's theorem for auxiliary lines and conics also are valid for real pseudo-holomorphic curves (for instance, if the set of a real points of a real pseudo-holomorphic quartic has two ovals one inside another then it has no other ovals). The behaviour of pseudo-holomorphic curves in pencils of pseudoholomorphic lines is the same as in holomorphic case, thus, almost all of the known restrictions in the literature for the topology of real algebraic curves are valid in the pseudo-holomorphic case.

Fig. 3

Fig. 4

Fig. 5

However, reducible real pseudo-holomorphic curves in $\mathbf{R P}^{2}$ algebraically unrealizable were known long ago. To get the simplest example, consider a line arrangement where triple points are dependent, and perturb one of them into 3 double points (for instance, the Pappus arrangement of 9 real lines with 9 triple points perturbed as in Fig. 3). A less trivial example is provided by the Pappus-Ringel arrangement of pseudo-lines [8] (see Fig. 4) which is also a perturbation of the Pappus arrangement. Another example is provided by a smooth M-perturbation of four tangent real branches (Fig. 5) which was prohibited by Shustin in the 80 's in his thesis (unpublished) using the Hilbert-Rohn-Gudkov approach (see Sect. 6.3 for a pseudo-holomorphic realization).

[^0]Question. Does there exist a smooth (hence, irreducible) real pseudo-holomorphic curve in $\mathbf{C P}^{2}$ such that the isotopy class of the set of its real points (with or without complex orientations) is not realizable by a real algebraic curve?

2. Arrangement of the curve with respect to pencils of lines

The following fact easily follows from Bezout's theorem for a conic through 5 points in different empty ovals.

Lemma 2.1. Let O be the non-empty oval of an M-sextic C_{6}.
a). If one chooses a point in each interior oval of C_{6} then there exists a convex polygon contained inside O whose vertices are the chosen points.
b). A line ℓ through two exterior ovals of C_{6} cannot separate interior ovals, i.e. all interior ovals lie in the same connected component of $\operatorname{Int} O \backslash \ell$.
c). Let points p, p_{1}, p_{2} lie in 3 different interior ovals of C_{6}. Then all the exterior ovals are in the same connected component of $\mathbf{R P}^{2} \backslash\left(\left(p p_{1}\right) \cup\left(p p_{2}\right)\right)$.

Suppose that there exists a sextic C_{6} arranged with respect to a line L (up to an isotopy) as in Figure 1.

Lemma 2.2. The curve C_{6} is arranged with respect to the dashed lines as in Fig. 6, where 4 exterior ovals are in the shaded zone. In particular, if we choose points B, C, \ldots, H on empty ovals according to Fig. 6 (where D is in some of the 4 exterior ovals in the shaded zone) then the pencils of lines sweep out the points in the following orders:
a). B, E, F, G, H, C, D for the pencil of lines through A;
b). A, F, G, H, C, D, E for the pencil of lines through B;
c). B, F, G, H, D, A, E for the pencil of lines through C.

Fig. 6

Proof. Choose the points A, B, C, F, G, H according to Fig. 6 obeying the order in the pencil through A.
a). The order of the empty ovals in the pencil through C is the required one. This is proved in [5; Sect. 5.2] using link-theoretical methods (the Murasugi-Tristram inequality). For the reader's convenience, let us outline the proof omitting everything which does not concern the arrangement from Fig. 1. The arrangement of the curve with respect to the pencil of lines through C is depicted in Fig. 7, where C is the infinite point of vertical lines, A is the infinite point of L, and 9 empty ovals are somehow distributed in the areas indicated by digits $2,3,4$ (this picture should be considered up to transformations described in [5; Proposition 3.6]).

Let O_{1}, \ldots, O_{9} be the empty ovals absent in Fig. 7, numbered from left to right. Let $\left[i_{1} \ldots i_{d}\right]\left[i_{d+1} \ldots i_{9}\right], 0 \leq d \leq 9,2 \leq i_{j} \leq 4$, be the sequence of their heights, i.e. i_{j} is the digit in Fig. 7 indicating the area containing O_{j}, and d is the number of ovals to the left of the middle vertical line. We may always assume that either $d=0$ or $i_{d}=3$ (otherwise we may push O_{d} to the right by [5; Proposition 3.6]).

By Bezout's theorem for auxiliary conics and lines and the formula of complex orientations for C_{6} and $C_{6} \cup L$ (see [5; Lemma 5.4 and Corollary 5.6]), we exclude all the possibilities for $\left[i_{1} \ldots i_{d}\right]\left[i_{d+1} \ldots i_{9}\right]$ except []$[432224444]$ (corresponds to Fig. 6) and

$$
\begin{array}{llll}
{[][222344444]} & {[3333][22234]} & {[][444322244]} & {[][444443222]} \\
{[33][2223444]} & {[33][4422234]} & {[][442223444]} & {[][444422234]}
\end{array}
$$

In each of the last 8 cases, we compute the braid $b=\prod_{j=1}^{n} \sigma_{k_{j}}^{e_{j}}$ according to [5; Proposition 3.8]. Let $e(b)=\sum e_{j}, m$ be the number of strings, and det b be the determinant of the symmetrized Seifert matrix of the closure of b in S^{3}. In our case, $e(b)=5, m=7$, hence $e(b)<m-1$. Thus, by [5; Corollary 2.2], det b must vanish if an arrangement is realizable by real algebraic (in fact, real pseudo-holomorphic!) curves. The computation shows that $\operatorname{det} b \neq 0$ in all 8 cases (to simplify the computation, one can use the fact that $\operatorname{det} b$ is equal to the determinant of a Goeritz matrix; see [2]). The correct order of F, G, H is provided by Lemma 2.1(a).
b,c). Applying Lemma 2.1(a), we also obtain the required order of all points except E in the other two pencils.

The arrangement of the curve with respect to the pencil of lines through B is depicted in Fig. 8, where B is the infinite point of vertical lines, A is the infinite point of L, and the oval containing E is not shown (this picture should also be considered up to transformations described in [5; Proposition 3.6]). Our goal is to prove that E is contained in the shaded zone.

If E is below L in Fig. 8 then it must be in the shaded zone because otherwise $E D$ separates B from C, which contradicts Lemma 2.1(b). If E is above L in Fig. 8 then it must be either to the right of C or to the left of F because otherwise $B D$ and $B E$ separate C from F, which contradicts Lemma 2.1(c). Both latter cases will be prohibited by complex orientations.

Let C_{7} be the 7 th degree curve obtained by a smoothing of $C_{6} \cup L$ coherent with complex orientations. C_{7} is depicted in Fig. 9 in the case when E is to the left of F. The orientation of the oval containing B (the hyperbola) must be as in Fig. 9 because of the formula of complex orientations (see [9]) for C_{6}. But Fig. 9 contradicts the formula of complex orientations for C_{7}. The case where E is to the right of C but above L is analogous.

3. Auxiliary nodal cubic N

Assume that there exist C_{6} and L contradicting the Theorem. Denote the nonempty oval of C_{6} by O and let A, \ldots, H be as in Lemma 2.2. Let N be the nodal cubic passing through the points A, B, C, D, E, F, G, with a double point in C.

Lemma 3.1. N is arranged with respect to A, \ldots, H, L, O up to isotopy as in Fig. 10.

Let T_{1} and T_{2} be two of the 4 triangles defined by A, B, C and let $X \in T_{1}$ and $Y \in T_{2}$. Denote the segment of the line $X Y$ cutting the common edge of T_{1} and T_{2} by [$X Y$], and the other segment by $[X Y]^{\prime}$.

Lemma 3.2. Let ℓ be the line which supports the common edge of T_{1} and T_{2}, and let ℓ_{1}, ℓ_{2} be the other two lines amongst $A B, B C, C A$. Let C_{2} be a conic passing through X and Y, and let α be one of the 2 arcs of C_{2} joining X and Y. If $[X Y] \subset \operatorname{Int} C_{2}$ then α cuts ℓ once and cuts each of ℓ_{1}, ℓ_{2} in 0 or 2 points. If $[X Y]^{\prime} \subset \operatorname{Int} C_{2}$ then α cuts ℓ in 0 or 2 points and cuts each of ℓ_{1}, ℓ_{2} once.

Fig. 10

Fig. 11

Proof of Lemma 3.1.
Step 1. Let us prove that N is arranged with respect to $O \cup L$ and the points A, \ldots, G (not H yet) as in Fig. 10.

Let us perform a Cremona transformation cr : $\left(x_{0}: x_{1}: x_{2}\right) \rightarrow\left(x_{1} x_{2}: x_{0} x_{2}\right.$: $x_{0} x_{1}$), with base points A, B, C. We shall denote the respective images of the lines
$B C, A C$ and $A B$ by A, B and C. For the other points we shall use the same notation as for their preimages under cr.

By Lemma 2.2 , the 3 conics $A B F C D, A B G C D$ and $A B F G C$ are transformed into 3 lines as in Fig. 11. After the transformation, let us study the conic C_{2} passing through D, F, G, E, and C.

From now on, when speaking of convexity, we refer to an affine plane where the points F, G, H are inside the triangle $A B C$ and the points D and E are arranged with respect to the lines $A B, B C, C A$ as in the left-hand parts of Figures 12-13 (such an affine plane exists by Lemma 2.2). Denote the triangle $A B C$ containing F, G, H by T. We distinguish the 2 cases depending on whether G is separated from A in the triangle $A B C$ by $D F$, or not.

Case 1. G is separated from A by the line $D F$ in T. Clearly, the quadrangle $D F C E$ is convex. The diagonals divide it into four triangles. By Lemma 2.2(a, c), G lies in the one adjacent to $D F$. Hence, C_{2} meets D, G, F, E, C in this order. Moreover, by Lemma 3.2, each of the arcs $D G, G F, F E$ has 0 or 2 intersections with the line $B C$, hence, the second point of $C_{2} \cap B C$ is on the arc $E C D$ of C_{2}. Thus, there are two possibilities for C_{2}, depending on the order in which the arc $F E$ intersects the lines $A B$ and $A C$ (see Fig. 12 where the tangency at C may be perturbed in the two ways).

Fig. 12

Case 2. G is not separated from A by the line $D F$ in T. Clearly, the points D, G, F, C, E lie in a convex position, hence they are arranged in this order on C_{2} (see Fig. 13). By Lemma 3.2, each of the arcs $E D, D G, G F$ has 0 or 2 intersections with the line $A C$, hence, the second point of $C_{2} \cap A C$ is on the $\operatorname{arc} F C E$ of C_{2}. Thus, there are two possibilities for C_{2}, depending on the order in which the arc $E D$ intersects the lines $A B$ and $B C$ (see Fig. 13 where, as above, the tangency at C may be perturbed in two ways).

Thus, we found that there are only four possibilities for the conic C_{2} (two possibilities in each case). They are marked by digits $1, \ldots, 4$ in the left-hand parts of Figures 12 and 13.

Now, we perform the inverse Cremona transformation. The conic C_{2} is transformed into N. The corresponding possibilities for N are marked by the same digits in the right-hand parts of Figures 12 and 13 (again, the tangencies at A or B may be perturbed in the two ways). Cases 1,2 , and 4 are impossible because N would cut C_{6} at ≥ 20 points. Hence, N follows the arc marked by 3 in Fig. 13.

Fig. 13
Clearly, N cuts L in A, and 2 other points X, Y, situated respectively on the $\operatorname{arcs} B F$, and $C A E$ of N (see Fig. 13). Y cannot be on the $\operatorname{arc} A E$ (if it were, N would cut C_{6} in 20 points), hence, Y is on the $\operatorname{arc} C A$.

Step 2. Let us prove that H is arranged as in Fig. 10.
By Lemma 2.2 and the result of Step 1, this is equivalent to the fact that $H \in$ Int C_{2} after the transformation cr. Replacing F, G by G, H in the arguments in Step 1, one gets that H is not separated from A by the line $D G$ in T. Hence, by Lemma 2.2(c), H lies in the shaded zone in Fig. 14.

Fig. 14

Suppose that $H \notin \operatorname{Int} C_{2}$, and consider the conic C_{2}^{\prime} passing through D, E, F, G, H. It may be arranged only in the two ways (see Fig. 14). Indeed, if we trace it starting from the shaded zone, each time we have no other choice because C_{2}^{\prime} can $\operatorname{cross} C_{2}$ and the solid lines in Fig. 14 only at D, E, F, G. Then $\mathrm{cr}^{-1}\left(C_{2}^{\prime}\right)$ is a quartic depicted in Fig. 14 (on the right). In both cases it cuts C_{6} at ≥ 26 points.

4. Pencils of real cubics

Let $\mathbf{C P}{ }^{9}$ be the space of all plane cubics. A pencil of cubics is a line in this $\mathbf{C P}{ }^{9}$. A pencil of cubics \mathcal{C}_{3} is real if this line is real; in this case we denote the set of real cubics from \mathcal{C}_{3} by $\mathcal{C}_{3}(\mathbf{R})$. All of the cubics of a generic pencil \mathcal{C}_{3} intersect in 9 distinct points (called the base points of the pencil), and are disjoint elsewhere. For any 8 generic points on $\mathbf{C P}{ }^{2}$ there exists a unique pencil of cubics which has these
points as base points. If the 8 points are real then the pencil is real and hence, the 9th base point is also.

We say that simple double point (node) of a real curve is solitary if the tangents are not real and non-solitary otherwise. If C_{3} is a real nodal cubic with a nonsolitary double point P then $C_{3} \backslash\{P\}=\mathcal{J} \cup \mathcal{O}$ where $[\mathcal{J} \cup P] \neq 0$ and $[\mathcal{O} \cup P]=0$ in $H_{1}\left(\mathbf{R P}^{2}\right)$. We say that \mathcal{O} is the loop and \mathcal{J} the odd branch of C_{3}.

In the space $\mathbf{C P}{ }^{9}$ of all the cubics, the degree of the discriminant hypersurface is 12 . Therefore, if a pencil \mathcal{C}_{3} is generic, it contains exactly 12 singular cubics, all nodal. We denote the number of real cubics among them by n.

If $C_{3} \in \mathcal{C}_{3}(\mathbf{R})$ is nodal, it may belong to 3 different types:
(1) C_{3} has an solitary double point;
(2) C_{3} has a non-solitary double point, and the loop of C_{3} contains no base points;
(3) C_{3} has a non-solitary double point, and the loop of C_{3} contains some base points.
We denote the number of cubics of each type by n_{1}, n_{2}, n_{3}. The cubics of the third type will be called distinguished cubics. (It is easily seen that if a cubic of $\mathcal{C}_{3}(\mathbf{R})$ has an oval or a loop \mathcal{O}_{3}, then \mathcal{O}_{3} contains an even number of base points.)

The following observation was communicated to us by V. Kharlamov. Let us compute the Euler characteristic of $\mathbf{R} \mathbf{P}^{2}$ by fibering $\mathbf{R} \mathbf{P}^{2}$ by the cubics of $\mathcal{C}_{3}(\mathbf{R})$. Each of the 9 base points and the n_{1} solitary double points contributes 1 ; each of the $n-n_{1}$ non-solitary double points contributes -1 . Hence, $1=\chi\left(\mathbf{R P}^{2}\right)=$ $9+n_{1}-\left(n-n_{1}\right)$, i.e. $n-2 n_{1}=8$. Thus, $n=8,10$ or 12 which implies $n_{1}=0,1$ or 2 .

Consider a motion in $\mathcal{C}_{3}(\mathbf{R})$ from a nodal cubic of type 1 (with an solitary node) to the next nodal cubic. If we choose the direction of the motion properly then an oval appears, grows, and attaches itself to the odd component forming a loop which has no base points. Conversely, starting with any nodal cubic of type 2, we can perform this process in the opposite direction. Thus, $n_{2}=n_{1}$ and $n_{3}=8$ independently of n.

5. Auxiliary pencil of cubics (proof of the Theorem)

5.1. Choice of base points. We shall prohibit C_{6} using a pencil of cubics \mathcal{C}_{3} with base points A, B, C, D, E, F, G, H, and an unknown ninth point P. We shall construct the sequence of successive distinguished cubics of this pencil until we are no longer able to continue because of Bezout's theorem. This will give us the contradiction proving the Theorem.

Definition. 1) We call A, B, C, D, E, F, G, H the principal base points of \mathcal{C}_{3}.
2) Let C^{t} be a cubic of \mathcal{C}_{3}. If X and Y are 2 base points (resp. principal base points) of \mathcal{C}_{3}, a base arc (resp. principal arc) $X Y$ of C^{t} is an arc of C^{t} connecting X and Y which does not contain any other base point (resp. principal base points).
5.2. Starting cubic C^{0}. Let C^{0} be a generic cubic of \mathcal{C}_{3} passing through a supplementary exterior oval of C_{6}. Let us denote by the odd component of C^{0} by \mathcal{J}^{0} and the oval of C^{0} (if it exists) by \mathcal{O}^{0}.

Lemma 5.1. (a). C^{0} is arranged as in Fig. 15.

Fig. 15

Fig. 16
(b). the 9th base point P lies on \mathcal{O}^{0}

Proof. Note, that by Bezout's theorem, C^{0} cuts O in at most 2 points (recall that O is the non-empty oval of C_{6}). Indeed, C^{0} cuts 8 empty ovals in ≥ 2 points each, but the total number of real points where C^{0} cuts C_{6} is ≤ 18.

Step 1. $A \in \mathcal{J}^{0}$.
Suppose $A \in \mathcal{O}^{0}$. All of B, C, F, G, H cannot lie on \mathcal{O}^{0} because \mathcal{O}^{0} is convex and $\#\left(\mathcal{O}^{0} \cap O\right) \leq 2$. Hence, one of these points is on \mathcal{J}^{0}, hence, \mathcal{J}^{0} meets O, and $\mathcal{O}^{0} \subset \operatorname{Int} O$. Since \mathcal{O}^{0} is convex, $B, C \in \mathcal{J}^{0}$. By Lemma 2.2(a), \mathcal{J}^{0} intercepts C, D, B, E in this order, hence, it cuts O in 4 points. Contradiction.

Step 2. F, G, H, and C lie on \mathcal{J}^{0}.
Suppose $X=F, G, H$ or C is on \mathcal{O}^{0}. Then $\mathcal{O}^{0} \subset \operatorname{Int} O$. The line $A E$ cuts C^{0} in 3 points of \mathcal{J}^{0}, and separates X from B in O. Hence, B is on \mathcal{J}^{0}. The points A, E, B, D are arranged in this order on \mathcal{J}^{0}, given by the pencil of lines through X (see Lemma 2.2). Hence, \mathcal{J}^{0} cuts O in 4 points. Contradiction.

Step 3. $B \in \mathcal{O}^{0}$.
Suppose $B \in \mathcal{J}^{0}$. Bezout's theorem for C^{0} and L yields that A and B are the extremal points amongst A, B, C, F, G, H on $\mathcal{J}^{0} \cap \operatorname{Int} O$, hence, $\{X, Y\} \subset$ $\{A, B, F, G, H\}$ where $C X$ and $C Y$ are the principal arcs of \mathcal{J}^{0}. Hence, X or Y coincides with B or H (otherwise the arc $X C Y$ would meet the line $B H$ in 2 points) and the last point of $C^{0} \cap N$ is on the arc $B D E$, hence, $C H$ cannot be a principal arc (see Fig. 16). Thus, $C B$ and $C Z(Z=F$ or $G)$ are principal arcs of \mathcal{J}^{0} (we already know that one of $C B, C H$ must be principal). Since C is separated from B and Z by the line $A H$ in O, this line cuts both principal $\operatorname{arcs} C B$ and $C Z$, thus, $C^{0} \cdot A H \geq 4$. Contradiction.

Step 4. It remains to apply Lemma 2.2(b) and Bezout's theorem.
5.3. Construction of the pencil. Let us parametrize our pencil of cubics $\mathcal{C}_{3}=$ $\left\{C^{t}\right\}, t \in \mathbf{R} \cup\{\infty\}$ so that C^{0} is as in Section 5.2 and C^{1}, C^{2}, \ldots are the successive distinguished cubics.

In Fig. 17 we show C^{0}, \ldots, C^{4} by solid lines. A cubic $C^{k+\varepsilon}, 0<\varepsilon \ll 1, k=$ $0, \ldots, 4$ is depicted near C^{k} by the dashed line. We denote the base points B and P by B_{1} and B_{2} when we cannot distinguish them. To pass from C^{k} to C^{k+1}, we have to choose a pair of base arcs of $C^{k+\varepsilon}$ (they are connected by the dotted line) which join each other when $\varepsilon \rightarrow 1$. Note that during the passage from $C^{k+\varepsilon}$ to C^{k+1}, the mutual positions of all base arcs do not change even if we pass through a pair of non-distinguished nodal cubics.

Fig. 17

Remark 5.2. If $C^{k+\varepsilon}$ is an M-cubic then one of the two chosen base arcs must belong to its oval and the other to the odd component.

The choice of the arcs can actually be made each time in a unique way (except the last time when this is impossible at all). The reasons why the other pairs of arcs cannot be joined are explained in Section 5.4.
5.4. Comments to Figure 17. $P_{j}, j=1,2, \ldots$ always means "a point of the arc number $j "$. When we pass from C^{k} to C^{k+1}, we suppose $k<t<k+1$, and we use the abbreviation: " $\left(x_{1}, x_{2} \ldots / / y_{1}, y_{2}, \ldots\right)$ by Z " means that each arc x_{i} is separated from each arc y_{j} by $C^{k} \cup Z$.

From C^{0} to C^{1}. (See Remark 5.2).
$(8 / / 2,7)$ by $C H$ because A is separated from F in O by the line $C H$, hence, $C H \cap C^{t}=\left\{C, H, P_{6}\right\}$; see Fig. 18.
$(8 / / 3,5)$ by $L\left(L \cap C^{t}=\left\{A, P_{1}, P_{k}\right\}\right.$ where $k=6$ or 7$)$;
$(8 / / 4,6)$ by O (to avoid C^{0}, we need to cross O twice!)
From C^{1} to C^{2}.
$(1,3,5,7 / / 6,8),(4 / / 5,7)$, by O.
$(1,3 / / 4,5)$ by $C H$ because F is separated from A in O by the line $C H$, hence $C H \cap C^{t}=\left\{C, H, P_{8}\right\}$; see Fig. 19.
$(1 / / 3),(4 / / 6,8),(5 / / 7)$ by $B_{1} H ;(6 / / 8)$ by $B_{1} G$ (for $X=H, G$, we have $B_{1} X \cap$ $C^{t}=\left\{B_{1}, X, P_{k}\right\}$ where $k=1,2$, or 3$)$. All the other pairs of arcs except $(3,7)$ are separated by L because $L \cap C^{t}=\left\{A, P_{3}, P_{8}\right\}$.

From C^{2} to C^{3}. (See Remark 5.2).
$(6 / / 1,2,3,5)$ by $O .(7 / / 1, \ldots, 5)$ by N. Indeed, let \mathcal{J}^{t} be the odd component of C^{t}. Since the intersection of \mathcal{J}_{t} and N is odd, the single non-base point of $N \cap C^{t}$ is on \mathcal{J}^{t}. Hence, the oval of C^{t} is arranged as in Fig. 20.

From C^{3} to C^{4}.

$(1 / / 3),(6 / / 1,8)$ by $C B_{2}$ because $C B_{2} \cap C^{t}=\left\{C, B_{2}, P_{5}\right\}$. All the other pairs of arcs except $(5,7)$ are separated by $L \cup O$ because $L \cap C^{t}=\left\{A, P_{3}, P_{8}\right\}$.

From C^{4} to the contradiction. (See Remark 5.2).
$(8 / / 2,3,4,5)$ by O;

Fig. 18

FIG. 19

Fig. 20

FIG. 21
($8 / / 1,6,7$) by N because either 8 is inside the loop of N or the non-base point of $N \cap C^{t}$ is on the loop of N; see Fig. 21 where the tangency of C^{4} and C^{t} at B may be perturbed in the two ways.

6. PSEUDO-HOLOMORPHIC REALIZATIONS

Fig. 22

Fig. 23
6.1. The first realization of the curve in Fig. 1. Let us fix a smooth curve C_{6} and a line L arranged on the real affine plane (x, y) as in Figure 22 (compare with Fig. 8). Let $\left(x_{j}, y_{j}\right), j=1, \ldots, 28$ be the points where C_{6} either meets L or has a vertical tangent. Denote the discs $\left\{\left|x-x_{j}\right| \leq \varepsilon^{2}\right\}$ in \mathbf{C} by U_{j} and let $U_{0}=\{|x| \geq R\} \subset \mathbf{C}$. Choose R and ε such that U_{0}, \ldots, U_{28} are pairwise disjoint, and set $U=\bigcup_{j=0}^{28} U_{j}, D=\{\operatorname{Im} x \geq 0\} \backslash U$.

We may suppose that the part of C_{6} over $U \cap \mathbf{R}$ is the union of segments of lines and arcs of parabolas of the form $\left(x-x_{j}\right)= \pm\left(y-y_{j}\right)^{2}$. In other words, this part of $C_{6} \cup L$ is $F \cap \mathbf{R}^{2}$, where F is the graph of a 7 -valued function f defined on U, all of whose branches are either linear or of the form $y=y_{j} \pm \sqrt{x-x_{j}}$. Along C_{6} we can extend f to a half S_{1} of $\mathbf{R} \backslash U$, but only 5 branches of F can be extended to the other half S_{2}. On each $\left[x_{j}+\varepsilon^{2}, x_{k}-\varepsilon^{2}\right] \subset S_{2}$, define the 2 missing branches $f_{ \pm}$linearly, setting $f_{ \pm}\left(x_{j}+\varepsilon^{2}\right)=y_{j} \pm i \varepsilon$ and $f_{ \pm}\left(x_{k}-\varepsilon^{2}\right)=y_{k} \pm i \varepsilon$. It is easy to check (see [5; Sect. 3]) that $\left.f\right|_{\partial D}$ is the braid

$$
\begin{equation*}
b=\sigma_{3}^{-1} \sigma_{4}^{-2} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3}^{-5} \tau_{3,4} \sigma_{4}^{-1} \tau_{4,3} \sigma_{4}^{-4} \sigma_{2}^{-1} \tau_{4,3} \sigma_{3}^{-1} \Delta \tag{1}
\end{equation*}
$$

where $\tau_{3,4}=\sigma_{4}^{-1} \sigma_{3}, \tau_{4,3}=\sigma_{3}^{-1} \sigma_{4}$, and Δ (it corresponds to ∂U_{0}) is the Garside element $\Delta=\left(\sigma_{1} \ldots \sigma_{6}\right)\left(\sigma_{1} \ldots \sigma_{5}\right)\left(\sigma_{1} \ldots \sigma_{4}\right)\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}$. The braid b is
quasipositive: one can check that

$$
\begin{equation*}
b=\left(a_{1}^{-1} \sigma_{5} a_{1}\right)\left(a_{2}^{-1} \sigma_{6} a_{2}\right)\left(a_{3}^{-1} \sigma_{1} a_{3}\right)\left(a_{4}^{-1} \sigma_{4} a_{4}\right) \tag{2}
\end{equation*}
$$

where $a_{1}=\sigma_{4} a, a_{2}=\sigma_{5} a, a_{3}=\sigma_{2} \sigma_{3}, a_{4}=\sigma_{5} \sigma_{6}$, and $a=\sigma_{4}^{2} \sigma_{3} \sigma_{2} \sigma_{4} \sigma_{3}^{2}$.
Let us choose pairwise disjoint discs V_{j} inside D centred on points z_{j} and segments α_{j} as in Fig. $23(j=1, \ldots, 4)$. Define f in each V_{j} : two branches $\pm \sqrt{x-z_{j}}$ and five constant branches such that the braids over $\partial V_{1}, \ldots, \partial V_{4}$ are respectively $\sigma_{5}, \sigma_{6}, \sigma_{1}, \sigma_{4}$. Extend f to α_{j} to get the braid a_{j} over it, and fill $D \backslash\left(V \cup \bigcup_{j} \alpha_{j}\right)$, $V=\bigcup_{j} V_{j}$ by an isotopy between the right-hand sides of (1) and (2). Extend f to the lower half-plane by $f(\bar{x})=\overline{f(x)}$, and smooth it preserving this symmetry and the complex analycity near x_{1}, \ldots, x_{28} and z_{1}, \ldots, z_{4}.

Let $\omega=(d x \wedge d \bar{x}+d y \wedge d \bar{y}) / 2 i$ be the standard symplectic form on \mathbf{C}^{2}. Set $M=2 \max _{D \backslash V}|\partial f / \partial \bar{x}|$, and let F_{1} be the graph of $f_{1}=f / M$ with the orientation induced by the projection $(x, y) \mapsto x$. Then $\left|\partial f_{1} / \partial \bar{x}\right| \leq 1 / 2$ everywhere, hence $\left.\omega\right|_{F_{1}}>0$. If we embed $\mathbf{C}^{2} \rightarrow \mathbf{C} \mathbf{P}^{2}$ by $(x, y) \mapsto\left(x: y: M_{1}\right)$ with a sufficiently large constant M_{1} then the Fubini-Studi symplectic form will also be positive on F_{1}, and since the double points of $F_{1} \cup L$ are positive, we can find a tame Conj-anti-invariant almost complex structure where F_{1} and L are pseudo-holomorphic.
6.2. The second realization of the curve in Fig. 1. The zig-zag on O between C and D in Fig. 22 is not occasional. In fact, the construction in Sect. 6.1 gives a pseudo-holomorphic realization of a rational singular sextic and a line depicted in Fig. 24 (see also [5; Remark 7.2]; recall that E_{8} and A_{n} are singularities defined by $y^{3}=x^{5}$ and $y^{2}=x^{n+1}$ respectively in suitable local coordinates). Smoothing E_{8} in two ways, one obtains our curve $B_{2}(1,4,5)$ (the curve in Fig. 1) and the curve $B_{2}(1,8,1)$ which was realized algebraically in [6; Part I].

Fig. 24

Fig. 25

The theorem proved in Sections $2-5$ implies that Fig. 24 is not realizable by a real algebraic sextic (if it were, it could be algebraically smoothed into Fig. 1 due to [10; Lemma]), however, Fig. 25 is (see Proposition below). Given an algebraic curve as in Fig. 25, we can "pull" A_{8} through the line keeping the curve symplectic (hence, J-holomorphic in a suitable tame J).

This pseudo-holomorphic realization of Fig. 1 is better than that in Sect. 6.1 because it shows immediately that the constructed arrangement $C_{6} \cup L$ is isotopic (via pseudo-holomorphic curves) to a complex algebraic arrangement. Indeed, if we forget the Conj-invariance while we pull A_{8}, then we can avoid its meeting with L.

Proposition. There exist a real algebraic rational curve of degree 6 and a real line arranged in $\mathbf{R P}^{2}$ as in Fig. 25.

Proof. Let C_{6} be a rational curve parametrized by $t \mapsto(x: y: z)$,

$$
\begin{aligned}
& x=t^{2}(1+t)^{2}\left(1+b t+c t^{2}\right), \quad y=t^{2}(1+(b+2) t), \quad z=(1+t)^{2}(1+a t) \\
& a=\alpha, \quad b=\left(10 \alpha^{2}+19 \alpha+10\right) / 3, \quad c=-\left(130 \alpha^{2}+232 \alpha+160\right) / 15
\end{aligned}
$$

where $\alpha=-0.61351 \ldots$ is the unique real root of $5 \alpha^{3}+12 \alpha^{2}+12 \alpha+4=0$. Let L be the line $u=0$ where $u=(a-1) x+(c-b+1) z$. One can check that $\operatorname{deg}_{t}(a y-(b+2) z)=1, \operatorname{ord}_{t=-1} u(t)=3$, and

$$
\begin{aligned}
& \operatorname{ord}_{t=0}\left(y z^{3}-x z^{3}-g_{2} x^{2} z^{2}-g_{3} x^{3} z-g_{4} x^{4}\right)=9, \quad g_{2}=\left(10 \alpha^{2}+14 \alpha+15\right) / 5, \\
& g_{3}=\left(1060 \alpha^{2}+1804 \alpha+1363\right) / 75, \quad g_{4}=\left(1490 \alpha^{2}+2626 \alpha+1923\right) / 25 .
\end{aligned}
$$

Hence, C_{6} has singularities of the types E_{8}, A_{2}, A_{8} at $t=\infty,-1,0$ respectively. One can verify (for instance, as in [6]) that $C_{6} \cup L$ is arranged as in Fig. 25.
6.3. Realization of the curve in Fig. 4. As in Sect. 6.1, it suffices to check

$$
\sigma_{3}^{-5} \tau_{3,2} \sigma_{2}^{-1} \tau_{2,1} \sigma_{1}^{-4} \Delta^{2}=\left(a_{1}^{-1} \sigma_{3} a_{1}\right)\left(a_{2}^{-1} \sigma_{1} a_{2}\right)
$$

where $\tau_{3,2}=\sigma_{2}^{-1} \sigma_{3}, \tau_{2,1}=\sigma_{1}^{-1} \sigma_{2}, \Delta=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}, a_{2}=\sigma_{3} \sigma_{2} \sigma_{3}^{4}$, and $a_{1}=$ $\sigma_{2} \sigma_{1}^{-2} \sigma_{3}^{-2} \sigma_{2} \cdot a_{2}$ (since all the 4 branches tends to parabolas far from the singular point, we have Δ^{2} instead of Δ).

References

1. S. Fiedler-Le Touzé, Orientations complexes des courbes algébriques réelles, Thèse doctorale (1999).
2. C.McA. Gordon, R.A. Litherland, On the signature of a link, Invent. Math. 47 (1978), 53-69.
3. M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
4. A.B. Korchagin, E.I. Shustin, Affine curves of degree 6 and smoothing of non-degenerate six-fold singular points, Math. USSR-Izvestia 33 (1989), 501-520.
5. S.Yu. Orevkov, Link theory and oval arrangements of real algebraic curves, Topology $\mathbf{3 8}$ (1999), 779-810.
6. S.Yu. Orevkov, A new affine M-sextic, Funct. Anal. and Appl. 32 (1998), 141-143; II. Russ. Math. Surv. 53 (1999), 1099-1101.
7. G.M. Polotovskii, $(M-2)$-curves of 8 -th order: constructions, open questions, Deponent VINITI, N1185-85, 1984, 1-194.
8. G. Ringel, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Z. 64 (1956), 79-102.
9. Rokhlin V.A., Complex topological characteristics of real algebraic curves, Russ. Math. Surv. 33:5 (1978), 85-98.
10. E.I. Shustin, New M-curve of 8th degree, Math. Notes 42 (1987), 606-610.
11. O.Ya. Viro, Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys 41 (1986), 55-82.

Laboratoire E. Picard, UFR MIG, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France

Laboratoire E. Picard, UFR MIG, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France and Steklov Mathematical Institute, Gubkina 6, Moscow

[^0]: ${ }^{1}$ There is a misprint in [5]. The line ${ }^{1} 445$ in the table corresponding to $A_{3}\left(\alpha_{1}, \alpha_{2}, \beta\right)$ in Figure 1 (page 781) should be replaced by " 415 ".

