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Abstract. π1(C2 − K) is computed where K is an algebraic curve having only
simple double points and satisfying certain restrictions at infinity. These restrictions
are satisfied, for example, for a generic curve paramertized by polynomials of given
degrees, and also for a generic curve with a given Newton polygon. As corollary, a
new proof of the Fulton-Deligne theorem which states that π1(CP 2 − K) is abelian
is obtained, if K has only simple double points in CP 2.

Introduction

The interest in the fundamental group of the complement of an algebraic curve in
CP 2 has appeared beginning with Zariski’s work in the twenties and the thirties (cf.
[1]). In particular, Zariski proved that the problem of computing the fundamental
group of the complement of an algebraic hypersurface in CPn can be reduced to the
problem of computing the fundamental group of the complement of an appropiate
plane curve. He also computed the fundamental group of some series of plane
curves.

Recently Fulton [2] and Deligne [3] have proved the following Zariski’s conjecture:
if all the singularities of a curve C in CP 2 (possibly reducible) are nodes (i.e. points
at which two analytically irreducible smooth branches intersect transversally), then
the fundamental group π1(CP 2−C) is abelian. A survey of other examples in which
it is possible to compute the fundamental group of the complement of a curve can
be found in [4].

This paper is devoted to the study of the group π1(C
2 − K) where K is an

algebraic curve satisfying the negativity condition at the infinity (see §1). Our
main result is the following.

Theorem A. Let an algebraic curve K in C2 satisfy the negativity condition at the
infinity (see §1), and assume that all its singularities (lying in C2) are nodes. Then
to each irreducible component of K ane can associate an element of π1(C

2 − K)
in such a way that these elements generate the whole group, and if two irreducible
components intersect each other then the corresponding elements commute.

In §1, the negativity condition at the infinity is formulated, and examples of
curves satisfying this condition are considered. In particular, if C is a curve in
CP 2 then the curve C − (L ∩ C) in CP 2 − L satisfies the negativity condition at
the infinity for almost all lines L. Therefore, Theorem A yields a new proof of the
theorem of Fulton and Deligne. (The inclusion CP 2 − C − L → CP 2 − L induces
an epimorphism of the fundamental groups.)
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§§2–5 are devoted to the proof of Theorem A. In passing, we give a presentation
of π1(C

2 − K) by generators and relations. This presentation is analogous to
Wirtinger’s presentation of the knot group. It allows one to find numerically the
group of the complement of a curve which is explicitly defined and whose degree is
not very large.

A sketch of the algorithm is given in §6. In the same section, the result of
a computation is given. The computation has been executed on the PDP-11/70
computer in the Laboratory of Computer Methods of the Faculty of Mathematics
and Mechanics in Moscow State University. I thank thank the collaborators of this
laboratory for their help.

The results of the computation allows us to conjecture that Theorem A holds
without the negativity condition. This conjecture agrees with the results of Lib-
gober [4] on Alexander polynomial of plane algebraic curves.

Actually, Theorem A is valid for sets obtained from complex algebraic curves by
means of small real-differentiable perturbations, if the resulting set is algebraic in
some neighbourhoods of the infinity and of singular points. If Theorem A without
the negativity condition were proved for such sets, this should yield (using the easy
Lemma 4.2 from [7]) a proof of the well-known Jacobian Conjecture (see [6]).

Added in 2003: This reduction of the Jacobian Conjecture is wrong.

§1. Negativity condition

Let K be an algebraic curve in C2. We introduce an affine coordinate sys-
tem (z, w) in C2. Then K defines the multivalued algebraic function F (z) =
{w | (z, w) ∈ K} which can be expanded into a Puiseux series at the infinity, i.e.
there exists a positive integer d and a neighbourhood U of the infinite point of the
z-axis such that the restriction of F to U − [0, +∞) consists of n distinct single-
valued analytic branches f1, . . . , fn of the form fj(z) = gj(τ(z)), where every gj is a
function, meromorphic and single-valued at the point τ = 0, and τ is a single-valued
(in U − [0, +∞)) branch of the function z−1/d. If d is the minimal possible integer
such that the above presentation is possible, then the set {g1, . . . , gn} is uniquely
determined by K and the coordinate system (z, w).

We say that K satisfies the negativity condition at the infinity with respect to
the coordinate system (z, w) if k 6= l implies that the function gk(τ) − gl(τ) does
not vanish at τ = 0 (i.e. it has either a pole or a finite limit there). It is easy to
see that if a curve satisfies the negativity condition at the infinity with respect to
one coordinate system, then it satisfies the negativity condition at the infinity with
respect to almost all coordinate systems. If such a coordinate system exists, we say
that the curve satisfies the negativity condition at the infinity (in this section we
shall write NC).

Using the terminology from [5], the NC can be reformulated as follows: a curve
satisfies the NC if the braid corresponding to a sufficiently large circe is positive.

Example 1. (see the Introduction). If C is a curve in CP 2, then for almost all
lines L the curve C − L in C = CP 2 − L satisfies the NC.

Example 2. Consider the family of all curves parametrized by two polynomials of
given degrees in one variable. A generic curve of this family satisfies the NC.

Example 3. A generic curve with a given Newton polygon satisfies the NC.
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Example 4. A curve satisfies the NC if each of its singularities at the infinity
(we assume that C2 is embedded into CP 2) is either a cusp defined by um = vn

tangent to the infinite line, or a transversal intersection of nonsingular branches
one of which may be tangent to the infinite line.

Example 5. A curve satisfies the NC if each of its singularities at the infinity
is analytically irreducible, and near this point the curve can be expanded as fol-
lows: x = t−n and y =

∑+∞

−m ait
i (x and y are coordinates in C2), where all the

characteristic Puiseux exponents are negative, i.e. gcd{i > 0 | ai 6= 0} = 1.

§2. Nondegenerate coordinate systems

Let K be an algebraic curve in C2 satisfying the hypothesis of Theorem A.
Every affine coordinate system (z, w) defines the multi-valued function F (z) =
{w | (z, w) ∈ K}. Let n be the number of values of F at a generic point of the
z-axis. Denote by B the set of points of the z-axis at which F has less than n
values. We say that a coordinate system (z, w) is nondegenerate with respect to K
if the following conditions (N1)–(N8) hold.

I. Nondegeneracy of the w-axis.

(N1) The w-axis is not parallel to any line tangent to K at a singular point or at
a point of inflextion.

(N2) The w-axis is parallel neither to a line passing through two singular points,
nor to a line passing through a singular point and tangent to K, nor to a
bitangent.

(N3) The infinite point of the w-axis does not belong to the closure of K in CP 2.
(N4) K satisfies the negativity condition at the infinity with respect to the coor-

dinate system (z, w).

II. Nondegeneracy of the axis Re w.

(N5) If z ∈ B and {w1, . . . , wk} = F (z), then Re wi 6= Re wj for wi 6= wj .
(N6) If U is a neighbourhood of the infinity on the z-axis and f1 and f2 are two

branches of F , single-valued in U − [0, +∞), such that

lim
z→∞

(f1(z) − f2(z)) = A 6= ∞,

then Re A 6= 0.
(N7) If U is an open simply connected subset of C − B and f1 and f2 are two

distinct single-valued branches of F in U , then the set {z ∈ U | Re f1(z) =
Re f2(z)} is a smooth real algebraic subvariety of U (let us denote it by
BU (f1, f2)).

(N8) If U is an open simply connected subset of C − B and f1, f2, f3, f4 are
single-valued branches of F in U such that f1 6= f2, f3 6= f4, and {f1, f2} 6=
{f3, f4} then the curves BU (f1, f2) and BU (f3, f4) have only transversal
intersections ({ , } denotes a set consisting of two elements).

It is clear that we can always choose a coordinate system satisfying (N1)–(N4).
The condition (N3) implies that B is the projection onto the z-axis of the finite

set B̃ consisting of the singular points of K at which the tangent to K̃ is parallel
to the w-axis (branch points of F ). (N2) implies that distinct points of B̃ are
projected to distinct points of B. Therefore, we have
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Proposition 2.1. If the coordinate system is nondegenerate with respect to K,
then the function F has exactly n − 1 values at every point of B.

The rest of this section is devoted to a proof of the following statement.

Lemma 2.2. The curve K possesses a nondegenerate coordinate system. More-
over, if a coordinate system (z, w) satisfies (N1)-(N4) then for almost all θ ∈ [0, π]
(except for a finite subset) the coordinate system (z, exp(iθ)w) is nondegenerate.

Lemma 2.2 is an immediate consequence of the following three lemmas.

Lemma 2.3. Let f be an algebraic function, single-valued in a domain U ⊂ C and
nonvanishing in U . Then there exists a finite set Θ, such that for θ ∈ [0, π]−Θ the
set Lθ = {z | Re(exp(iθ)f(z)) = 0} is a smooth real algebraic subvariety of U .

Proof. If the subvariety Lθ is not smooth at a point z, then f ′(z) = 0. Let Θ =
{ π/2−Arg f(z) | f ′(z) = 0 }. It is clear that the set Θ is finite and Lθ is a smooth
curve for θ 6∈ Θ. Q.E.D.

Lemma 2.4. Let f1 and f2 be algebraic functions, single-valued in a domain U ⊂ C

and nonvanishing in U . Let f1/f2 6= const. Then there exists a finite set Θ such
that for θ ∈ [0, π] − Θ the real curves

{Re(exp(iθ)f1(z)) = 0} and {Re(exp(iθ)f2(z)) = 0}

intersect transversally.

Proof. Denote the curve {Re(exp(iθ)fj(z)) = 0} by Lθ
j . If one of the functions is

identically equal to a constant c, then for θ 6≡ π/2−Arg c mod π the corresponding
set Lθ

j is empty. Therefore we shall assume that neither function is constant.

If Lθ
1 and Lθ

2 intersect at a point z, then the complex numbers f1(z) and f2(z)
are linearly dependant over R. If these curves intersect at z nontransversally,
then the complex numbers f ′

1(z) and f ′

2(z) are linearly dependant over R (because
gradRe f(z) = f ′(z)). Denote by S0 (respectively, S1) the set of those z for which
f1(z) and f2(z) (respectively, f ′

1(z) and f ′

2(z)) are linearly dependant over R. Let
S = S0 ∩ S1.

Let Θ = { π/2 − Arg f2(z) | z ∈ S}. It is clear that if θ 6∈ Θ, then Lθ
2 ∩ S = ∅;

hence the curves Lθ
1 and Lθ

2 intersect transversally. Therefore, it is sufficient to
prove that the set Θ is finite. Being a real algebraic variety, S is the union of a
finite number of points and smooth arcs. We shall prove that if a smooth arc defined
by z = ϕ(t) lies in S −{f ′

2(z) = 0}, then the function Arg f2(ϕ(t)) is constant (this
implies the finiteness of Θ, and hence, completes the proof). Indeed, along ϕ the
following identities hold:

f1(ϕ(t)) = α(t)f2(ϕ(t)), f ′

1(ϕ(t)) = β(t)f ′

2(ϕ(t)),

where α and β are smooth real functions (since f1/f2 6= const, we have α′(t) 6= 0).
Derivating the first identity with respect to t and substracting the result from the
second one multiplied by ϕ′(t), we obtain

(β(t) − α(t))
d

dt
f2(ϕ(t)) = α′(t)f2(ϕ(t)).
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Hence, since α′(t) 6= 0 and f ′

2(ϕ(t)) 6= 0, we have

d

dt
Arg f2(ϕ(t)) =

d

dt
Im ln f2(ϕ(t)) = Im

(

df2(ϕ(t))/dt

f2(ϕ(t))

)

= Im α′(t)/(α(t) − β(t)) = 0.

The lemma is proved.

Lemma 2.5. Let f1, f2, f3, f4 be single-valued branches of F in a simpli connected
domain U . Let f1 6= f2, f3 6= f4, and {f1, f2} 6= {f3, f4}, and (f1 − f2)/(f3 − f4) =
const. Then f1 − f2 = const.

Proof. Let R be the Riemann surface of the function h = f1 − f2. It is sufficient to
prove that this function is nonvanishing in R. Indeed, by virtue of the negativity
condition h does not vanish at the points lying over the infinity, and, according to
Proposition 2.1, h does not vanish at other points. Indeed, if some branch of h
vanished at some point, so would the corresponding branch of f2 − f4. Therefore,
the number of values of F at that point would be less than n − 1. The lemma is
proved.

§3. Generators and relations of π1(C
2 − K)

As above, let a curve K satisfy the hypothesis of Theorem A, and let (z, w)
be a coordinate system that is nondegenerate with respect to K. Denote by B+

the set B ∪ {z | ∃w1, w2 ∈ F (z) such that w1 6= w2 and Re w1 = Re w2}. It is a
one-dimensional real semialgebraic set. Let B0 be the nonsingular part of B+ −B.

Define the integer-valued function N on B0 as follows. Let z ∈ B0. According
to (N8) (see §2), in some neighbourhood U of z there exist uniquely defined (up to
indexing) branches f1 and f2 of F , single-valued in U , such that B+∩U = {Re f1 =
Re f2}, and the real parts of the remaining values of F at z are pairwise distinct
and differ from Re f1(z). Let N(z) = 1 + #{w ∈ F (z) | Re w < Re f1(z)}. In
other words, if the values of F at z are indexed in such a way that their real parts
increase, then N(z) and N(z) + 1 are the indices of those values whose real parts
coincide. The function N is continuous, hence, locally constant on B0. Introduce
on B0 the orientation assuming that the tangent vector to B0 at z is positive if
and only if |f1 − f2| decreases along it (such a vector exists since z is a nonsingular
point of B+).

The set B+, together with the orientation and the function N , defines the
pair (C2, K) uniquely up to a homeomorphism. The above construction is due
to Rudolph [5]. In that paper there are also examples of B+ for some curves.
Another example is considered in §6 below.

Now we shall describe the behavior of the set B+ near points of B (cf. [5]). If
z is a branch point of F (according to (N1) the ramification index should be equal
to 2), then in appropriate local coordinates near z the set B+ is a half-line which
starts at z and which is oriented towards z (note that according top (N5) no other
curve from B+ passes through z). If z is the projection of a singular point of K
(which must be a node), then near z the set B+ is a smooth real curve also oriented
towards z (at z the orientation of B+ changes).

Now let us describe the group π1(C
2 − K) in terms of the set B+. As a base

point we shall consider the infinite point of teh positive part of the axis Imw.
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Consider one of the parts of which the set C−B+ consists, and denote it by U .
For such a domain define α1(U), . . . , αn(U) ∈ π1(C

2 − K) as follows. Choose any
point z0 ∈ U . Let w1, . . . , wn be the values of F at z0, indexed in such a way that
their real parts increase. Denote by αj(U) the path which goes to (z0, wj) from the
infinity along the ray {z = z0, Rew = Re wj , Im w = Im wj}, goes around (z0, wj)
counterclockwise along a small circle in the complex line z = z0, and goes back
to the infinity along the same ray. Clearly, the homotopy class of αj(U) depends
only on the domain U and not on the choice of the point z0 on it. It is easy to
show (see for instance [1]) that for any U the elements α1(U), . . . , αn(U) generate
π1(C

2 − K).
Let U be a domain on a plane, and G a piece of its border. Suppose that the

plane and the curve G are priented. We say that U is to the right of G if the base
(e1, e2) is positively oriented, where e1 is a vector beginning at some point of G
and directed into U , and e2 is a vector tangent to G at the same point and directed
positively with respect to the orientation of G.

Lemma 3.1. Let G be a connected component of B0 and let U and V be the
connected components of C−B+ having G as a common piece of boundary, so that
U is to the left of G and V is to the right (possibly, U = V ). Let i = N(G). Then

αj(U) = αj(V ) for j 6= i, i + 1, (1)

αi+1(U) = αi(V ) (2)

(let us denote this element by β), and

αi(U) = βαi+1(V )β−1. (3)

The proof is omitted because it coincides with the proof of Wirtinger’s relations
from knot theory.

Remark 3.2. Denote the commutator [αi(V ), αi+1(V )] by k(G). Then (3) can be
rewritten as follows:

αi(U) = k(G)αi+1(V ). (3′)

Remark 3.3. One can show that the generators αj(U), where j = 1, . . . , n and
U ranges over all components of C − B+, and relation (1)–(3) written for each
connected component of B0, completely define the group π1(C

2 − K), i.e. any
other relation on the elements αj(U) is a consequence of those relations.

Remark 3.4. Actually, Lemma 3.1 can be applied to any curve for which the Lemma
2.5 holds (if Lemma 2.5 does not hold for some curve then Lemma 3.1 just does not
make sense, because in this case the function N is not defined). As an example of
a curve for which Lemma 2.5 does not hold, one can consider the complexification
of two concentric circles.

Added in 2003: As it is shown in the paper [S.Yu. Orevkov, The commutant of the funda-

mental group of the complement of a plane algebraic curve, Russ. Math. Surveys, ??], the curve

in Remark 3.4 is the only case when the statement of Lemma 2.5 is not true; see also the appedix

to the paper [S.Yu. Orevkov, Rudolph diagrams and analytic realization of Vitushkin’s covering,

Math. Notes, 60(1996), 153-164].



THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A CURVE 7

§4. Proof of Theorem A under a certain additional condition

In this section we shall assume that a curve K satisfies the hypothesis of Theorem
A, a coordinate system (z, w) is nondegenerate with respect to K (see §2), and the
following condition holds.

(N9) The set of real parts of values of F at any point consists of at least n − 2
pairwise distinct real numbers.

Lemma 4.1. If a curve K satisfies (N9) then Theorem A is valid.

This section is devoted to the proof of this lemma.
Condition (N9) ipmplies that at most three real curves from B+ intersect in

a point. Moreover, if at some point the curve {Re f1 = Re f2} meets the curve
{Re f3 = Re f4}, where f1, f2, f3, f4 are pairwise distinct branches of F , then
no other curve passes through this point. If the curve {Re f1 = Re f2} meets the
curve {Re f2 = Re f3}, then evidently the curve {Re f1 = Re f3} passes through
the intersection point, but (N9) implies that no other curve does. Such points will
be called double and triple points of B+ respectively.

The last paragraph and the condition (N7) give the following result.

Proposition 4.2. Every singular point of B+ either belongs to B, or is a double
or a triple point of B+.

Lemma 4.3. Let z ∈ B, and let U be a connected component of C − B+ whose
closure contains z. Let i and i + 1 be the indices of the values of F coinciding at
z (the values are assumed to be indexed so that their real parts increase). Then the
elements αi(U) and αi+1(U) commute.

Proof. Let w = wi = wi+1 be the singular value of F at z, i.e. (z, w) is either a
singular point of K or a point of K at which the tangent to K is vertical. Choose
a sufficiently small neighbourhood Z of z, and let I be an interval of the real axis
containing Re w and not containing the real parts of the other values of F at z.
Let W = {(z, w) | z ∈ Z, Re w ∈ I}. Then the elements αi(U) and αi+1(U) are
represented by loops lying in W . On the other hand, if Z and I are small enough,
then π1(W −K) is abelian, because W −K is homeomorphic either to C× (C− 0)
(if (z, w) is a smooth point of K), or to (C − 0) × (C − 0) (if (z, w) is a singular
point of K).

The lemma is proved.

Lemma 4.4. Let G be a connected component of the set B0, and let U and V be
the connected components of C − B+ for which G is a common part of boundary.
Denote N(G) (cf. §3) by i. Then

αi(U) = αi+1(V ), αi+1(U) = αi(V ). (4)

Proof. According to Lemma 3.1 the statement (4) is equivalent to k(G) = 1 (see
Remark 3.2).

For every connected component G of B0 set L(G) = infG |f |, where f is the
difference of the branches of F whose real parts coincide on G. Assume that the
components of B0 are indexed so that L(G) increases and use the induction.

First let us prove the lemma for L(G) = 0. In this case the negativity condition
(see §1) implies that G has an end at some point z ∈ B. Hence, by Lemma 4.3,
k(G) = 1, i.e. for L(G) = 0 the lemma is proved.
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Now let us assume that the lemma is proved for all G′ with L(G′) < L(G), and
let us prove it for G. According to (N6) (see §2), moving along G in the positive
direction (|f | decreasing), we cannot reach the infinity. Hence, we reach infG |f |
at some point z0 ∈ B+ − B. By Proposition 4.2, z0 is either a double point or a
triple point of B+. Assume that z0 is a double point. Denote the continuation of
G through z0 by G′, and the components of C − B+ for which G is the common
part of the boundary by U ′ and V ′ (U and U ′ being on one side of G ∪ G′, and
V and V ′ on the other). From Lemma 3.1 and the definition of a double point it
follows that αi(U) = αi(U

′) and αi+1(U) = αi+1(U
′); hence k(G) = k(G′). But

clearly, L(G′) < L(G), hence by the induction hypothesis k(G′) = 1. In the case of
a double point the induction step is proved.

Now let z0 be a triple point of B+. Denote by f1, f2, f3 the branches of F with
Re f1(z0) = Re f2(z0) = Re f3(z0), assuming them to be indexed so that

Im f1(z0) < Im f2(z0) < Im f3(z0). (5)

Let G12, G23, G13 be the connected components of B0 ending at z0 (i.e. contain-
ing z0 as an end point and oriented towards it), such that Gij = {Re fi = Re fj}.
Let G′

ij be the continuation of Gij through z0. Denote the vectors − grad |fi − fj |
by vij (the vector vij is tangent to G′

ij). We assume that the base (v12, v23) is

positively oriented (the case when it is negatively oriented is absolutely analogous).
It is clear that v13 = v12 + v23; hence, moving around z0 counterclockwise, we shall
meet these curves in the following order:

G12, G13, G23, G
′

12, G
′

13, G
′

23. (6)

Consider the mapping h : C → C defined by the function f3 − f1. It takes z0

into a point h(z0) lying on the imaginary axis higher than zero, and v13 into a
vector directed from h(z0) to zero. The mapping h maps the positively oriented
base (v12, v13) into a positively oriented base. Therefore, Re h(z) < 0 for z ∈ G′

12;
hence, for z ∈ G′

12 the real parts of the numbers fi(z) are arranged in the following
way: Re f3 < Re f1 = Re f2.

Analogously one can find the arrangements of the real parts of these functions
on the other arcs Gij and G′

ij . These arguments prove that if N(G12) = j (see the
beginning of §3 for the definition of N), then

N(G′

13) = N(G23) = N(G12) = j, N(G13) = N(G′

23) = N(G′

12) = j + 1. (7)

Denote by U the domain (connected component of C − B+) lying between G′

12

and G23, and let

α = αj(U), β = αj+1(U), γ = αj+2(U).

Lemma 3.1 and formulas (6) and (7) imply

k(G12) = α[β, γ]α−1, k(G′

12) = [β, γ], (8)

k(G13) = [α, γ], k(G′

13) = [α, βγβ−1], (9)

k(G23) = [α, β], k(G′

23) = [α, β]. (10)
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Recall that we are proving the equality

k(G) = 1 (11)

for a curve G ending at z0, under the assumption that k(G′) = 1 if L(G′) < L(G).
There are three possible cases: G = G12, G = G23, or G = G13.

In the first two cases (11) follows from (8) and (10) by the induction assumption
and the evident inequality

L(G′

ij < L(Gij) (ij = 12, 23, 13). (12)

In the case when G = G13, note that

L(G12) = | Im(f2(z0) − f1(z0))|, L(G13) = | Im(f3(z0) − f1(z0))|.

Therefore (5) implies L(G′

12) < L(G12) < L(G13); hence by the induction as-
sumption we have k(G′

12) = 1, and, according to (8), γ = βγβ−1. The induction
assumption and the inequality (12) for ij = 13 implies k(G′

13) = 1. Therefore, by
(9) we have

[α, βγβ−1] = 1.

Hence, k(G) = k(G13) = [α, γ] = [α, βγβ−1] = 1. The lemma is proved.

Denote the set {(z, w) ∈ K | z ∈ B+} by B̃+. This is a real semialgebraic subset

of K. Let us associate to each connected component U of K − B̃+ the element
α(U) ∈ π1(C

2 − K) which corresponds to the following path. It comes along the
ray {(z, w) | z = z0, Rew = Re w0, Im w > Im w0} to some point (z0, w0) ∈ U ,
goes around this point in the complex line z = z0 counterclockwise, and then goes
back to the infinity. In the notation of §3 we have α(U) = αj(pU), where p is the
projection onto the z-axis, and i = #{w ∈ F (z0) | Re w ≤ Re w0 } for some point
(z0, w0) ∈ U .

Lemma 4.5. Let K1 be an irreducible component of K, and let U and V be con-
nected components of K1 − B̃+. Then α(U) = α(V ). (Denote this element by
α(K1)).)

Proof. If U and V heve a common boundary part, then, by Lemma 4.3 we have
α(U) = α(V ). Otherwise let us join some point of U with some point of V by a

path lying in K1−B̃ (which is a smooth connected manifold). Then along this path

there is a chain U1, . . . , Uk of components of K1 − B̃+ such that U1 = U , Uk = V ,
and Ui and Ui+1 share a common boundary part. The lemma is proved.

Proof of Lemma 4.1. By Lemma 4.5, to each irreducible component K1 of K cor-
responds a unique element α(K1). If the components intersect then by Lemma 4.3
these elements commute.

§5. Completion of the proof of Theorem A

In this section we use the same notation as in §§2 and 3. Condition (N9) is not
assumed to hold.

Let z1, . . . , zs be the singular points of B+ not contained in B. Choose closed
disks U1, . . . , Us centered at these points, in such a way that all their pairwise
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intersections are empty, and none of them contains a point of B. Choose also in
every disk Ui a smaller concentrical disk Vi. Denote

⋃

Ui and
⋃

Vi by U and V .
Let H be the space of all functions holomorphic in a neighbourhood of U , and

set f = (f1, . . . , fn) ∈ Hn where f1, . . . , fn are analytic branches of F , single-
valued in U . Fix a smooth real function ϕ which is equal to 1 on V and 0 on
C−U . For h = (h1, . . . , hs) ∈ Hn, denote by K(h) a ”perturbation of K”, i.e. the
set Γ ∪ (K ∩ ((C − U) × C)) where Γ is the union of the graphs of the functions
(fi + hiϕ). Let us denote by F (h) and B+(h) the objects analogous to F and B+

(see §§2 and 3), but constructed for K(h).
Let H1 be the set of h ∈ Hn such that F (h) satisfies condition (N9) from §4,

and H2 the set of all h ∈ Hn satisfying the following conditions:

(a) There exists a neighbourhood O of B+ such that the mapping

(fi − fj) + (hi − hj)ϕ : U ∩ O → C

is orientation preserving.
(b) A one-parameter family of inclusions of K(th) into C2, t ∈ [0, 1], realizes

an isotopy between the inclusion of K into C2 and the inclusion of K(h)
into C2.

(c) A one-parameter family of inclusions of B+(th) into C, t ∈ [0, 1], realizes
an isotopy between the inclusion of B+ into C and the inclusion of B+(h)
into C.

It is easy to see that in the topology C2 the set H1 is everywhere dense, and the
set H2 is open.

To complete the proof of Theorem A it suffices to note that if h ∈ H1 ∩H2 then,
first, π1(C

2 −K) = π1(C
2 −K(h)), and, second, all the arguments from §§2–4 can

be applied to the curve K(h).

§6. Numerical computation of the fundamental group of a curve

Let K be an algebraic curve in C2 for which Lemma 2.5 holds. Then (see Remark
3.4) Lemma 3.1 gives us a presentation of π1(C

2 − K) in terms of the set B+.
If a curve K is defined by an equation with given concrete coefficients, then the

set B+ can be computed numerically. To this end one has to expand F at the infinity
into a Puiseux series, to find the points of intersection of B+ with a sufficiently
large (”infinite”) circle, and, then, for each of these points, to draw a curve (i.e. an
irreducible component B+) passing through this point. The curve should be drawn
either up to the singularity of F or up to the return to the ”infinite” circle. At each
step along the curve it is essential not to mix the single-valued branches of F .

If at a particular step, z0 is replaced by z = z0 + h and the values fi(z0) (i =
1, . . . , n) are known, then the values at z of the analytic continuation of the fi along
the segment [z0, z] can be computed in the following way. As initial approximation
for fi(z) take fi(z0)+ f ′

i(z0)h (the derivative can be found by the implicit function
theorem). Then this approximation is refined by Newton’s method (fi(z) is a root
of a polynomial with coefficients depending on z).

I have done the computations for the curve defined parametrically by

z = t4 + 2t2 + 2t + 1, w = 2t6 + 6t4 + 6t3 + 6t2 + 6t + 5.

These are polynomials of the least degrees for which is possible that the parametrized
curve does not satisfy the negativity condition at the infinity. On the other hand,
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among the curves parametrized by polynomials of the fourth and the sixth degrees,
not satisfying the negativity condition, this curve is ”the worst”, i.e. its B+ has
the maximal possible number of curves oriented towards the infinity.

In the variables (z, w) this curve is defined by

(4z3 + 12z + 3 − w2)2 − 8w − 48 + 52 = 0;

it has three nodes. The z-coordinates of the nodes, and, respectively, the values of
z for which w(z) is ramified, are the roots of

z3 − 4z2 − 4 = 0 and 16z3 − 16z2 + 72z − 37 = 0.

The expansion of F (z) into a Puiseux series at the infinity is

z = t−4, w = 2t−6 + 3t2 − t3 + . . . .

This implies that in a neighbourhood of the infinity, B+ consists of three real
curves oriented outwards and of twelve curves (grouped in three pencils of four
curves ) oriented inwards. The topology of B+, constructed numerically, is shown
in Figure 1. The integers written near the curves are the values of the function N .

1
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1

3

2

3

1

2
1

2

1

2

2

3

3

2

3

2

3

1

2

2

1

1

1

2

Figure 1

For the numerical experiment I used a PDP-11/70 computer; the computations
were performed with single precision; on each curve were built about 1000–2000
points; as the ”infinite” circle I chosed the circle of radius 8 centered at the origine.
F was expanded at the infinity into a Puiseux series up to the 40th term.

The fundamental group of the complement of teh described curve turned out to
be abelian. To see this, it is enough to look at Figure 1 and to apply Lemma 3.1.
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