
ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C 2 . I.THE CASE OF AN IRREDUCIBLE RAMIFICATION CURVEA.V. Domrina, S.Yu. Orevkov0. IntroductionLet f : eC 2 ! C 2 | be a polynomial mapping such that(0.1) Jacobian(f) = const 6= 0:Here eC 2 and C 2 are two copies of the complex plane. The well-known JacobianConjecture states that such f is polynomially invertible (see surveys in [1], [2].)The mapping f satisfying (0.1) is polynomially invertible if and only if a genericpoint in C 2 has one preimage. The topological degree of a mapping is said tobe the number of preimages of a generic point. It is known that there are nopolynomial mappings of degree two or three satisfying (0.1). The case of degreetwo is elementary and the case of degree three was considered in [3].Theorem. If the topological degree of a polynomial mapping f : eC 2 ! C 2 is fourthen the jacobian of f can not be a nonzero constant.In this paper we prove a particular case of this theorem, namely when f hasone dicritical component. (The de�nition of a dicritical component is given below.)The complete proof of the theorem will appear in the next paper. Here we applythe approach of [4], [5], [6].By a �nite number of blow-ups at in�nity we can extend f to a regular rationalmapping F : eX ! X, where eX, X are nonsingular compact complex varietiescontaining eC 2 and C 2 respectively as open subsets. The curves eL := eXneC 2 and L :=X n C 2 consist of �nitely many nonsingular rational components with transversaland at most pairwise intersections.An irreducible component eg of eL is called dicritical if F (eg) 6� L and F is non-constant on eg.The main result of the paper is as followsTheorem 0.2. There is no four-sheeted locally invertible polynomial mapping f :eC 2 ! C 2 with one dicritical component.The scheme of the proof is as follows. Blowing up eX and X we can achieve thatthe image of the dicritical component meets L transversally. The dual weightedgraphs of eL and L are unimodal1 trees. A weighted unimodal tree is determined byPartially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-05021the determinant of the intersection matrix is �1. Typeset by AMS-TEX1



2 A.V. DOMRINA, S.YU. OREVKOVthe topological type of the graph and the determinants of the intersection matricesof the branches at nodal (of valence � 3) vertices (see [7, 8, 9] where these data arecalled splice diagram). Since the degree of F is bounded, there are only �nitely manypossibilities for the combinatorial structure of the mapping of the splice diagrams.We consider each case separately.It follows from [5] that weights of the splice diagram of eL (i.e. the determinantsof the branches) are determined by the weights of the splice diagram of L andby the branching orders at points of the components corresponding to the nodalvertices. The fact that eL was obtained by blow-ups from the in�nite line, imposesrather strong restrictions for the splice diagram of eL. Combining these restrictionswith the condition F �(dex ^ dey) = dx ^ dy written in terms of canonical divisors ofX and eX (Lemma 5.1) we obtain a contradiction in each case (the coe�cients inthe expansion KeL =P~l�eL k~l~l also can be expressed in terms of splice diagrams |Lemma 1.8)The example [4] (see also [6]) shows that without involving additional argumentsthis approach fails for a big topological degree. The topological degree of themapping constructed in [4] is 36. Modifying the numerical data one can reduce thedegree up to 9 and this is the minimal possible degree for examples of this kind. So,it seems to be very probable that using the methods of the present paper one couldprove that the topological degree of a potential counter-example to the JacobianConjecture must be � 9.Note that the degrees of polynomials de�ning the mapping of topological degree9 should be (48,64). These are exactly the numbers appearing in [10, 11], as the �rstdi�cult case. Moreover, all the numerical data of other examples similar to [4] alsowell correspond to those in [11] (this observation was communicated to the secondauthor by Pierrette Cassou-Nogues). Thus, moving from di�erent directions, wemeet the same di�culty.We are grateful to A.G. Vitushkin and P. Cassou-Nogues for useful discussions.1. PreliminariesDual graphs. Let Y be a nonsingular analytic surface, L � Y a reduced curve(i.e. without multiple components) and all its irreducible components are closednon-singular complex curves with transversal and at most pairwise intersections.We associate with L a graph �L (called the dual graph of L) whose vertices areirreducible components of L and the edges are the intersection points. Non-compactcurves will be depicted as arrowhead vertices.The pair (Y;L) is called regular if Y is a compact algebaic surface and all irre-ducible components of L are algebraic curves. In this case graph �L is weighted,the weights are the self-intersection numbers. Let AL be the intersection matrix ofthe curve L. The determinant of �L is de�ned as det �L = det(�AL). It will beconvenient for us to suppose that the pair (Y;L) is also regular when L = ? or Lis a single point. In these cases �L = ? and det �L = 1.If (Y;L) is a regular pair and the curve C meets L transversally then the dualgraph �L;C of C near L is de�ned as the dual graph of the pair (U; (L [ C) \ U)where U is a su�ciently small neighbourhood of L. So the arrowhead verticescorrespond to the germs of C at L. Other vertices are weighted. In particular, ifC = ? then �L;C = �L. If L is an ordinary double point of C then the dual graphof C near L is of the form  ��!.



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 3All the graphs considered below are the dual graphs of some curves. Therefore,by a subgraph of a graph � we shall mean a graph �0 such thata) vertices of �0 are some vertices of �,b) if two vertices of �0 are connected by an edge of � then they must beconnected by an edge of �0.So, a subgraph is determined by its vertices. Further on we shall denote irre-ducible components and the corresponding vertices by the same small letters, weshall also denote curves (in general, reducible) and the corresponding subgraphsby the same capital letters. The valence ��(s) of a vertex s in a graph � is thenumber of incident edges. The vertex s is said to be an end, linear or nodal ver-tex of � if its valence is 1, 2 or > 2 respectively. The connected subgraph C ofgraph � is said to be linear, or a linear chain if for any its non-end vertex a wehave ��(a) = �C(a) = 2. Let v be a vertex of �. The branches of � at v are, byde�nition, the connected components of � � v. The vertex v is said to be incidentat vertex g if they are connected by an edge. The subgraph Q is said to be incidentat vertex v if v 62 Q and v is incident at some vertex of Q.Notation (1.1). Let � be a tree. (Recall that a tree is a connected graph withoutcycles). Let a and b be di�erent vertices in �. Let us denote:by bra(b;�) the branch of � at a that contains b;(ab)� = bra(b;�) \ brb(a;�);[ab)� = (ab)� [ fag;[ab]� = [ab)� [ fbg;habi� is the minimal connected subgraph of � that contains a and b;�(ab)� = [ab]� � habi� .Remark. All the graphs considered below are trees.We shall omit the index � in the above notation whenever the ambient graph �is clear from the context. For example bra(b), (ab), and so on.Combining the Cramer rule for the inverse matrix of A� and the Jacobi formulafor a minor of the inverse matrix, it is easy to prove (see [12, (1.4)])Lemma (1.2). Let � be a weighted graph, a, b be vertices of �. Then(1.3) det(ab) det � = det bra(b) det brb(a) � det(� � [ab])(det �(ab))2We shall refer to (1.3) as to the "edge" determinant formula. If (ab) is a linearchain and det(�) = �1 then (1.3) is the edge determinant formula due to Eisenbud-Neumann [7].Lemma (1.4). [9, Corollary 2.2]. Let � be a weighted graph and det � = �1.Then the determinants of all branches at the same vertex are pairwise coprime. Ifone of them equals 0 then any other must be equal to 1 or to �1.Dual graphs with a root and splice diagrams.De�nition (1.5). Let l be a line on CP2, let (Y;L) be a regular pair obtainedfrom (CP2; l) by blow-ups. Then we say that (Y;L) is contractible to +1� and theproper transform of l is called the root of �L. (Note that in this case �L is a tree,det �L = �1).



4 A.V. DOMRINA, S.YU. OREVKOVThe Eisenbud { Neumann splice diagram2 of C near L is the graph �L;C whereeach linear chain of vertices is replaced with a single edge and the beginning of eachedge is marked by the determinant of the branch of �L starting with this edge.Lemma (1.6). Let v be a root of � and s 2 � any vertex. If s 6= v then thedeterminants of all the branches of � � brs(v) at s, except at most one, equal 1.The determinants of all branches at v equal 1.Lemma (1.7). Let � be a graph contractible to +1� and v be its root; let Q be asubgraph of � and v 62 �. Then detQ > 0.Proof. The intersection form of any branch at v is negatively de�nite. �Let (Y;L) be contractible to +1� , l0 be the root of L and l1; : : : ; ln other irreduciblecomponents of L. Let KY = Pnj=0 kjlj be the canonical divisor. Writing theadjunction formula for each lj we obtain a linear system of simultaneous equationsfor the indeterminates k0; : : : ; kn. Resolving them by Cramer rule one can expresskj in terms of determinants of branches of �L (see, for instance lemmas 1.1 and2.1 of [12]) as follows. Clearly, without loss of generality it su�ces to write theformulas only for k0 and k1. We see from (1.6) that the splice diagram of L nearthe path hl0l1i looks as on Fig. 1. Then we have
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0 1 1 1 0 (root)1 Fig. 1k0 = �3(1.8) k1 = �1� q0 � p0 + mXj=1 q0 : : : qj�1(qj � 1)(pj � 1)(1.9)Remark. The formula (1.9) is related to the formulas for the Milnor number and theMilnor number at in�nity in terms of splice diagrams [7, 8]. Using the adjunctionformula, they can be easily derived one from another.Corollary. If �L is linear then we have(1.10) k1 = �1� detB1 � detB2where B1, B2 are the branches of � at l1. (Each Bj may be empty.)2This de�nition is less general than that in [7, 8].



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 5Mappings of algebraic surfaces.In the rest of x1 we use the following notation: f : (eY ; eL) ! (Y;L) is a regularmapping of regular pairs, eC and C are curves transversal to eL and L respectively,f�1(L) = eL, f�1(C) = eC and the jacobian of f does not vanish outside eL [ eC.We also suppose that f satis�es the minimality condition. It means that thereis no (�1)-curve ec � eY (i.e. non-singular rational curve with ec2 = �1) such thatf jec is constant. All the mappings considered in the paper satisfy this condition.Notation (1.11). For a subset eE � eY let us denote Deg( eE) = minU deg f jUwhere U runs over the set of all neighborhoods of eE (in the complex topology) suchthat f jU is proper.Let el � eY be an irreducible curve such that f is non-constant on el. Denoteby n(el) the order of rami�cation of f along el (i.e. n(el) = Deg(x) for a genericpoint x 2 el) and denote deg f jel by m(el). Thus, if f(el) is nonsingular then one hasDeg(el) = m(el)n(el). If p 2 el and f is nonsingular near p then denote by mp(el) therami�cation order of f jel at p.Let f be non-constant on el, and l = f(el) be non-singular. Let p 2 l, fp1; : : : pkg =f�1(p). By de�nition of m(el) we have(1.12) mp1(el) + : : : mpk(el) =m(el)Riemann { Hurwitz Formula. Let f be non-constant on a non-singular rationalcurve el � eL (recall that (Y;L) is a regular pair, so f(l) is non-singular). Supposethat el \ (eL+ eC � el) = fp1 : : : pkg. Then we have(1.13) 2(m(el)� 1) = kXj=1(mpj(el) � 1):De�nition (1.14). A subgraph e�0 � e� is called a subgraph of constant degree ifDeg(el) = Deg(e�0)) for all el 2 e�0. We shall suppose that the edges are also subgraphsof constant degree. If e�0 is an edge connecting two vertices el1 and el2 then we putDeg(e�0) := Deg eq, where eq is the intersection point of the curves el1 and el2.Proposition (1.15). Suppose that the splice diagram of C near L is of the form ��! and c1, c2 are the germs of eC corresponding to the arrows. This means thateither L is a double point of C or a linear chain whose end components meet c1and c2 transversally. Then for any connected component eL1 of eL we have:a) The splice diagram of eC near eL1 is of the form  ��!. Denote by ec1 andec2 the germs of eC near eL.b) eL1 is a subgraph of constant degree.c) Let epi = eci \ eL1. Then(1.16) Deg(eL1) =mepi(eci)n(eci); i = 1; 2



6 A.V. DOMRINA, S.YU. OREVKOVProposition (1.17). [5] Suppose(1) eL1 is a connected component of L.(2) The dual graphs �eL1 , �L are trees.(3) There exists an irreducible component el � eL1 such that f is non-constanton el and Deg(el) = Deg(eL1).Let l = f(el).Then we have(1.18) det(eL1 � el)det eL1 = n(el)m(el) � det(L � l)detL :Moreover, if one of the denominators equals zero, then the other also equals zero.Lemma (1.19). [5] Suppose the conditions (1), (2) of (1.17) to be satis�ed andeL1 to be a subgraph of constant degree.a) If eC \ eL1 = fexg, ex 2 ec � eC then(1.20) det eL1detL = 1mex(ec) = n(ec)Deg eL1b) If eC \ eL1 = fex1; ex2g, exi 2 eci � eC then(1.21) det eL1detL = n(ec1)mex2(ec2) = n(ec1)n(ec2)Deg eL1 :2. The properties of the dicriticalcomponent and its resolution at infinityNow we begin the proof of theorem (0.2). Suppose the contrary: there exists afour-sheeted mapping f with one dicritical component. Let eX, X, F , eL, L be as inIntroduction. Since eX and X are obtained from eC 2 and C 2 by blow-ups, the pairs( eX; eL) and (X;L) are contractible to +1� .It follows from [3, lemma 4.2] that the rami�cation order of F along the dicriticalcomponent is 1, 2, or 3. The rami�cation of order 3 is impossible, see [3, remarkafter 5.3 ]. If the rami�cation order is 1 then F is an unbranched covering over C 2 .This is also impossible. So, the only possible order of rami�cation is 2.Let us denote the dicritical component of f by eg and put g = F (eg) and eL1 =F�1(L). It follows from [3, lemma 4.2] that m(eg) = 1, n(eg) = 2. Resolving, ifnecessary, the singularities of g at in�nity, we can achieve that:(2a) eg has only one point of intersection with eL1 (see [3]). We denote this pointby ep. Thus, eL1 is a branch of eL at eg.(2b) g \ L = p := F (ep), the intersection is transversal, and g is smooth at p.We may assume that eX and X are minimal possible under these conditions. So,(2c) F satis�es the minimality condition.Applying if necessary a polynomial automorphism of C 2 we may assume alsothat(2d) In some a�ne coordinates (x; y) in C 2 neither degx g divides degy g nordegy g divides degx g.



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 7This condition is equivalent to the minimality of L in the sense that L contains no(�1)-curve c such that c � (L� c) � 2.Recall that we use the same notation for the curves eL, eL1, L and their dualgraphs and we also use the same notation for the irreducible components and thecorresponding vertices. All graphs to be considered below are subgraphs either ofeL or of L. Hence, in the notation for the graphs from de�nition (1.1) we shall omitthe index of ambient graph.Proposition (2.1). The Eisenbud { Neumann splice diagram of g near L is as onFig. 2 For a nodal vertex a let us denote by Ra, La, Da the branches of L at a inthe directions respectively Right, Left, Down.
. . . .

root

1 1 1Fig. 2Then for any nodal a we have:a) detRa = 1, detDa > 1.b) detLa > 1.c) detL = �1.The only non-trivial assertion of this lemma is 2.1b. In terms of Puiseux charac-teristic pairs this inequality was proven in [13, 14] (see [7, 8] for the interpretationof characteristic pairs in terms of subgraph determinants). In the notation of [13,14] detLa = ri=di+1 if a is the i-th (from the left) nodal vertex. Hence, 2.1b isan immediate consequence from the fact that the additive semigroup generatedby r1; : : : ; rn is strictly generated by these numbers (here one needs the condition(2d)). A topological proof of a weaker inequality detLa > 0 can be found in [8].Corollary. a) det(ab) and detDa are coprime; b) detLa and detDa are coprime.(Here a and b are nodal vertices of L; b is to the left of a)Proof. a) Apply (1.4) to Rb. b) Follows from (1.4). �Lemma (2.2). mep(eg) = 1 (recall that ep := eg \ eL1). If the subgraph (eaeg) is linearfor some ea then Deg(eaeg) = 2.Proof. We have n(eg) = 2, m(eg) = 1. Combine this with (2a), (2b), (1.15). �3. The structure of eL1Till the end of section 3 we always use tilde in the notation of the vertices ofeL1. To denote the image of a vertex, we remove the tilde. For example, a := F (ea).De�nition (3.1).a) A vertex el 2 eL1 is said to be a fork if m(el) > 1.b) A subgraph of constant degree is said to be maximal if it is not containedin another subgraph of constant degree.



8 A.V. DOMRINA, S.YU. OREVKOVThe next proposition shows that forks are obstructions for the extension of max-imal subgraphs of constant degree. This means that any end vertex of a maximalsubgraph of constant degree is either an end vertex of eL1, or it is incident at somefork.Proposition (3.2). Let es 2 eL1 be a nodal vertex. Then the following conditionsare equivalent.a) �(es) = �(s) (here �(s) is the valence of s in �L;g).b) m(s) = 1:c) For any linear chain eC incident at es one has Deg( eC) = Deg(es) = n(es).It follows from (3.2) that after replacing each linear chain with a single edge asubgraph eQ of constant degree becomes isomorphic to F ( eQ). So, we see from Fig. 2that at most two end vertices of eQ are not end vertices of eL. Therefore, on thepictures below we shall depict such graphs by edges unless the contrary is speci�edWe write over such an "edge" the degree.The pair of numbers written near a fork el on all the pictures below denotes(m(el); n(el)); to the left of el (respectively to the right of el or beneath el) we indicatethe maximal subgraphs of constant degree whose image under F lies to the left ofl (respectively to the right of l or beneath l). We mark the subgraphs whose imageunder F lies beneath l by a little cross. (It follows from (2c) that these subgraphsare linear.)For a 2 L denote by a0 the set of all ea 2 F�1(a) such that F jea is non-constant.Since the topological degree of F is four, we have(3.3) Xea2a0 Deg(ea) = 4Lemma (3.4). Let ea and eb be forks of eL1 such that (eaeb) is a subgraph of constantdegree, and let c be a vertex of L such that b 2 (ac). Then(3.5) Xec2c0\brea(eb)Deg(ec) � Deg(eaeb):Suppose ea is a fork of eL1. Let Uea � eL be a connected subgraph that consists ofall maximal subgraphsof constant degree incident at ea and all vertices of L incidentat these subgraphs. (we see that any end vertex of Uea is either an end vertex of L,or a fork, or eg).Lemma (3.6). Let ea be a fork.a) If Deg(ea) = 2, then Uea is of the form Fig. 3 (b). Let eb be the left end vertexof Uea. Then n(eb) = 2, m(eb) = 2, Deg(eb) = 4.b) If Deg(ea) = 3 then Uea is one of Fig. 4 (e), (f).Proof. If Deg(ea) = 2 then m(ea)n(ea) = 2. The vertex ea is a fork, hence, m(ea) = 2,n(ea) = 1. Combining (1.12), (1.13) we see that Uea has one of the types depicted inFig. 3.Suppose Uea is of the form 3(a). It follows from (1.20) that det(eaeb] = det(eaec] =det(ab] 6= 1. (Here eb and ec are the end vertices depicted on (2a).) But det(eaeb] and



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 9
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~ ~ c~Fig. 3det(eaec] are coprime by (1.4), hence, 3(a) is impossible. Suppose Uea is of the form3(b). Then (1.20) and (1.21) implydet(ac] = 2det(eaec];det(ab] = 2det(eaeb] if eb is an end vertex of eL;n(eb) det(ab) = 2det(eaeb) if eb is a fork:We see from (1.4) and the corollary of (2.1) that det(ab) and det(ac] are coprime.Hence, eb is a fork and n(eb) is divisible by 2. But Deg(eb) � 4 and m(eb) � 2 becauseeb is a fork. Thus, n(eb) = m(eb) = 2.Suppose that the both left end vertices of 3(c) (denote them by eb1, eb2) are endvertices of eL1. Combining (1.20) and (2.1b) we obtaindet[eb1ea) = det[eb2ea) = det[b1a) > 1:We see from (1.4) that this is impossible. So, one of the left end vertices of 3(c)(for example eb1) is a fork. The case 3(c) will be prohibited below, after discussionof the case of degree three.If Deg(ea) = 3 then m(ea) = 3, n(ea) = 1. Using (1.12) and (1.13), we obtain thetypes depicted on Fig. 4.
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10 A.V. DOMRINA, S.YU. OREVKOVThe case 4(b) is impossible analogously to 3(a).In the case 4(c) we see analogously to 3(b) that eb1 is a fork and n(eb1) is divisibleby 2. Hence, Deg(eb1) � 4, which contradicts (3.3) and (3.5) for brea(eb2). Thus, 4(c)is impossible.In the case 4(d), like in 3(b), we see that eb is a fork and n(eb) is divisible by 3.Hence, m(eb) > 1 and Deg(eb) � 6, which contradicts (3.3). Thus, 4(d) is impossible.Let us show that the case 4(a) is impossible. Analogously to Fig. 3(c) we obtainthat one of the left end vertices of this subgraph is a fork eb 2 eL1. Then (3.3), (3.4)imply m(eb) = 2, n(eb) = 1, Deg(eb) = 2. Hence Ueb is of the form Fig. 3(b). The leftend vertex of Ueb is a fork of degree 4, so, it follows from (3.3) that all the branchesof eL1 at ea which are to the left of ea must contain the left end vertex of Ueb. Butthis is impossible since eL1 is a tree.Now, consider Fig. 3(c). Recall that eb1 is a fork. Then (3.3) and (3.5) implyDeg(eb1) < 4. In the same way as for Fig. 4(a) we have Deg(eb1) 6= 2. So, Deg(eb1) = 3and Ueb1 has either the type Fig. 4(e) or Fig. 4(f). Pasting the subgraph Ueb1 to Ueaalong (eb1ea), we obtain Fig. 5. Denote by Rea the right branch of eL1 at ea and byReb1 the right branch of eL1 at eb1 such that ea 62 Reb1.
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2
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~
b 3

2 Fig. 5Let us show that these branches are subgraphs of constant degree. Suppose thatReb1 is not . Denote by eb3 the fork of Reb1 nearest to eb1. If b3 2 (b1a) then (3.3)implies Degeb3 = 2. If b3 is to the right of a then combining (3.3) and (3.5) we alsohave Degeb3 = 2. Since Degeb3 = 2 it follows that Ueb3 has the type Fig. 3(b), butthis contradicts Degeb1 6= 4. So, Reb1 is a subgraph of constant degree.Suppose Rea is not a subgraph of constant degree. Let ea1 be the nearest to eafork of Rea. Since Reb1 is a subgraph of constant degree it follows from (3.3) thatDeg(ea1) = 2. So, Uea1 has the type Fig. 3(b), which contradicts Deg ea 6= 4. Hence,Rea is a subgraph of constant degree.Since eL is a tree, it follows that one of Rea and Reb1 ( for example, Rea) does notcontain eg . It follows from (2.1) that detRa = 1. Using (1.20) we get detRea = 12 ,which is impossible. �Corollary (3.7). If Deg ea < 4 then there are two branches of Uea at ea lying to theright of ea.Lemma (3.8). Suppose Deg(ea) = 4.a) Let eb be a left end vertex of Uea. Then eb is an end vertex for eL1.b) The subgraph Uea has one of the types Fig. 6(a)-(d), m(ea) = 4, n(ea) = 1.



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 11Proof. Since Deg(ea) = 4, it follows that any connected subgraph of eL1 � ea lieseither entirely to the left, or to the right, or beneath of ea. If Deg(eb) < 4 thenproposition a) follows from (3.7).Consider the proposition b). Two cases are possible.Case 1) m(ea) = n(ea) = 2 is analogous to the cases of degree 2. The only possiblesubgraph is Fig. 6(g).
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2Fig. 6Let eb be the left end vertex of Uea. Then it is a fork, hence, the both subgraphsUea and Uea must be of the form Fig. 6(g), which is impossible. So, the case 1 isprohibited.Case 2) m(ea) = 4, n(ea) = 1. Suppose that ea has only one left branch. Thedeterminants of the branches beneath ea must be coprime. Combining this with(1.12), (1.13), (1.20), (2.1), we see that the only possible subgraph is Fig. 6(a).Now suppose that ea has at least two left branches. Then (3.8a) is already provedfor these cases and these branches are the subgraphs of constant degree. Thedeterminants of the left and the lower branches at ea must be coprime. So, like inthe cases Deg = 2; 3, using (1.12), (1.13), (1.20), and (2.1) we obtain that Uea is oneof the graphs Fig. 6. (b)-(f).Let us show that the graphs on Fig. 6 (e), (f) are impossible. As in the prohibitionof (2c) in (3.6), we see that the subgraphs lying to the right of ea are of constantdegree and one of their determinants equals 1=2, which is impossible.The proposition b) is proved.Consider again the proposition a). If Deg(eb) = 4 then Uea is of the form Fig. 6(a).It follows from Fig. 6 that eb is an end vertex of eL. This completes the proof of(3.8). �Corollary (3.9). If ea is a fork then Degea > 2.Proof. Using (3.8b) we obtain that Fig. 3(b) is impossible. �Thus, we have listed all the possible Uea for any fork ea.



12 A.V. DOMRINA, S.YU. OREVKOVCorollary (3.10). The graph eL must have one of the types depicted on Fig. 7.(The black vertex represents eg.)Proof. Consider the maximal subgraph of constant degree incident at eg. It followsfrom (2.2) that the degree is two. Combining this with (3.6), (3.8), and (3.9) weget the proof. �
(a) (c)

(b) (f)

(e)

(d)

(4,1)

(4,1)

(4,1)

(4,1)

(3,1)

(3,1)

(3,1)

(3,1)

4

3

2

1

1

1

1

1

2
3

1
4

3

1
2 2 2 1

1

2

1

1
1

22
1

13

2

2

3

3

2

2

1

31

2
1

1

11
3

2

3 2

3 2

11 1

Fig. 74. The prohibition of graphs Fig. 7(c)-(f)First, we shall prohibit the graphs of Fig. 7(e), (f). We work out the case ofFig. 7(e) in detail. The case of Fig. 7(f) can be considered analogously.Lemma (4.1). The case of Fig. 7(e) is impossible.Proof. Assume the contrary.
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ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 13The graph eL is depicted in the upper part of Fig. 8 and L is below it. As above,the horizontal edges mean subgraphs of constant degree. It follows from (1.20),(1.21) that their determinants are equal to the numbers written nearby.Denote the root of eL by ev. We see on Fig. 8 that the determinants of twobranches at ea2 are already greater than 1, hence, by (1.6) we have(4.2) det brea2(eb2) = 1 and ev 62 brea2(eb2):Therefore, d1 = 1 by (1.6) applied to ea1.Denote � = det �(ab) (see (1.1)). It follows from (3.1), (1.20) that det �(ea1eb1) =det �(ea2eb2) = det �(ea1eb2) = �. Applying (1.20) and the formula (1.3) for (ab)considered as a subgraph of L we obtain(4.3) det breb2(ea2) (1:20)= det brb(a) (1:3)= 18d1d3�2 � 2d2 = 18d3�2 � 2d2Let eL0 be the component of F�1(bra(b)) containing eb2. Since det bra(b) = 1,(4.4) det eL0 (1:18)= 31 � d33d3 � 2d2 � d22d2 = d2Denote � = brea2(eb2)\ eL1. By (4.2), ev 62 �, hence, det� > 0 by (1.7). Using (1.3)for (ea1eb2) with � as the ambient graph we obtaind2 det� (1:3);(4:4)= d2 det breb2(ea1)� 4d2d3�2; hence,det breb2(ea1) = det� + 4d3�2 > 4(4.5)Applying (1.6) to eb2 we get d3 = det breb2(eg) = 1. Using formula (1.3) for thedeterminant of (ea2eb2) � eL, we get�2d2 = det breb2(ea2) � det brea2(eb2)� 6 det breb2(ea1)�2= 18�2 � 2d2 � 6 det breb2(ea1)�2 by (4.2), (4.3).Hence, det breb2(ea1) = 3 that contradicts (4.5). �Lemma (4.6). The graphs of Fig. 7(c), (d) are impossible.Proof. Suppose eL1 is one of Fig. 7(c), (d). Suppose that ea and eb are forks of eLand ee, eq, ep are the end vertices, see Fig .9(left) where the numbers written near theedges are their degrees.
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14 A.V. DOMRINA, S.YU. OREVKOVLet us show that det eL1 = �2. Consider, for instance, Fig. 7(c) (the argumentsfor Fig. 7(d) are the same). It follows from (1.20) and (1.4) that detLb = 3,detDb = 2, and the determinants of the branches at eb are as shown on Fig. 9(right).Applying (1.18) to eb we get(4.7) det eL1detL = 41 � 1 � 33 � 1 � 12 � 1 � det(ebeg)detRbRecall (see (2.1)) that detL = �1, detRb = 1. So, (4.7) implies(4.8) det eL1 = �2 det(ebeg):Combining (1.4), (1.20), (1.21), and (2.1) we get detDa = 2, det(eaep] = 1,det(eaeq] = 2, det(eaee] = 1, det(eaeg) = 1, 3 det(ebea) = det(ab). Applying (1.18)to the vertex ea in the ambient graph (ebeg) we get det(ebeg) = 1, so, (4.8) impliesdet eL1 = �2.Denote by � the determinant of the graph A := eL� eg� eL1. The curve A is thesubset of eL which is contracted by F to a single point lying on g \ C 2 (if A 6= ?,this point must be a singular point of g).Using formula (1.3) for the determinant of the subgraph (eaeg) � eL, we get�1 = �2 det brea(eg)� 2�det brea(eb)(det �(eaeg))2:But this is impossible since the right hand side is divisible by 2. �5. The prohibition of Fig. 7(a), (b)Lemma (5.1). Let eK = P aeses be the representation of the canonical class of eXas a linear combination of irreducible components es of the curve eL. Then aeg = 1.Proof. Let K be the canonical divisor of X with the support on X n C 2 and B =Pes2eL beses the rami�cation divisor of eF (the divisor of the jacobian of eF ). One haseK = F �(K) +B:Since g 6� X n C 2 , we have g 6� K. Comparing the coe�cients of eg in the left handside and the right hand side, we obtain aeg = beg = n(eg) � 1 = 1. �Let ev be the root of eL. Clearly, ev 2 eL1.Lemma (5.2). Suppose � � eL1 is a maximal subgraph of constant degree incidentat eg. (We see that Deg� = 2.) Then the subgraph � \ (eveg) is linear.Proof. Suppose that �\ (eveg) is not linear. Let ev1 be the nearest to eg nodal vertexof � and v1 = F (ev1). It follows from (3.2) that m(ev1) = 1, n(ev1) = 2. Denote, asin (4.6), � = det(eL� eL1eg). Since ev 2geL1, we have � � 1, det brev1(eg) � 1.Denote dev = det brev1(ev) and let d be the determinant of the branch at ev1 notcontaining eg, ev. The determinant of the lower branch at ev1 equals Dv1 by (1.20).We see from (2.1) that Dv1 > 1. Hence, max(d; dev) > 1. Combining (1.21) and(2.1a) we get det(ev1eg) = 2det(v1g) = 2



ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C2 . I 15Consider the case d > 1. It follows from (1.7) that det brev1(eg) = 1. Using formula(1.3) for the determinant of the subgraph (ev1eg) � eL, we obtain(5.3) �2 = det eL1 � �ddevIt follows from (5.1) and (1.9) that(5.4) 1 = keg = �1� �� det eL1 + �(d � 1)(dev � 1) + �d1�;where � is the rest of (1.9). Combining (5.3) and (5.4) we get 0 = ��d��dev+�d�,hence, dev must be divisible by d 6= 1. This contradicts (1.4).Consider the case d = 1. As it was shown above, the determinant of the lowerbranch at ev1 is greater than 1. Hence, ev lies below ev1 and dev = detDv1 > 1. Usingformula (1.3) for the determinant of the subgraph (ev1eg) in the graph eL, we obtain�2 = det eL1 det brev1(eg) � �dev;so det eL1 � 0. It follows from (5.1) and (1.9) that1 = keg = �1� �� det eL1hence, det eL1 = �2� � < 0. Contradiction. �Lemma (5.5). Suppose that either det eL1 = �1 or det eL1 = �2. Let � satisfythe hypothesis of (5.2). Then ev 62 �.Proof. Suppose ev 2 �. By (5.2) we obtain that the graph (eveg) is linear. Thedecomposition formula (1.9) with respect to eg implies keg = �� � det eL1 � 1, butkeg = 1, hence, det eL1 = ��� 2 < �2. Contradiction. �Lemma (5.6). Graphs eL of the form Fig. 7(a,b) are impossible.Proof. Let ea be the fork of eL1. Then (eaeg) is a maximal subgraph of constantdegree, Deg(eaeg) = 2, (1.21), and (2.1) imply det(eaeg) = 1. Combining (1.20) and(2.1a) we see that the determinants of the rest two branches of eL1 to the right ofea equal one.Consider Fig. 7(a). Let La, Da; : : : be as in (2.1) and denote by Lea (resp. D(d)ea )the determinant of the left branch at ea (resp. the lower branch of degree d). ThendetLea=detLa = 1=4 (by (1.20)) and detD(3)ea = 1, detDa = D(1)ea = 3 (by (1.20),(1.4)). Thus, we have(5.7) det(eL1 � [eaeg)) = detLea detD(3)ea detD(1)ea � 3;(5.8) det eL1detL (1:18)= 41 � 1 � 33 � 14 = 1; hence, det eL1 = detL = �1. Analogously, one obtains (5.7), (5.8) for Fig. 7(b). Let � = (eaeg). It follows from(5.5) and (5.2) that � is linear and ev 62 �. Since ev 2 eL1 we get ev 62 brea(eg), hence,det brea(eg) � 1 by (1.7).Denote, as in (4.6) and (5.2), � = det(eL� eL1 � eg). Using formula (1.3) for thedeterminant of the subgraph � in the ambient graph eL, we get�1 = det eL1 � det brea(eg) � � � det(eL1 � [eaeg)):Since � � 1 and det brea(eg) � 1, this contradicts (5.7), (5.8). �Thus, all the graphs depicted on Fig. 7 are impossible. This completes the proofof theorem (0.2).
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