ON FOUR-SHEETED POLYNOMIAL MAPPINGS OF C?. I
THE CASE OF AN IRREDUCIBLE RAMIFICATION CURVE

A. V. DOMRINA, S.YU. OREVKOV

0. INTRODUCTION

Let f: 5 C>—Dbea polynomial mapping such that
(0.1) Jacobian(f) = const # 0.

Here C? and C? are two copies of the complex plane. The well-known Jacobian
Conjecture states that such f is polynomially invertible (see surveys in [1], [2].)

The mapping f satisfying (0.1) is polynomially invertible if and only if a generic
point in C? has one preimage. The topological degree of a mapping is said to
be the number of preimages of a generic point. It is known that there are no
polynomial mappings of degree two or three satisfying (0.1). The case of degree
two is elementary and the case of degree three was considered in [3].

Theorem. If the topological degree of a polynomial mapping f : C? = C is four
then the jacobian of f can not be a nonzero constant.

In this paper we prove a particular case of this theorem, namely when f has
one dicritical component. (The definition of a dicritical component is given below.)
The complete proof of the theorem will appear in the next paper. Here we apply
the approach of [4], [5], [6].

By a finite number of blow-ups at infinity we can extend f to a regular rational
mapping F : X - X, where X X are nonsingular compact complex varieties
containing C? and C? respectively as open subsets. The curves L:= X\(C2 and L :=
X \ € consist of finitely many nonsingular rational components with transversal
and at most pairwise intersections.

An irreducible component g of L is called dicritical if F(g) ¢ L and F is non-
constant on g.

The main result of the paper is as follows

Theorem 0.2. There is no four-sheeted locally invertible polynomial mapping f :
C? — C? with one dicritical component.

The scheme of the proof is as follows. Blowing up X and X we can achieve that
the image of the dicritical component meets L transversally. The dual weighted
graphs of L and L are unimodal! trees. A weighted unimodal tree is determined by

Partially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502
Lthe determinant of the intersection matrix is +1.

Typeset by ApS-TEX



2 A.V. DOMRINA, S YU. OREVKOV

the topological type of the graph and the determinants of the intersection matrices
of the branches at nodal (of valence > 3) vertices (see [7, 8, 9] where these data are
called splice diagram). Since the degree of F is bounded, there are only finitely many
possibilities for the combinatorial structure of the mapping of the splice diagrams.
We consider each case separately.

It follows from [5] that weights of the splice diagram of L (i.e. the determinants
of the branches) are determined by the weights of the splice diagram of L and
by the branching orders at points of the components corresponding to the nodal
vertices. The fact that L was obtained by blow-ups from the infinite line, imposes
rather strong restrictions for the splice diagram of L. Combining these restrictions
with the condition F*(dz A dy) = dx A dy written in terms of canonical divisors of
X and X (Lemma 5.1) we obtain a contradiction in each case (the coeflicients in
the expansion K7 = Zicf kil~ also can be expressed in terms of splice diagrams —
Lemma 1.8)

The example [4] (see also [6]) shows that without involving additional arguments
this approach fails for a big topological degree. The topological degree of the
mapping constructed in [4] is 36. Modifying the numerical data one can reduce the
degree up to 9 and this is the minimal possible degree for examples of this kind. So,
it seems to be very probable that using the methods of the present paper one could
prove that the topological degree of a potential counter-example to the Jacobian
Conjecture must be > 9.

Note that the degrees of polynomials defining the mapping of topological degree
9 should be (48,64). These are exactly the numbers appearing in [10, 11], as the first
difficult case. Moreover, all the numerical data of other examples similar to [4] also
well correspond to those in [11] (this observation was communicated to the second
author by Pierrette Cassou-Nogues). Thus, moving from different directions, we
meet the same difficulty.

We are grateful to A.G. Vitushkin and P. Cassou-Nogues for useful discussions.

1. PRELIMINARIES

Dual graphs. Let Y be a nonsingular analytic surface, L C Y a reduced curve
(i.e. without multiple components) and all its irreducible components are closed
non-singular complex curves with transversal and at most pairwise intersections.
We associate with L a graph I'y, (called the dual graph of L) whose vertices are
irreducible components of L and the edges are the intersection points. Non-compact
curves will be depicted as arrowhead vertices.

The pair (Y, L) is called regular if Y is a compact algebaic surface and all irre-
ducible components of L are algebraic curves. In this case graph I'j is weighted,
the weights are the self-intersection numbers. Let A; be the intersection matrix of
the curve L. The determinant of 'z, is defined as detI'y, = det(—Ayr). It will be
convenient for us to suppose that the pair (Y, L) is also regular when L = @ or L
is a single point. In these cases I'y, = @ and det 'y, = 1.

If (Y, L) is a regular pair and the curve C' meets L transversally then the dual
graph I'y, ¢ of C near L is defined as the dual graph of the pair (U, (LU C)NU)
where U 1s a sufficiently small neighbourhood of L. So the arrowhead vertices
correspond to the germs of C' at L. Other vertices are weighted. In particular, if
C' = then 'y ¢ =T'p. If L is an ordinary double point of C' then the dual graph
of C near L is of the form +——.
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All the graphs considered below are the dual graphs of some curves. Therefore,
by a subgraph of a graph I' we shall mean a graph I'' such that

a) vertices of IV are some vertices of T',
b) if two vertices of I are connected by an edge of I' then they must be
connected by an edge of T".

So, a subgraph is determined by its vertices. Further on we shall denote irre-
ducible components and the corresponding vertices by the same small letters, we
shall also denote curves (in general, reducible) and the corresponding subgraphs
by the same capital letters. The valence vp(s) of a vertex s in a graph I' is the
number of incident edges. The vertex s is said to be an end, linear or nodal ver-
tex of T' if its valence is 1, 2 or > 2 respectively. The connected subgraph C' of
graph T' is said to be linear, or a linear chain if for any its non-end vertex a we
have vr(a) = ve(a) = 2. Let v be a vertex of I'. The branches of I' at v are, by
definition, the connected components of I' — v. The vertex v is said to be ncident
at vertex ¢ if they are connected by an edge. The subgraph @ is said to be incident
at vertex v if v € @) and v is incident at some vertex of ).

Notation (1.1). Let I' be a tree. (Recall that a tree is a connected graph without
cycles). Let a and b be different vertices in I'. Let us denote:

by br,(b,I') the branch of I' at a that contains b;

(ab)r = bry(b,T") Nbry(a,T);

[ab)r = (ab)r U {a};

ablp = [ab)r U {b};

(ab)r is the minimal connected subgraph of I' that contains a and b;

d(ab)r = [ab]r — (ab)r .

Remark. All the graphs considered below are trees.

We shall omit the index I' in the above notation whenever the ambient graph I"
is clear from the context. For example br,(b), (ab), and so on.

Combining the Cramer rule for the inverse matrix of Ar and the Jacobi formula
for a minor of the inverse matrix, it is easy to prove (see [12, (1.4)])

Lemma (1.2). Let ' be a weighted graph, a, b be vertices of I'. Then
(1.3) det(ab) det I' = det br,(b) det bry(a) — det(I' — [ab])(det 5(@6))2

We shall refer to (1.3) as to the "edge” determinant formula. If (ab) is a linear
chain and det(I') = 41 then (1.3) is the edge determinant formula due to Eisenbud-
Neumann [7].

Lemma (1.4). [9, Corollary 2.2]. Let I" be a weighted graph and detT" = +1.
Then the determinants of all branches at the same vertex are pairwise coprime. If
one of them equals 0 then any other must be equal to 1 or to —1.

Dual graphs with a root and splice diagrams.

Definition (1.5). Let [ be a line on CP?, let (Y, L) be a regular pair obtained

from (CP?,1) by blow-ups. Then we say that (Y, L) is contractible to T and the
proper transform of [ is called the root of I',. (Note that in this case I'f is a tree,
detI'p, = —1).
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The Eisenbud — Neumann splice diagram?® of C' near L is the graph 'y ¢ where
each linear chain of vertices is replaced with a single edge and the beginning of each
edge is marked by the determinant of the branch of I'y, starting with this edge.

Lemma (1.6). Let v be a root of I' and s € T' any vertez. If s # v then the
determinants of all the branches of I' — brg(v) at s, except at most one, equal 1.
The determinants of all branches at v equal 1.

Lemma (1.7). Let T be a graph contractible to S and v be its root; let Q) be a
subgraph of I' and v € T'. Then det Q > 0.

Proof. The intersection form of any branch at v is negatively definite. [

Let (Y, L) be contractible to —1(—31, lp be the root of L and [4,...,[, other irreducible
components of L. Let Ky = E?:o E;l; be the canonical divisor. Writing the
adjunction formula for each [; we obtain a linear system of simultaneous equations
for the indeterminates kg, ..., k,. Resolving them by Cramer rule one can express
k; in terms of determinants of branches of I';, (see, for instance lemmas 1.1 and
2.1 of [12]) as follows. Clearly, without loss of generality it suffices to write the
formulas only for kg and k1. We see from (1.6) that the splice diagram of L near

the path (lgl1) looks as on Fig. 1. Then we have

4P 1P 1P, 1 lo (root)
qoﬂ A A/ |\ / '\
1.1 1...1 1.1 1..1
Fig. 1
(1.8) ko = —3
(1.9) ki =—1-q0—po+ i%---qy‘—l(% —(p; - 1)
i=1

Remark. The formula (1.9) is related to the formulas for the Milnor number and the
Milnor number at infinity in terms of splice diagrams [7, 8]. Using the adjunction
formula, they can be easily derived one from another.

Corollary. If 'y 1s linear then we have
(110) kl == —1—detBl —deth

where By, By are the branches of I' at ly. (Each B; may be empty.)

2This definition is less general than that in [7, 8].
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Mappings of algebraic surfaces.

In the rest of §1 we use the following notation: f : (?,Z) — (Y, L) is a regular
mapping of regular pairs, C and C are curves transversal to L and L respectively,
YL = Z, Yo = C and the jacobian of f does not vanish outside LuC.

We also suppose that f satisfies the minimality condition. It means that there
is no (—1)-curve ¢ C Y (i.e. non-singular rational curve with ¢ = —1) such that
f|z is constant. All the mappings considered in the paper satisfy this condition.

Notation (1.11). For a subset E C Y let us denote Deg(E) = mingy deg f |
where U runs over the set of all neighborhoods of E (in the complex topology) such
that f |U is proper.

Let | C Y be an irreducible curve such that f is non-constant on I. Denote
by n(l) the order of ramification of f along 7 (i.e. (l) = Deg(x) for a generic
point x € l) and denote deg fli by m(l) Thus, if f(I ) is nonsingular then one has

Deg(l) = (l)n(l) If p e [ and f is nonsingular near p then denote by mp(/lv) the
ramification order of fl; at p.

Let f be non-constant omflv7 and [ = f(/lv) be non-singular. Let p € [, {py,...pr} =
f_l(p). By definition of m(l) we have

(1.12) g, (1) + ...y, (1) = m(])

Riemann — Hurwitz Formula. Let f be non-constant on a non-singular rational
curve | C L (recall that (Y, L) is a regular pair, so f(I) is non-singular). Suppose
that 1N (L+C — l) =A{p1...pr}. Then we have

(1.13) 2(m(l) — 1) =

k
(myp, (1) = 1).

=1

Definition (1 14). A subgraph I" c T is called a subgraph of constant degree if

Deg(l) Deg(T )) for all 1 € T'. We shall suppose that the edges are also subgraphs

of constant degree. If I’ is an edge connecting two vertices I and [B then we put
Deg(T ) := Deg ¢, where ¢ is the intersection point of the curves l1 and l2

Proposition (1.15). Suppose that the splice diagram of C near L is of the form

+——— and ¢y, ¢y are the germs ofa corresponding to the arrows. This means that
either L 1s a double point of C or a linear chain whose end components meet ¢y
and co transversally. Then for any connected component Ly of L we have:

a) The splice dzagmm of C near Ly is of the form +——. Denote by ¢, and
02 the germs of C near L.

b) Liisa subgraph of constant degree.

¢) Let p; =¢; N Zl. Then

(1.16) Deg(Ly) = my, (¢i)n(&),  i=1,2
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Proposition (1.17). [5] Suppose

(1) L1 is a connected component of L.
(2) The dual graphs I'; , T'r are trees.

(3) There exists an zrreduczble component 1 C Ly such that f 18 non-constant

on [ and Deg(l) Deg(Ll)
Let | = f(l).Then we have
det(Ly —=1)  n(l) det(L —1)
det Zl m(/lv) det L

(1.18)

Moreover, if one of the denominators equals zero, then the other also equals zero.

Lemma (1.19). [5] Suppose the conditions (1), (2) of (1.17) to be satisfied and
Ly to be a subgraph of constant degree.

a) IfCNL ={i}, T€ccCC then
det L, 1 n(9
det L mz(¢) DegL,

(1.20)

b) If CN Ly = {&1,%:}, 7 € ¢&; C C then

(1.21) det L, _ n(clN) _ n(cl)nSCQ)‘
det L mzg, (Cz) Deg L1

2. THE PROPERTIES OF THE DICRITICAL
COMPONENT AND ITS RESOLUTION AT INFINITY

Now we begin the proof of theorem (0.2). Suppose the contrary: there exists a
four-sheeted mapping f with one dicritical component. Let X X, F, L L be as in
Introduction. Since X and X are obtained from C? and C?2 by blow-ups, the pairs
(X, L) and (X, L) are contractible to y

It follows from [3, lemma 4.2] that the ramification order of F' along the dicritical
component is 1, 2, or 3. The ramification of order 3 is impossible, see [3, remark
after 5.3 |. If the ramification order is 1 then F is an unbranched covering over C2.
This is also impossible. So, the only possible order of ramification is 2.

Let us denote the dicritical component of f by ¢ and put ¢ = F(g) and Lo =
F~1(L). Tt follows from [3, lemma 4.2] that m(g§) = 1, n(g) = 2. Resolving, if
necessary, the singularities of g at infinity, we can achleve that:

(2a) g has only one point of intersection with Lo (see [3]). We denote this point

by p. Thus, Lo is a branch of L at qg.
(2b) g N L = p:= F(p), the intersection is transversal, and ¢ is smooth at p.

We may assume that X and X are minimal possible under these conditions. So,
(2¢) F satisfies the minimality condition.

Applying if necessary a polynomial automorphism of C? we may assume also
that

(2d) In some affine coordinates (x,y) in C* neither deg, ¢ divides deg, g nor
deg,, g divides deg, g
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This condition is equivalent to the minimality of L in the sense that L contains no
(—1)-curve ¢ such that ¢- (L —¢) < 2.

Recall that we use the same notation for the curves Z, Zoo, L and their dual
graphs and we also use the same notation for the irreducible components and the
corresponding vertices. All graphs to be considered below are subgraphs either of
L or of L. Hence, in the notation for the graphs from definition (1.1) we shall omit
the index of ambient graph.

Proposition (2.1). The Fisenbud — Neumann splice diagram of g near L is as on
Fig. 2 For a nodal verter a let us denote by R,, Ly, D, the branches of L at a in
the directions respectively Rught, Left, Down.

Fig. 2

Then for any nodal a we have:

a) det R, =1, det D, > 1.
b) det L, > 1.
c) det L = —1.

The only non-trivial assertion of this lemma is 2.1b. In terms of Puiseux charac-
teristic pairs this inequality was proven in [13, 14] (see [7, 8] for the interpretation
of characteristic pairs in terms of subgraph determinants). In the notation of [13,
14] det L, = r;/d;y1 if a is the i-th (from the left) nodal vertex. Hence, 2.1b is
an immediate consequence from the fact that the additive semigroup generated
by r1,...,ry is strictly generated by these numbers (here one needs the condition
(2d)). A topological proof of a weaker inequality det L, > 0 can be found in [§].

Corollary. a) det(ab) and det D, are coprime; b) det L, and det D, are coprime.
(Here a and b are nodal vertices of L; b is to the left of a)

Proof. a) Apply (1.4) to Ry. b) Follows from (1.4). O

Lemma (2.2). mz(g) =1 (recall that p:=gnN Zoo) If the subgraph (ag) is linear
for some a then Deg(ag) = 2.

Proof. We have n(g) =2, m(g) = 1. Combine this with (2a), (2b), (1.15). O

3. THE STRUCTURE OF L

Till the end of section 3 we always use tilde in the notation of the vertices of

Leo. To denote the image of a vertex, we remove the tilde. For example, a := F(a).
Definition (3.1).

a) A vertex 1€ Lo, is said to be a fork if m@ > 1.
b) A subgraph of constant degree is said to be mazimal if it is not contained
in another subgraph of constant degree.
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The next proposition shows that forks are obstructions for the extension of max-
imal subgraphs of constant degree. This means that any end vertex of a maximal
subgraph of constant degree is either an end vertex of L., or it is incident at some

fork.

Proposition (3.2). Let s € L be a nodal vertez. Then the following conditions
are equivalent.

a) v(s) =v(s) (here v(s) is the valence of s in T'y, 4).

b) m(s) = 1.

¢) For any linear chain C incident at s one has Deg(C) = Deg(3s) = n(3s).

It follows from (3.2) that after replacing each linear chain with a single edge a
subgraph Q of constant degree becomes isomorphic to F(Q) So, we see from Fig. 2
that at most two end vertices of Q are not end vertices of L. Therefore, on the
pictures below we shall depict such graphs by edges unless the contrary is specified
We write over such an "edge” the degree.

The pair of numbers written near a fork I on all the pictures below denotes
(m(l), (l)) to the left of (respectively to the right of I or beneath l) we indicate
the maximal subgraphs of constant degree whose image under F' lies to the left of
[ (respectively to the right of [ or beneath [). We mark the subgraphs whose image
under F lies beneath [ by a little cross. (It follows from (2¢) that these subgraphs
are linear.)

For a € L denote by a’ the set of all @ € F~'(a) such that F |z is non-constant.
Since the topological degree of F' is four, we have

(3.3) Z Deg(a

Lemma (3.4). Leta and b be forks of Lo such that (”dZ) is a subgraph of constant
degree, and let ¢ be a vertex of L such that b € (ac). Then

(3.5) > Deg(¢) > Deg(ab).

cec’ ﬁbrg(g)

Suppose a is a fork of Leo. Let Uz C L be a connected subgraph that consists of
all maximal subgraphsof constant degree incident at @ and all vertices of L incident
at these subgraphs. (we see that any end vertex of Uy is either an end vertex of L,
or a fork, or g).

Lemma (3.6). Let a be a fork.
a) If Deg(a) = 2, then Uy s of the form Fig. 3 (b). Let b be the left end vertex
of Uz. Then n(b) =2, m(b) =2, Deg(b) = 4.
b) If Deg(a) = 3 then Uz is one of Fig. 4 (e), (f).

Proof. 1f Deg(a) = 2 then m(a)n(a) = 2. The vertex a is a fork, hence, m(a) = 2,
n(a) = 1. Combining (1.12), (1.13) we see that U has one of the types deplcted in
Fig. 3.

Suppose Uj is of the form 3(a). It follows from (1.20) that det(ﬁZ] = det(ac] =
det(ab] # 1. (Here b and ¢ are the end vertices depicted on (2a).) But det(ab] and
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det(ac] are coprime by (1.4), hence, 3(a) is impossible. Suppose Uz is of the form
3(b). Then (1.20) and (1.21) imply

det(ac] = 2 det(ac],

det(ab] = 2 det (5N] if b is an end vertex of L,

n(Z) det(ab) =2 det(fdw) if b is a fork.
We see from (1.4) and the corollary of (2.1) that det(ab) and det(ac] are coprime.
Hence, b is a fork and n(Z) is divisible by 2. But Deg(Z) <4 and m(Z) > 2 because
b is a fork. Thus, n(Z) = m(Z) =2.
Suppose that the both left end vertices of 3(c) (denote them by Zl, Zg) are end
vertices of L. Combining (1.20) and (2.1b) we obtain

det[bla) = det[bza) = det[bla) > 1.

We see from (1.4) that this is impossible. So, one of the left end vertices of 3(c)

(for example Zl) is a fork. The case 3(c) will be prohibited below, after discussion
of the case of degree three.

If Deg(a) = 3 then m(a) = 3, n(a) = 1. Using (1.12) and (1.13), we obtain the
types depicted on Fig. 4.

N’;,l) 3 3 (31) 3
1 = = O

a a

3 1/1 1
(a (b)

Fig. 4
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The case 4(b) is impossible analogously to 3(a).

In the case 4(c) we see analogously to 3(b) that Zl is a fork and n(zl) is divisible
by 2. Hence, Deg(zl) > 4, which contradicts (3.3) and (3.5) for brg(ZQ). Thus, 4(c)
is impossible.

In the case 4(d), like in 3(b), we see that b is a fork and n(Z) is divisible by 3.
Hence, m(Z) > 1 and Deg(Z) > 6, which contradicts (3.3). Thus, 4(d) is impossible.

Let us show that the case 4(a) is impossible. Analogously to Fig. 3(c¢) we obtain
that one of the left end vertices of this subgraph is a fork b€ Loo. Then (3.3), (3.4)
imply m(Z) =2, n(Z) =1, Deg(Z) = 2. Hence Uy is of the form Fig. 3(b). The left
end vertex of U; is a fork of degree 4, so, it follows from (3.3) that all the branches
of Zoo at a which are to the left of @ must contain the left end vertex of Us. But
this is impossible since Lo is a tree.

Now, consider Fig. 3(c). Recall that by is a fork. Then (3.3) and (3.5) imply
Deg(zl) < 4. In the same way as for Fig. 4(a) we have Deg(zl) # 2. So, Deg(zl) =3
and Uy has either the type Fig. 4(e) or Fig. 4(f). Pasting the subgraph U; to Uz
along (/515) we obtain Flg 5. Denote by Ry the right branch of Lo ata and by
Ry, the right branch of L. at by such that @ ¢ Ry .

Fig. 5

Let us show that these branches are subgraphs of constant degree. Suppose that
R~ is not . Denote by b3 the fork of R~ nearest to bl If by € (byia) then (3.3)

1mphes Deg by = 2. If by is to the right of a then combining (3.3) and (3.5) we also
have Degbs = 2. Since Degbs = 2 it follows that Us, has the type Fig. 3(b), but

this contradicts Deg by # 4. So, Ry isa subgraph of constant degree.

Suppose Ry is not a subgraph of constant degree. Let a; be the nearest to a
fork of Rz. Since Ry is a subgraph of constant degree it follows from (3.3) that
Deg(ay) = 2. So, Uz, has the type Fig. 3(b), which contradicts Dega # 4. Hence,
Rz is a subgraph of constant degree.

Since L is a tree, it follows that one of Rz and Ry, ( for example, Rz) does not
contain g . It follows from (2.1) that det R, = 1. Using (1.20) we get det Rz = 1,
which is impossible. [

Corollary (3.7). If Dega < 4 then there are two branches of Uz at a lying to the
right of a.
Lemma (3.8). Suppose Deg(a) = 4.

a) Let b be a left end vertex of Ugz. Then b is an end verter for Lo
b) The subgraph U has one of the types Fig. 6(a)-(d), m(a) =4, n(a) = 1.
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Proof. Since Deg(a) = 4, it follows that any connected subgraph of Loo — @ lies
either entirely to the left, or to the right, or beneath of a. If Deg(Z) < 4 then
proposition a) follows from (3.7).

Consider the proposition b). Two cases are possible.

Case 1) m(a) = n(a) = 2 is analogous to the cases of degree 2. The only possible
subgraph is Fig. 6(g).

1
4 (4%Q 3 (4,1 11 3 41 3 2 (41) 3

1 1

@)

3k x1
C (b) © )

3 (41 2 22 (22 2

(9)

Fig. 6

Let b be the left end vertex of U;. Then it is a fork, hence, the both subgraphs
Uz and Uz must be of the form Fig. 6(g), which is impossible. So, the case 1 is
prohibited.

Case 2) m(a) = 4, n(a) = 1. Suppose that @ has only one left branch. The
determinants of the branches beneath @ must be coprime. Combining this with
(1.12), (1.13), (1.20), (2.1), we see that the only possible subgraph is Fig. 6(a).

Now suppose that @ has at least two left branches. Then (3.8a) is already proved
for these cases and these branches are the subgraphs of constant degree. The
determinants of the left and the lower branches at ‘@ must be coprime. So, like in
the cases Deg = 2,3, using (1.12), (1.13), (1.20), and (2.1) we obtain that Uz is one
of the graphs Fig. 6. (b)-(f).

Let us show that the graphs on Fig. 6 (e), (f) are impossible. As in the prohibition
of (2¢) in (3.6), we see that the subgraphs lying to the right of a are of constant
degree and one of their determinants equals 1/2, which is impossible.

The proposition b) is proved.

Consider again the proposition a). If Deg(Z) = 4 then Uy is of the form Fig. 6(a).
It follows from Fig. 6 that b is an end vertex of L. This completes the proof of
(3.8). O

Corollary (3.9). If a is a fork then Dega > 2.
Proof. Using (3.8b) we obtain that Fig. 3(b) is impossible. O

Thus, we have listed all the possible U; for any fork a.
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Corollary (3.10). The graph L must have one of the types depicted on Fig. 7.
(The black vertex represents g.)

Proof. Consider the maximal subgraph of constant degree incident at g. It follows
from (2.2) that the degree is two. Combining this with (3.6), (3.8), and (3.9) we
get the proof. O

(4.1)

4

@ )
3 (4
1 ! -
4
(b)

Fig. 7

4. THE PROHIBITION OF GRAPHS FIG. 7(C)-(F)

First, we shall prohibit the graphs of Fig. 7(e), (f). We work out the case of
Fig. 7(e) in detail. The case of Fig. 7(f) can be considered analogously.

Lemma (4.1). The case of Fig. 7(e) is impossible.

Proof. Assume the contrary.

Fig. 8
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The graph Lis depicted in the upper part of Fig. 8 and L is below it. As above,
the horizontal edges mean subgraphs of constant degree. It follows from (1.20),
(1.21) that their determinants are equal to the numbers written nearby.

Denote the root of L by v. We see on Fig. 8 that the determinants of two
branches at dq are already greater than 1, hence, by (1.6) we have

(4.2) detbraz, (b)) =1  and ¥ ¢ bra, (by).

Therefore, d; = 1 by (1.6) applied to a;.
Denote 6 = det d(ab) (see (1.1)). It follows from (3.1), (1.20) that det d(aib;) =
det §(azby) = detd(arby) = 6. Applying (1.20) and the formula (1.3) for (ab)

considered as a subgraph of L we obtain
(4.3)  detbry (@2) 2" detbry(a) = 18d,d58” — 2d; = 18367 — 2d,

Let L' be the component of F~!(br,(b)) containing Zg. Since det br,(b) = 1,

(4.4) det 1 149 3 03 2 dy

—d
1 3ds  2dy 2

Denote A = br»@(zz) NLe. By (4.2), v ¢ A, hence, det A > 0 by (1.7). Using (1.3)
for (a;by) with A as the ambient graph we obtain

(1.3),(4.4)

dodet A= dy det brfbv2 (a1) — 4dads 52, hence,
(4.5) det bry_(d1) = det A + 4d36? > 4

Applying (1.6) to by we get dz = det brfbv2(§) = 1. Using formula (1.3) for the

determinant of (5252) C Z, we get

—2d, = det brfbv2 (ag) - det brg, (?32) — 6det brfl;2 (51)52
= 186% — 2dy — 6 det bry_(a,)d” by (4.2), (4.3).

Hence, det brf52(51) = 3 that contradicts (4.5). O
Lemma (4.6). The graphs of Fig. 7(c), (d) are impossible.

Proof. Suppose L. is one of Fig. 7(¢), (d). Suppose that a and b are forks of L
and €, ¢, p are the end vertices, see Fig .9(left) where the numbers written near the
edges are their degrees.

Fig. 9
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Let us show that det Lo, = —2. Consider, for instance, Fig. 7(c) (the arguments
for Fig. 7(d) are the same). It follows from (1.20) and (1.4) that det L, = 3,

det Dy = 2, and the determinants of the branches at b are as shown on Fig. 9(right).
Applying (1.18) to b we get

detLoe 4 1-3 1-1 1-det(bg)
1

(4.7) det L 3 2 det Ry

Recall (see (2.1)) that det L = —1, det R, = 1. So, (4.7) implies
(4.8) det Loo = —2det(bg).

Combining (1.4), (1.20), (1.21), and (2.1) we get det D, = 2, det(ap] = 1,
det(aq] = 2, det(ae] = 1, det(dg) = 1, 3det(ba) = det(ab). Applying (1.18)
to the vertex a in the ambient graph (Z§) we get det(zg) = 1, so, (4.8) implies
det Zoo = 2.

Denote by a the determinant of the graph A := L— qg— L. The curve A is the
subset of L which is contracted by F to a single point lying on ¢ N C? (if A # @,
this point must be a singular point of g).

Using formula (1.3) for the determinant of the subgraph (ag) C L, we get
—1 = —2det brz () — 2a det brz(b)(det 5(ag))?.
But this is impossible since the right hand side is divisible by 2. O

5. THE PROHIBITION OF FIG. 7(A), (B)

Lemma (5.1). Let K = > azs be the representation of the canonical class of X

as a linear combination of wrreducible components s of the curve L. Then ay = 1.

Proof. Let K be the canonical divisor of X with the support on X \ C* and B =
> s bss the ramification divisor of F' (the divisor of the jacobian of F'). One has

K = F*(K) + B.

Since g ¢ X \ C?, we have g ¢ K. Comparing the coefficients of ¢ in the left hand
side and the right hand side, we obtain ay = b; =n(g) —1=1. O

Let ¥ be the root of L. Clearly, v € L.

Lemma (5.2). Suppose A C L is a mazimal subgraph of constant degree incident
at g. (We see that Deg A = 2.) Then the subgraph AN (Vg) is linear.

Proof. Suppose that AN (vg) is not linear. Let v7 be the nearest to g nodal vertex
of A and v1 = F(v1). It follows from (3.2) that m(v1) = 1, n(v1) = 2. Denote, as

in (4.6), a = det(z — Zoog) Since v € Zoo, we have a > 1, det bry (g) > 1.
Denote dy = det bry, (v) and let d be the determinant of the branch at v; not
containing g, v. The determinant of the lower branch at vy equals D,, by (1.20).
We see from (2.1) that D,, > 1. Hence, max(d,dy) > 1. Combining (1.21) and
(2.1a) we get
det(v19) = 2det(vi1g9) =2
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Consider the case d > 1. It follows from (1.7) that det br3, (g) = 1. Using formula
(1.3) for the determinant of the subgraph (v;1g) C L, we obtain

(5.3) —2 = det Loy — add;
It follows from (5.1) and (1.9) that
(5.4) l=k;=-1—a—det Lo +a(d—1)(dy — 1)+ ad, %,

where ¥ is the rest of (1.9). Combining (5.3) and (5.4) we get 0 = —ad—adz+adX,
hence, dy must be divisible by d # 1. This contradicts (1.4).

Consider the case d = 1. As it was shown above, the determinant of the lower
branch at vy is greater than 1. Hence, v lies below v; and dy = det D,,, > 1. Using

formula (1.3) for the determinant of the subgraph (v1g) in the graph L, we obtain
—2 = det L, det brz, () — ady,
so det Zoo > 0. It follows from (5.1) and (1.9) that
1:kfgv:—1—oz—detzoo
hence, det Lo =—2—a < 0. Contradiction. [
Lemma (5.5). Suppose that either det Lo =—1ordetLo = —2. Let A satisfy
the hypothesis of (5.2). Then v & A.
Proof. Suppose v € A. By (5.2) we obtain that the graph (vg) is linear. The

decomposition formula (1.9) with respect to g implies by = —a — det Lo — 1, but
k7 =1, hence, det Lo = —a — 2 < —2. Contradiction. [

Lemma (5.6). Graphs L of the form Fig. 7(a,b) are impossible.

Proof. Let a be the fork of Leo. Then (ag) is a maximal subgraph of constant
degree, Deg(ag) = 2, (1.21), and (2.1) imply det(ag) = 1. Combining (1.20) and
(2.1a) we see that the determinants of the rest two branches of L to the right of
a equal one.

Consider Fig. 7(a). Let L,, D,,... be as in (2.1) and denote by Lz (resp. D,(dd))
the determinant of the left branch at @ (resp. the lower branch of degree d). Then
det Lz/ det L, = 1/4 (by (1.20)) and det D = 1, det D, = D" = 3 (by (1.20),
(1.4)). Thus, we have

(5.7) det(Loo — [@g)) = det Lz det D) det D > 3,
det Lo, 1as)4 1-3 1 -
(5.8) 2 T (1:18) 1 —33 "1 =1, hence, detL. =detlL =—1
(&

Analogously, one obtains (5.7), (5.8) for Fig. 7(b). Let 6§ = (ag). It follows from
(5.5) and (5.2) that A is linear and v ¢ A. Since v € Lo we get v & brz(g), hence,
det brz(g) > 1 by (1.7).

Denote, as in (4.6) and (5.2), o = det(z — Lo — g). Using formula (1.3) for the
determinant of the subgraph A in the ambient graph Z, we get

—1 = det Lo, - det brz(§) — a - det(Loo — [ag)).
Since o > 1 and det brz(g) > 1, this contradicts (5.7), (5.8). O

Thus, all the graphs depicted on Fig. 7 are impossible. This completes the proof
of theorem (0.2).
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