EXAMPLE OF A CONTINUOUS MAPPING 5? — R?
WHOSE SET OF DOMINATING POINTS IS DENSE IN 5?2

S.Yu. OREVKOV

ABSTRACT. Using the Cantor function, we construct a continuous mapping f : S2 —
R? such that the set {p € S?|f~1(f(p)) = {p}} is dense in S? and the image of
f is an infinite binary tree. This answers to a question posed to me by Daciberg

Gongalves.
1

Let f: X — Y be a continuous mapping of manifolds. Let us say that a point
p € X is a dominating point if f~(f(p)) contains only p and no other points. Let
X = 52 be the 2-sphere and let Y = R? be the real plane. It is easy to see that
if f is differentiable at least once then the set of the dominating points cannot be
dense. Daciberg Gongalves asked me if the set of dominating points can be dense
for a continuous mapping f : S? — R2. In this note I give a positive answer to this
question.

Preliminaries. Let B = {0,1}> be the set of all binary sequences (b"),b(?),...)
where b ¢ {0,1}, i« = 1,2,... and only finite number of b() are nonzero. For
b € B we define its length as len(b) = max{n|b(™ = 1} and we set B, = {b €
Bllen(b) = n}. If b = (b b ) is a binary sequence of length n, we shall
represent it by a word (without any delimiters) b(1) ... b(") | i. e., we shall write just
0101 instead of (0,1,0,1,0,0,...). Thus, we have By = @, By = {1}, By = {01, 11},
B3 = {001, 011,101,111}, etc., and we have B = [J,-_, By,.
For b € B, let y(b) be the binary number

y(b) =0.6Mp3 ... = Z p(k) jok

k>1

and let £(b) be the trenary number

t(b) =2 x 0.5Mp ... = 3" 2p®) /3%,
E>1

Let F' : [0,1] — [0, 1] be Cantor function, i.e. the monotone function uniquely
determined by the condition that

F(t(b) = F(t(b) —3™") = y(b) for b € B,
(see Figure 1). For b € By, let Ij, be the closed interval
I = F~H(t(b)) = [t(b) = 37", t(b)]

I This note is published as an appendix to Daciberg Gongalves’ paper “The size of multiple
points of maps between manifolds” (to appear in Topology Proceedings).
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(see Figure 1). Let B = {J,._, B,, where B,,, = {(b1,...,by,)|b; € B}. We shall
identify B; with B. For - (bl,...,bm) S Bm, we denote b’ = (by,...,bym_1) €

B,,_1 and we set len(l;) =len(by)+---+len(b,,). We write 51 =< 52 if 51 is an initial
segment of by, i.e. by = (by,..., by, ) and bo = (b1, .-, by, bimyt1s -« s Oy )-

1. Construction of annuli. Let DD be the closed unit disk in C. For b € B, let
us denote the annulus {z € D| F(|z|) € I} by Ap. Let U = {U1,Us, ...} be some
countable base of the standard topology in ID. For any b= (b1,...,bm) € B, we
define an annulus Ay, a distinguished point p; in it, and a mapping ¢; : D — A;.
We shall define them inductively. First, for b with len(l;) = 1, then for all b with
len(b) = 2, then for all b with len(b) = 3, etc.

If b= (b1) € By then we set Ay = Ay,.

If A; is already defined then we choose p; as any point in Int Ay N Uy where
where k is the minimal number such that Int Ay N Uy is non-empty and Uj, was not
used on previous steps.

If p; is already defined then we define ¢; : D — Aj as a continuous map such
that

(1) ¢5(0) = py,
(2) ¢5(D) = Ay,
(3) wy maps Int D homeomorphically onto a dense open subset of Aj.

S

If ¢y, is already defined then we set Ay = ¢y, (As,,). We have depicted some of
the annuli A; in Figure 2.

Let us set Ay, = Upeg, Int Az, A= ooy Am, and P = {p;| beBY.

Remarks. 1. Using conformal mappings we can choose ¢j in a canonical way.

Namely, we can set ¢ = ] ' 0y where ¢ is the conformal mapping of Int Ay onto
A, ={z:r <]z <1} such that ¢i(pg) € [r,1] (r is uniquely determined by Ay)
and s is a conformal mapping of Int D onto A,.\ [~1, —r] such that ©2(0) = 1 (p;).

Lemma 1. A and P are dense in D.

Proof. The fact that A is dense in D is an immediate consequence from Baire’s
theorem.
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FIGURE 2.

Let us prove by induction that each Uy contains a point of P. Suppose we know
already that this is true for Uy, ..., Up_1.

Since A is dense, there exists a point z in AN Ug. It belongs to each A,,, hence,
for any m = 1,2,..., there is l;m € B,, such that z € Int Agm. Let m be the
minimal number such that pg, ~ was not yet defined at the moment when all of
Ui,...,Ui_1 had been used. Then vz, must be chosen in Int Agm N U because it
is non-empty (it contains z). O

3. Construction of a fractal tree. Let us define an infinite tree 1" embedded
into R? as follows. Let I = [0,1] and let A : I — R? be a non-constant linear
mapping, say, A(t) = (¢,0). For any b € B, we shall define a linear mapping Ay
inductively as follows. If m =0 (i. e., bis empty), we set Ay = A, If b= (b1,...,bm)
and Ay, is already defined then we set \;(t) = (t —1)e; +tay where az = Ay, (y(b)),
the segment A\;(I) = [az, e;] is orthogonal to the segment Ay, (I) (the direction is
not so important, we can chose it, for instance, as in Figure 3), and the length

-,

of the segment A\y(I) is 3=1en(®); recall that len(b) = len(by) + - - - + len(by,). Let
T = Uzeg M) (see Figure 3). We shall call the points a; and e the nodes and the
ends of T  respectively. Let us denote the branch at az by Tj, 1. e., Ty = Uz Az, (I)-
By construction, T;; C Ay where Ay is the triangle with vertices ag, ey, €51 We
depicted in Figure 3 the triangles A; and Ay 13, i. e., the triangles A; for b= (1)
B, and for b = (1,11) € B,.

One can check that A51 D Agz if 51 =< 52 and Agl N Agz = & otherwise. This
implies that the segments of T" meet each other only at nodes (in particular, the
ends cannot lye on other segments).

4. Construction of the mapping. Let us define f: D — T as f = lim,, 00 fin
where the mappings f,, are inductively constructed as follows.
Let fo(z) = Ao(F'(]2])). Then fy is continuous and it contracts each annulus A,
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into the node e,. Suppose that f,,_1 is already constructed. Then we set

fin(2) = { AE(F(|‘:05_1(Z>|)) if z € Int Ay for b€ B,,

fm—1(2) otherwise

It is clear that if b € B,, then f,, maps Ay onto the segment A\y(I) = [a;, €] so that
0A; is mapped to the node ag, the distinguished point p; is mapped to the end ey,
and each annulus Ay, is contracted to the node aj ,.

Using the fact that f,,(0A;) = fm—1(04;) = ag for b € B,,, it is easy to prove
by induction that each f,, is continuous.

Let us show that f is continuos. Indeed, when we pass from f,,, to f,, we
modify f,, on each A, be B,,.,, replacing the value a; by values lying in 77 C Ay
and the diameter of Ay tends to zero as m — oo. Thus, {fy,} is a Cauchy sequence
in the metric of uniform convergency.

In fact, f can be characterized as the continuous mapping D — R? uniquely
defined either by the condition f(0Aj;) = aj for any beBor by the condition that
f(Ay) = Ty for any be B.

Since f is constant on JD, it can be consedered as a continuous mapping of the
sphere obtained from D by contracting the boundary. Let E be the set of ends of
T,ie E = {e;| beB }. It is clear that each point of E has only one preimage
and f~1(E) = P is dense in the sphere.
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