EXAMPLE OF A CONTINUOUS MAPPING $S^2 \rightarrow \mathbb{R}^2$ WHOSE SET OF DOMINATING POINTS IS DENSE IN S^2

S.YU. OREVKOV

ABSTRACT. Using the Cantor function, we construct a continuous mapping $f: S^2 \to \mathbb{R}^2$ such that the set $\{p \in S^2 | f^{-1}(f(p)) = \{p\}\}$ is dense in S^2 and the image of f is an infinite binary tree. This answers to a question posed to me by Daciberg Gonçalves.

1

Let $f: X \to Y$ be a continuous mapping of manifolds. Let us say that a point $p \in X$ is a *dominating point* if $f^{-1}(f(p))$ contains only p and no other points. Let $X = S^2$ be the 2-sphere and let $Y = \mathbb{R}^2$ be the real plane. It is easy to see that if f is differentiable at least once then the set of the dominating points cannot be dense. Daciberg Gonçalves asked me if the set of dominating points can be dense for a continuous mapping $f: S^2 \to \mathbb{R}^2$. In this note I give a positive answer to this question.

Preliminaries. Let $B = \{0, 1\}^{\infty}$ be the set of all binary sequences $(b^{(1)}, b^{(2)}, \ldots)$ where $b^{(i)} \in \{0, 1\}, i = 1, 2, \ldots$ and only finite number of $b^{(i)}$ are nonzero. For $b \in B$ we define its *length* as $\operatorname{len}(b) = \max\{n \mid b^{(n)} = 1\}$ and we set $B_n = \{b \in B \mid \operatorname{len}(b) = n\}$. If $b = (b^{(1)}, b^{(2)}, \ldots)$ is a binary sequence of length n, we shall represent it by a word (without any delimiters) $b^{(1)} \ldots b^{(n)}$, i. e., we shall write just 0101 instead of $(0, 1, 0, 1, 0, 0, \ldots)$. Thus, we have $B_0 = \emptyset$, $B_1 = \{1\}$, $B_2 = \{01, 11\}$, $B_3 = \{001, 011, 101, 111\}$, etc., and we have $B = \bigcup_{n=1}^{\infty} B_n$.

For $b \in B_n$, let y(b) be the binary number

$$y(b) = 0 \cdot b^{(1)} b^{(2)} \dots = \sum_{k \ge 1} b^{(k)} / 2^k$$

and let t(b) be the trenary number

$$t(b) = 2 \times 0 \cdot b^{(1)} b^{(2)} \dots = \sum_{k \ge 1} 2b^{(k)} / 3^k$$

Let $F : [0,1] \to [0,1]$ be Cantor function, i.e. the monotone function uniquely determined by the condition that

$$F(t(b)) = F(t(b) - 3^{-n}) = y(b)$$
 for $b \in B_n$

(see Figure 1). For $b \in B_n$, let I_b be the closed interval

$$I_b = F^{-1}(t(b)) = [t(b) - 3^{-n}, t(b)]$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

¹This note is published as an appendix to Daciberg Gonçalves' paper "The size of multiple points of maps between manifolds" (to appear in *Topology Proceedings*).

FIGURE 1

(see Figure 1). Let $\mathbf{B} = \bigcup_{m=1}^{\infty} \mathbf{B}_m$ where $\mathbf{B}_m = \{(b_1, \ldots, b_m) | b_i \in B\}$. We shall identify \mathbf{B}_1 with B. For $\vec{b} = (b_1, \ldots, b_m) \in \mathbf{B}_m$, we denote $\vec{b}' = (b_1, \ldots, b_{m-1}) \in$ \mathbf{B}_{m-1} and we set $\operatorname{len}(\vec{b}) = \operatorname{len}(b_1) + \cdots + \operatorname{len}(b_m)$. We write $\vec{b}_1 \prec \vec{b}_2$ if \vec{b}_1 is an initial segment of \vec{b}_2 , i.e. $\vec{b}_1 = (b_1, \ldots, b_{m_1})$ and $\vec{b}_2 = (b_1, \ldots, b_{m_1}, b_{m_1+1}, \ldots, b_{m_2})$.

1. Construction of annuli. Let \mathbb{D} be the closed unit disk in \mathbb{C} . For $b \in B$, let us denote the annulus $\{z \in \mathbb{D} | F(|z|) \in I_b\}$ by A_b . Let $\mathcal{U} = \{U_1, U_2, \ldots\}$ be some countable base of the standard topology in \mathbb{D} . For any $\vec{b} = (b_1, \ldots, b_m) \in \mathbf{B}$, we define an annulus $A_{\vec{b}}$, a distinguished point $p_{\vec{b}}$ in it, and a mapping $\varphi_{\vec{b}} : \mathbb{D} \to A_{\vec{b}}$. We shall define them inductively. First, for \vec{b} with $\operatorname{len}(\vec{b}) = 1$, then for all \vec{b} with $\operatorname{len}(\vec{b}) = 2$, then for all \vec{b} with $\operatorname{len}(\vec{b}) = 3$, etc.

If $\vec{b} = (b_1) \in \mathbf{B}_1$ then we set $A_{\vec{b}} = A_{b_1}$.

If $A_{\vec{b}}$ is already defined then we choose $p_{\vec{b}}$ as any point in $\operatorname{Int} A_{\vec{b}} \cap U_k$ where where k is the minimal number such that $\operatorname{Int} A_{\vec{b}} \cap U_k$ is non-empty and U_k was not used on previous steps.

If $p_{\vec{b}}$ is already defined then we define $\varphi_{\vec{b}}:\mathbb{D}\to A_{\vec{b}}$ as a continuous map such that

(1) $\varphi_{\vec{b}}(0) = p_{\vec{b}},$

(2) $\varphi_{\vec{b}}(\mathbb{D}) = A_{\vec{b}},$

(3) $\varphi_{\vec{b}}$ maps Int \mathbb{D} homeomorphically onto a dense open subset of $A_{\vec{b}}$.

If $\varphi_{\vec{b}'}$ is already defined then we set $A_{\vec{b}} = \varphi_{\vec{b}'}(A_{b_m})$. We have depicted some of the annuli $A_{\vec{b}}$ in Figure 2.

Let us set $A_m = \bigcup_{\vec{b} \in \mathbf{B}_m} \operatorname{Int} A_{\vec{b}}, A = \bigcap_{m=1}^{\infty} A_m$, and $P = \{ p_{\vec{b}} \mid \vec{b} \in \mathbf{B} \}.$

Remarks. **1.** Using conformal mappings we can choose $\varphi_{\vec{b}}$ in a canonical way. Namely, we can set $\varphi = \varphi_1^{-1} \circ \varphi_2$ where φ_1 is the conformal mapping of $\operatorname{Int} A_{\vec{b}}$ onto $A_r = \{ z : r < |z| < 1 \}$ such that $\varphi_1(p_{\vec{b}}) \in [r, 1]$ (r is uniquely determined by $A_{\vec{b}}$) and φ_2 is a conformal mapping of $\operatorname{Int} \mathbb{D}$ onto $A_r \setminus [-1, -r]$ such that $\varphi_2(0) = \varphi_1(p_{\vec{b}})$.

Lemma 1. A and P are dense in \mathbb{D} .

Proof. The fact that A is dense in \mathbb{D} is an immediate consequence from Baire's theorem.

FIGURE 2.

Let us prove by induction that each U_k contains a point of P. Suppose we know already that this is true for U_1, \ldots, U_{k-1} .

Since A is dense, there exists a point z in $A \cap U_k$. It belongs to each A_m , hence, for any $m = 1, 2, \ldots$, there is $\vec{b}_m \in \mathbf{B}_m$ such that $z \in \operatorname{Int} A_{\vec{b}_m}$. Let m be the minimal number such that $p_{\vec{b}_m}$ was not yet defined at the moment when all of U_1, \ldots, U_{k-1} had been used. Then $p_{\vec{b}_m}$ must be chosen in $\operatorname{Int} A_{\vec{b}_m} \cap U_k$ because it is non-empty (it contains z). \Box

3. Construction of a fractal tree. Let us define an infinite tree T embedded into \mathbb{R}^2 as follows. Let I = [0, 1] and let $\lambda : I \to \mathbb{R}^2$ be a non-constant linear mapping, say, $\lambda(t) = (t, 0)$. For any $\vec{b} \in \mathbf{B}$, we shall define a linear mapping $\lambda_{\vec{b}}$ inductively as follows. If m = 0 (i. e., \vec{b} is empty), we set $\lambda_{\vec{b}} = \lambda$. If $\vec{b} = (b_1, \ldots, b_m)$ and $\lambda_{\vec{b}'}$ is already defined then we set $\lambda_{\vec{b}}(t) = (t-1)e_{\vec{b}} + ta_{\vec{b}}$ where $a_{\vec{b}} = \lambda_{\vec{b}'}(y(b_m))$, the segment $\lambda_{\vec{b}}(I) = [a_{\vec{b}}, e_{\vec{b}}]$ is orthogonal to the segment $\lambda_{\vec{b}'}(I)$ (the direction is not so important, we can chose it, for instance, as in Figure 3), and the length of the segment $\lambda_{\vec{b}}(I)$ (see Figure 3). We shall call the points $a_{\vec{b}}$ and $e_{\vec{b}}$ the nodes and the ends of T respectively. Let us denote the branch at $a_{\vec{b}}$ by $T_{\vec{b}}$, i. e., $T_{\vec{b}} = \bigcup_{\vec{b} \prec \vec{b}_1} \lambda_{\vec{b}_1}(I)$. By construction, $T_{\vec{b}} \subset \Delta_{\vec{b}}$ where $\Delta_{\vec{b}}$ is the triangle with vertices $a_{\vec{b}}, e_{\vec{b}}, e_{\vec{b},1}$. We depicted in Figure 3 the triangles Δ_1 and $\Delta_{1,11}$, i. e., the triangles $\Delta_{\vec{b}}$ for $\vec{b} = (1) \in$ \mathbf{B}_1 and for $\vec{b} = (1, 11) \in \mathbf{B}_2$.

One can check that $\Delta_{\vec{b}_1} \supset \Delta_{\vec{b}_2}$ if $\vec{b}_1 \prec \vec{b}_2$ and $\Delta_{\vec{b}_1} \cap \Delta_{\vec{b}_2} = \emptyset$ otherwise. This implies that the segments of T meet each other only at nodes (in particular, the ends cannot lye on other segments).

4. Construction of the mapping. Let us define $f : \mathbb{D} \to T$ as $f = \lim_{m \to \infty} f_m$ where the mappings f_m are inductively constructed as follows.

Let $f_0(z) = \lambda_0(F(|z|))$. Then f_0 is continuous and it contracts each annulus A_b

FIGURE 3

into the node e_b . Suppose that f_{m-1} is already constructed. Then we set

 $f_m(z) = \begin{cases} \lambda_{\vec{b}} \left(F\left(\left| \varphi_{\vec{b}}^{-1}(z) \right| \right) \right) & \text{if } z \in \text{Int } A_{\vec{b}} \text{ for } \vec{b} \in \mathbf{B}_m \\ f_{m-1}(z) & \text{otherwise} \end{cases}$

It is clear that if $\vec{b} \in \mathbf{B}_m$ then f_m maps $A_{\vec{b}}$ onto the segment $\lambda_{\vec{b}}(I) = [a_{\vec{b}}, e_{\vec{b}}]$ so that $\partial A_{\vec{b}}$ is mapped to the node $a_{\vec{b}}$, the distinguished point $p_{\vec{b}}$ is mapped to the end $e_{\vec{b}}$, and each annulus $A_{\vec{b},b}$ is contracted to the node $a_{\vec{b},b}$.

Using the fact that $f_m(\partial A_{\vec{b}}) = f_{m-1}(\partial A_{\vec{b}}) = a_{\vec{b}}$ for $\vec{b} \in \mathbf{B}_m$, it is easy to prove by induction that each f_m is continuous.

Let us show that f is continuos. Indeed, when we pass from f_{m_1} to f_{m_2} , we modify f_{m_1} on each $A_{\vec{b}}, \vec{b} \in \mathbf{B}_{m_1}$, replacing the value $a_{\vec{b}}$ by values lying in $T_{\vec{b}} \subset \Delta_{\vec{b}}$ and the diameter of $\Delta_{\vec{b}}$ tends to zero as $m \to \infty$. Thus, $\{f_m\}$ is a Cauchy sequence in the metric of uniform convergency.

In fact, f can be characterized as the continuous mapping $\mathbb{D} \to \mathbb{R}^2$ uniquely defined either by the condition $f(\partial A_{\vec{b}}) = a_{\vec{b}}$ for any $\vec{b} \in \mathbf{B}$ or by the condition that $f(A_{\vec{b}}) = T_{\vec{b}}$ for any $\vec{b} \in \mathbf{B}$.

Since f is constant on $\partial \mathbb{D}$, it can be consedered as a continuous mapping of the sphere obtained from \mathbb{D} by contracting the boundary. Let E be the set of ends of T, i.e. $E = \{ e_{\vec{b}} | \vec{b} \in \mathbf{B} \}$. It is clear that each point of E has only one preimage and $f^{-1}(E) = P$ is dense in the sphere.

IMT, UNIVERSITÉ PAUL SABATIER, 118 ROUTE DE NARBONNE, 31400 TOULOUSE, FRANCE *E-mail address*: orevkov@math.ups-tlse.fr