EXAMPLE OF A CONTINUOUS MAPPING $S^{2} \rightarrow \mathbb{R}^{2}$ WHOSE SET OF DOMINATING POINTS IS DENSE IN S^{2}

S.Yu. Orevkov

Abstract

Using the Cantor function, we construct a continuous mapping $f: S^{2} \rightarrow$ \mathbb{R}^{2} such that the set $\left\{p \in S^{2} \mid f^{-1}(f(p))=\{p\}\right\}$ is dense in S^{2} and the image of f is an infinite binary tree. This answers to a question posed to me by Daciberg Gonçalves.

Let $f: X \rightarrow Y$ be a continuous mapping of manifolds. Let us say that a point $p \in X$ is a dominating point if $f^{-1}(f(p))$ contains only p and no other points. Let $X=S^{2}$ be the 2 -sphere and let $Y=\mathbb{R}^{2}$ be the real plane. It is easy to see that if f is differentiable at least once then the set of the dominating points cannot be dense. Daciberg Gonçalves asked me if the set of dominating points can be dense for a continuous mapping $f: S^{2} \rightarrow \mathbb{R}^{2}$. In this note I give a positive answer to this question.
Preliminaries. Let $B=\{0,1\}^{\infty}$ be the set of all binary sequences $\left(b^{(1)}, b^{(2)}, \ldots\right)$ where $b^{(i)} \in\{0,1\}, i=1,2, \ldots$ and only finite number of $b^{(i)}$ are nonzero. For $b \in B$ we define its length as $\operatorname{len}(b)=\max \left\{n \mid b^{(n)}=1\right\}$ and we set $B_{n}=\{b \in$ $B \mid \operatorname{len}(b)=n\}$. If $b=\left(b^{(1)}, b^{(2)}, \ldots\right)$ is a binary sequence of length n, we shall represent it by a word (without any delimiters) $b^{(1)} \ldots b^{(n)}$, i. e., we shall write just 0101 instead of $(0,1,0,1,0,0, \ldots)$. Thus, we have $B_{0}=\varnothing, B_{1}=\{1\}, B_{2}=\{01,11\}$, $B_{3}=\{001,011,101,111\}$, etc., and we have $B=\bigcup_{n=1}^{\infty} B_{n}$.

For $b \in B_{n}$, let $y(b)$ be the binary number

$$
y(b)=0 . b^{(1)} b^{(2)} \cdots=\sum_{k \geq 1} b^{(k)} / 2^{k}
$$

and let $t(b)$ be the trenary number

$$
t(b)=2 \times 0 . b^{(1)} b^{(2)} \cdots=\sum_{k \geq 1} 2 b^{(k)} / 3^{k}
$$

Let $F:[0,1] \rightarrow[0,1]$ be Cantor function, i.e. the monotone function uniquely determined by the condition that

$$
F(t(b))=F\left(t(b)-3^{-n}\right)=y(b) \quad \text { for } b \in B_{n}
$$

(see Figure 1). For $b \in B_{n}$, let I_{b} be the closed interval

$$
I_{b}=F^{-1}(t(b))=\left[t(b)-3^{-n}, t(b)\right]
$$

[^0]

Figure 1
(see Figure 1). Let $\mathbf{B}=\bigcup_{m=1}^{\infty} \mathbf{B}_{m}$ where $\mathbf{B}_{m}=\left\{\left(b_{1}, \ldots, b_{m}\right) \mid b_{i} \in B\right\}$. We shall identify \mathbf{B}_{1} with B. For $\vec{b}=\left(b_{1}, \ldots, b_{m}\right) \in \mathbf{B}_{m}$, we denote $\vec{b}^{\prime}=\left(b_{1}, \ldots, b_{m-1}\right) \in$ \mathbf{B}_{m-1} and we set len $(\vec{b})=\operatorname{len}\left(b_{1}\right)+\cdots+\operatorname{len}\left(b_{m}\right)$. We write $\vec{b}_{1} \prec \vec{b}_{2}$ if \vec{b}_{1} is an initial segment of \vec{b}_{2}, i.e. $\vec{b}_{1}=\left(b_{1}, \ldots, b_{m_{1}}\right)$ and $\vec{b}_{2}=\left(b_{1}, \ldots, b_{m_{1}}, b_{m_{1}+1}, \ldots, b_{m_{2}}\right)$.

1. Construction of annuli. Let \mathbb{D} be the closed unit disk in \mathbb{C}. For $b \in B$, let us denote the annulus $\left\{z \in \mathbb{D} \mid F(|z|) \in I_{b}\right\}$ by A_{b}. Let $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}$ be some countable base of the standard topology in \mathbb{D}. For any $\vec{b}=\left(b_{1}, \ldots, b_{m}\right) \in \mathbf{B}$, we define an annulus $A_{\vec{b}}$, a distinguished point $p_{\vec{b}}$ in it, and a mapping $\varphi_{\vec{b}}: \mathbb{D} \rightarrow A_{\vec{b}}$. We shall define them inductively. First, for \vec{b} with $\operatorname{len}(\vec{b})=1$, then for all \vec{b} with $\operatorname{len}(\vec{b})=2$, then for all \vec{b} with len $(\vec{b})=3$, etc.

If $\vec{b}=\left(b_{1}\right) \in \mathbf{B}_{1}$ then we set $A_{\vec{b}}=A_{b_{1}}$.
If $A_{\vec{b}}$ is already defined then we choose $p_{\vec{b}}$ as any point in $\operatorname{Int} A_{\vec{b}} \cap U_{k}$ where where k is the minimal number such that $\operatorname{Int} A_{\vec{b}} \cap U_{k}$ is non-empty and U_{k} was not used on previous steps.

If $p_{\vec{b}}$ is already defined then we define $\varphi_{\vec{b}}: \mathbb{D} \rightarrow A_{\vec{b}}$ as a continuous map such that
(1) $\varphi_{\vec{b}}(0)=p_{\vec{b}}$,
(2) $\varphi_{\vec{b}}(\mathbb{D})=A_{\vec{b}}$,
(3) $\varphi_{\vec{b}}$ maps Int \mathbb{D} homeomorphically onto a dense open subset of $A_{\vec{b}}$.

If $\varphi_{\vec{b}^{\prime}}$ is already defined then we set $A_{\vec{b}}=\varphi_{\vec{b}^{\prime}}\left(A_{b_{m}}\right)$. We have depicted some of the annuli $A_{\vec{b}}$ in Figure 2.

Let us set $A_{m}=\bigcup_{\vec{b} \in \mathbf{B}_{m}} \operatorname{Int} A_{\vec{b}}, A=\bigcap_{m=1}^{\infty} A_{m}$, and $P=\left\{p_{\vec{b}} \mid \vec{b} \in \mathbf{B}\right\}$.
Remarks. 1. Using conformal mappings we can choose $\varphi_{\vec{b}}$ in a canonical way. Namely, we can set $\varphi=\varphi_{1}^{-1} \circ \varphi_{2}$ where φ_{1} is the conformal mapping of Int $A_{\vec{b}}$ onto $A_{r}=\{z: r<|z|<1\}$ such that $\varphi_{1}\left(p_{\vec{b}}\right) \in[r, 1]\left(r\right.$ is uniquely determined by $\left.A_{\vec{b}}\right)$ and φ_{2} is a conformal mapping of $\operatorname{Int} \mathbb{D}$ onto $A_{r} \backslash[-1,-r]$ such that $\varphi_{2}(0)=\varphi_{1}\left(p_{\vec{b}}\right)$.
Lemma 1. A and P are dense in \mathbb{D}.
Proof. The fact that A is dense in \mathbb{D} is an immediate consequence from Baire's theorem.

Figure 2.
Let us prove by induction that each U_{k} contains a point of P. Suppose we know already that this is true for U_{1}, \ldots, U_{k-1}.

Since A is dense, there exists a point z in $A \cap U_{k}$. It belongs to each A_{m}, hence, for any $m=1,2, \ldots$, there is $\vec{b}_{m} \in \mathbf{B}_{m}$ such that $z \in \operatorname{Int} A_{\vec{b}_{m}}$. Let m be the minimal number such that $p_{\vec{b}_{m}}$ was not yet defined at the moment when all of U_{1}, \ldots, U_{k-1} had been used. Then $p_{\vec{b}_{m}}$ must be chosen in Int $A_{\vec{b}_{m}} \cap U_{k}$ because it is non-empty (it contains z).
3. Construction of a fractal tree. Let us define an infinite tree T embedded into \mathbb{R}^{2} as follows. Let $I=[0,1]$ and let $\lambda: I \rightarrow \mathbb{R}^{2}$ be a non-constant linear mapping, say, $\lambda(t)=(t, 0)$. For any $\vec{b} \in \mathbf{B}$, we shall define a linear mapping $\lambda_{\vec{b}}$ inductively as follows. If $m=0$ (i. e., \vec{b} is empty), we set $\lambda_{\vec{b}}=\lambda$. If $\vec{b}=\left(b_{1}, \ldots, b_{m}\right)$ and $\lambda_{\vec{b}^{\prime}}$, is already defined then we set $\lambda_{\vec{b}}(t)=(t-1) e_{\vec{b}}+t a_{\vec{b}}$ where $a_{\vec{b}}=\lambda_{\vec{b}^{\prime}}\left(y\left(b_{m}\right)\right)$, the segment $\lambda_{\vec{b}}(I)=\left[a_{\vec{b}}, e_{\vec{b}}\right]$ is orthogonal to the segment $\lambda_{\vec{b}^{\prime}}(I)$ (the direction is not so important, we can chose it, for instance, as in Figure 3), and the length of the segment $\lambda_{\vec{b}}(I)$ is $3^{-\operatorname{len}(\vec{b})}$; recall that $\operatorname{len}(\vec{b})=\operatorname{len}\left(b_{1}\right)+\cdots+\operatorname{len}\left(b_{m}\right)$. Let $T=\bigcup_{\vec{b} \in \mathbf{B}} \lambda_{\vec{b}}(I)$ (see Figure 3). We shall call the points $a_{\vec{b}}$ and $e_{\vec{b}}$ the nodes and the ends of T respectively. Let us denote the branch at $a_{\vec{b}}$ by $T_{\vec{b}}$, i. e., $T_{\vec{b}}=\bigcup_{\vec{b}<\vec{b}_{1}} \lambda_{\vec{b}_{1}}(I)$. By construction, $T_{\vec{b}} \subset \Delta_{\vec{b}}$ where $\Delta_{\vec{b}}$ is the triangle with vertices $a_{\vec{b}}, e_{\vec{b}}, e_{\vec{b}, 1}$. We depicted in Figure 3 the triangles Δ_{1} and $\Delta_{1,11}$, i. e., the triangles $\Delta_{\vec{b}}$ for $\vec{b}=(1) \in$ \mathbf{B}_{1} and for $\vec{b}=(1,11) \in \mathbf{B}_{2}$.

One can check that $\Delta_{\vec{b}_{1}} \supset \Delta_{\vec{b}_{2}}$ if $\vec{b}_{1} \prec \vec{b}_{2}$ and $\Delta_{\vec{b}_{1}} \cap \Delta_{\vec{b}_{2}}=\varnothing$ otherwise. This implies that the segments of T meet each other only at nodes (in particular, the ends cannot lye on other segments).
4. Construction of the mapping. Let us define $f: \mathbb{D} \rightarrow T$ as $f=\lim _{m \rightarrow \infty} f_{m}$ where the mappings f_{m} are inductively constructed as follows.

Let $f_{0}(z)=\lambda_{0}(F(|z|))$. Then f_{0} is continuous and it contracts each annulus A_{b}

Figure 3
into the node e_{b}. Suppose that f_{m-1} is already constructed. Then we set

$$
f_{m}(z)= \begin{cases}\lambda_{\vec{b}}\left(F\left(\left|\varphi_{\vec{b}}^{-1}(z)\right|\right)\right) & \text { if } z \in \operatorname{Int} A_{\vec{b}} \text { for } \vec{b} \in \mathbf{B}_{m} \\ f_{m-1}(z) & \text { otherwise }\end{cases}
$$

It is clear that if $\vec{b} \in \mathbf{B}_{m}$ then f_{m} maps $A_{\vec{b}}$ onto the segment $\lambda_{\vec{b}}(I)=\left[a_{\vec{b}}, e_{\vec{b}}\right]$ so that $\partial A_{\vec{b}}$ is mapped to the node $a_{\vec{b}}$, the distinguished point $p_{\vec{b}}$ is mapped to the end $e_{\vec{b}}$, and each annulus $A_{\vec{b}, b}$ is contracted to the node $a_{\vec{b}, b}$.

Using the fact that $f_{m}\left(\partial A_{\vec{b}}\right)=f_{m-1}\left(\partial A_{\vec{b}}\right)=a_{\vec{b}}$ for $\vec{b} \in \mathbf{B}_{m}$, it is easy to prove by induction that each f_{m} is continuous.

Let us show that f is continuos. Indeed, when we pass from $f_{m_{1}}$ to $f_{m_{2}}$, we modify $f_{m_{1}}$ on each $A_{\vec{b}}, \vec{b} \in \mathbf{B}_{m_{1}}$, replacing the value $a_{\vec{b}}$ by values lying in $T_{\vec{b}} \subset \Delta_{\vec{b}}$ and the diameter of $\Delta_{\vec{b}}$ tends to zero as $m \rightarrow \infty$. Thus, $\left\{f_{m}\right\}$ is a Cauchy sequence in the metric of uniform convergency.

In fact, f can be characterized as the continuous mapping $\mathbb{D} \rightarrow \mathbb{R}^{2}$ uniquely defined either by the condition $f\left(\partial A_{\vec{b}}\right)=a_{\vec{b}}$ for any $\vec{b} \in \mathbf{B}$ or by the condition that $f\left(A_{\vec{b}}\right)=T_{\vec{b}}$ for any $\vec{b} \in \mathbf{B}$.

Since f is constant on $\partial \mathbb{D}$, it can be consedered as a continuous mapping of the sphere obtained from \mathbb{D} by contracting the boundary. Let E be the set of ends of T, i.e. $E=\left\{e_{\vec{b}} \mid \vec{b} \in \mathbf{B}\right\}$. It is clear that each point of E has only one preimage and $f^{-1}(E)=P$ is dense in the sphere.

[^1]
[^0]: ${ }^{1}$ This note is published as an appendix to Daciberg Gonçalves' paper "The size of multiple points of maps between manifolds" (to appear in Topology Proceedings).

[^1]: IMT, Université Paul Sabatier, 118 route de Narbonne, 31400 Toulouse, France E-mail address: orevkov@math.ups-tlse.fr

