
ON RATIONAL CUSPIDAL CURVES I. SHARP

ESTIMATE FOR DEGREE VIA MULTIPLICITIES

S.Yu. Orevkov

Abstract. Let C ⊂ P2 be a rational curve of degree d which has only one analytic branch at

each point. Denote by m the maximal multiplicity of singularities of C. It is proved in [MS]
that d < 3m. We show that d < αm + const where α = 2.61... is the square of the ”golden
section”. We also construct examples which show that this estimate is asymptotically sharp.
When κ̄(P2 − C) = −∞, we show that d > αm and this estimate is sharp.

The main tool used here, is the logarithmic version of the Bogomolov-Miyaoka-Yau in-
equality. For curves as above we give an interpretation of this inequality in terms of the
number of parameters describing curves of a given degree and the number of conditions

imposed by singularity types.

Let C be an algebraic curve in P2 (over C) which is homeomorphic to CP1.
This means that C is rational and cuspidal, i.e. all its singularities are cusps where

cusp means a singularity at which the curve has only one analytic branch. Such curves
were studied, for instance, in [Y1-Y3], [Ka], [MS], [FZ2], [OZ3].

Denote by mp the multiplicity of C at a point p (i.e. mp = (C · L)p for a generic line
L). Let d be the degree of C and m = maxp∈C mp.

Put α = (3 +
√

5)/2 = 2.6180... (α is a root of α + 1
α = 3).

Theorem A. d < α(m + 1) + 1/
√

5 = αm + 3.0652...

For m > 10 this estimate is stronger than the estimate d < 3m obtained by T. Matsuoka
and F. Sakai [MS] though the method of the proof is very similar. Denote by κ̄(Y ) the
logarithmic Kodaira dimension of a non-complete surface Y (see [F]).

Theorem B.
(a). If κ̄(P2 \ C) = −∞ then d < αm.

(b). If κ̄(P2 \ C) = 2 then d < α(m + 1) − 1/
√

5 = αm + 2.1708...
(c). κ̄(P2 \ C) 6= 0.

Denote by ϕ0, ϕ1, ϕ2, . . . the Fibonacci numbers: ϕ0 = 0, ϕ1 = 1, ϕk+2 = ϕk + ϕk+1.

Theorem C. For any j > 0, j 6≡ 2 mod 4 there exists a rational cuspidal curve Cj of
degree dj = ϕj+2 which has a single cusp of multiplicity mj = ϕj . Thus, lim dj/mj = α.

(a). ([Ka]; see Remark 3) If j is odd then κ̄(P2 \ Cj) = −∞ and the cusp of Cj has
one characteristic pair (mj , nj) where nj = ϕj+4.

(b). If j is even (and hence, divisible by 4) then κ̄(P2 \ Cj) = 2. The cusp of Cj for
j = 8, 12, ... has two characteristic pairs1 (ϕj, ϕj+4) and (3, 1); the cusp of C4 has one
characteristic pair (ϕ4, ϕ8 + 1) = (3, 22).

Partially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502
1See the definition in §3.
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2 S.YU. OREVKOV

(c). For any j > 0, j ≡ 0 mod 4 there exist a rational cuspidal curve C∗
j of degree

d∗
j = 2ϕj+2 which has a single cusp of multiplicity m∗

j = 2ϕj. κ̄(P2 \ Cj) = 2. The cusp
of C∗

j for j = 8, 12, ... has two characteristic pairs (2ϕj , 2ϕj+4) and (6, 1); the cusp of C∗
4

has one characteristic pair (2ϕ4, 2ϕ4 + 1) = (6, 43).

Since {dj/mj} with odd j is the sequence of the upper convergents of the continuous
fraction of α, Theorem C.a shows that the estimate in Theorem B.a is ”sharp” in the
following sense: the convex hull of all pairs (m,d) ∈ Z2 satisfying m + 1 ≤ d < αm
coincides with the convex hull of all pairs (m,d) realizable by rational cuspidal curves C
with κ̄(P2 \C) = −∞ (obviously, the opposite bound m+1 ≤ d is sharp due to the curves
y = xd).

In contrary, the curves C4k and C∗
4k provide examples where d > αm.

Conjecture.C4k and C∗
4k are the only rational cuspidal curves with d > αm.

It is possible to prove that this conjecture follows from Conjecture 2.3. The first six pairs
(m,d) with d > αm which are not realized by Theorem C and which are neither forbidden
by Theorem A nor by the theorem of Matsuoka—Sakai [MS] are (4, 11), (5, 14), (6, 17),
(7, 19), (7, 20), and (ϕ6, ϕ8) = (8, 21). Using successive birational quadratic transforma-
tions the author checked that the cases (4, 11) and (8, 21) are not realizable. For example,
in the case (8, 21) the only candidate is the curve of degree 21 with two cusps of types
(8, 55) and (2, 3). After 8 quadratic transformations such a curve would be transformed
into the cuspidal cubic with two inflection points.

Remark 1. The curve C1 is a conic. C3 is a quintic with the cusp A12 (see [DG], [Y1]).

Remark 2. The idea how to pass from the construction of C4k to the construction of C∗
4k

belongs to E. Artal.

Remark 3. A curve C is rational cuspidal and satisfies the condition κ̄(P2 \ C) = −∞ if
and only if C is a fiber of a rational function on P2 all whose fibers (with the indeterminacy
point removed) are isomorphic to C1. H. Kashiwara [Ka] has classified all such functions.
Our curve C2l+3 (l ≥ 0) is one of the multiple fibers2 of a function of the type II(l)∗. The
degree is computed in [Ka; 7.2]; It is possible to compute by induction the multiplicity of
the cusp using the recurrence relations (written in [Ka; 11.1]) for the defining polynomial.

Remark 4. It is shown in [MS] that each of the rational cuspidal curves known up to that
moment, can be mapped onto a line by a birational transformation of P2. It is clear from
the construction that the curves Cj from Theorem C satisfy this property. The only known
to the author new series of examples appeared in literature after the paper [MS], is the
series of rational tricuspidal curves constructed by H. Flenner and M. Zaidenberg [FZ2].
It is shown in [A] that they also can be mapped onto a line by Cremona transformations.

The main tool used, is the logarithmic version of Bogomolov — Miyaoka — Yau inequal-
ity. In the case of rational cuspidal curves we give (see the end of §2) an interpretation
of this inequality in the form #equ ≤ 5 + #var where #var and #equ are respectively
the number of variables and the number of the equations in the system of simultaneous
equations which appears if one wants to construct a rational curve of a degree d with
the given list of types of singular branches using a parameterization by polynomials with
indeterminate coefficients.

I am grateful to E. Artal and M.G. Zaidenberg for useful discussions.

2The left one on the picture in [Ka; 6.1] where the graphs of resolution are described.
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§1. M -number of a singularity of a plane curve

Let (C, 0) be a germ of an analytically irreducible curve in a neighborhood U of 0 ∈ C2

and let σ : (X,D,E) → (U,C, 0) be the minimal resolution of singularity of C at 0, i.e. σ
is birational, D = σ−1(C) is a curve with simple normal crossings (SNC-curve) and (X,D)
is minimal possible under these conditions.

Let VE be the vector space over Q formally generated by the irreducible components
E1, ..., En of E and V +

E = {ΣxiEi |xi ≥ 0}. Define DE and KE as the elements of VE

such that EiDE = EiD and Ei(Ei + KE) = −2 for any i = 1, ..., n. Since the intersection
form on E is non-degenerate, these elements exist and are unique.

Following [F], we define a twig of D as T = Ei1 + ... + Eim
such that Eij

Eik
= 1 for

|j − k| = 1, Eij
Eik

= 0 for |j − k| > 1, Ei1(D − T ) = 1 and Eij
(D − T ) = 0 for j > 1.

By the local Zariski–Fujita decomposition near E we mean KE + DE = HE + NE where
HE ∈ VE and NE ∈ V +

E are such that

(i). suppNE is contained in the union of all twigs of D;
(ii). HE · Ei ≥ 0 for all i = 1, ..., n; (iii). HE · Ei = 0 for Ei ⊂ suppNE .

Let µ = µ(C,0) be the Milnor number of (C, 0) and put

M = M(C,0) = µ + H2
E ; M = M (C,0) = µ + (KE + DE)2.

Since the intersection form is negatively definite, we have µ > M > M . In §4 we prove
some other inequalities for µ and M .

We shall call the number M (resp. M) the rough (resp. fine) M -number of the singu-
larity (C, 0). When the singularity is analytically irreducible, the rough M -number M will
be called also the parametric codimension of (C, 0) (see Proposition 3.4 for the motivation
of this term).

In this paper we are going to use the language of Puiseux characteristic pairs but the
authors of [MS] studying similar problems use an alternative language of multiplicity
sequences. To compare these approaches, we give an expression of M in terms of the
multiplicity sequence. It will not be used in the sequel. Let (m1,m2, . . . ,mn) be the
multiplicity sequence of (C, 0), i.e. the sequence of multiplicities of C in all the points
which were blown up during the resolution process. Following [MS], we say that a blow-
up is subdivisional if it is performed at an intersection point of two exceptional curves.
Otherwise, it is called sprouting. By convention, the first blow-up is subdivisional. Let
ω = ω(C,0) denote the number of subdivisional blow-ups. Then

µ =
∑

mi(mi − 1) (see [Mi]); M = ω − 2 +
∑

(mi − 1) (see [OZ2; (37)]).

§2. BMY-inequalities

Let X be a smooth projective surface and D ⊂ X a reduced (maybe, reducible) SNC-
curve. As usual, by κ̄ we denote the logarithmic Kodaira dimension. Let K = KX be the
canonical class of X. If κ̄(X \ D) ≥ 0, i.e. |m(K + D)| 6= 0 for infinitely many m, then
(see [F]) there exists the Zariski decomposition K + D = H + N where H,N ∈ Pic X ⊗Q
are such that

(i). N is effective and the intersection form is negatively definite on the subspace VN ⊂
Pic X ⊗ Q generated by the irreducible components of N ;

(ii). HC ≥ 0 for any effective C ∈ Pic X; (iii). H is orthogonal to VN .

By (iii) we have (K + D)2 = H2 + N2 where N2 ≤ 0. Thus, H2 ≥ (K + D)2. We
shall use the following logarithmic form of the Bogomolov – Miyaoka – Yau (log-BMY)
inequality.
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Theorem 2.1. (a). (Miyaoka [My]) If κ̄(X \ D) ≥ 0 then (K + D)2 ≤ 3e(X \ D);
(b). (Kobayashi—Nakamura—Sakai [KNS]) If κ̄(X \ D) = 2 then H2 ≤ 3e(X \ D);
where e() denotes the topological Euler characteristic.

Let C ⊂ P2 be an algebraic curve of degree d and σ : (X,D) → (P2, C) be the
minimal resolution of the singular points p1, ..., ps of C. Let Ei = σ−1(pi) and denote by
Vi, i = 1, ..., s the subspace of V = Pic X ⊗ Q generated by the irreducible components
of Ei. Let V0 = σ∗((PicP2) ⊗ Q), i.e. V0 is generated by the transform of a generic line.
Then V = V0 ⊕ ... ⊕ Vs is a direct sum of pairwise orthogonal subspaces.

Suppose that κ̄(X\D) ≥ 0 and let K+D = H+N be the Zariski decomposition. Denote
by Ki, Di, Hi the orthogonal projections of K, D, H onto Vi (i = 0, ..., s). Obviously,
that Ki and Di (i > 0) coincide with KEi

, DEi
introduced in §1 and it follows from [F,

Theorem (6.20)] that Hi = HEi
under some additional conditions which are satisfied in

out case when κ̄(P2 \ C) = 2. Clearly, that (K0 + D0)
2 = H2

0 = (d − 3)2, hence,

(K + D)2 = (d − 3)2 +
s

∑

i=1

(Ki + Di)
2; H2 = (d − 3)2 +

s
∑

i=1

H2
i ; (1)

If C is rational and cuspidal (see Introduction) then by genus formula we have

∑

µi = (d − 1)(d− 2) (2)

and e(X \D) = 1. Combining (1) and (2), we rewrite the log-BMY inequalities as follows.

Corollary 2.2. Let C ⊂ P2 be a rational cuspidal curve of degree d and M1, ...,M s (resp.
M1, ...,Ms) be the rough (resp. fine) M -numbers of its singularities (see §1). Then

M1 + · · · + M s ≤ 3d − 4, if κ̄(P2 − C) ≥ 0; (3)

M1 + · · · + Ms ≤ 3d − 4, if κ̄(P2 − C) = 2. (4)

The factor of the family of rational curves in P2 by the action of the group PGL(3) is
(3d − 9)-dimensional. Thus, according to Proposition 3.4 below, the inequality (3) has a
very natural interpretation as follows.

Given a list of singularity types satisfying (2), let us try to realize this list by a rational
curve of a given degree. To this end let us write down its polynomial parameterization
(f1(t) : f2(t) : f3(t)). Fix some coefficients to cancel the action of PGL(3) and PGL(2)
and consider the others as indeterminates. Add also indeterminates t1, ..., ts which are the
values of t where we are going to put the singularities. Then each singularity type imposes
some number of equations for the indeterminates. Thus, (3) means:

If (the total number of the equations) > 5 + (the number of the indeterminates) then
the system of simultaneous equations has no solution.

This speculation leads us to the following

Conjecture 2.3. If C ∈ P2 is a rational (not necessarily cuspidal) curve then
∑

M i ≤
3d − 9 where the sum is taken over all irreducible analytical branches of C.

The question ”What singularities may have a plane rational curve of a given degree?” is
discussed in [SS] for affine curves parametrized by two polynomials in one variable. In this
case, 2.3 can be formulated as a generalization of a Davenport theorem which estimates
deg(p(t)a − q(t)b) via deg p and deg q.
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§3. Puiseux characteristic sequence

Let (C, 0) be a germ of an analytically irreducible curve in C2. of multiplicity m and let
x = tm, y = amtm + am+1t

m+1 + . . . be its analytic parameterization. Put k0 = d1 = m
and define recursively

ki = min{k | ak 6= 0 & k 6≡ 0 mod di}, di+1 = gcd(di, ki), i = 1, 2, ...

Then m = k0 < k1 < k2 < . . . and m = d1 > d2 > . . . . Let h is defined by the
conditions dh > 1, dh+1 = 1 and put q1 = k1, qi = ki − ki−1, i = 2, ..., h. The sequence
Ch(C, 0) = (m; q1, q2, ..., qh) will be called the characteristic sequence of the singularity
(C, 0). and the pairs (di, qi) will be called the characteristic pairs3. When C is smooth at
p we put h = 0, Ch(C, p) = (1; ) . The following statement is well-known.

Proposition 3.1. Let σ : X → C2 be the blowing up of the origin, E = σ−1(0), and p
a point on E. Let (C, p) be the germ at p of an analytically irreducible curve on X. Let
k = (C · E)p and Ch(C, p) = (m; q1, q2, ..., qh). Then

Ch(σ(C), 0) =

{

(k; k + m, q2, . . . , qh) if k = q1,

(k; k + m, q1 − k, q2, . . . , qh) if k < q1.

If a curve C1 ⊂ X is transversal to E and (C1 · C)p = k1 then (σ(C1) · σ(C))0 = k + k1.

For a complete SNC-curve E on a smooth surface X let us denote by d(E) the dis-
criminant of its dual weighted graph which is defined as d(E) = detAE where AE =
|| − Ei · Ej ||ni,j=1 is the intersection matrix of the irreducible components of E. Put by
definition d(∅) = 1.

Proposition 3.2. (see, for instance, [EN]). Let (X,D,E) → (C2, C, 0) be the minimal
resolution of the singularity of C (like in §1). Then the dual graph of E ∪ C looks like

−
q1
d2− − ◦

|

|

−
d1

d2

q2
d3− − ◦

|

|

−
d2

d3

q3
d4− − ◦

|

|

−
d3

d4

. . . − ◦
|

|

−
qh− − ◦

|

|

−−
dh

−−C
′

◦

where the dashed lines mean linear chains of vertices, the numbers written near them are
their discriminants and C ′ denotes the proper transform of C.

Denote by ⌈a⌉ the minimal integer which is ≥ a.

Proposition 3.3. Let µ be the Milnor number and M , M the rough and fine M -numbers
(see §1) of (C, 0). Then one has

µ = 1 − d1 +

h
∑

i=1

qi(di − 1); (5)

M = d1 − 2 +
h

∑

i=1

(

qi − ⌈ qi

di
⌉
)

; (6)

3This definition differs from the standard one.
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M = d1(1 − q−1
1 ) − 1 +

h
∑

i=1

qi(1 − d−1
i ). (7)

The formula (5) is classical (see [Mi, p.93]); a proof of (6) (and of (5) as well) is written
in [OZ1; (11), (13)]; (7) can be proved the same way as [OZ1; 5.2(ii)] (see also [OZ2;
p.169]);

The next statement (as well as its proof) is not quite rigorous and we shall not use it
in the sequel. We formulate it only as a motivation of the Conjecture 2.3.

Proposition 3.4. M coincides with the codimension of the stratum of topological equi-
singularity of a generic family of mappings ∆ → C2 where ∆ ⊂ C1 is a disk (parametrical
analogue of the µ = const stratum).

Proof. Let F = {fu}u∈U , fu(τ) = (xu(τ), yu(τ)), τ ∈ C1, u = (u1, u2, ...) be a given
family and m the multiplicity of f0. Let Fe be the equisingularity stratum of f0 and

F0 = {fu | ∃τ0 such that x′
u(τ0) = ... = x

(m−1)
u (τ0) = 0}. Then Fe ⊂ F0 ⊂ F and

codimF0 = m − 1. Let v = (v1, v2, ...) be coordinates on F0. For fv ∈ F0 there exists

a unique (up to multiplication by m
√

1) reparametrization τ = τ(t) such that xv(τ(t)) −
xv(τ0) = tm. Put yv(τ(t)) =

∑

aktk. Then ak are analytic functions of v. The fact that
the characteristic sequence of fv coincides with that of f0 is equivalent to vanishing of
certain finite number of coefficients ak. The number of them is easy to calculate from the
definition of the characteristic sequence. It remains to compare the answer with (6).

§4. Some estimates for M -numbers

Let the notation be the same as in §3.

Lemma 4.1.
M − µ

m
> m − 3. (8)

Proof. By (6), using that d1 = m and ⌈qi/di⌉ ≤ (qi + di − 1)/di, we obtain

M ≥ m − 2 +
h

∑

i=1

(qi − 1)(1 − d−1
i ). (9)

Dividing (5) by m, we get

µ

m
=

1

m
− 1 +

h
∑

i=1

qidi

m

(

1 − 1

di

)

, hence, (10)

M − µ

m
= m − 2 +

∑

i≥2

(

qi

(

1 − di

m

)

− 1
)(

1 − 1

di

)

subtract (10) from (9)

≥ m − 2 −
∑

i≥2

dim
−1(1 − d−1

i ) use qi ≥ 1

≥ m − 2 −
∑

i≥2

dim
−1.

It remains to note that di+1 ≤ di/2, hence, di ≤ m/2i−1, thus,
∑

i≥2 di/m < 1. �
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Corollary 4.2. [OZ1; 6.2].

M ≥ µ

m
(11)

Proof. For m > 2 apply (8). If m = 2 then M = µ/m. �

Lemma 4.3.

M ≥ µ − 1

m
+ m − m(m − 1)

µ + m − 1
(12)

and one has ”=” in (12) if and only if h = 1.

Proof. Denote µ + m− 1 by A. Since d1 = m, we have A =
∑h

i=1 qi(di − 1). Then by (5),
(7) we have

M − µ

m
− m +

1

m
= −d1

q1
+

∑

i≥1

qi

di
(di − 1) −

∑

i≥1

qi

d1
(di − 1) = B − d1

q1
,

where B =
∑

i≥2 qi(di − 1)(d−1
i − d−1

1 ). In this notation (12) is equivalent to B ≥ d1/q1 −
m(m − 1)/A, and transforming the right hand side as

d1

q1
− m(m − 1)

A
=

d1(A − q1(d1 − 1))

q1A
=

d1

q1A

∑

i≥2

qi(di − 1),

we rewrite (12) in the form

∑

i≥2

qi(di − 1)(d−1
i − d−1

1 ) ≥ d1

q1A

∑

i≥2

qi(di − 1)

To prove this inequality, it is sufficient to verify that for each i ≥ 2 one has d−1
i − d−1

1 >
d1/(q1A). Indeed, d1 ≥ 2d2 ≥ 2di, hence d1 − di ≥ di. We have also q1 > d1 and A ≥
q1(d1−1) ≥ q1 > d1. The product of the last three inequalities yields (d1−di)q1A > did

2
1.

It remains to divide the both sides by d1diq1A. �

Corollary 4.4.

M ≥ µ

m
+ m − 1 − 1

m(m + 1)
(13)

Proof. Apply to the µ in the denominator in (12) the estimate (see (7)). µ ≥ 1 − d1 +
q1(d1 − 1) = (q1 − 1)(d1 − 1) ≥ m(m − 1). �

§5. Proofs of Theorems A and B.

Let C ⊂ P2 be a rational cuspidal curve such that κ̄(P2 \C) = −∞. According to [W],
in this case C has only one cusp (denote it by p). Let (X,D) → (P2, C) be the minimal
resolution of the singularity of C at p. Denote by C ′ the proper transform of C.
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Lemma 5.1. (C ′)2 ≥ −1.

Proof. X is a smooth surface and D is an SNC-curve on it such that X \ D is Q-acyclic
and κ̄(X \D) = −∞. All such pairs (X,D) are described more or less explicitely in [FZ1;
4.9, 4.10]. One can see from this description that if such a pair is minimal (D contains no
(−1)-curve of valence 2) then D contains a twig (see §1) whose intersection matrix is not
negatively definite.

In our case the dual graph of D is shown in Proposition 3.2 and all the linear chains
denoted by dashed lines are negatively definite. Thus, (C ′)2 can not be ≤ −2 because this
would imply that the graph is minimal and all linear chains are negatively definite. �

Let d = deg(C) and (di, qi), i = 1, ..., h, d1 = m be the characteristic pairs of C at p
(see §3). By (2) and (5) (recall that C has only one cusp) we have

d2 − 3d + 2 = 1 − m +
∑

qi(di − 1). (15)

It is not difficult to see that (C ′)2 = d2 − ∑

qidi (see, for instance, the last formula on
p.109 in [OZ1]). Hence, by Lemma 5.1, we have d2 −

∑

qidi ≥ −1. Subtracting (15) from
this formula, we obtain

3d − m ≥
∑

qi. (16)

Thus, (d2 − 3d +2) + (m− 1)
(15)
=

∑

qi(di − 1) ≤ ∑

qi(m− 1)
(16)

≤ (3d−m)(m− 1). Hence,
d2 − 3dm + m2 ≤ −1 and the part (a) of Theorem B is proven.

Remark. The curves from Theorem C.a provide ”=” in all the above inequalities.

Proof of the part (c) of Theorem B. The classification of pairs (X,D) where X is a smooth
surface and D a minimal SNC-curve on X such that κ̄(X \D) = 0 under some additional
conditions is obtained by Fujita [F, (8.64)] and those of them which are Q-acyclic are
listed in [FZ1, 5.14 and Fig. 16]. The dual graphs of four of them are shown on Fig. 1(a)
– (d) and all the others are obtained from the graph on Fig. 1(e) by the operation which is
called in [FZ1] a comb-attachment. It is a sequence of blow-ups such that the center of the
next one lies on the exceptional curve of the previous one and the last exceptional curve
is not included into D. Thus, if C ⊂ P2 is a rational cuspidal curve with κ̄(P2 \C) = −∞
and (X,D) → (P2, C) is its minimal resolution then either D coincides with one of the
graphs listed above (case 1), or D is obtained from one of them by a sequence of blow-ups
and C ′ (the proper transform of C) is the is the last exceptional curve (case 2).

Case 1. Easy to see that none of the vertices on the graphs (a) – (d) can be chosen
as the curve C ′, because each vertex has a connected component Γ of the complement
such that d(Γ) 6= 1. Let us show that the graph (e) is also impossible. Denote by p the
point where the comb-attachment was done and by D0 the central component. If C ′ 6= D0

and p 6∈ D0 then the complement of C ′ contains a vertex with weight 0. Otherwise, for
each choice of C ′, one of the connected components of its complement contains a vertex
incident to two twigs, each of them is −−◦−2. But the Proposition 3.2 shows that two twigs
with equal discriminants at the same vertex can not exist.

Case 2. Since D \ C ′ is obtained as a minimal resolution of singularities, each vertex
connected to C ′ with an edge is a (−1)-curve of valence 3 (in D). This is possible only
for the graph (e) when C ′ is connected with the central vertex and we can apply the same
arguments as in the case 1. �

Proof of Theorem A. If κ̄(P2 \C) = −∞ then the part (a) of Theorem B provides even a
stronger estimate, so, we suppose that κ̄(P2 \C) ≥ 0 and we may apply (3). Let p1, ..., ps
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(a).

-2 -2 -1 -2 -2 -2 -2 -2

-2 (b).

-2 -2 -2 0 -2 -2 -2

-2

(c).

-2 -2 1 -2 -2

-2

-2
(d).

-2 -2

-n n

-2 -2
(e).

-2 -2

-n 0 2-n

-2 -2

Fig. 1.

be the singular points of C. Denote by mi, µi, M i respectively the multiplicity, the Milnor
number and the rough M -number (see §1) of pi. Without loss of generality we may suppose
that m = m1 ≥ m2 ≥ · · · ≥ ms. By (2) we have µ1 = (d − 1)(d − 2) − (µ2 + µ3 + . . . ),
hence, by (3) and (8),

3d − 4 ≥
∑

M i >
µ1

m
+ m − 3 +

∑

i≥2

M i =
d2 − 3d + 2

m
+ m − 3 +

∑

i≥2

(

M i −
µi

m

)

.

By (11) the last sum is non-negative, hence, f(d) < 0 where f(x) = (x2 − 3x + 2)m−1 −
3x+m+1. But f

(

α(m+1)+5−1/2
)

= 11/(5m) > 0 and f ′(x) > 0 for x ≥ 3(m+1)/2. �

Proof of the part (b) of Theorem B. Repeating word by word the proof of Theorem A
(replacing M i with Mi and using (13) instead of (8), we arrive to f(d)+2−(m2 + m)−1 ≤ 0.
Evaluating this expression for d = α(m + 1) − 5−1/2 we obtain (1/5)(m− 4)(m2 + m)−1.
This quantity is positive for m > 4. It remains to note that for m ≤ 4 the required
estimate is weaker than the estimate d < 3m proven in [MS]. �

§6. Examples (proof of Theorem C)

Let, as in Introduction, ϕ0 = 0, ϕ1 = 1, ϕi+2 = ϕi + ϕi+1 be the Fibonacci numbers.
Put also ϕ−a = (−1)a+1ϕa. We shall need the following identities:

a). ϕa−2 + ϕa+2 = 3ϕa; c). ϕ2
a − ϕa−2ϕa+2 = (−1)a;

b). ϕ2
a − ϕa−1ϕa+1 = (−1)a+1; d). ϕa−3ϕa+3 − ϕa−1ϕa+1 = 3 · (−1)a. (17)

Proof. (a) is just the sum of the identities ϕa−2 + ϕa−1 = ϕa, ϕa+1 − ϕa−1 = ϕa and
ϕa+2 − ϕa+1 = ϕa; (b) can be easily proven by induction [V; (1.8)].

(c). (−1)a by (b)
= ϕa−1ϕa+1 −ϕ2

a = (ϕa −ϕa−2)(ϕa+2 −ϕa)−ϕ2
a = (ϕa−2 + ϕa+2)ϕa −

2ϕ2
a − ϕa−2ϕa+2

by (a)
= ϕ2

a − ϕa−2ϕa+2.
(d). By (a) we have ϕa±3 = 3ϕa±1 −ϕa∓1. Putting this into (d), we transform (d) into

(b) multiplied by 3. �

Fix a nodal cubic N ⊂ P2. Let p0 be its node and P1, P2 the analytic branches
of N at p0. Define a birational transformation f : P2 − − → P2 as follows. Blow up
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7 infinitely close points of P1 at p0. Denote by E1, . . . , E7 the exceptional curves and
by E0 the proper transform of N . Then E2

0 = E2
7 = −1, E2

1 = · · · = E2
6 = −2,

E0 · E1 = E1 · E2 = · · · = E6 · E7 = E7 · E0 = 1 and the other intersections are zeros. E0

and E7 are symmetric to each other in the obtained configuration. Hence, we can blow
down E0, . . . , E6 and the image of E7 will be again a nodal cubic. Since all nodal cubics
are projectively equivalent, we may assume that E7 is mapped onto N and E0, . . . , E6

onto infinitely close points of P2.
Denote by C−3 the tangent to P1, by C−1 the tangent to P2, and by C0 the tangent

to N at a flex point. Let C∗
0 be a conic4 which intersects N only in one point which is a

smooth point of N . To find such a conic, note that v = u(1 − u)2 and v = u − 2u2 have
the contact of order 3 at (0, 0), hence v2 = u(1 − u)2 and v2 = u − 2u2 have the contact
of order 6.

Now, let us define recurrently:

Cj = f(Cj−4), j > 0, j 6≡ 2 mod 4; C∗
4k = f(C∗

4k−4), k = 1, 2, . . .

Since f is biregular on P2 \ N , these curves are rational and unicuspidal. The fact that
their characteristic sequences at p0 are like it was described in Theorem C, can be easily
proven by the simultaneous induction together with the assertion that

kj,1 = ϕj , kj,2 = ϕj+4, j = −3, −1, 0, 1, 3, . . .

k∗
j,1 = 2ϕj , k∗

j,2 = 2ϕj+4, j = 4, 8, 12, . . .

where kj,ν = Cj · Pν and k∗
j,ν = C∗

j · Pν . Indeed, using Proposition 3.1, easy to check
that mj+4 = kj+4,1 = kj,2 and kj+4,2 = 7kj,2 − mj . It remains to apply the evident
identity ϕj−4 − 7ϕj + ϕj+4 = 0 which is the sum of the identities (17.a) for a = j ± 2

and three times for a = j. To find dj = deg(Cj), note that (dj − 1)(dj − 2)
(2),(5)

=

(ϕj −1)(ϕj+4−1)+1+(−1)j (17a,c)
= (ϕj+2−1)(ϕj+2−2). Hence, dj = ϕj+2. Analogously,

deg(C∗
j ) = 2ϕj+2.

The fact that κ̄(P2 \ C2k+1) = −∞ follows from [Ka] (see Remark 3 in Introduction).
Let us show that κ̄(P2\C4k) = 2. The fact that κ̄ 6= 0 and κ̄ 6= −∞, follows from Theorem
B.c and Lemma 5.1 respectively. To show that κ̄ 6= 1, we shall use the explicit classification
of Q-acyclic surfaces with κ̄ = 1 obtained in [GM] and exposed in [FZ1; 5.7–5.11] in a
form convenient for our purposes. We shall use the terminology and notation of [FZ1].
The pair (X̄, D̄) is called pre-Q-acyclic if D̄ is an SNC-divisor on a smooth surface X̄ and
maybe after some comb-attachments (see [FZ1] or the proof of B.c in §5) one can obtain
a pair (X,D) such that X \D is Q-acyclic. All the pre-Q-acyclic pairs with κ̄ = 1 belong
to four classes which are denoted in [FZ1] by (A1), (A2), (B1) and (B2).

A computation of the discriminant of the dual graphs (it is done, for instance, in [O])
easily shows that the surfaces in the cases (A2) and (B2) are already Q-acyclic and the
surfaces (A1) and (B1) become Q-acyclic after a single comb-attachment.

Hence, the surfaces from (A2) and (B2) are impossible for our curve C4k because their
graphs do not coincide with the graph of the resolution (In the case (B2) the number of
the broken chains must be 2, but then the sum of the weights of the vertices of valence 3
is −2).

The case (A1) is impossible because any choice of the comb-attachment preserves a
vertex incident to two twigs of the form −−−−◦−2. It remains to consider the case (B1).

4The idea to use this conic belongs to E. Artal
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By [FZ1; 5.11] the number of the broken chains must be two. Hence, the graph of the

resolution is obtained by a single comb-attachment from a graph >
−n◦−−−−0◦−−−−n−2◦< . The

resulting graph has only two vertices of valence ≥ 3 and they are connected by an edge. It
is possible only if a single blow-up was performed and if it was done at the central vertex.

The result of this operation is >
1−n◦−−−−−−n−1◦< . Such a graph is impossible because the

weights of the vertices of valence 3 must be negative. The case of C∗
4k is treated the same

way.
Now let us write the formulas for the constructed curves. To this end we decompose f

into a product of quadratic transformations. Let f = π2 ◦ π−1
1 , where πi : X → P2 are

the birational morphisms. Denote by L and C the proper transform on X (with respect
to π1) of C−3 and f−1(C−1) — the line and the conic which have the maximal possible
contact with P1. Then f can be presented as

[E0, L,C] → [E0, E3, C] → [E0, E3, E6] → [E7, E4, E1] → [E7, E4, L] → [E7, C,L].

This means that the result of each quadratic transformation is the variety obtained from
X by blowing down all the curves L, C, E0, . . . , E7 except the three curves listed in the
brackets. Each of these quadratic transformation can be easily written by formulas:

x1 = xy, x2 = x1z1 − y2, x′
2 = y2z2, x′

1 = x′
2z

′
2, x′ = x′

1
2
;

y1 = y2, y2 = y1z1, y′
2 = x2z2, y′

1 = y′
2z

′
2 + x′

2
2
, y′ = x′

1y
′
1;

z1 = yz − x2, z2 = z2
1 , z′2 = x2y2, z′1 = z′2

2
, z′ = x′

1z
′
1 + y′

1
2
.

y=0 L

C

E0
x=0

z=0

E3

E0
C E0

E3

E6 E4

E7

E1

E7

LE4

E7

L Cx’=0

z’=0

y’=0

The last two transformations are chosen to be symmetric to the first two, to guarantee
that N → N and P1 → P2. Performing all the substitutions we obtain f(x : y : 1) = (x′ :
y′ : z′) where

x′ = p1q
2, y′ = qp3, z′ = p3

1 − xy(4y − x2)p2
1 + y4(2y + x2)p1 − xy7,

and p1 := y − x2, q := xy − x3 − y3, and p3 := p2
1 − 2xy2p1 + y5. The equations p1 = 0,

p3 = 0, q = 0 define C1, C3, and N . Put p0 := 3x + 3y + 1. Then p0 = 0 can be chosen as
C0 and substituting u = −4(x + y)/p0, v = 4(x− y)/p0 into the above equation of C∗

0 we
get 21x2 − 22xy + 21y2 − 6x − 6y + 1 = 0.

The multiplicity sequences of Cj at p0 is (ϕj, Sj , Sj−4, . . . , Sν) and where j = 4k + ν,
ν = 3, 4, 5, k = 0, 1, . . . and Si denotes the subsequence (ϕi, ϕi, ϕi, ϕi, ϕi, ϕi − ϕi−4). In
the case of C∗

j all the multiplicities should be multiplied by 2.
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§7. Open fans and linear chains of rational curves

To deal with linear chains of rational curves on a smooth surface X, it is conve-
nient to use the following language. We shall call an open fan a sequence of vectors
c = (v0, . . . , vn+1), vi ∈ Z2 such that vi ∧ vi+1 = 1 for i = 0, . . . , n. We use here the
natural identification ∧2Z2 = Z assuming (a, b) ∧ (c, d) = ad − bc. Given any sequence of
integers (a1, . . . , an), one can construct an open fan c as above such that vi ∧ vi+1 = 1 for
i = 0, . . . , n and vi−1 ∧ vi+1 = −ai for i = 1, . . . , n. Clearly that c is uniquely defined up
to the action of SL2(Z) and we shall write c = c(a1, . . . , an).

Let X be a smooth surface and D = D1 + · · ·+ Dn a linear chain of rational curves on
X (i.e. DiDj = 0 for |i − j| > 1, DiDj = 1 for |i − j| = 1). Put c(D) = c(D2

1, . . . ,D
2
n).

It is convenient to denote by D0 (resp. Dn+1) the germ of a generic analytic curve which
meets D1 (resp. Dn+1) transversally.

Given an open fan c = (v0, . . . , vn+1), we define its rotation number as rot(c) =
∑n

i=0 ai

where ai is the oriented angle from vi to vi+1 (all ai are positive by the definition of open
fan). This definition depends on the choice of a base in Z2.

Given a vector v ∈ Z2, let Av be the triangular automorphism of Z2 defined by Avu =
u + (v ∧ u)v. Recall that d(D) denotes the discriminant of D (see §3).

Proposition 7.1. (a). If X̃ is obtained by blowing up a point Di ∩ Di+1 (i = 0, ..., n)

and D̃ is the total transform of D then c(D̃) = (v0, . . . , vi, vi + vi+1, vi+1, . . . , vn+1).

(b). If X ′ is obtained by blowing up a smooth point of Di (i = 1, ..., n) and D′ is the
strict transform of D then c(D′) = (v0, . . . , vi, Avi

vi+1, . . . , Avi
vn+1).

(c). d(D) = v0 ∧ vn+1.

(d). Let n+ be the number of positive squares in a diagonalization over Q of the inter-
section matrix AD = ||Dj · Dj ||. Then n+ = ⌈rot(c)/π⌉ − 1.

(e). D can be blown down to a smooth point iff v0 ∧ vn+1 = 1 and rot(c) < π.

Proof. (a,b) evident; (c) induction by n; (d) follows from (c) and the Sylvester formula.
(e). D can be blown down iff AD is negatively definite and detAD = ±1 (see [Mu]).

Thus, (e) follows from (c) and (d). �

Let Σ be a primitive fan in Z2 and X = XΣ the corresponding toric variety (see [D]).
Let v0, . . . , vn+1 be a sequence of generators of one-dimensional cones of Σ such that all
v0, . . . , vn are distinct but maybe vn+1 = v0. Suppose that each pair (vi, vi+1) forms
the positively oriented base of some two-dimensional cone of Σ. Let Di be the closure
of the one-dimensional orbit of X corresponding to vi. It is not difficult to show that
vi−1 ∧ vi+1 = −D2

i , thus, c(D1 + · · · + Dn) = (v0, . . . , vn+1).

§8. Another construction of the curves Cj

Fix an integer j ≥ 3, j 6≡ 2 mod 4.

Case (a): j is odd. Consider three vectors v0 = −(ϕ2
j , ϕ

2
j+2), v1 = (ϕj−2, ϕj+2), v2 =

(ϕj , ϕj+4) in Z2. Since the determinants

v0 ∧ v1
(17.c)
= ϕj+2, v1 ∧ v2

(17.d)
= 3, v2 ∧ v0

(17.c)
= ϕj , (18)

are positive, we can consider the complete fan Σ spanned by v0, v1, v2.
Let XΣ be the smooth two-dimensional toric variety associated with the minimal primi-

tive subdivision of Σ. Denote by Di the closure of the one-dimensional orbit corresponding
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to vi (i = 0, 1, 2) and by D the closure of XΣ − (X0 ∪ D0) where X0 is the open orbit of
XΣ. Let us blow up two generic points p1 ∈ D1 and p2 ∈ D2. Denote by E1 and E2 the
exceptional curves and by D′ (resp. D′

i) the strict preimage of D (resp. Di).
As we pointed out above, c(D) = (v0, . . . , v1, . . . , v2, . . . , v0). Hence, by 7.1(b), c(D′) =

(v0 − (v1 ∧ v0)v1, . . . , v1, . . . , v2, . . . , v0 + (v2 ∧ v0)v2
(18)
= (e1, . . . , v1, . . . , v2, . . . , e2) where

vi corresponds to D′
i and e1 = (1, 0), e2 = (0, 1) is the base of Z2.

Hence, by 7.1(e), D′ can be blown down to a smooth point, denote it by p. Counting
blow-ups and blow-downs, we see that the resulting surface is P2. By 3.2, 7.1(c), E2 is
mapped onto a rational unicuspidal curve C2 with one characteristic pair (ϕj , ϕj+4)).

By construction P2 \C contains the affine two-dimensional toric variety isomorphic to
C× (C \ 0) which corresponds to the vector v0. Hence, κ̄(P2 \ C) = −∞.

Case (b): j is even. Recall that j 6≡ 2 mod 4, hence, j is divisible by 4. Clearly
that the complement of a rational cuspidal curve is a Q-acyclic surface. We shall apply a
general method due to T. tom Dieck and T. Petri [tDP] to construct a Q-acyclic surface
starting with a line arrangement.

Let us consider the arrangement of six lines L1, . . . , L6 on P1×P1 where L1, L3, L5 are
horizontal and L2, L4, L6 are vertical. Let pij = Li∩Lj and X\D be the Q-acyclic surface
obtained from this line arrangement by cutting cycles at p16, p25, p14 and p36 (see [tDP])
according to Fig. 2. This means that X is the result of blowing up at these four points and
at some of their infinitely close points and D is the total preimage of L1∪· · ·∪L6 with the
last (−1)-curves excluded. The strict transforms of Li are denoted on Fig. 2by Di. We
cut the cycles at p16, p25 and p36 as it is shown on Fig. 2 where the strict transforms of
Li are denoted by Di. We cut the cycle at p14 with the multiplicities ( 1

3
ϕj+4 − ϕj ,

1
3
ϕj).

Fig. 2.

We are going to show that D − C (see Fig. 2) can be blown down to a smooth point p
and the image of C is the required curve.

Let σ′ : X ′ → P1 × P1 cuts the cycle at p14 and σ : X → X ′ cuts the other three
cycles. Denote by D′

i the strict transform of Di on X ′ . Consider P1 × P1 as the toric
variety associated with the complete fan spanned on the vectors v4 = (1, 0), v3 = (0, 1),
v2 = (−1, 0), v1 = (0,−1) whose orbits are L1, . . . , L4.

Put v0 = ( 1
3
ϕj+4−ϕj , − 1

3
ϕj). Then X ′ is the toric variety associated with the minimal

primitive subdivision of the fan spanned on the vectors v0, . . . , v4 and D′
0 correspond to v0.

Put D′
14 = σ′−1

(D1+· · ·+D4)−D′
0. Then c(D′

14) = (v0, . . . , v4, v3, v2, v1, . . . , v0). Let D14

be the strict transform of D′
14 on X. Then by 7.1(b) we have c(D14) = (v0, . . . , v4, . . . , Av0)

where A = A2
v3

A2
v2

Av1
.

Blowing down successively D5, D6 and D7 we map D −C onto a linear chain D̄14 and
by 7.1(e) it suffices to prove that d(D̄14) = 1. Since D̄14 is the result of the inverse of
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the operation described in Proposition 7.1(b) applied three times to D14 at D4, we have
c(D̄14) = (v0, . . . , v4, . . . , Bv0) where B = A−3

v4
A. Clearly that

Av1
= Av3

=
(

1 0

−1 1

)

and Av2
= Av4

=
(

1 1

0 1

)

, hence, A =
(

−1 2

1 −3

)

and B =
(

−4 11

1 −3

)

,

hence, Bv0 = 1
3(−4ϕj+4 + ϕj , ϕj+4). Thus, by 7.1(c) we have

d(D̄14) = v0 ∧ Bv0 = 1
9(ϕj+4 + ϕj)

2 − ϕjϕj+4
by (17.a)

= ϕ2
j+2 − ϕjϕj+4

by (17.c)
= 1.

Using 3.2 and 7.1(c) we find the characteristic pairs of the image of C on P2. For j ≥ 8
we have (q1, d1) = d2 · (v4 ∧ Bv0 , v0 ∧ v4) = (ϕj+4, ϕj).
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