ON RATIONAL CUSPIDAL CURVES I. SHARP ESTIMATE FOR DEGREE VIA MULTIPLICITIES

S.Yu. Orevkov

Abstract

Let $C \subset \mathbf{P}^{2}$ be a rational curve of degree d which has only one analytic branch at each point. Denote by m the maximal multiplicity of singularities of C. It is proved in [MS] that $d<3 m$. We show that $d<\alpha m+$ const where $\alpha=2.61 \ldots$ is the square of the "golden section". We also construct examples which show that this estimate is asymptotically sharp. When $\bar{\kappa}\left(\mathbf{P}^{2}-C\right)=-\infty$, we show that $d>\alpha m$ and this estimate is sharp.

The main tool used here, is the logarithmic version of the Bogomolov-Miyaoka-Yau inequality. For curves as above we give an interpretation of this inequality in terms of the number of parameters describing curves of a given degree and the number of conditions imposed by singularity types.

Let C be an algebraic curve in $\mathbf{P}^{2}($ over $\mathbf{C})$ which is homeomorphic to $\mathbf{C} \mathbf{P}^{1}$.
This means that C is rational and cuspidal, i.e. all its singularities are cusps where cusp means a singularity at which the curve has only one analytic branch. Such curves were studied, for instance, in $[\mathbf{Y 1} \mathbf{- Y 3}],[\mathbf{K a}],[\mathbf{M S}],[\mathbf{F Z} 2],[\mathbf{O Z} 3]$.

Denote by m_{p} the multiplicity of C at a point p (i.e. $m_{p}=(C \cdot L)_{p}$ for a generic line $L)$. Let d be the degree of C and $m=\max _{p \in C} m_{p}$.

Put $\alpha=(3+\sqrt{5}) / 2=2.6180 \ldots\left(\alpha\right.$ is a root of $\left.\alpha+\frac{1}{\alpha}=3\right)$.
Theorem A. $d<\alpha(m+1)+1 / \sqrt{5}=\alpha m+3.0652 \ldots$
For $m>10$ this estimate is stronger than the estimate $d<3 m$ obtained by T. Matsuoka and F. Sakai $[\mathbf{M S}]$ though the method of the proof is very similar. Denote by $\bar{\kappa}(Y)$ the logarithmic Kodaira dimension of a non-complete surface Y (see $[\mathbf{F}]$).

Theorem B.

(a). If $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$ then $d<\alpha m$.
(b). If $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=2$ then $d<\alpha(m+1)-1 / \sqrt{5}=\alpha m+2.1708 \ldots$
(c). $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right) \neq 0$.

Denote by $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ the Fibonacci numbers: $\varphi_{0}=0, \varphi_{1}=1, \varphi_{k+2}=\varphi_{k}+\varphi_{k+1}$.
Theorem C. For any $j>0, j \not \equiv 2 \bmod 4$ there exists a rational cuspidal curve C_{j} of degree $d_{j}=\varphi_{j+2}$ which has a single cusp of multiplicity $m_{j}=\varphi_{j}$. Thus, $\lim d_{j} / m_{j}=\alpha$.
(a). ($\mathbf{K a}]$; see Remark 3) If j is odd then $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{j}\right)=-\infty$ and the cusp of C_{j} has one characteristic pair $\left(m_{j}, n_{j}\right)$ where $n_{j}=\varphi_{j+4}$.
(b). If j is even (and hence, divisible by 4) then $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{j}\right)=2$. The cusp of C_{j} for $j=8,12, \ldots$ has two characteristic pairs ${ }^{1}\left(\varphi_{j}, \varphi_{j+4}\right)$ and $(3,1)$; the cusp of C_{4} has one characteristic pair $\left(\varphi_{4}, \varphi_{8}+1\right)=(3,22)$.

[^0](c). For any $j>0, j \equiv 0 \bmod 4$ there exist a rational cuspidal curve C_{j}^{*} of degree $d_{j}^{*}=2 \varphi_{j+2}$ which has a single cusp of multiplicity $m_{j}^{*}=2 \varphi_{j} . \bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{j}\right)=2$. The cusp of C_{j}^{*} for $j=8,12, \ldots$ has two characteristic pairs $\left(2 \varphi_{j}, 2 \varphi_{j+4}\right)$ and $(6,1)$; the cusp of C_{4}^{*} has one characteristic pair $\left(2 \varphi_{4}, 2 \varphi_{4}+1\right)=(6,43)$.

Since $\left\{d_{j} / m_{j}\right\}$ with odd j is the sequence of the upper convergents of the continuous fraction of α, Theorem C.a shows that the estimate in Theorem B.a is "sharp" in the following sense: the convex hull of all pairs $(m, d) \in \mathbf{Z}^{2}$ satisfying $m+1 \leq d<\alpha m$ coincides with the convex hull of all pairs (m, d) realizable by rational cuspidal curves C with $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$ (obviously, the opposite bound $m+1 \leq d$ is sharp due to the curves $y=x^{d}$).

In contrary, the curves $C_{4 k}$ and $C_{4 k}^{*}$ provide examples where $d>\alpha m$.
Conjecture. $C_{4 k}$ and $C_{4 k}^{*}$ are the only rational cuspidal curves with $d>\alpha m$.
It is possible to prove that this conjecture follows from Conjecture 2.3. The first six pairs (m, d) with $d>\alpha m$ which are not realized by Theorem C and which are neither forbidden by Theorem A nor by the theorem of Matsuoka-Sakai [MS] are $(4,11),(5,14),(6,17)$, $(7,19),(7,20)$, and $\left(\varphi_{6}, \varphi_{8}\right)=(8,21)$. Using successive birational quadratic transformations the author checked that the cases $(4,11)$ and $(8,21)$ are not realizable. For example, in the case $(8,21)$ the only candidate is the curve of degree 21 with two cusps of types $(8,55)$ and $(2,3)$. After 8 quadratic transformations such a curve would be transformed into the cuspidal cubic with two inflection points.

Remark 1. The curve C_{1} is a conic. C_{3} is a quintic with the cusp A_{12} (see [DG], $[\mathbf{Y 1}]$).
Remark 2. The idea how to pass from the construction of $C_{4 k}$ to the construction of $C_{4 k}^{*}$ belongs to E. Artal.

Remark 3. A curve C is rational cuspidal and satisfies the condition $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$ if and only if C is a fiber of a rational function on \mathbf{P}^{2} all whose fibers (with the indeterminacy point removed) are isomorphic to \mathbf{C}^{1}. H. Kashiwara $[\mathbf{K a}]$ has classified all such functions. Our curve $C_{2 l+3}(l \geq 0)$ is one of the multiple fibers ${ }^{2}$ of a function of the type $I I(l)^{*}$. The degree is computed in $[\mathbf{K a} ; 7.2]$; It is possible to compute by induction the multiplicity of the cusp using the recurrence relations (written in $[\mathbf{K a} ; 11.1]$) for the defining polynomial.

Remark 4. It is shown in [MS] that each of the rational cuspidal curves known up to that moment, can be mapped onto a line by a birational transformation of \mathbf{P}^{2}. It is clear from the construction that the curves C_{j} from Theorem C satisfy this property. The only known to the author new series of examples appeared in literature after the paper [MS], is the series of rational tricuspidal curves constructed by H. Flenner and M. Zaidenberg [FZ2]. It is shown in $[\mathbf{A}]$ that they also can be mapped onto a line by Cremona transformations.

The main tool used, is the logarithmic version of Bogomolov - Miyaoka - Yau inequality. In the case of rational cuspidal curves we give (see the end of $\S 2$) an interpretation of this inequality in the form \#equ $\leq 5+\# v a r$ where \#var and \#equ are respectively the number of variables and the number of the equations in the system of simultaneous equations which appears if one wants to construct a rational curve of a degree d with the given list of types of singular branches using a parameterization by polynomials with indeterminate coefficients.

I am grateful to E. Artal and M.G. Zaidenberg for useful discussions.

[^1]
§1. M-Number of a singularity of a Plane curve

Let $(C, 0)$ be a germ of an analytically irreducible curve in a neighborhood U of $0 \in \mathbf{C}^{2}$ and let $\sigma:(X, D, E) \rightarrow(U, C, 0)$ be the minimal resolution of singularity of C at 0 , i.e. σ is birational, $D=\sigma^{-1}(C)$ is a curve with simple normal crossings (SNC-curve) and (X, D) is minimal possible under these conditions.

Let V_{E} be the vector space over \mathbf{Q} formally generated by the irreducible components E_{1}, \ldots, E_{n} of E and $V_{E}^{+}=\left\{\Sigma x_{i} E_{i} \mid x_{i} \geq 0\right\}$. Define D_{E} and K_{E} as the elements of V_{E} such that $E_{i} D_{E}=E_{i} D$ and $E_{i}\left(E_{i}+K_{E}\right)=-2$ for any $i=1, \ldots, n$. Since the intersection form on E is non-degenerate, these elements exist and are unique.

Following $[\mathbf{F}]$, we define a twig of D as $T=E_{i_{1}}+\ldots+E_{i_{m}}$ such that $E_{i_{j}} E_{i_{k}}=1$ for $|j-k|=1, E_{i_{j}} E_{i_{k}}=0$ for $|j-k|>1, E_{i_{1}}(D-T)=1$ and $E_{i_{j}}(D-T)=0$ for $j>1$. By the local Zariski-Fujita decomposition near E we mean $K_{E}+D_{E}=H_{E}+N_{E}$ where $H_{E} \in V_{E}$ and $N_{E} \in V_{E}^{+}$are such that
(i). $\operatorname{supp} N_{E}$ is contained in the union of all twigs of D;
(ii). $H_{E} \cdot E_{i} \geq 0$ for all $i=1, \ldots, n ; \quad$ (iii). $H_{E} \cdot E_{i}=0$ for $E_{i} \subset \operatorname{supp} N_{E}$.

Let $\mu=\mu_{(C, 0)}$ be the Milnor number of $(C, 0)$ and put

$$
M=M_{(C, 0)}=\mu+H_{E}^{2} ; \quad \bar{M}=\bar{M}_{(C, 0)}=\mu+\left(K_{E}+D_{E}\right)^{2} .
$$

Since the intersection form is negatively definite, we have $\mu>\bar{M}>M$. In $\S 4$ we prove some other inequalities for μ and M.

We shall call the number \bar{M} (resp. M) the rough (resp. fine) M-number of the singularity ($C, 0$). When the singularity is analytically irreducible, the rough M-number \bar{M} will be called also the parametric codimension of $(C, 0)$ (see Proposition 3.4 for the motivation of this term).

In this paper we are going to use the language of Puiseux characteristic pairs but the authors of $[\mathrm{MS}]$ studying similar problems use an alternative language of multiplicity sequences. To compare these approaches, we give an expression of \bar{M} in terms of the multiplicity sequence. It will not be used in the sequel. Let $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ be the multiplicity sequence of $(C, 0)$, i.e. the sequence of multiplicities of C in all the points which were blown up during the resolution process. Following [MS], we say that a blowup is subdivisional if it is performed at an intersection point of two exceptional curves. Otherwise, it is called sprouting. By convention, the first blow-up is subdivisional. Let $\omega=\omega_{(C, 0)}$ denote the number of subdivisional blow-ups. Then

$$
\begin{gathered}
\mu=\sum m_{i}\left(m_{i}-1\right) \quad(\text { see }[\mathbf{M i}]) ; \quad \bar{M}=\omega-2+\sum\left(m_{i}-1\right) \quad(\text { see }[\mathbf{O Z 2} ;(37)]) . \\
\S 2 . \text { BMY-INEQUALITIES }
\end{gathered}
$$

Let X be a smooth projective surface and $D \subset X$ a reduced (maybe, reducible) SNCcurve. As usual, by $\bar{\kappa}$ we denote the logarithmic Kodaira dimension. Let $K=K_{X}$ be the canonical class of X. If $\bar{\kappa}(X \backslash D) \geq 0$, i.e. $|m(K+D)| \neq 0$ for infinitely many m, then (see $[\mathbf{F}]$) there exists the Zariski decomposition $K+D=H+N$ where $H, N \in \operatorname{Pic} X \otimes \mathbf{Q}$ are such that
(i). N is effective and the intersection form is negatively definite on the subspace $V_{N} \subset$ Pic $X \otimes \mathbf{Q}$ generated by the irreducible components of N;
(ii). $H C \geq 0$ for any effective $C \in \operatorname{Pic} X$; (iii). H is orthogonal to V_{N}.

By (iii) we have $(K+D)^{2}=H^{2}+N^{2}$ where $N^{2} \leq 0$. Thus, $H^{2} \geq(K+D)^{2}$. We shall use the following logarithmic form of the Bogomolov - Miyaoka - Yau (log-BMY) inequality.

Theorem 2.1. (a). (Miyaoka $[\mathbf{M y}])$ If $\bar{\kappa}(X \backslash D) \geq 0$ then $(K+D)^{2} \leq 3 e(X \backslash D)$; (b). (Kobayashi-Nakamura-Sakai [KNS]) If $\bar{\kappa}(X \backslash D)=2$ then $H^{2} \leq 3 e(X \backslash D)$; where $e()$ denotes the topological Euler characteristic.

Let $C \subset \mathbf{P}^{2}$ be an algebraic curve of degree d and $\sigma:(X, D) \rightarrow\left(\mathbf{P}^{2}, C\right)$ be the minimal resolution of the singular points p_{1}, \ldots, p_{s} of C. Let $E_{i}=\sigma^{-1}\left(p_{i}\right)$ and denote by $V_{i}, i=1, \ldots, s$ the subspace of $V=\operatorname{Pic} X \otimes \mathbf{Q}$ generated by the irreducible components of E_{i}. Let $V_{0}=\sigma^{*}\left(\left(\operatorname{Pic} \mathbf{P}^{2}\right) \otimes \mathbf{Q}\right)$, i.e. V_{0} is generated by the transform of a generic line. Then $V=V_{0} \oplus \ldots \oplus V_{s}$ is a direct sum of pairwise orthogonal subspaces.

Suppose that $\bar{\kappa}(X \backslash D) \geq 0$ and let $K+D=H+N$ be the Zariski decomposition. Denote by K_{i}, D_{i}, H_{i} the orthogonal projections of K, D, H onto $V_{i}(i=0, \ldots, s)$. Obviously, that K_{i} and $D_{i}(i>0)$ coincide with $K_{E_{i}}, D_{E_{i}}$ introduced in $\S 1$ and it follows from [\mathbf{F}, Theorem (6.20)] that $H_{i}=H_{E_{i}}$ under some additional conditions which are satisfied in out case when $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=2$. Clearly, that $\left(K_{0}+D_{0}\right)^{2}=H_{0}^{2}=(d-3)^{2}$, hence,

$$
\begin{equation*}
(K+D)^{2}=(d-3)^{2}+\sum_{i=1}^{s}\left(K_{i}+D_{i}\right)^{2} ; \quad H^{2}=(d-3)^{2}+\sum_{i=1}^{s} H_{i}^{2} ; \tag{1}
\end{equation*}
$$

If C is rational and cuspidal (see Introduction) then by genus formula we have

$$
\begin{equation*}
\sum \mu_{i}=(d-1)(d-2) \tag{2}
\end{equation*}
$$

and $e(X \backslash D)=1$. Combining (1) and (2), we rewrite the log-BMY inequalities as follows. Corollary 2.2. Let $C \subset \mathbf{P}^{2}$ be a rational cuspidal curve of degree d and $\bar{M}_{1}, \ldots, \bar{M}_{s}$ (resp. M_{1}, \ldots, M_{s}) be the rough (resp. fine) M-numbers of its singularities (see $\S 1$). Then

$$
\begin{array}{lc}
\bar{M}_{1}+\cdots+\bar{M}_{s} \leq 3 d-4, & \text { if } \bar{\kappa}\left(\mathbf{P}^{2}-C\right) \geq 0 \\
M_{1}+\cdots+M_{s} \leq 3 d-4, & \text { if } \bar{\kappa}\left(\mathbf{P}^{2}-C\right)=2 . \tag{4}
\end{array}
$$

The factor of the family of rational curves in \mathbf{P}^{2} by the action of the group $P G L(3)$ is $(3 d-9)$-dimensional. Thus, according to Proposition 3.4 below, the inequality (3) has a very natural interpretation as follows.

Given a list of singularity types satisfying (2), let us try to realize this list by a rational curve of a given degree. To this end let us write down its polynomial parameterization $\left(f_{1}(t): f_{2}(t): f_{3}(t)\right)$. Fix some coefficients to cancel the action of $P G L(3)$ and $P G L(2)$ and consider the others as indeterminates. Add also indeterminates t_{1}, \ldots, t_{s} which are the values of t where we are going to put the singularities. Then each singularity type imposes some number of equations for the indeterminates. Thus, (3) means:

If (the total number of the equations) $>5+$ (the number of the indeterminates) then the system of simultaneous equations has no solution.

This speculation leads us to the following
Conjecture 2.3. If $C \in \mathbf{P}^{2}$ is a rational (not necessarily cuspidal) curve then $\sum \bar{M}_{i} \leq$ $3 d-9$ where the sum is taken over all irreducible analytical branches of C.

The question "What singularities may have a plane rational curve of a given degree?" is discussed in $[\mathbf{S S}]$ for affine curves parametrized by two polynomials in one variable. In this case, 2.3 can be formulated as a generalization of a Davenport theorem which estimates $\operatorname{deg}\left(p(t)^{a}-q(t)^{b}\right)$ via $\operatorname{deg} p$ and $\operatorname{deg} q$.

§3. Puiseux characteristic sequence

Let $(C, 0)$ be a germ of an analytically irreducible curve in \mathbf{C}^{2}. of multiplicity m and let $x=t^{m}, y=a_{m} t^{m}+a_{m+1} t^{m+1}+\ldots$ be its analytic parameterization. Put $k_{0}=d_{1}=m$ and define recursively

$$
k_{i}=\min \left\{k \mid a_{k} \neq 0 \& k \not \equiv 0 \quad \bmod d_{i}\right\}, \quad d_{i+1}=\operatorname{gcd}\left(d_{i}, k_{i}\right), \quad i=1,2, \ldots
$$

Then $m=k_{0}<k_{1}<k_{2}<\ldots$ and $m=d_{1}>d_{2}>\ldots$ Let h is defined by the conditions $d_{h}>1, d_{h+1}=1$ and put $q_{1}=k_{1}, q_{i}=k_{i}-k_{i-1}, i=2, \ldots, h$. The sequence $\mathrm{Ch}(C, 0)=\left(m ; q_{1}, q_{2}, \ldots, q_{h}\right)$ will be called the characteristic sequence of the singularity $(C, 0)$. and the pairs $\left(d_{i}, q_{i}\right)$ will be called the characteristic pairs ${ }^{3}$. When C is smooth at p we put $h=0, \operatorname{Ch}(C, p)=(1 ;)$. The following statement is well-known.
Proposition 3.1. Let $\sigma: X \rightarrow \mathbf{C}^{2}$ be the blowing up of the origin, $E=\sigma^{-1}(0)$, and p a point on E. Let (C, p) be the germ at p of an analytically irreducible curve on X. Let $k=(C \cdot E)_{p}$ and $\operatorname{Ch}(C, p)=\left(m ; q_{1}, q_{2}, \ldots, q_{h}\right)$. Then

$$
\operatorname{Ch}(\sigma(C), 0)= \begin{cases}\left(k ; k+m, q_{2}, \ldots, q_{h}\right) & \text { if } k=q_{1} \\ \left(k ; k+m, q_{1}-k, q_{2}, \ldots, q_{h}\right) & \text { if } k<q_{1}\end{cases}
$$

If a curve $C_{1} \subset X$ is transversal to E and $\left(C_{1} \cdot C\right)_{p}=k_{1}$ then $\left(\sigma\left(C_{1}\right) \cdot \sigma(C)\right)_{0}=k+k_{1}$.
For a complete SNC-curve E on a smooth surface X let us denote by $d(E)$ the discriminant of its dual weighted graph which is defined as $d(E)=\operatorname{det} A_{E}$ where $A_{E}=$ $\left\|-E_{i} \cdot E_{j}\right\|_{i, j=1}^{n}$ is the intersection matrix of the irreducible components of E. Put by definition $d(\varnothing)=1$.

Proposition 3.2. (see, for instance, $[\mathbf{E N}])$. Let $(X, D, E) \rightarrow\left(\mathbf{C}^{2}, C, 0\right)$ be the minimal resolution of the singularity of C (like in §1). Then the dual graph of $E \cup C$ looks like

where the dashed lines mean linear chains of vertices, the numbers written near them are their discriminants and C^{\prime} denotes the proper transform of C.

Denote by $\lceil a\rceil$ the minimal integer which is $\geq a$.
Proposition 3.3. Let μ be the Milnor number and \bar{M}, M the rough and fine M-numbers (see §1) of $(C, 0)$. Then one has

$$
\begin{gather*}
\mu=1-d_{1}+\sum_{i=1}^{h} q_{i}\left(d_{i}-1\right) \tag{5}\\
\bar{M}=d_{1}-2+\sum_{i=1}^{h}\left(q_{i}-\left\lceil\frac{q_{i}}{d_{i}}\right\rceil\right) \tag{6}
\end{gather*}
$$

[^2]\[

$$
\begin{equation*}
M=d_{1}\left(1-q_{1}^{-1}\right)-1+\sum_{i=1}^{h} q_{i}\left(1-d_{i}^{-1}\right) \tag{7}
\end{equation*}
$$

\]

The formula (5) is classical (see [Mi, p.93]); a proof of (6) (and of (5) as well) is written in $[\mathbf{O Z 1} ;(11),(13)] ;(7)$ can be proved the same way as $[\mathbf{O Z 1} ; 5.2(\mathrm{ii})]$ (see also $[\mathbf{O Z 2}$; p.169]);

The next statement (as well as its proof) is not quite rigorous and we shall not use it in the sequel. We formulate it only as a motivation of the Conjecture 2.3.
Proposition 3.4. \bar{M} coincides with the codimension of the stratum of topological equisingularity of a generic family of mappings $\Delta \rightarrow \mathbf{C}^{2}$ where $\Delta \subset \mathbf{C}^{1}$ is a disk (parametrical analogue of the $\mu=$ const stratum).

Proof. Let $\mathcal{F}=\left\{f_{u}\right\}_{u \in U}, f_{u}(\tau)=\left(x_{u}(\tau), y_{u}(\tau)\right), \tau \in \mathbf{C}^{1}, u=\left(u_{1}, u_{2}, \ldots\right)$ be a given family and m the multiplicity of f_{0}. Let \mathcal{F}_{e} be the equisingularity stratum of f_{0} and $\mathcal{F}_{0}=\left\{f_{u} \mid \exists \tau_{0}\right.$ such that $\left.x_{u}^{\prime}\left(\tau_{0}\right)=\ldots=x_{u}^{(m-1)}\left(\tau_{0}\right)=0\right\}$. Then $\mathcal{F}_{e} \subset \mathcal{F}_{0} \subset \mathcal{F}$ and $\operatorname{codim} \mathcal{F}_{0}=m-1$. Let $v=\left(v_{1}, v_{2}, \ldots\right)$ be coordinates on \mathcal{F}_{0}. For $f_{v} \in \mathcal{F}_{0}$ there exists a unique (up to multiplication by ${ }^{m} \sqrt{1}$) reparametrization $\tau=\tau(t)$ such that $x_{v}(\tau(t))-$ $x_{v}\left(\tau_{0}\right)=t^{m}$. Put $y_{v}(\tau(t))=\sum a_{k} t^{k}$. Then a_{k} are analytic functions of v. The fact that the characteristic sequence of f_{v} coincides with that of f_{0} is equivalent to vanishing of certain finite number of coefficients a_{k}. The number of them is easy to calculate from the definition of the characteristic sequence. It remains to compare the answer with (6).

§4. Some estimates for M-numbers

Let the notation be the same as in $\S 3$.

Lemma 4.1.

$$
\begin{equation*}
\bar{M}-\frac{\mu}{m}>m-3 \tag{8}
\end{equation*}
$$

Proof. By (6), using that $d_{1}=m$ and $\left\lceil q_{i} / d_{i}\right\rceil \leq\left(q_{i}+d_{i}-1\right) / d_{i}$, we obtain

$$
\begin{equation*}
\bar{M} \geq m-2+\sum_{i=1}^{h}\left(q_{i}-1\right)\left(1-d_{i}^{-1}\right) \tag{9}
\end{equation*}
$$

Dividing (5) by m, we get

$$
\begin{align*}
& \frac{\mu}{m}=\frac{1}{m}-1+\sum_{i=1}^{h} \frac{q_{i} d_{i}}{m}\left(1-\frac{1}{d_{i}}\right), \quad \text { hence }, \tag{10}\\
& \bar{M}-\frac{\mu}{m}=m-2+\sum_{i \geq 2}\left(q_{i}\left(1-\frac{d_{i}}{m}\right)-1\right)\left(1-\frac{1}{d_{i}}\right) \quad \text { subtract (10) from (9) } \\
& \geq m-2-\sum_{i \geq 2} d_{i} m^{-1}\left(1-d_{i}^{-1}\right) \quad \text { use } q_{i} \geq 1 \\
& \geq m-2-\sum_{i \geq 2} d_{i} m^{-1} .
\end{align*}
$$

It remains to note that $d_{i+1} \leq d_{i} / 2$, hence, $d_{i} \leq m / 2^{i-1}$, thus, $\sum_{i \geq 2} d_{i} / m<1$.

Corollary 4.2. [OZ1; 6.2].

$$
\begin{equation*}
\bar{M} \geq \frac{\mu}{m} \tag{11}
\end{equation*}
$$

Proof. For $m>2$ apply (8). If $m=2$ then $\bar{M}=\mu / m$.

Lemma 4.3.

$$
\begin{equation*}
M \geq \frac{\mu-1}{m}+m-\frac{m(m-1)}{\mu+m-1} \tag{12}
\end{equation*}
$$

and one has " $=$ " in (12) if and only if $h=1$.
Proof. Denote $\mu+m-1$ by A. Since $d_{1}=m$, we have $A=\sum_{i=1}^{h} q_{i}\left(d_{i}-1\right)$. Then by (5), (7) we have

$$
M-\frac{\mu}{m}-m+\frac{1}{m}=-\frac{d_{1}}{q_{1}}+\sum_{i \geq 1} \frac{q_{i}}{d_{i}}\left(d_{i}-1\right)-\sum_{i \geq 1} \frac{q_{i}}{d_{1}}\left(d_{i}-1\right)=B-\frac{d_{1}}{q_{1}},
$$

where $B=\sum_{i \geq 2} q_{i}\left(d_{i}-1\right)\left(d_{i}^{-1}-d_{1}^{-1}\right)$. In this notation (12) is equivalent to $B \geq d_{1} / q_{1}-$ $m(m-1) / A$, and transforming the right hand side as

$$
\frac{d_{1}}{q_{1}}-\frac{m(m-1)}{A}=\frac{d_{1}\left(A-q_{1}\left(d_{1}-1\right)\right)}{q_{1} A}=\frac{d_{1}}{q_{1} A} \sum_{i \geq 2} q_{i}\left(d_{i}-1\right),
$$

we rewrite (12) in the form

$$
\sum_{i \geq 2} q_{i}\left(d_{i}-1\right)\left(d_{i}^{-1}-d_{1}^{-1}\right) \geq \frac{d_{1}}{q_{1} A} \sum_{i \geq 2} q_{i}\left(d_{i}-1\right)
$$

To prove this inequality, it is sufficient to verify that for each $i \geq 2$ one has $d_{i}^{-1}-d_{1}^{-1}>$ $d_{1} /\left(q_{1} A\right)$. Indeed, $d_{1} \geq 2 d_{2} \geq 2 d_{i}$, hence $d_{1}-d_{i} \geq d_{i}$. We have also $q_{1}>d_{1}$ and $A \geq$ $q_{1}\left(d_{1}-1\right) \geq q_{1}>d_{1}$. The product of the last three inequalities yields $\left(d_{1}-d_{i}\right) q_{1} A>d_{i} d_{1}^{2}$. It remains to divide the both sides by $d_{1} d_{i} q_{1} A$.

Corollary 4.4.

$$
\begin{equation*}
M \geq \frac{\mu}{m}+m-1-\frac{1}{m(m+1)} \tag{13}
\end{equation*}
$$

Proof. Apply to the μ in the denominator in (12) the estimate (see (7)). $\quad \mu \geq 1-d_{1}+$ $q_{1}\left(d_{1}-1\right)=\left(q_{1}-1\right)\left(d_{1}-1\right) \geq m(m-1)$.

§5. Proofs of Theorems A and B.

Let $C \subset \mathbf{P}^{2}$ be a rational cuspidal curve such that $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$. According to $[\mathbf{W}]$, in this case C has only one cusp (denote it by p). Let $(X, D) \rightarrow\left(\mathbf{P}^{2}, C\right)$ be the minimal resolution of the singularity of C at p. Denote by C^{\prime} the proper transform of C.

Lemma 5.1. $\left(C^{\prime}\right)^{2} \geq-1$.
Proof. X is a smooth surface and D is an SNC-curve on it such that $X \backslash D$ is \mathbf{Q}-acyclic and $\bar{\kappa}(X \backslash D)=-\infty$. All such pairs (X, D) are described more or less explicitely in $[\mathbf{F Z 1}$; $4.9,4.10]$. One can see from this description that if such a pair is minimal (D contains no (-1)-curve of valence 2) then D contains a twig (see $\S 1$) whose intersection matrix is not negatively definite.

In our case the dual graph of D is shown in Proposition 3.2 and all the linear chains denoted by dashed lines are negatively definite. Thus, $\left(C^{\prime}\right)^{2}$ can not be ≤-2 because this would imply that the graph is minimal and all linear chains are negatively definite.

Let $d=\operatorname{deg}(C)$ and $\left(d_{i}, q_{i}\right), i=1, \ldots, h, d_{1}=m$ be the characteristic pairs of C at p (see $\S 3$). By (2) and (5) (recall that C has only one cusp) we have

$$
\begin{equation*}
d^{2}-3 d+2=1-m+\sum q_{i}\left(d_{i}-1\right) \tag{15}
\end{equation*}
$$

It is not difficult to see that $\left(C^{\prime}\right)^{2}=d^{2}-\sum q_{i} d_{i}$ (see, for instance, the last formula on p. 109 in [OZ1]). Hence, by Lemma 5.1, we have $d^{2}-\sum q_{i} d_{i} \geq-1$. Subtracting (15) from this formula, we obtain

$$
\begin{equation*}
3 d-m \geq \sum q_{i} \tag{16}
\end{equation*}
$$

Thus, $\left(d^{2}-3 d+2\right)+(m-1) \stackrel{(15)}{=} \sum q_{i}\left(d_{i}-1\right) \leq \sum q_{i}(m-1) \stackrel{(16)}{\leq}(3 d-m)(m-1)$. Hence, $d^{2}-3 d m+m^{2} \leq-1$ and the part (a) of Theorem B is proven.

Remark. The curves from Theorem C.a provide " $=$ " in all the above inequalities.
Proof of the part (c) of Theorem B. The classification of pairs (X, D) where X is a smooth surface and D a minimal SNC-curve on X such that $\bar{\kappa}(X \backslash D)=0$ under some additional conditions is obtained by Fujita $[\mathbf{F},(8.64)]$ and those of them which are \mathbf{Q}-acyclic are listed in [FZ1, 5.14 and Fig. 16]. The dual graphs of four of them are shown on Fig. 1(a) - (d) and all the others are obtained from the graph on Fig. 1(e) by the operation which is called in [FZ1] a comb-attachment. It is a sequence of blow-ups such that the center of the next one lies on the exceptional curve of the previous one and the last exceptional curve is not included into D. Thus, if $C \subset \mathbf{P}^{2}$ is a rational cuspidal curve with $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$ and $(X, D) \rightarrow\left(\mathbf{P}^{2}, C\right)$ is its minimal resolution then either D coincides with one of the graphs listed above (case 1), or D is obtained from one of them by a sequence of blow-ups and C^{\prime} (the proper transform of C) is the is the last exceptional curve (case 2).

Case 1. Easy to see that none of the vertices on the graphs (a) - (d) can be chosen as the curve C^{\prime}, because each vertex has a connected component Γ of the complement such that $d(\Gamma) \neq 1$. Let us show that the graph (e) is also impossible. Denote by p the point where the comb-attachment was done and by D_{0} the central component. If $C^{\prime} \neq D_{0}$ and $p \notin D_{0}$ then the complement of C^{\prime} contains a vertex with weight 0 . Otherwise, for each choice of C^{\prime}, one of the connected components of its complement contains a vertex incident to two twigs, each of them is \multimap^{-2}. But the Proposition 3.2 shows that two twigs with equal discriminants at the same vertex can not exist.

Case 2. Since $D \backslash C^{\prime}$ is obtained as a minimal resolution of singularities, each vertex connected to C^{\prime} with an edge is a (-1)-curve of valence 3 (in D). This is possible only for the graph (e) when C^{\prime} is connected with the central vertex and we can apply the same arguments as in the case 1.
Proof of Theorem A. If $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$ then the part (a) of Theorem B provides even a stronger estimate, so, we suppose that $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right) \geq 0$ and we may apply (3). Let p_{1}, \ldots, p_{s}

Fig. 1.
be the singular points of C. Denote by $m_{i}, \mu_{i}, \bar{M}_{i}$ respectively the multiplicity, the Milnor number and the rough M-number (see $\S 1$) of p_{i}. Without loss of generality we may suppose that $m=m_{1} \geq m_{2} \geq \cdots \geq m_{s}$. By (2) we have $\mu_{1}=(d-1)(d-2)-\left(\mu_{2}+\mu_{3}+\ldots\right)$, hence, by (3) and (8),

$$
3 d-4 \geq \sum \bar{M}_{i}>\frac{\mu_{1}}{m}+m-3+\sum_{i \geq 2} \bar{M}_{i}=\frac{d^{2}-3 d+2}{m}+m-3+\sum_{i \geq 2}\left(\bar{M}_{i}-\frac{\mu_{i}}{m}\right) .
$$

By (11) the last sum is non-negative, hence, $f(d)<0$ where $f(x)=\left(x^{2}-3 x+2\right) m^{-1}-$ $3 x+m+1$. But $f\left(\alpha(m+1)+5^{-1 / 2}\right)=11 /(5 m)>0$ and $f^{\prime}(x)>0$ for $x \geq 3(m+1) / 2$.
Proof of the part (b) of Theorem B. Repeating word by word the proof of Theorem A (replacing \bar{M}_{i} with M_{i} and using (13) instead of (8), we arrive to $f(d)+2-\left(m^{2}+m\right)^{-1} \leq 0$. Evaluating this expression for $d=\alpha(m+1)-5^{-1 / 2}$ we obtain $(1 / 5)(m-4)\left(m^{2}+m\right)^{-1}$. This quantity is positive for $m>4$. It remains to note that for $m \leq 4$ the required estimate is weaker than the estimate $d<3 m$ proven in [MS].

§6. Examples (proof of Theorem C)

Let, as in Introduction, $\varphi_{0}=0, \varphi_{1}=1, \varphi_{i+2}=\varphi_{i}+\varphi_{i+1}$ be the Fibonacci numbers. Put also $\varphi_{-a}=(-1)^{a+1} \varphi_{a}$. We shall need the following identities:
a). $\varphi_{a-2}+\varphi_{a+2}=3 \varphi_{a}$;
c). $\varphi_{a}^{2}-\varphi_{a-2} \varphi_{a+2}=(-1)^{a}$;
b). $\varphi_{a}^{2}-\varphi_{a-1} \varphi_{a+1}=(-1)^{a+1}$;
d). $\varphi_{a-3} \varphi_{a+3}-\varphi_{a-1} \varphi_{a+1}=3 \cdot(-1)^{a}$.

Proof. (a) is just the sum of the identities $\varphi_{a-2}+\varphi_{a-1}=\varphi_{a}, \quad \varphi_{a+1}-\varphi_{a-1}=\varphi_{a}$ and $\varphi_{a+2}-\varphi_{a+1}=\varphi_{a}$; (b) can be easily proven by induction [$\left.\mathbf{V} ;(1.8)\right]$.
(c). $(-1)^{a} \stackrel{\text { by }}{=}{ }^{\text {b })} \varphi_{a-1} \varphi_{a+1}-\varphi_{a}^{2}=\left(\varphi_{a}-\varphi_{a-2}\right)\left(\varphi_{a+2}-\varphi_{a}\right)-\varphi_{a}^{2}=\left(\varphi_{a-2}+\varphi_{a+2}\right) \varphi_{a}-$ $2 \varphi_{a}^{2}-\varphi_{a-2} \varphi_{a+2} \stackrel{\text { by (a) }}{=} \varphi_{a}^{2}-\varphi_{a-2} \varphi_{a+2}$.
(d). By (a) we have $\varphi_{a \pm 3}=3 \varphi_{a \pm 1}-\varphi_{a \mp 1}$. Putting this into (d), we transform (d) into (b) multiplied by 3 .

Fix a nodal cubic $N \subset \mathbf{P}^{2}$. Let p_{0} be its node and $\mathcal{P}_{1}, \mathcal{P}_{2}$ the analytic branches of N at p_{0}. Define a birational transformation $f: \mathbf{P}^{2}--\longrightarrow \mathbf{P}^{2}$ as follows. Blow up

7 infinitely close points of \mathcal{P}_{1} at p_{0}. Denote by E_{1}, \ldots, E_{7} the exceptional curves and by E_{0} the proper transform of N. Then $E_{0}^{2}=E_{7}^{2}=-1, \quad E_{1}^{2}=\cdots=E_{6}^{2}=-2$, $E_{0} \cdot E_{1}=E_{1} \cdot E_{2}=\cdots=E_{6} \cdot E_{7}=E_{7} \cdot E_{0}=1$ and the other intersections are zeros. E_{0} and E_{7} are symmetric to each other in the obtained configuration. Hence, we can blow down E_{0}, \ldots, E_{6} and the image of E_{7} will be again a nodal cubic. Since all nodal cubics are projectively equivalent, we may assume that E_{7} is mapped onto N and E_{0}, \ldots, E_{6} onto infinitely close points of \mathcal{P}_{2}.

Denote by C_{-3} the tangent to \mathcal{P}_{1}, by C_{-1} the tangent to \mathcal{P}_{2}, and by C_{0} the tangent to N at a flex point. Let C_{0}^{*} be a conic ${ }^{4}$ which intersects N only in one point which is a smooth point of N. To find such a conic, note that $v=u(1-u)^{2}$ and $v=u-2 u^{2}$ have the contact of order 3 at $(0,0)$, hence $v^{2}=u(1-u)^{2}$ and $v^{2}=u-2 u^{2}$ have the contact of order 6 .

Now, let us define recurrently:

$$
C_{j}=f\left(C_{j-4}\right), \quad j>0, \quad j \not \equiv 2 \quad \bmod 4 ; \quad C_{4 k}^{*}=f\left(C_{4 k-4}^{*}\right), \quad k=1,2, \ldots
$$

Since f is biregular on $\mathbf{P}^{2} \backslash N$, these curves are rational and unicuspidal. The fact that their characteristic sequences at p_{0} are like it was described in Theorem C, can be easily proven by the simultaneous induction together with the assertion that

$$
\begin{array}{lll}
k_{j, 1}=\varphi_{j}, & k_{j, 2}=\varphi_{j+4}, & j=-3,-1,0,1,3, \ldots \\
k_{j, 1}^{*}=2 \varphi_{j}, & k_{j, 2}^{*}=2 \varphi_{j+4}, & j=4,8,12, \ldots
\end{array}
$$

where $k_{j, \nu}=C_{j} \cdot \mathcal{P}_{\nu}$ and $k_{j, \nu}^{*}=C_{j}^{*} \cdot \mathcal{P}_{\nu}$. Indeed, using Proposition 3.1, easy to check that $m_{j+4}=k_{j+4,1}=k_{j, 2}$ and $k_{j+4,2}=7 k_{j, 2}-m_{j}$. It remains to apply the evident identity $\varphi_{j-4}-7 \varphi_{j}+\varphi_{j+4}=0$ which is the sum of the identities (17.a) for $a=j \pm 2$ and three times for $a=j$. To find $d_{j}=\operatorname{deg}\left(C_{j}\right)$, note that $\left(d_{j}-1\right)\left(d_{j}-2\right) \stackrel{(2),(5)}{=}$ $\left(\varphi_{j}-1\right)\left(\varphi_{j+4}-1\right)+1+(-1)^{j} \stackrel{(17 a, c)}{=}\left(\varphi_{j+2}-1\right)\left(\varphi_{j+2}-2\right)$. Hence, $d_{j}=\varphi_{j+2}$. Analogously, $\operatorname{deg}\left(C_{j}^{*}\right)=2 \varphi_{j+2}$.

The fact that $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C_{2 k+1}\right)=-\infty$ follows from $[\mathbf{K a}]$ (see Remark 3 in Introduction). Let us show that $\bar{\kappa}\left(\mathbf{P}^{2} \backslash \mathbf{C}_{4 k}\right)=2$. The fact that $\bar{\kappa} \neq 0$ and $\bar{\kappa} \neq-\infty$, follows from Theorem B.c and Lemma 5.1 respectively. To show that $\bar{\kappa} \neq 1$, we shall use the explicit classification of \mathbf{Q}-acyclic surfaces with $\bar{\kappa}=1$ obtained in $[\mathbf{G M}]$ and exposed in [FZ1; 5.7-5.11] in a form convenient for our purposes. We shall use the terminology and notation of [FZ1]. The pair (\bar{X}, \bar{D}) is called pre-Q-acyclic if \bar{D} is an SNC-divisor on a smooth surface \bar{X} and maybe after some comb-attachments (see [FZ1] or the proof of B.c in $\S 5$) one can obtain a pair (X, D) such that $X \backslash D$ is \mathbf{Q}-acyclic. All the pre-Q-acyclic pairs with $\bar{\kappa}=1$ belong to four classes which are denoted in $[\mathbf{F Z 1}]$ by (A1), (A2), (B1) and (B2).

A computation of the discriminant of the dual graphs (it is done, for instance, in $[\mathbf{O}]$) easily shows that the surfaces in the cases (A2) and (B2) are already Q-acyclic and the surfaces (A1) and (B1) become Q-acyclic after a single comb-attachment.

Hence, the surfaces from (A2) and (B2) are impossible for our curve $C_{4 k}$ because their graphs do not coincide with the graph of the resolution (In the case (B2) the number of the broken chains must be 2 , but then the sum of the weights of the vertices of valence 3 is -2).

The case (A1) is impossible because any choice of the comb-attachment preserves a vertex incident to two twigs of the form $-o^{-2}$. It remains to consider the case (B1).

[^3]By [FZ1; 5.11] the number of the broken chains must be two. Hence, the graph of the resolution is obtained by a single comb-attachment from a graph $>_{0}^{n}-0 \quad n-2$. The resulting graph has only two vertices of valence ≥ 3 and they are connected by an edge. It is possible only if a single blow-up was performed and if it was done at the central vertex. The result of this operation is $\stackrel{1-n}{>0} \xrightarrow{n-1}$. Such a graph is impossible because the weights of the vertices of valence 3 must be negative. The case of $C_{4 k}^{*}$ is treated the same way.

Now let us write the formulas for the constructed curves. To this end we decompose f into a product of quadratic transformations. Let $f=\pi_{2} \circ \pi_{1}^{-1}$, where $\pi_{i}: X \rightarrow \mathbf{P}^{2}$ are the birational morphisms. Denote by L and C the proper transform on X (with respect to π_{1}) of C_{-3} and $f^{-1}\left(C_{-1}\right)$ - the line and the conic which have the maximal possible contact with \mathcal{P}_{1}. Then f can be presented as

$$
\left[E_{0}, L, C\right] \rightarrow\left[E_{0}, E_{3}, C\right] \rightarrow\left[E_{0}, E_{3}, E_{6}\right] \rightarrow\left[E_{7}, E_{4}, E_{1}\right] \rightarrow\left[E_{7}, E_{4}, L\right] \rightarrow\left[E_{7}, C, L\right] .
$$

This means that the result of each quadratic transformation is the variety obtained from X by blowing down all the curves $L, C, E_{0}, \ldots, E_{7}$ except the three curves listed in the brackets. Each of these quadratic transformation can be easily written by formulas:

$$
\begin{array}{lllll}
x_{1}=x y, & x_{2}=x_{1} z_{1}-y^{2}, & x_{2}^{\prime}=y_{2} z_{2}, & x_{1}^{\prime}=x_{2}^{\prime} z_{2}^{\prime}, & x^{\prime}=x_{1}^{\prime 2} ; \\
y_{1}=y^{2}, & y_{2}=y_{1} z_{1}, & y_{2}^{\prime}=x_{2} z_{2}, & y_{1}^{\prime}=y_{2}^{\prime} z_{2}^{\prime}+x_{2}^{\prime 2}, & y^{\prime}=x_{1}^{\prime} y_{1}^{\prime} ; \\
z_{1}=y z-x^{2}, & z_{2}=z_{1}^{2}, & z_{2}^{\prime}=x_{2} y_{2}, & z_{1}^{\prime}={z_{2}^{\prime 2},}^{\prime 2}, & z^{\prime}=x_{1}^{\prime} z_{1}^{\prime}+y_{1}^{\prime 2} .
\end{array}
$$

The last two transformations are chosen to be symmetric to the first two, to guarantee that $N \rightarrow N$ and $\mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$. Performing all the substitutions we obtain $f(x: y: 1)=\left(x^{\prime}:\right.$ $y^{\prime}: z^{\prime}$) where

$$
x^{\prime}=p_{1} q^{2}, \quad y^{\prime}=q p_{3}, \quad z^{\prime}=p_{1}^{3}-x y\left(4 y-x^{2}\right) p_{1}^{2}+y^{4}\left(2 y+x^{2}\right) p_{1}-x y^{7},
$$

and $p_{1}:=y-x^{2}, q:=x y-x^{3}-y^{3}$, and $p_{3}:=p_{1}^{2}-2 x y^{2} p_{1}+y^{5}$. The equations $p_{1}=0$, $p_{3}=0, q=0$ define C_{1}, C_{3}, and N. Put $p_{0}:=3 x+3 y+1$. Then $p_{0}=0$ can be chosen as C_{0} and substituting $u=-4(x+y) / p_{0}, v=4(x-y) / p_{0}$ into the above equation of C_{0}^{*} we get $21 x^{2}-22 x y+21 y^{2}-6 x-6 y+1=0$.

The multiplicity sequences of C_{j} at p_{0} is $\left(\varphi_{j}, S_{j}, S_{j-4}, \ldots, S_{\nu}\right)$ and where $j=4 k+\nu$, $\nu=3,4,5, k=0,1, \ldots$ and S_{i} denotes the subsequence ($\left.\varphi_{i}, \varphi_{i}, \varphi_{i}, \varphi_{i}, \varphi_{i}, \varphi_{i}-\varphi_{i-4}\right)$. In the case of C_{j}^{*} all the multiplicities should be multiplied by 2 .

§7. OpEN FANS AND LINEAR CHAINS OF RATIONAL CURVES

To deal with linear chains of rational curves on a smooth surface X, it is convenient to use the following language. We shall call an open fan a sequence of vectors $c=\left(v_{0}, \ldots, v_{n+1}\right), v_{i} \in \mathbf{Z}^{2}$ such that $v_{i} \wedge v_{i+1}=1$ for $i=0, \ldots, n$. We use here the natural identification $\wedge^{2} \mathbf{Z}^{2}=\mathbf{Z}$ assuming $(a, b) \wedge(c, d)=a d-b c$. Given any sequence of integers $\left(a_{1}, \ldots, a_{n}\right)$, one can construct an open fan c as above such that $v_{i} \wedge v_{i+1}=1$ for $i=0, \ldots, n$ and $v_{i-1} \wedge v_{i+1}=-a_{i}$ for $i=1, \ldots, n$. Clearly that c is uniquely defined up to the action of $S L_{2}(\mathbf{Z})$ and we shall write $c=c\left(a_{1}, \ldots, a_{n}\right)$.

Let X be a smooth surface and $D=D_{1}+\cdots+D_{n}$ a linear chain of rational curves on X (i.e. $D_{i} D_{j}=0$ for $|i-j|>1, D_{i} D_{j}=1$ for $|i-j|=1$). Put $c(D)=c\left(D_{1}^{2}, \ldots, D_{n}^{2}\right)$. It is convenient to denote by D_{0} (resp. D_{n+1}) the germ of a generic analytic curve which meets D_{1} (resp. D_{n+1}) transversally.

Given an open fan $c=\left(v_{0}, \ldots, v_{n+1}\right)$, we define its rotation number as $\operatorname{rot}(c)=\sum_{i=0}^{n} a_{i}$ where a_{i} is the oriented angle from v_{i} to v_{i+1} (all a_{i} are positive by the definition of open fan). This definition depends on the choice of a base in \mathbf{Z}^{2}.

Given a vector $v \in \mathbf{Z}^{2}$, let A_{v} be the triangular automorphism of \mathbf{Z}^{2} defined by $A_{v} u=$ $u+(v \wedge u) v$. Recall that $d(D)$ denotes the discriminant of D (see $\S 3$).
Proposition 7.1. (a). If \tilde{X} is obtained by blowing up a point $D_{i} \cap D_{i+1} \quad(i=0, \ldots, n)$ and \tilde{D} is the total transform of D then $c(\tilde{D})=\left(v_{0}, \ldots, v_{i}, v_{i}+v_{i+1}, v_{i+1}, \ldots, v_{n+1}\right)$.
(b). If X^{\prime} is obtained by blowing up a smooth point of $D_{i}(i=1, \ldots, n)$ and D^{\prime} is the strict transform of D then $c\left(D^{\prime}\right)=\left(v_{0}, \ldots, v_{i}, A_{v_{i}} v_{i+1}, \ldots, A_{v_{i}} v_{n+1}\right)$.
(c). $d(D)=v_{0} \wedge v_{n+1}$.
(d). Let n_{+}be the number of positive squares in a diagonalization over \mathbf{Q} of the intersection matrix $A_{D}=\left\|D_{j} \cdot D_{j}\right\|$. Then $n_{+}=\lceil\operatorname{rot}(c) / \pi\rceil-1$.
(e). D can be blown down to a smooth point iff $v_{0} \wedge v_{n+1}=1$ and $\operatorname{rot}(c)<\pi$.

Proof. (a,b) evident; (c) induction by n; (d) follows from (c) and the Sylvester formula.
(e). D can be blown down iff A_{D} is negatively definite and $\operatorname{det} A_{D}= \pm 1$ (see $[\mathbf{M u}]$). Thus, (e) follows from (c) and (d).

Let Σ be a primitive fan in \mathbf{Z}^{2} and $X=X_{\Sigma}$ the corresponding toric variety (see $[\mathbf{D}]$). Let v_{0}, \ldots, v_{n+1} be a sequence of generators of one-dimensional cones of Σ such that all v_{0}, \ldots, v_{n} are distinct but maybe $v_{n+1}=v_{0}$. Suppose that each pair $\left(v_{i}, v_{i+1}\right)$ forms the positively oriented base of some two-dimensional cone of Σ. Let D_{i} be the closure of the one-dimensional orbit of X corresponding to v_{i}. It is not difficult to show that $v_{i-1} \wedge v_{i+1}=-D_{i}^{2}$, thus, $c\left(D_{1}+\cdots+D_{n}\right)=\left(v_{0}, \ldots, v_{n+1}\right)$.

§8. Another construction of the curves C_{j}

Fix an integer $j \geq 3, j \not \equiv 2 \bmod 4$.
Case (a): j is odd. Consider three vectors $v_{0}=-\left(\varphi_{j}^{2}, \varphi_{j+2}^{2}\right), v_{1}=\left(\varphi_{j-2}, \varphi_{j+2}\right), v_{2}=$ $\left(\varphi_{j}, \varphi_{j+4}\right)$ in \mathbf{Z}^{2}. Since the determinants

$$
\begin{equation*}
v_{0} \wedge v_{1} \stackrel{(17 . c)}{=} \varphi_{j+2}, \quad v_{1} \wedge v_{2} \stackrel{(17 . d)}{=} 3, \quad v_{2} \wedge v_{0} \stackrel{(17 . c)}{=} \varphi_{j} \tag{18}
\end{equation*}
$$

are positive, we can consider the complete fan Σ spanned by v_{0}, v_{1}, v_{2}.
Let X_{Σ} be the smooth two-dimensional toric variety associated with the minimal primitive subdivision of Σ. Denote by D_{i} the closure of the one-dimensional orbit corresponding
to $v_{i}(i=0,1,2)$ and by D the closure of $X_{\Sigma}-\left(X_{0} \cup D_{0}\right)$ where X_{0} is the open orbit of X_{Σ}. Let us blow up two generic points $p_{1} \in D_{1}$ and $p_{2} \in D_{2}$. Denote by E_{1} and E_{2} the exceptional curves and by D^{\prime} (resp. D_{i}^{\prime}) the strict preimage of D (resp. D_{i}).

As we pointed out above, $c(D)=\left(v_{0}, \ldots, v_{1}, \ldots, v_{2}, \ldots, v_{0}\right)$. Hence, by $7.1(\mathrm{~b}), c\left(D^{\prime}\right)=$ $\left(v_{0}-\left(v_{1} \wedge v_{0}\right) v_{1}, \ldots, v_{1}, \ldots, v_{2}, \ldots, v_{0}+\left(v_{2} \wedge v_{0}\right) v_{2} \stackrel{(18)}{=}\left(e_{1}, \ldots, v_{1}, \ldots, v_{2}, \ldots, e_{2}\right)\right.$ where v_{i} corresponds to D_{i}^{\prime} and $e_{1}=(1,0), e_{2}=(0,1)$ is the base of \mathbf{Z}^{2}.

Hence, by $7.1(\mathrm{e}), D^{\prime}$ can be blown down to a smooth point, denote it by p. Counting blow-ups and blow-downs, we see that the resulting surface is \mathbf{P}^{2}. By 3.2, 7.1(c), E_{2} is mapped onto a rational unicuspidal curve C_{2} with one characteristic pair $\left(\varphi_{j}, \varphi_{j+4}\right)$).

By construction $\mathbf{P}^{2} \backslash C$ contains the affine two-dimensional toric variety isomorphic to $\mathbf{C} \times(\mathbf{C} \backslash 0)$ which corresponds to the vector v_{0}. Hence, $\bar{\kappa}\left(\mathbf{P}^{2} \backslash C\right)=-\infty$.

Case (b): j is even. Recall that $j \not \equiv 2 \bmod 4$, hence, j is divisible by 4 . Clearly that the complement of a rational cuspidal curve is a \mathbf{Q}-acyclic surface. We shall apply a general method due to T. tom Dieck and T. Petri $[\mathbf{t D P}]$ to construct a \mathbf{Q}-acyclic surface starting with a line arrangement.

Let us consider the arrangement of six lines L_{1}, \ldots, L_{6} on $\mathbf{P}^{1} \times \mathbf{P}^{1}$ where L_{1}, L_{3}, L_{5} are horizontal and L_{2}, L_{4}, L_{6} are vertical. Let $p_{i j}=L_{i} \cap L_{j}$ and $X \backslash D$ be the \mathbf{Q}-acyclic surface obtained from this line arrangement by cutting cycles at p_{16}, p_{25}, p_{14} and p_{36} (see [$\mathbf{t D P}$]) according to Fig. 2. This means that X is the result of blowing up at these four points and at some of their infinitely close points and D is the total preimage of $L_{1} \cup \cdots \cup L_{6}$ with the last (-1)-curves excluded. The strict transforms of L_{i} are denoted on Fig. 2by D_{i}. We cut the cycles at p_{16}, p_{25} and p_{36} as it is shown on Fig. 2 where the strict transforms of L_{i} are denoted by D_{i}. We cut the cycle at p_{14} with the multiplicities $\left(\frac{1}{3} \varphi_{j+4}-\varphi_{j}, \frac{1}{3} \varphi_{j}\right)$.

Fig. 2.
We are going to show that $D-C$ (see Fig. 2) can be blown down to a smooth point p and the image of C is the required curve.

Let $\sigma^{\prime}: X^{\prime} \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ cuts the cycle at p_{14} and $\sigma: X \rightarrow X^{\prime}$ cuts the other three cycles. Denote by D_{i}^{\prime} the strict transform of D_{i} on X^{\prime}. Consider $\mathbf{P}^{1} \times \mathbf{P}^{1}$ as the toric variety associated with the complete fan spanned on the vectors $v_{4}=(1,0), v_{3}=(0,1)$, $v_{2}=(-1,0), v_{1}=(0,-1)$ whose orbits are L_{1}, \ldots, L_{4}.

Put $v_{0}=\left(\frac{1}{3} \varphi_{j+4}-\varphi_{j},-\frac{1}{3} \varphi_{j}\right)$. Then X^{\prime} is the toric variety associated with the minimal primitive subdivision of the fan spanned on the vectors v_{0}, \ldots, v_{4} and D_{0}^{\prime} correspond to v_{0}. Put $D_{14}^{\prime}=\sigma^{\prime-1}\left(D_{1}+\cdots+D_{4}\right)-D_{0}^{\prime}$. Then $c\left(D_{14}^{\prime}\right)=\left(v_{0}, \ldots, v_{4}, v_{3}, v_{2}, v_{1}, \ldots, v_{0}\right)$. Let D_{14} be the strict transform of D_{14}^{\prime} on X. Then by $7.1(\mathrm{~b})$ we have $c\left(D_{14}\right)=\left(v_{0}, \ldots, v_{4}, \ldots, A v_{0}\right)$ where $A=A_{v_{3}}^{2} A_{v_{2}}^{2} A_{v_{1}}$.

Blowing down successively D_{5}, D_{6} and D_{7} we map $D-C$ onto a linear chain \bar{D}_{14} and by $7.1(\mathrm{e})$ it suffices to prove that $d\left(\bar{D}_{14}\right)=1$. Since \bar{D}_{14} is the result of the inverse of
the operation described in Proposition 7.1(b) applied three times to D_{14} at D_{4}, we have $c\left(\bar{D}_{14}\right)=\left(v_{0}, \ldots, v_{4}, \ldots, B v_{0}\right)$ where $B=A_{v_{4}}^{-3} A$. Clearly that $A_{v_{1}}=A_{v_{3}}=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$ and $A_{v_{2}}=A_{v_{4}}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, hence, $A=\left(\begin{array}{cc}-1 & 2 \\ 1 & -3\end{array}\right)$ and $B=\left(\begin{array}{cc}-4 & 11 \\ 1 & -3\end{array}\right)$, hence, $B v_{0}=\frac{1}{3}\left(-4 \varphi_{j+4}+\varphi_{j}, \varphi_{j+4}\right)$. Thus, by 7.1(c) we have $d\left(\bar{D}_{14}\right)=v_{0} \wedge B v_{0}=\frac{1}{9}\left(\varphi_{j+4}+\varphi_{j}\right)^{2}-\varphi_{j} \varphi_{j+4} \stackrel{\text { by }}{\stackrel{(17 . \mathrm{a})}{=}} \varphi_{j+2}^{2}-\varphi_{j} \varphi_{j+4} \stackrel{\text { by }}{\stackrel{(17 . c)}{=}} 1$.

Using 3.2 and 7.1(c) we find the characteristic pairs of the image of C on \mathbf{P}^{2}. For $j \geq 8$ we have $\left(q_{1}, d_{1}\right)=d_{2} \cdot\left(v_{4} \wedge B v_{0}, v_{0} \wedge v_{4}\right)=\left(\varphi_{j+4}, \varphi_{j}\right)$.

References

[A] E. Artal Bartolo, Fundamental group of a class of rational cuspidal curves, Manuscripta Math. 93 (1997), 273-281.
[D] V.I. Danilov, The geometry of toric varieties, Russ. Math. Surv. 33 (1978), 97-154.
[DG] M.H. Gizatullin, V.I. Danilov, Automorphisms of affine surfaces. I, Math. USSR Izv. 9 (1975), 493-534.
[tDP] T. tom Dieck, T. Petrie, Homology planes. An announcement and survey, In: Topological Methods in Algebraic Transformations Groups. Progress in Math, vol. 80, Birkhäuser, Boston, 1989, pp. 27-48.
[EN] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities. Ann. Math. Stud., vol. 110, Princeton Univ. Press, Princeton, 1985.
[FZ1] H. Flenner, M. Zaidenberg, Q-acyclic surfaces and their deformations, Contemporary Math. 162 (1994), 143-208.
[FZ2] H. Flenner, M. Zaidenberg, On a class of rational cuspidal curves, Manuscripta Math. 89 (1996), 439-459.
[F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo (Ser 1A), 29 (1982), 503-566.
[GM] R.V. Gurjar, M. Miyanishi, Affine surfaces with $k \leq 1$, In: Algebraic Geometry and Commutative Algebra in Honor of M.Nagata, 1987, pp. 99-124.
[Ka] H. Kashiwara, Fonctions rationnelles de type $(0,1)$ sur le plan projectif complexe, Osaka J. Math. 24 (1987), 521-577.
[KNS] R. Kobayashi, S. Nakamura, F. Sakai, A numerical characterization of ball quotients for normal surfaces with branch loci, Proc. Japan Acad. Ser. A Math.Sci. 65 (1989), 238-241.
[MS] T. Matsuoka, F. Sakai, The degree of rational cuspidal curves, Math. Ann. 285 (1989), 233-247.
[Mi] J. Milnor, Singular points of complex hypersurfaces., Ann. Math. Stud. 61 (1968).
[Mu] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 229-246.
[My] Y. Miyaoka, The minimal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171.
[O] S.Yu. Orevkov, Acyclic surfaces bounded by Seifert spheres, Mathematica Gottingensis 38 (1995), 1-32.
[OZ1] S.Yu. Orevkov, M.G. Zaidenberg, Some estimates for plane cuspidal curves, In: Seminaire d'Algebre et Geometrie. Journees Singulieres et Jacobiennes. Grenoble 26-28 mai 1993.
[OZ2] S.Yu. Orevkov, M.G. Zaidenberg, On the number of singular points of plane curves, In: Algebraic Geometry. Proc. Conf., Saintama Univ., March 15-17, 1995.
[OZ3] S.Yu. Orevkov, M.G. Zaidenberg, On rigid rational cuspidal plane curves., Russian Math. Surv. 51 (1996), no. 2.
[SS] A. Sathaye, J. Stenerson, On plane polynomial curves, In: Algebraic geometry and its applications (C.L. Bajaj, eds.), Springer, 1994, pp. 121-142.
[V] N.N. Vorobyev, Fibonacci numbers, Nauka, Moscow, 1978 (in Russian); German translation: N.N. Worobjow, Die Fibonaccischen Zahlen, VEB Deutscher Verlag der Wiss., Berlin, 1977.
$[\mathbf{W}]$ I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in \mathbf{P}^{2}, Proc. Japan Acad. Ser. A Math.Sci. 54 (1978), 157-162.
[Y1] H. Yoshihara, Rational curves with one cusp, Proc. Amer. Math. Soc. 89 (1983), 24-26.
[Y2] H. Yoshihara, Rational curves with one cusp. II, Proc. Amer. Math. Soc. 100 (1987), 405-406.
[Y3] H. Yoshihara, A note on the existance of some curves, in: Algebraic geometry and commutative algebra in honor of M. Nagata, Kinokuniya, Tokyo, 1987.

System Studies Institute, Russ. Acad. Sci. Avtozavodskaya 23, Moscow, Russia

[^0]: Partially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502
 ${ }^{1}$ See the definition in $\S 3$.

[^1]: ${ }^{2}$ The left one on the picture in $[\mathbf{K a} ; 6.1]$ where the graphs of resolution are described.

[^2]: ${ }^{3}$ This definition differs from the standard one.

[^3]: ${ }^{4}$ The idea to use this conic belongs to E. Artal

