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Let D be a simply connected domain in C. By Riemann theorem, there exists
a holomorphic function defining a conformal isomorphism of D onto the unit disk.
Let us denote the level line of the absolute value of this function corresponding to
the value r by γr. This note conserns the behavior of the level lines γr near the
boundary. In some aspects, this behavior may be unexpectable. For example, it is
shown in [1] that the number of flex points is not always monotonically increasing.
However, in the question studied here, the behavior of the level lines is as one could
expect it.

Definition. Let a set A lies outside a Jordan curve γ. Let us call the exterior
distance from γ to A the quantity

ext. dist.(γ,A) = sup
z∈γ

inf
α
|α|,

where |α| is the length of α, and inf is taken over all curves connecting the point z
with A and lying outside γ.

Let f be a function defining a conformal mapping of the unit disk onto D. Then
γr is the image of the circle |z| = r under this mapping. Moreover, let us denote
the area of the image of the annulus r ≤ |z| < 1 under the mapping f by S(1− r).

Theorem 1. If the boundary ∂D of D is bounded, then ext. dist.(γr, ∂D) → 0
as r → 1. The limit is uniform in the sense that there exists a function Φ(s)
independent of the choice of D, monotonically decreasing and tending to zero as
s → 0, such that ext. dist.(γr, ∂D) ≤ RΦ(S(1 − r)), where R is the radius of a
circle containing ∂D.

This theorem was conjectured by A.G. Vitushkin.
As a corollary, we get a new (and in our opinion, simpler) proof of the following

theorem conjectured by V.P. Khavin [2] and proved by A.L. Varfolomeev [3]. Given
a number a > 0 and a set K ⊂ C, let us call a function a-analytic on K, if it is
analytic in some neighbourhood of K, and its radius of convergency at any point
z ∈ K is greater than a.

Theorem. (A.L. Varfolomeev). Let K be a connected compact subset of C, and
a > 0. Then there exists an open set V containing K such that any a-analytic
function on K can be uniquely extended to V .

Proof. Without loss of generality we may assume that K is contained in the unit
disk. Let U1, . . . , Un be the connected components of C−K whose area is greater
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than Φ−1(a). (It follows from the boundedness of K that the number of them is
finite.) Let Vj (j = 1, . . . , n) be the interior of that level line of the conformal
isomorphism of Uj onto the disk, starting with which the ext. dist. to the boundary
is less than a. Then any a-analytic function on K can be extended to C −

⋃
Vj .

Indeed, let us consider the minimal level line to whose exterior the function is
extendable. Then, if the ext. dist. were less than a, then the function would be
extendable to the exterior of a smaller level line.

Theorem 2. If the area of D is bounded then ext. dist.(γr, ∂D)→ 0 as r → 1.

However, we did not succeed to prove that the limit is uniform when the bound-
ary contains the infinite point.

Remark 1. Theorems 1 and 2 do not hold for real diffeomorphisms of a domain
onto the disk.

Theorems 1 and 2 would immediate consequences of the following assertion.

Conjecture. Let K be a circle lying outside of γr which has the tangency of the
second order with γr. Then K intersects with ∂D.

In order to prove Theorem 2, we shall need the following lemma.

Lemma. Let a function f maps conformally the unit disk onto a domain D of a
finite area S. Then f can be decomposed into the sum of holomorphic functions f1
and f2 such that

|f ′1(z)| ≤ (1− |z|)−1, (1)

|f ′2(z)| ≤ g′(|z|), (2)

where g is a continuous on [0, 1] and differentiable on [0, 1) function such that
g(1) < S.

Proof. Let f =
∑
akz

k, K = {k ∈ Z+ : |ak| > 1/k}. Set f1(z) =
∑
k∈Z+−K akz

k,
f2(z) =

∑
k∈K akz

k, g(r) =
∑
k∈K |ak|rk. Then the inequalities (1) and (2) are

obvious. Let us prove that g is continuous on [0, 1] and differentiable on [0, 1).
Indeed, by the interior area theorem [4, p. 418], S – the area of D – is equal to∑
k |ak|2k. Hence,

S >
∑
k∈K

|ak|2k >
∑
k∈K

(
1
k

)2

k =
∑
k∈K

1
k
.

Therefore, by Cauchy-Bunyakovski inequality we have

∑
k∈K

|ak| =
∑
k∈K

(
|ak|k1/2

)
k−1/2 <

((∑
k∈K

|ak|2k
)(∑

k∈K

1
k

))1/2

< S.

Remark 2. In the case when the domain is contained in the unit circle, we can
set f1 = f , f2 = g = 0, and then the above lemma trivially follows from Schwarz
lemma [4, p. 363]. Thus we need this lemma only for the proof of Theorem 2, but
it is not actually used in the proof of Theorem 1 (and consequently, in the proof of
Varfalomeev’s theorem).
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Proof of Theorems 1 and 2. From the similarity arguments and the monotonity of
Φ, it follows that it suffices to prove Theorem 1 for R = 1.

Let z0 be any point on the circle {|z| = r0}. Let us denote: h = 1 − r0,
L(h) =ext. dist.(γr0 , ∂D), S(h) = the area of the image of the annulus {r0 ≤ |z| ≤
1} under the mapping f . Let us introduce the polar coordinates z = r exp(iϕ).
Let αθ : [0, h] → C be the curve parametrized in the polar coordinates (r, ϕ) by
αθ(s) = (r0 + s, ϕ0 + sθ/h), where (r0, ϕ0) are the polar coordinates of z0 (i.e. αθ
is a segment of the Archimedian spiral connecting z0 to the point exp(i(ϕ0 + θ)) of
the unit circle).

Then, by the definition of the ext. dist. we have

L(h) = ext. dist.(γr0 , ∂D) ≤ inf
0≤θ≤h

|f(αθ)| ≤
1
h

∫ h

0

|f(αθ)| dθ

=
1
h

∫ h

0

dθ

∫ h

0

|f ′(αθ(s))| ·
∣∣∣∣dαθds

∣∣∣∣ ds.
Let us change the coordinates s = u, θ = hv/u. Then ∂(s, θ)/∂(u, v) = h/u,

αθ(s) = z(u, v) = (u+ r0) exp(i(v+ϕ0)). Since |dαθ/ds| = r
√

1 + (θ/h)2 <
√

2 for
θ < h and r < 1, we obtain

L(h) <
√

2
∫ h

0

du

u

∫ u

0

|f ′(z(u, v))| dv

<
√

2
∫ hω

0

du

u

∫ u

0

|f ′1| dv +
√

2
∫ h

hω

du

u

∫ u

0

|f ′1| dv +
√

2
∫ h

0

du

u

∫ u

0

|f ′2| dv

=
√

2(I1 + I2 + I3),

where f = f1 + f2 is the decomposition from Lemma (see also Remark 2), and
ω = ω(h) is some function of h tending to zero as h → 0, which we shall choose
later. Let us estimate separately each of the three integrals. By (1) we have
|f ′1| ≤ 1/(1− r) = 1/(h− u) ≤ 1/(h− hω) for u ≤ hω. Hence,

I1 < Φ1 = ω/(1− ω). (3)

By Cauchy-Bunyakovski inequality, we have

I2 <

(∫ h

hω

du

u2

∫ u

0

dv

)1/2(∫ h

hω

du

∫ u

0

|f ′1|2 dv

)1/2

.

But the expression under the second radical is equal to the area of the image under
f of the fugure which is cut from the annulus r0 + hω ≤ |z| ≤ 1 by the curves α0

and αh, hence, it is smaller than S(h). Thus,

I2 < Φ2 =
√
−S(h) lnω. (4)

To make Φ1 → 0 and Φ2 → 0 as h → 0, it suffices to set ω = exp(−S(h)−1/2).
Theorem 1 is proved.

Finally, by virtue of (2) we have I3 < h · (g(1)− g(r0)). Combined with (3) and
(4), this proves Theorem 2.
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