CUBIC HECKE ALGEBRAS AND INVARIANTS OF TRANSVERSAL LINKS

S. Yu. Orevkov

Introduction. Let α be a differential 1-form which defines the standard (tight) contact structure in \mathbb{R}^{3}, e. g., $\alpha=x d y-y d x+d z$. A link L in \mathbb{R}^{3} is called transversal if $\left.\alpha\right|_{L}$ does not vanish on L. Transversal links are considered up to isotopies such that the link remains transversal at every moment. Transversal links and their invariants are being actively studied, see, e. g., $[2,6,7,11]$ and numerous references therein. In the present paper, we propose a purely algebraic approach to construct invariants of transversal links (similar to Jones' approach [5] to construct invariants of usual links). The only geometry used is the transversal analogue of Alexander's and Markov's theorems proved in [1] and [10] respectively.

Let B_{n} be the group of n-braids. We denote its standard (Artin's) generators by $\sigma_{1}, \ldots, \sigma_{n-1}$. Let $B_{\infty}=\lim B_{n}$ be the limit under the embeddings $B_{n} \rightarrow B_{n+1}$, $\sigma_{i} \mapsto \sigma_{i}$. Let k be a commutative ring and u, v indeterminates. We set $A=k[u]$, $A_{v}=k[u, v]$ and we denote the corresponding group algebras by $k B_{\infty}, A B_{\infty}$ and $A_{v} B_{\infty}$. Let $\pi: k B_{\infty} \rightarrow H_{\infty}$ be a surjective morphism of k-algebras. We extend it to the morphisms (also denotes by π) of A - and A_{v}-algebras $A B_{\infty} \rightarrow A H_{\infty}=H_{\infty} \otimes_{k} A$ and $A_{v} B_{\infty} \rightarrow A_{v} H_{\infty}=H_{\infty} \otimes_{k} A_{v}$.

Let R be the A-submodule of $A B_{\infty}$ generated by all the elements of the form

$$
\begin{equation*}
X Y-Y X, \quad X \sigma_{n}-u X \quad \text { where } \quad X, Y \in B_{n}, n \geq 1 \tag{1}
\end{equation*}
$$

and let R_{v} be the A_{v}-submodule of $A_{v} B_{\infty}$ generated by (1) and also by $X \sigma_{n}^{-1}-v X$ for $X \in B_{n}, n \geq 1$. Let $M=A H_{\infty} / \pi(R)$ and $M_{v}=A_{v} H_{\infty} / \pi\left(R_{v}\right)$. We say that the quotient map $t_{v}: A_{v} H_{\infty} \rightarrow M_{v}$ is the universal Markov trace on H_{∞}. Due to Alexander's and Markov's theorems, it defines a link invariant $P_{t_{v}}(L)=$ $u^{(-n-e) / 2} v^{(-n+e) / 2} t_{v}(X) \in M_{v} \otimes_{A_{v}} k\left[u^{ \pm 1 / 2}, v^{ \pm 1 / 2}\right]$ where L is the closure of an n-braid X and $e=e(X)=\sum_{j} e_{j}$ for $X=\prod_{j} \sigma_{i_{j}}^{e_{j}}$.

Similarly, by the transversal analogue of Alexander's and Markov's theorems, the quotient map ${ }^{1} t: A H_{\infty} \rightarrow M$ defines a transversal link invariant $P_{t}(L)=$ $u^{-n} t(X) \in M \otimes_{A} k\left[u^{ \pm 1}\right]$ where L is the closure of an n-braid X.

Of course, these invariants do not make much sense unless there is a reasonable solution to the identity problem in M or in M_{v}. For example, if ker $\pi=0$, then P_{t} is not really better than the tautological invariant $I(L)=L$. However, if $k=\mathbb{Z}[\alpha]$ and $A_{v} H_{\infty}=A_{v} B_{\infty} /\left(\sigma_{1}^{2}+\alpha \sigma_{1}+1\right)$, then $M_{v}=A_{v} /(u+\alpha+v) \cong A$ and $P_{t_{v}}$ is the HOMFLY-PT polynomial up to variable change.

[^0]In [8], a description of M_{v} is given when H_{∞} is a quotient of $k B_{\infty}$ by cubic relations of the form

$$
\begin{equation*}
\sigma_{1}^{3}-\alpha \sigma_{1}^{2}+\beta \sigma_{1}=1, \quad \sigma_{2}^{\delta} \sigma_{1}^{-\delta} \sigma_{2}^{\delta}=\sum_{\varepsilon \in E} c_{\varepsilon, \delta} \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \sigma_{1}^{\varepsilon_{3}}, \quad \delta= \pm 1, \tag{2}
\end{equation*}
$$

$E=\left\{\varepsilon \in\{-1,0,1\}^{3} \mid \varepsilon_{2}=0 \Rightarrow \varepsilon_{1} \varepsilon_{3}=0\right\}, \alpha, \beta, c_{\varepsilon, \delta} \in k$. We have in this case $M_{v}=A_{v} / I_{v}$ and a Gröbner base of I_{v} can be computed at least theoretically. Moreover, I_{v} is computed in practice in a particular case when H_{∞} is the Funar algebra [4] and $\beta=0$. The computations may be fastened using [9].

In this paper we adapt the construction from [8] for the computation of M when H_{∞} is defined by (2). We show that in this case $M \cong \hat{A} / \hat{I}$ where $\hat{A}=$ $A\left[v_{1}, v_{2}, \ldots\right]$ and \hat{I} is an ideal of \hat{A}. For any d, we give an algorithm to compute the ideal $\hat{I}+\left(v_{d+1}, v_{d+2}, \ldots\right)$. Thus, we define an infinite sequence (indexed by d) of computable transversal link invariants which carries the same information as the universal semi-Markov trace on the cubic Hecke algebra given by (2).
$\S 1$. Monoid of braids with marked points. Let \hat{B}_{n} be the monoid of n braids with a finite number of points marked on the strings. Algebraically it can be described as the monoid generated by $\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1}, q_{1}, \ldots, q_{n}$ (see Figure 1), subject to the standard braid group relations and the relations $q_{i} q_{j}=q_{j} q_{i}, i, j=$ $1, \ldots, n-1$, and $q_{i} \sigma_{j}=\sigma_{j} q_{T_{j}(i)}$ where T_{j} is the transposition $(j, j+1)$. Each element of \hat{B}_{n} can be written in a unique way in the form $q_{1}^{a_{1}} \ldots q_{n}^{a_{n}} X, X \in B_{n}$, $a_{i} \geq 0$, so, $\hat{B}_{n}=Q_{n} \rtimes B_{n}$ where Q_{n} is the free abelian monoid generated by q_{1}, \ldots, q_{n}.

Figure 1. Generators of \hat{B}_{n}
Let $\hat{B}_{\infty}^{\sqcup}$ be the disjoint union $\bigsqcup_{n=1}^{\infty} \hat{B}_{n}$. If an ambiguity is possible, we use the notation $(X)_{n}$ to emphasize that a word X represents an element of \hat{B}_{n}, for example, the braid closure of $(1)_{n}$ is the trivial n-component link.
Theorem 1. Transversal links are in bijection with the quotient of $\hat{B}_{\infty}^{\sqcup}$ by the equivalence relation generated by

$$
\begin{array}{lll}
(X Y)_{n} \sim(Y X)_{n}, & X, Y \in \hat{B}_{n}, n \geq 1 & \text { (conjugations), } \\
(X)_{n} \sim\left(X \sigma_{n}\right)_{n+1}, & X \in \hat{B}_{n}, n \geq 1 & \text { (positive Markov moves) } \\
\left(X q_{n}\right)_{n} \sim\left(X \sigma_{n}^{-1}\right)_{n+1}, & X \in \hat{B}_{n}, n \geq 1 & \text { (negative Markov } q \text {-moves) }
\end{array}
$$

Proof. Follows easily from Lemma 2.
Let $\stackrel{s}{\sim}$ (strong equivalence) be the equivalence relation on $\hat{B}_{\infty}^{\sqcup}$ generated by conjugations and positive Markov moves only.

Lemma 1. (Key Lemma) Let $X \in \hat{B}_{n}, \varepsilon= \pm 1, X_{\varepsilon}^{\prime}=X \sigma_{n}^{-1} \sigma_{n-1}^{2 \varepsilon}$ and $X_{\varepsilon}^{\prime \prime}=$ $X \sigma_{n-1}^{2 \varepsilon} \sigma_{n}^{-1}$. Then $\left(X_{\varepsilon}^{\prime}\right)_{n+1} \stackrel{s}{\sim}\left(X_{\varepsilon}^{\prime \prime}\right)_{n+1}$.
Proof. Let $a=\sigma_{n-1}, b=\sigma_{n}, c=\sigma_{n+1}, \bar{a}=a^{-1}, \bar{b}=b^{-1}, \bar{c}=c^{-1}$. Then

$$
\begin{aligned}
& X_{1}^{\prime}=X \bar{b} a a \xrightarrow{\mathrm{Mm}} X \underline{\bar{b} a b} \underline{b c \bar{b} \bar{b}} a=X a b \underline{\bar{a} \bar{c} \bar{c}} b \underline{c a}=X a b \bar{c} \bar{c} \bar{a} b a \underline{c} \\
& \xrightarrow{c y c} \underline{c X a} b \bar{c} \bar{c} \underline{\bar{a} b a}=X a \underline{c b \bar{c} \bar{c}} b a \bar{b}=X a \underline{\bar{b} \bar{b} c b b} a \bar{b} \xrightarrow{\mathrm{Mm}} X_{1}^{\prime \prime} \\
& X_{-1}^{\prime}=X \underline{b} \bar{a} \bar{b} b \bar{a}=X \bar{a} \bar{b} \bar{a} b \bar{a} \xrightarrow{\mathrm{Mm}} X \bar{a} \bar{b} \bar{b} c b \bar{a} b \bar{a}=\underline{X} \bar{a} c b \bar{c} \bar{c} \bar{a} b \bar{a}=\underline{c} X \bar{a} b \bar{c} \bar{c} \bar{a} b \bar{a} \\
& \xrightarrow{\text { cyc }} X \bar{a} b \underline{\bar{c} \bar{a}} b \underline{\bar{a} c}=X \bar{a} b \bar{a} \underline{\bar{c} \bar{c} b c} \bar{a}=X \bar{a} b \bar{a} b \underline{b c \bar{b}} \bar{b} \bar{a} \xrightarrow{\mathrm{Mm}} X \bar{a} b \underline{a} \bar{b} \bar{a} \bar{a}=X_{-1}^{\prime \prime} .
\end{aligned}
$$

Let $\operatorname{deg}_{q}: \hat{B}_{n} \rightarrow \mathbb{Z}$ be the monoid homomorphism such that $\operatorname{deg}_{q}\left(q_{i}\right)=1$ and $\operatorname{deg}_{q}\left(\sigma_{i}\right)=0$ for any i. We call $\operatorname{deg}_{q}(X)$ the q-degree of X.

Lemma 2. (Diamond Lemma) If $\left(X q_{n}\right)_{n} \stackrel{s}{\sim}\left(X^{\prime} q_{m}\right)_{m}$, then either $\left(X \sigma_{n}^{-1}\right)_{n+1} \stackrel{s}{\sim}$ $\left(X^{\prime} \sigma_{m}^{-1}\right)_{m+1}$ or there exist $Z, Z^{\prime}, Z^{\prime \prime}, Z^{\prime \prime \prime} \in \hat{B}_{\infty}^{\sqcup}$ related to $X \sigma_{n}^{-1}$ and $X^{\prime} \sigma_{m}^{-1}$ as follows (the arrows represent negative Markov q-moves which decrease the q-degree):

$$
\begin{array}{ccccccc}
X \sigma_{n}^{-1} & \stackrel{s}{\sim} & Z & & Z^{\prime \prime \prime} & \stackrel{s}{\sim} & X^{\prime} \sigma_{m}^{-1} \tag{3}\\
& & \downarrow & & \downarrow & & \\
& Z^{\prime} & \stackrel{s}{\sim} & Z^{\prime \prime} & &
\end{array}
$$

Figure 2

Proof. Since $X q_{n} \stackrel{s}{\sim} X^{\prime} q_{m}$, there exists a sequence of words $X q_{n}=Y_{0}, Y_{1}, \ldots, Y_{t}$ of the form $Y_{i}=X_{i} q_{k_{i}} \in \hat{B}_{n_{i}}$ such that Y_{t} is a cyclic permutation of $X^{\prime} q_{m}$ and for any pair of consecutive indexes $i, j(j=i \pm 1)$ one of the following possibilities holds up to exchange of i and j :
(i) $n_{j}=n_{i}, k_{j}=k_{i}, X_{i}$ and X_{j} represent the same element of $\hat{B}_{\infty}^{\sqcup}$;
(ii) $n_{j}=n_{i}+1, k_{j}=k_{i}, X_{i}=U V, X_{j}=U \sigma_{n_{i}} V$;
(iii) $n_{j}=n_{i}, X_{i}=U \sigma_{\ell}^{\varepsilon}, X_{j}=\sigma_{\ell}^{\varepsilon} U, k_{j}=T_{\ell}\left(k_{i}\right), \varepsilon= \pm 1$;
(iv) $n_{j}=n_{i}, k_{j}=k_{i} \neq \ell, X_{i}=U q_{\ell}, X_{j}=q_{\ell} U$.

For $i<j$, we denote $\sigma_{i} \sigma_{i+1} \ldots \sigma_{j-1}$ by $\pi_{i, j}$ and we set $\pi_{i, i}=1$. Let $Z_{i}=$ $X_{i} \pi_{k_{i}, n_{i}} \sigma_{n_{i}}^{-1} \pi_{k_{i}, n_{i}}^{-1} \in \hat{B}_{n_{i}+1}$ (see Figure 2). It is enough to prove that:
(a) $Z_{i} \stackrel{\stackrel{s}{\sim}}{\sim} Z_{j}$ in all cases $(i)-(i v)$ (this implies $X \sigma_{n}^{-1}=Z_{0} \stackrel{s}{\sim} Z_{t}$) and
(b) either $Z_{t}=X^{\prime} \sigma_{m}^{-1}$ or we have $Z_{t} \stackrel{s}{\sim} Z \rightarrow Z^{\prime} \stackrel{s}{\sim} Z^{\prime \prime} \leftarrow Z^{\prime \prime \prime} \stackrel{s}{\sim} X^{\prime} \sigma_{m}^{-1}$ where the arrows mean the same as in (3).

Assertion (a) either is evident or follows from Lemma 1. For example, in Case (ii), we have $Z_{i} \stackrel{s}{\sim} Z_{j}$ because

$$
\begin{aligned}
& Z_{i}=U V \pi_{k_{i}, n_{i}} \sigma_{n_{i}}^{-1} \pi_{k_{i}, n_{i}}^{-1} \stackrel{\stackrel{S}{\sim} U \sigma_{n_{i}}^{-1} \sigma_{n_{i}+1} \sigma_{n_{i}} V \pi_{k_{i}, n_{i}} \sigma_{n_{i}}^{-1} \pi_{k_{i}, n_{i}}^{-1} \stackrel{\text { def }}{=} Z_{i}^{\prime},}{Z_{j}=U \sigma_{n_{i}} V \pi_{k_{i}, n_{i}+1} \sigma_{n_{i}+1}^{-1} \pi_{k_{i}, n_{i}+1}^{-1} \quad \text { and } \quad \sigma_{n_{j}} Z_{j} \sigma_{n_{j}}^{-1}=Z_{i}^{\prime} .} .
\end{aligned}
$$

In Case (iii), $k_{i}=\ell+1, \varepsilon=-1$ we have $Z_{i} \stackrel{s}{\sim} Z_{j}$ by Lemma 1 because

$$
\begin{aligned}
Z_{i} & =U \sigma_{\ell}^{-1} \pi_{\ell+1, n_{i}} \sigma_{n_{i}}^{-1} \pi_{\ell+1, n_{i}}^{-1}=V \sigma_{n_{i}-1}^{-2} \sigma_{n_{i}}^{-1} W \\
Z_{j} & =U \pi_{\ell, n_{i}} \sigma_{n_{i}}^{-1} \pi_{\ell, n_{i}}^{-1} \sigma_{\ell}^{-1}=V \sigma_{n_{i}}^{-1} \sigma_{n_{i}-1}^{-2} W \quad \text { for } \\
V & =U \pi_{\ell+1, n_{i}} \pi_{\ell, n_{i}-1} \sigma_{n_{i}-1}, \quad W=\pi_{\ell, n_{i}-1}^{-1} \pi_{\ell+1, n_{i}}^{-1} .
\end{aligned}
$$

In all the other cases Assertion (a) is either similar or easier.
It remains to prove Assertion (b). We know that Y_{t} is a cyclic permutation of $X^{\prime} q_{m}$. If $Y_{t}=X^{\prime} q_{m}$, then $Z_{t}=X^{\prime} \sigma_{m}^{-1}$ and we are done. Otherwise we have $X^{\prime}=U q_{k} V$ and $Y_{t}=V q_{m} U q_{k}$ for some $k \leq m$. Then we have:

$$
\begin{aligned}
& Z_{t}=V q_{m} U \pi_{k, m} \sigma_{m}^{-1} \pi_{k, m}^{-1} \stackrel{s}{\sim} \sigma_{m} U \pi_{k, m} \sigma_{m}^{-1} \pi_{k, m}^{-1} V \sigma_{m}^{-1} q_{m+1} \stackrel{\text { def }}{=} Z \rightarrow Z^{\prime} \\
& X^{\prime} \sigma_{m}^{-1}=U q_{k} V \sigma_{m}^{-1} \stackrel{s}{\sim} \pi_{k, m+1}^{-1} V \sigma_{m}^{-1} U \pi_{k, m+1} q_{m+1} \stackrel{\text { def }}{=} Z^{\prime \prime \prime} \rightarrow Z^{\prime \prime}
\end{aligned}
$$

It is easy to check that Z^{\prime} and $Z^{\prime \prime}$ are conjugate.
Remark 1. Theorem 1 admits also a geometric proof based on the interpretation of the marked points as local modifications introduced in [3] which increase the Thurston-Bennequin number (see the extended version of [10]).
\S 2. From A to \hat{A}. Let the notation be as in the introduction and let $\hat{A} \hat{B}_{\infty}$ be the semigroup algebra of \hat{B}_{∞} with coefficients in \hat{A}. We have $k B_{\infty} \subset A B_{\infty} \subset \hat{A} \hat{B}_{\infty}$. Let \hat{H}_{∞} be the quotient of $\hat{A} \hat{B}_{\infty}$ by the bilateral ideal generated by $\operatorname{ker} \pi$ and let $\hat{\pi}: \hat{A} \hat{B}_{\infty} \rightarrow \hat{H}_{\infty}$ be the quotient map.

Let \hat{R} be the submodule of $\hat{A} \hat{B}_{\infty}$ generated by all the elements of the form

$$
X Y-Y X, \quad X \sigma_{n}-u X, \quad X \sigma_{n}^{-1}-X q_{n}, \quad q_{n+1}^{a} X-v_{a} X, \quad q_{1}^{a}-v_{a}
$$

with $X, Y \in \hat{B}_{n}$ and $n, a \geq 1$. Let $\hat{M}=\hat{H}_{\infty} / \hat{\pi}(\hat{R})$ and let $\hat{t}: \hat{H}_{\infty} \rightarrow \hat{M}$ be the quotient map.
Theorem 2. (a). M and \hat{M} are isomorphic as A-modules. (b). If, moreover, H_{∞} is given by (2), then \hat{M} is generated by $\hat{t}(1)$ as an \hat{A}-module.
Proof. (a). Follows from Theorem 1. (b). Follows from the fact that $\hat{H}_{n+1}=$ $\left\langle q_{n+1}\right\rangle \hat{H}_{n}+\hat{H}_{n} \sigma_{n} \hat{H}_{n}+\hat{H}_{n} \sigma_{n}^{-1} \hat{H}_{n}$ where $\left\langle q_{n+1}\right\rangle=\left\{1, q_{n+1}, q_{n+1}^{2}, \ldots\right\}$.

Thus $\hat{M}=\hat{A} / \hat{I}$ where \hat{I} is the annihilator of \hat{M}.
\S 3. Description of \hat{I}. In this section we assume that \hat{H}_{∞} is defined by (2). Let F_{n}^{+}(resp. \hat{F}_{n}) be the free monoid freely generated by $x_{1}^{ \pm 1}, \ldots, x_{n-1}^{ \pm 1}$ (resp. by $\left.x_{1}^{ \pm 1}, \ldots, x_{n-1}^{ \pm 1}, q_{1}, \ldots, q_{n}\right)$ and let $\hat{A} \hat{F}_{n}$ be the semigroup algebra of \hat{F}_{n} over \hat{A}. We define the basic replacements as in $[8 ; \S 2.1,(i)-(v i i i)]$ and we add to them

$$
(i x) x_{i} q_{j} \rightarrow q_{T_{i}(j)} x_{i}
$$

We define $\hat{A} \hat{F}_{n}^{\text {red }}$ and $\mathbf{r}: \hat{A} \hat{F}_{n} \rightarrow \hat{A} \hat{F}_{n}^{\text {red }}$ similarly to [8; $\left.\S 2.2\right]$ using the replacements $(i)-(i x)$. Then $\hat{A} \hat{F}_{n}^{\text {red }}$ is the free \hat{A}-module freely generated by the elements of the form $q X_{1} X_{2} \ldots X_{n-1}, q \in Q_{n}, X_{i} \in S_{i}$ where S_{i} are as in [8; (5)]. We define $\hat{\tau}_{n}$: $\hat{A} \hat{F}_{n}^{\mathrm{red}} \rightarrow \hat{A} \hat{F}_{n-1}^{\mathrm{red}}$ by setting $\hat{\tau}_{n}\left(q q_{n}^{a} X x_{n-1} Y\right)=\mathbf{r}\left(q X q_{n-1}^{a} Y\right), \hat{\tau}_{n}\left(q q_{n}^{a} X x_{n-1}^{-1} Y\right)=$ $\mathbf{r}\left(q X q_{n-1}^{a+1} Y\right), \hat{\tau}_{n}\left(q q_{n}^{a} X\right)=v_{a} q X$ for $q \in Q_{n-1}, X, Y \in F_{n-1}^{+}$. We extend $\hat{\tau}_{n}$ to $\hat{A} \hat{F}_{n}$ by setting $\hat{\tau}_{n}(X)=\hat{\tau}_{n}(\mathbf{r}(X))$ and we define $\hat{\tau}: \hat{A} \hat{F}_{\infty} \rightarrow \hat{A} \hat{F}_{0}=\hat{A}$ by $\hat{\tau}(X)=$ $\hat{\tau}_{1} \hat{\tau}_{2} \ldots \hat{\tau}_{n}(X)$ for $X \in \hat{A} \hat{F}_{n}$.

Let sh^{n} be the \hat{A}-algebra endomorphism of $\hat{A} \hat{F}_{\infty}$ defined by $\operatorname{sh} \sigma_{i}=\sigma_{i+n}$, $\operatorname{sh} q_{i}=$ q_{i+n}. We set $\operatorname{sh}=\operatorname{sh}^{1}$. For $X \in F_{n+1}^{+}$, we define $\rho_{n, X} \in \operatorname{End}_{\hat{A}}\left(\hat{A} \hat{F}_{n}^{\text {red }}\right)$ by setting $\rho_{n, X}(Y)=\hat{\tau}_{n+1}(X \operatorname{sh} Y)$.

Let \hat{J}_{4} be the minimal \hat{A}-submodule of $\hat{A} \hat{F}_{4}^{\text {red }}$ which satisfies the conditions
(J1) $\mathbf{r}\left(\mathbf{r}\left(X_{3} X_{2}\right) X_{1}\right)-\mathbf{r}\left(X_{3} \mathbf{r}\left(X_{2} X_{1}\right)\right) \in \hat{J}_{4}$ for any $X_{j} \in \operatorname{sh}^{3-j} S_{j} \backslash\{1\}, j=1,2,3$;
(J2) $\rho_{4, X}\left(\hat{J}_{4}\right) \subset \hat{J}_{4}$ for any $X \in S_{4}$.
Similarly, let \hat{J}_{3} be the minimal \hat{A}-submodule of $\hat{A} \hat{F}_{3}^{\text {red }}$ which satisfies
$\left(\mathrm{J} 1^{\prime}\right) q_{i} \mathbf{r}(X)-\mathbf{r}\left(\mathbf{r}(X) q_{j}\right) \in \hat{J}_{3}$ for any $X=x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}, \varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}, \varepsilon_{2} \in$ $\{-1,0,1\}, i=1,2,3, j=T_{2} T_{1}^{\varepsilon_{2}} T_{2}(i)$.
$\left(\mathrm{J}^{\prime}\right) \rho_{3, X}\left(\hat{J}_{3}\right) \subset \hat{J}_{3}$ for any $X \in S_{3}$.
Let $\hat{N}=\hat{A} \hat{F}_{2}^{\text {red }} \otimes_{\hat{A}} \hat{A} \hat{F}_{2}^{\mathrm{red}}$. We define \hat{A}-linear mappings $\hat{\tau}_{N}: \hat{N} \rightarrow \hat{A}$ and $\rho_{\delta}: \hat{N} \rightarrow \hat{N}, \delta=\left(\delta_{1}, \delta_{2}\right) \in\{-1,0,1\}^{2}$, by setting $\hat{\tau}_{N}\left(Y_{1} \otimes Y_{2}\right)=\hat{\tau}\left(Y_{1} Y_{2}\right), \rho_{\delta}\left(Y_{1} \otimes\right.$ $\left.Y_{2}\right)=x_{1}^{\delta_{1}} \otimes \hat{\tau}_{3}\left(\left(\operatorname{sh} Y_{1}\right) x_{1}^{\delta_{2}} \operatorname{sh} Y_{2}\right)$. Let \hat{L} be the minimal \hat{A}-submodule of \hat{N} satisfying
(L1) $\hat{\tau}_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}\right) \otimes x_{1}^{\varepsilon_{4}}-x_{1}^{\varepsilon_{2}} \otimes \hat{\tau}_{3}\left(x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}\right) \in \hat{L}$ for any $\varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}$ and for any $\varepsilon_{2}, \varepsilon_{4} \in\{-1,0,1\}$;
(L2) $\rho_{\delta}(\hat{L}) \subset \hat{L}$ for any $\delta \in\{-1,0,1\}^{2}$.
Theorem 3. $\hat{I}=\hat{\tau}\left(\hat{J}_{4}\right)+\hat{\tau}\left(\hat{J}_{3}\right)+\hat{\tau}_{N}(\hat{L})$.
A proof repeats almost word by word the proof of Main Theorem in [8] (we ignore the variables q_{i} when we define the weight function on \hat{F}_{∞}).

Each of the modules $\hat{J}_{4}, \hat{J}_{3}, \hat{L}$ is defined as the limit of an increasing sequence of submodules of a finite rank \hat{A}-module. Since \hat{A} is not Noetherian, this does not give yet a way to compute them. However, we can approximate \hat{A} by Noetherian rings $\hat{A}_{d}=A\left[v_{1}, \ldots, v_{d}\right]$ and the projections $\mathrm{pr}_{d}(\hat{I})$ can be effectively computed where $\operatorname{pr}_{d}: \hat{A} \rightarrow \hat{A}_{d}$ is the quotient by the ideal $\left(v_{d+1}, v_{d+2}, \ldots\right)$. Namely, let $\left(\hat{A} \hat{F}_{n}^{\text {red }}\right)_{d}$, $\left(\hat{J}_{4}\right)_{d},\left(\hat{J}_{3}\right)_{d},(\hat{N})_{d},(\hat{L})_{d}$ be the \hat{A}_{d}-modules obtained by the above procedure but with the additional relations $q_{i}^{d+1}=0$ for any i. Then we have $\operatorname{pr}_{d}(\hat{I})=\hat{\tau}\left(\hat{J}_{4}\right)_{d}+$ $\hat{\tau}\left(\hat{J}_{3}\right)_{d}+\hat{\tau}_{N}(\hat{L})_{d}$ and these modules (at least theoretically) can be computed as limits of increasing sequences of Noetherian modules. The rank of $\left(\hat{A} \hat{F}_{4}^{\text {red }}\right)_{d}$ (the module where $\left(\hat{J}_{4}\right)_{d}$ sits) is equal to $315(d+1)^{4}$. We hope that, at least for $d=1$ or 2 , the computations can be performed in practice.

Remark 2. If $\beta=0$ (the case when the Groebner base of I_{v} was computed in [8]), then the obtained transversal link invariants a priori cannot detect transversally non-simple links. Indeed, in this case we have $1=\alpha \sigma_{1}^{-1}+\sigma_{1}^{-3}$, hence $q_{1}=q_{1}\left(\alpha \sigma_{1}^{-1}+\right.$ $\left.\sigma_{1}^{-3}\right)=\left(\alpha \sigma_{1}^{-1}+\sigma_{1}^{-3}\right) q_{2}=q_{2}$. Thus $q_{1}=q_{2}=q_{3}=\ldots$ whence $v_{1}=v_{2}=\ldots$ and we obtain $M=M_{v}, t=t_{v}$ and $P_{t}(L)=(v / u)^{(n-e) / 2} P_{t_{v}}(L)$, i. e., the invariant P_{t} reduces to a usual link invariant $P_{t_{v}}$ and Thurston-Bennequin number $n-e$.

Remark 3. By [9], all the computations in the huge module $\left(\hat{A} \hat{F}_{4}^{\text {red }}\right)_{d}$ can be done with the coefficients in \mathbb{Q} or in $\mathbb{Z} / m \mathbb{Z}$ for m not very big.

References

1. D. Bennequin, Entrelacements et équation de Pfaff, Astérisque 107-108 (1983), 87-161.
2. J. S. Birman, W. M. Menasco, Stabilization in the braid groups II: Transversal simplicity of knots, Geom. and Topol. 10 (2006), 1425-1452.
3. D. Fuchs, S. Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997), 1025-1053.
4. L. Funar, On cubic Hecke algebras, Commun. Math. Phys. 173 (1995), 513-558.
5. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
6. R. Lipshitz, L. Ng, S. Sarkar, On transverse invariants from Khovanov homology, arXiv:1303.6371.
7. L. Ng, P. Ozsváth, D. Thurston, Transverse knots distinguished by knot Floer homology, J. Symplectic Geom. 6 (2008), 461-490.
8. S. Yu. Orevkov, Markov trace on the Funar algebra, arXiv:1206.0765.
9. S. Yu. Orevkov, On modular computation of Groebner bases with integer coefficients, Zapiski Nauchn. Semin. POMI (to appear) (Russian); English transl., J. of Math. Sciences (to appear).
10. S. Yu. Orevkov, V. V. Shevchishin, Markov theorem for transversal links, J. of Knot Theory and its Ramifications 12 (2003), 905-913; Extended version: arXiv:math/0112207.
11. P. S. Ozsváth, Z. Szabó, D. P. Thurston, Legendrian knots, transverse knots and combinatorial Floer homology, Geom. and Topol. 12 (2008), 941-980.

Steklov Math. Institute, Moscow

IMT, Université Paul Sabatier (Toulouse-3)
E-mail address: orevkov@math.ups-tlse.fr

[^0]: ${ }^{1}$ I propose to call it universal semi-Markov trace on H_{∞}.

