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Introduction. Let α be a differential 1-form which defines the standard (tight)
contact structure in R3, e. g., α = x dy − y dx + dz. A link L in R3 is called
transversal if α|L does not vanish on L. Transversal links are considered up to
isotopies such that the link remains transversal at every moment. Transversal links
and their invariants are being actively studied, see, e. g., [2, 6, 7, 11] and numerous
references therein. In the present paper, we propose a purely algebraic approach to
construct invariants of transversal links (similar to Jones’ approach [5] to construct
invariants of usual links). The only geometry used is the transversal analogue of
Alexander’s and Markov’s theorems proved in [1] and [10] respectively.

Let Bn be the group of n-braids. We denote its standard (Artin’s) generators
by σ1, . . . , σn−1. Let B∞ = limBn be the limit under the embeddings Bn → Bn+1,
σi 7→ σi. Let k be a commutative ring and u, v indeterminates. We set A = k[u],
Av = k[u, v] and we denote the corresponding group algebras by kB∞, AB∞ and
AvB∞. Let π : kB∞ → H∞ be a surjective morphism of k-algebras. We extend it to
the morphisms (also denotes by π) of A- and Av-algebras AB∞ → AH∞ = H∞⊗kA
and AvB∞ → AvH∞ = H∞ ⊗k Av.

Let R be the A-submodule of AB∞ generated by all the elements of the form

XY − Y X, Xσn − uX where X, Y ∈ Bn, n ≥ 1, (1)

and let Rv be the Av-submodule of AvB∞ generated by (1) and also by Xσ−1
n −vX

for X ∈ Bn, n ≥ 1. Let M = AH∞/π(R) and Mv = AvH∞/π(Rv). We say
that the quotient map tv : AvH∞ → Mv is the universal Markov trace on H∞.
Due to Alexander’s and Markov’s theorems, it defines a link invariant Ptv

(L) =
u(−n−e)/2v(−n+e)/2tv(X) ∈ Mv ⊗Av

k[u±1/2, v±1/2] where L is the closure of an
n-braid X and e = e(X) =

∑
j ej for X =

∏
j σ

ej

ij
.

Similarly, by the transversal analogue of Alexander’s and Markov’s theorems,
the quotient map1 t : AH∞ → M defines a transversal link invariant Pt(L) =
u−nt(X) ∈M ⊗A k[u±1] where L is the closure of an n-braid X .

Of course, these invariants do not make much sense unless there is a reasonable
solution to the identity problem in M or in Mv. For example, if ker π = 0, then Pt

is not really better than the tautological invariant I(L) = L. However, if k = Z[α]
and AvH∞ = AvB∞/(σ2

1 + ασ1 + 1), then Mv = Av/(u + α + v) ∼= A and Ptv
is

the HOMFLY-PT polynomial up to variable change.

1I propose to call it universal semi-Markov trace on H∞.
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In [8], a description of Mv is given when H∞ is a quotient of kB∞ by cubic
relations of the form

σ3
1 − ασ2

1 + βσ1 = 1, σδ
2σ

−δ
1 σδ

2 =
∑

ε∈E

cε,δσ
ε1

1 σε2

2 σε3

1 , δ = ±1, (2)

E = {ε ∈ {−1, 0, 1}3 | ε2 = 0 ⇒ ε1ε3 = 0}, α, β, cε,δ ∈ k. We have in this case
Mv = Av/Iv and a Gröbner base of Iv can be computed at least theoretically.
Moreover, Iv is computed in practice in a particular case when H∞ is the Funar
algebra [4] and β = 0. The computations may be fastened using [9].

In this paper we adapt the construction from [8] for the computation of M

when H∞ is defined by (2). We show that in this case M ∼= Â/Î where Â =

A[v1, v2, . . . ] and Î is an ideal of Â. For any d, we give an algorithm to compute

the ideal Î + (vd+1, vd+2, . . . ). Thus, we define an infinite sequence (indexed by d)
of computable transversal link invariants which carries the same information as the
universal semi-Markov trace on the cubic Hecke algebra given by (2).

§1. Monoid of braids with marked points. Let B̂n be the monoid of n-
braids with a finite number of points marked on the strings. Algebraically it can
be described as the monoid generated by σ±1

1 , . . . , σ±1
n−1,q1, . . . , qn (see Figure 1),

subject to the standard braid group relations and the relations qiqj = qjqi, i, j =
1, . . . , n − 1, and qiσj = σjqTj(i) where Tj is the transposition (j, j + 1). Each

element of B̂n can be written in a unique way in the form qa1

1 . . . qan
n X , X ∈ Bn,

ai ≥ 0, so, B̂n = Qn ⋊ Bn where Qn is the free abelian monoid generated by
q1, . . . , qn.

i
i+1

. . . 

. . . 
n

1

. . . 

. . . 

i
i+1

n

1

i
i+1

. . . 

. . . 
n

1

σi σ−1
i qi

Figure 1. Generators of B̂n

Let B̂⊔
∞ be the disjoint union

⊔∞

n=1 B̂n. If an ambiguity is possible, we use

the notation (X)n to emphasize that a word X represents an element of B̂n, for
example, the braid closure of (1)n is the trivial n-component link.

Theorem 1. Transversal links are in bijection with the quotient of B̂⊔
∞ by the

equivalence relation generated by

(XY )n ∼ (Y X)n, X, Y ∈ B̂n, n ≥ 1 (conjugations),

(X)n ∼ (Xσn)n+1, X ∈ B̂n, n ≥ 1 (positive Markov moves),

(Xqn)n ∼ (Xσ−1
n )n+1, X ∈ B̂n, n ≥ 1 (negative Markov q-moves)

Proof. Follows easily from Lemma 2. �

Let
s
∼ (strong equivalence) be the equivalence relation on B̂⊔

∞ generated by
conjugations and positive Markov moves only.
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Lemma 1. (Key Lemma) Let X ∈ B̂n, ε = ±1, X ′
ε = Xσ−1

n σ2ε
n−1 and X ′′

ε =

Xσ2ε
n−1σ

−1
n . Then (X ′

ε)n+1
s
∼ (X ′′

ε )n+1.

Proof. Let a = σn−1, b = σn, c = σn+1, ā = a−1, b̄ = b−1, c̄ = c−1. Then

X ′
1 =Xb̄a a

Mm
−→ X b̄ab bcb̄b̄ a = Xab āc̄c̄ b ca = Xabc̄c̄āba c

cyc
−→cXa bc̄c̄ āba = Xa cbc̄c̄ bab̄ = Xa b̄b̄cbb ab̄

Mm
−→ X ′′

1

X ′
−1 =X b̄āb̄ bā = Xāb̄ ābā

Mm
−→ Xā b̄b̄cb ābā = Xāc bc̄c̄ābā = cXābc̄c̄ābā

cyc
−→Xāb c̄c̄ā b āc = Xābā c̄c̄bc ā = Xābā bcb̄ b̄ā

Mm
−→ Xāb āb̄ā = X ′′

−1. �

Let degq : B̂n → Z be the monoid homomorphism such that degq(qi) = 1 and
degq(σi) = 0 for any i. We call degq(X) the q-degree of X .

Lemma 2. (Diamond Lemma) If (Xqn)n
s
∼ (X ′qm)m, then either (Xσ−1

n )n+1
s
∼

(X ′σ−1
m )m+1 or there exist Z, Z ′, Z ′′, Z ′′′ ∈ B̂⊔

∞ related to Xσ−1
n and X ′σ−1

m as
follows (the arrows represent negative Markov q-moves which decrease the q-degree):

Xσ−1
n

s
∼ Z Z ′′′ s

∼ X ′σ−1
m

↓ ↓

Z ′ s
∼ Z ′′

(3)

Xi Xi

Yi Zi

Figure 2

Proof. Since Xqn
s
∼ X ′qm, there exists a sequence of words Xqn = Y0, Y1, . . . , Yt

of the form Yi = Xiqki
∈ B̂ni

such that Yt is a cyclic permutation of X ′qm and
for any pair of consecutive indexes i, j (j = i± 1) one of the following possibilities
holds up to exchange of i and j:

(i) nj = ni, kj = ki, Xi and Xj represent the same element of B̂⊔
∞;

(ii) nj = ni + 1, kj = ki, Xi = UV , Xj = Uσni
V ;

(iii) nj = ni, Xi = Uσε
ℓ , Xj = σε

ℓU , kj = Tℓ(ki), ε = ±1;
(iv) nj = ni, kj = ki 6= ℓ, Xi = Uqℓ, Xj = qℓU .

For i < j, we denote σiσi+1 . . . σj−1 by πi,j and we set πi,i = 1. Let Zi =

Xiπki,ni
σ−1

ni
π−1

ki,ni
∈ B̂ni+1 (see Figure 2). It is enough to prove that:

(a) Zi
s
∼ Zj in all cases (i)–(iv) (this implies Xσ−1

n = Z0
s
∼ Zt) and

(b) either Zt = X ′σ−1
m or we have Zt

s
∼ Z → Z ′ s

∼ Z ′′ ← Z ′′′ s
∼ X ′σ−1

m where
the arrows mean the same as in (3).
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Assertion (a) either is evident or follows from Lemma 1. For example, in Case (ii),

we have Zi
s
∼ Zj because

Zi = UV πki,ni
σ−1

ni
π−1

ki,ni

s
∼ Uσ−1

ni
σni+1σni

V πki,ni
σ−1

ni
π−1

ki,ni

def
= Z ′

i,

Zj = Uσni
V πki,ni+1σ

−1
ni+1π

−1
ki,ni+1 and σnj

Zjσ
−1
nj

= Z ′
i.

In Case (iii), ki = ℓ + 1, ε = −1 we have Zi
s
∼ Zj by Lemma 1 because

Zi = Uσ−1
ℓ πℓ+1,ni

σ−1
ni

π−1
ℓ+1,ni

= V σ−2
ni−1σ

−1
ni

W,

Zj = Uπℓ,ni
σ−1

ni
π−1

ℓ,ni
σ−1

ℓ = V σ−1
ni

σ−2
ni−1W for

V = Uπℓ+1,ni
πℓ,ni−1σni−1, W = π−1

ℓ,ni−1π
−1
ℓ+1,ni

.

In all the other cases Assertion (a) is either similar or easier.
It remains to prove Assertion (b). We know that Yt is a cyclic permutation

of X ′qm. If Yt = X ′qm, then Zt = X ′σ−1
m and we are done. Otherwise we have

X ′ = UqkV and Yt = V qmUqk for some k ≤ m. Then we have:

Zt = V qmUπk,mσ−1
m π−1

k,m
s
∼ σmUπk,mσ−1

m π−1
k,mV σ−1

m qm+1
def
= Z → Z ′

X ′σ−1
m = UqkV σ−1

m
s
∼ π−1

k,m+1V σ−1
m Uπk,m+1qm+1

def
= Z ′′′ → Z ′′.

It is easy to check that Z ′ and Z ′′ are conjugate. �

Remark 1. Theorem 1 admits also a geometric proof based on the interpretation
of the marked points as local modifications introduced in [3] which increase the
Thurston-Bennequin number (see the extended version of [10]).

§2. From A to Â. Let the notation be as in the introduction and let ÂB̂∞ be the
semigroup algebra of B̂∞ with coefficients in Â. We have kB∞ ⊂ AB∞ ⊂ ÂB̂∞.
Let Ĥ∞ be the quotient of ÂB̂∞ by the bilateral ideal generated by ker π and let
π̂ : ÂB̂∞ → Ĥ∞ be the quotient map.

Let R̂ be the submodule of ÂB̂∞ generated by all the elements of the form

XY − Y X, Xσn − uX, Xσ−1
n −Xqn, qa

n+1X − vaX, qa
1 − va

with X, Y ∈ B̂n and n, a ≥ 1. Let M̂ = Ĥ∞/π̂(R̂) and let t̂ : Ĥ∞ → M̂ be the
quotient map.

Theorem 2. (a). M and M̂ are isomorphic as A-modules. (b). If, moreover, H∞

is given by (2), then M̂ is generated by t̂(1) as an Â-module.

Proof. (a). Follows from Theorem 1. (b). Follows from the fact that Ĥn+1 =

〈qn+1〉Ĥn + ĤnσnĤn + Ĥnσ−1
n Ĥn where 〈qn+1〉 = {1, qn+1, q

2
n+1, . . .}. �

Thus M̂ = Â/Î where Î is the annihilator of M̂ .

§3. Description of Î. In this section we assume that Ĥ∞ is defined by (2). Let

F+
n (resp. F̂n) be the free monoid freely generated by x±1

1 , . . . , x±1
n−1 (resp. by

x±1
1 , . . . , x±1

n−1, q1, . . . , qn) and let ÂF̂n be the semigroup algebra of F̂n over Â. We
define the basic replacements as in [8; §2.1, (i)–(viii)] and we add to them

(ix) xiqj → qTi(j)xi
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We define ÂF̂ red
n and r : ÂF̂n → ÂF̂ red

n similarly to [8; §2.2] using the replacements

(i)–(ix). Then ÂF̂ red
n is the free Â-module freely generated by the elements of the

form qX1X2 . . .Xn−1, q ∈ Qn, Xi ∈ Si where Si are as in [8; (5)]. We define τ̂n :

ÂF̂ red
n → ÂF̂ red

n−1 by setting τ̂n(qqa
nXxn−1Y ) = r(qXqa

n−1Y ), τ̂n(qqa
nXx−1

n−1Y ) =

r(qXqa+1
n−1Y ), τ̂n(qqa

nX) = vaqX for q ∈ Qn−1, X, Y ∈ F+
n−1. We extend τ̂n to

ÂF̂n by setting τ̂n(X) = τ̂n(r(X)) and we define τ̂ : ÂF̂∞ → ÂF̂0 = Â by τ̂(X) =

τ̂1τ̂2 . . . τ̂n(X) for X ∈ ÂF̂n.

Let shn be the Â-algebra endomorphism of ÂF̂∞ defined by shσi = σi+n, sh qi =

qi+n. We set sh = sh1. For X ∈ F+
n+1, we define ρn,X ∈ EndÂ(ÂF̂ red

n ) by setting
ρn,X(Y ) = τ̂n+1(X sh Y ).

Let Ĵ4 be the minimal Â-submodule of ÂF̂ red
4 which satisfies the conditions

(J1) r(r(X3X2)X1)−r(X3r(X2X1)) ∈ Ĵ4 for any Xj ∈ sh3−j Sj \{1}, j = 1, 2, 3;

(J2) ρ4,X(Ĵ4) ⊂ Ĵ4 for any X ∈ S4.

Similarly, let Ĵ3 be the minimal Â-submodule of ÂF̂ red
3 which satisfies

(J1′) qir(X) − r(r(X)qj) ∈ Ĵ3 for any X = xε1

2 xε2

1 xε3

2 , ε1, ε3 ∈ {−1, 1}, ε2 ∈
{−1, 0, 1}, i = 1, 2, 3, j = T2T

ε2

1 T2(i).

(J2′) ρ3,X(Ĵ3) ⊂ Ĵ3 for any X ∈ S3.

Let N̂ = ÂF̂ red
2 ⊗Â ÂF̂ red

2 . We define Â-linear mappings τ̂N : N̂ → Â and

ρδ : N̂ → N̂ , δ = (δ1, δ2) ∈ {−1, 0, 1}2, by setting τ̂N (Y1 ⊗ Y2) = τ̂(Y1Y2), ρδ(Y1 ⊗

Y2) = xδ1

1 ⊗ τ̂3((sh Y1)x
δ2

1 sh Y2). Let L̂ be the minimal Â-submodule of N̂ satisfying

(L1) τ̂3(x
ε1

2 xε2

1 xε3

2 )⊗ xε4

1 − xε2

1 ⊗ τ̂3(x
ε3

2 xε4

1 xε1

2 ) ∈ L̂ for any ε1, ε3 ∈ {−1, 1} and
for any ε2, ε4 ∈ {−1, 0, 1};

(L2) ρδ(L̂) ⊂ L̂ for any δ ∈ {−1, 0, 1}2.

Theorem 3. Î = τ̂(Ĵ4) + τ̂(Ĵ3) + τ̂N (L̂).

A proof repeats almost word by word the proof of Main Theorem in [8] (we

ignore the variables qi when we define the weight function on F̂∞).

Each of the modules Ĵ4, Ĵ3, L̂ is defined as the limit of an increasing sequence of
submodules of a finite rank Â-module. Since Â is not Noetherian, this does not give
yet a way to compute them. However, we can approximate Â by Noetherian rings
Âd = A[v1, . . . , vd] and the projections prd(Î) can be effectively computed where

prd : Â → Âd is the quotient by the ideal (vd+1, vd+2, . . . ). Namely, let (ÂF̂ red
n )d,

(Ĵ4)d, (Ĵ3)d, (N̂)d, (L̂)d be the Âd-modules obtained by the above procedure but

with the additional relations qd+1
i = 0 for any i. Then we have prd(Î) = τ̂(Ĵ4)d +

τ̂(Ĵ3)d + τ̂N (L̂)d and these modules (at least theoretically) can be computed as

limits of increasing sequences of Noetherian modules. The rank of (ÂF̂ red
4 )d (the

module where (Ĵ4)d sits) is equal to 315(d + 1)4. We hope that, at least for d = 1
or 2, the computations can be performed in practice.

Remark 2. If β = 0 (the case when the Groebner base of Iv was computed in
[8]), then the obtained transversal link invariants a priori cannot detect transversally
non-simple links. Indeed, in this case we have 1 = ασ−1

1 +σ−3
1 , hence q1 = q1(ασ−1

1 +
σ−3

1 ) = (ασ−1
1 + σ−3

1 )q2 = q2. Thus q1 = q2 = q3 = . . . whence v1 = v2 = . . . and

we obtain M = Mv, t = tv and Pt(L) = (v/u)(n−e)/2Ptv
(L), i. e., the invariant Pt

reduces to a usual link invariant Ptv
and Thurston-Bennequin number n− e.
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Remark 3. By [9], all the computations in the huge module (ÂF̂ red
4 )d can be

done with the coefficients in Q or in Z/mZ for m not very big.
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