WHEN A CHAIN OF BLOWUPS DEFINES AN AUTOMORPHISM OF \mathbf{C}^{2}.

S.Yu. Orevkov

1. Introduction. In this note we give a new proof of a theorem of A.G. Vitushkin [1]. The proof is based on a formula for the canonical class of an algebraic compactification of \mathbf{C}^{2} (formula (5) below). This formula was used in some author's papers (see, e.g., formula (3) in [2]), however, its detailed proof is published here the first time. Similar formulae written in other terms appeared in different authors' papers.

Let L be a line on $\mathbf{C} P^{2}$. We shall consider it as the infinite line of the affine plane \mathbf{C}^{2}, i.e. $L=\mathbf{C} P^{2} \backslash \mathbf{C}^{2}$. Let $\sigma_{1}: V \rightarrow \mathbf{C} P^{2}$ be a birational morphism whose restriction onto $\sigma_{1}^{-1}\left(\mathbf{C}^{2}\right)$ is an isomorphism, i.e. σ_{1} is a composition (a chain) of blowups "at infinity". Let E_{1}, \ldots, E_{n} be the irreducible components of the curve $E=\sigma_{1}^{-1}(L)$ where E_{1} is the proper transform of L. We say that the chain of blowups σ_{1} defines an automorphism of \mathbf{C}^{2} if the last glued curve (denote it by E_{2}) admets a birational morphism $\sigma_{2}: V \rightarrow \mathbf{C} P^{2}$ such that $\left.\sigma_{2}\right|_{\sigma_{2}^{-1}\left(\mathbf{C}^{2}\right)}$ is an isomorphism, $\sigma_{2}^{-1}(L)=E$, and E_{2} is the proper transform of L (in this case, $\sigma_{2}^{-1} \sigma_{1}$ is an automorphism of \mathbf{C}^{2}).

Following [1], let us define a test surface for the chain of blowups σ_{1} as a homology class $S \in H_{2}(V ; \mathbf{Z})$ such that

$$
\begin{equation*}
S \cdot E_{2}=1, \quad S \cdot E_{i}=0 \text { for } i \neq 2 \tag{1}
\end{equation*}
$$

(as above, E_{2} is the last glued curve). Since E_{1}, \ldots, E_{n} is a base in $H_{2}(V ; \mathbf{Z})$, the conditions (1) uniquely define the class S. If a chain of blowups σ_{1} defines an automorphism of \mathbf{C}^{2} then $S=\sigma_{2}^{-1}(l)$ where l is a generic line on $\mathbf{C} P^{2}$. Hence, by the adjunction formula, we have

$$
\begin{equation*}
S^{2}=1, \quad S \cdot K_{V}=-3 \tag{2}
\end{equation*}
$$

where $K_{V}=-c_{1}(V)$ is the canonical class of V. A.G. Vitushkin proved that (2) is not only necessary but also a sufficient condition for a chain of blowups σ_{1} to define an automorphism \mathbf{C}^{2} :

Theorem. (see [1]) A chain of blowups σ_{1} defines an automorphism of \mathbf{C}^{2} if and only if the test surface S satisfies (2).
2. Discriminant of the intersection form. Let $D=D_{1}+\cdots+D_{n}$ be a curve on a smooth projective surface $V,\left(D_{1}, \ldots, D_{n}\right.$ are its irreducible components). Let $A_{D}=\left(D_{i} \cdot D_{j}\right)_{i j}$ be the intersection matrix. Let us define the discriminant $d(D)$ of D as $\operatorname{det}\left(\mathcal{V}_{D}\right)$. The sign minus provides the equality $d\left(\sigma^{-1}(D)\right)=d(D)$ for a blowup $\sigma: \tilde{V} \rightarrow V$. If $D_{i} \cdot D_{j} \leq 1$ for $i \neq j$ then the graph of D is the graph Γ_{D} whose vertices are D_{1}, \ldots, D_{n} and whose edges correspond to pairs $\left(D_{i}, D_{j}\right)$ with $D_{i} \cdot D_{j}=1$.

Lemma 1. (Mumford [3]) Suppose Γ_{D} has the form of a linear chain $-\mathrm{o}-\cdots-\mathrm{o}^{-}$. Then
a). If $D_{i}^{2} \leq-2$ for all i then $d(D) \geq 2$.
b). If A_{D} is negatively definite, $D_{i}^{2} \leq-1$ for all i, and $d(D)=1$ then D can be blown down to a smooth point.
3. Proof of Vitushkin's theorem. Let $\sigma_{1}: V \rightarrow \mathbf{C} P^{2}$ be a birational morphism and $E=E_{1}+\cdots+E_{n}=\sigma_{1}^{-1}(L)$. Then E_{1}, \ldots, E_{n} is a base of the vector space $H_{2}(V, \mathbf{Q})$. Let $A=\left(E_{i} \cdot E_{j}\right)$ be the intersection matrix and let $B=A^{-1}$. The graph of E is a tree. Since $d(E)=-1$, Cramer's rule easily implies

Lemma 2. $b_{i j}=d(E-[i j])$ where $[i j]$ is the minimal connected set of the form $E_{i_{1}} \cup \cdots \cup E_{i_{k}}$ which contains $E_{i} \cup E_{j}$.
Lemma 3. For any $C_{1}, C_{2} \in H_{2}(V, \mathbf{Q})$, one has $C_{1} \cdot C_{2}=\sum_{i, j} b_{i j}\left(C_{1} \cdot E_{i}\right)\left(C_{2} \cdot E_{j}\right)$.
Proof. For $k=1,2$, let us set $X_{k}=\left(x_{k}^{1}, \ldots, x_{k}^{n}\right), Y_{k}=\left(y_{k}^{1}, \ldots, y_{k}^{n}\right)$, where $C_{k}=$ $\sum x_{k}^{i} E_{i}$ and $y_{k}^{i}=C_{k} \cdot E_{i}$. Then $Y_{k}=A X_{k}$, hence $X_{k}=B Y_{k}$ and $C_{1} \cdot C_{2}=$ $\left\langle X_{1}, A X_{2}\right\rangle=\left\langle B Y_{1}, Y_{2}\right\rangle$.

Let, as in Sect. 1, E_{2} be the last glued curve and S be the test surface. It follows from Lemmas 2,3 and (1) that

$$
\begin{equation*}
S^{2}=b_{22}=d\left(E-E_{2}\right) \tag{3}
\end{equation*}
$$

Let us denote $\nu_{i}=E_{i} \cdot\left(E-E_{i}\right)$. The adjunction formula for E_{i} yeilds $\left(K_{V}+E\right) \cdot E_{i}=$ $\nu_{i}-2$, hence by (1) and Lemma 3, we have

$$
\begin{equation*}
\left(K_{V}+E\right) \cdot S=\sum_{i=1}^{n} b_{i 2}\left(\nu_{i}-2\right) \tag{4}
\end{equation*}
$$

Fig. 1

Fig. 2

Suppose that (2) holds. Without loss of generality, we may assume that the curve E is minimal in the following sense. There does not exist $j \geq 3$ such that $E_{j}^{2}=-1$ and $\nu_{j} \leq 2$. This means that we blow up each time a point of the exceptional curve of the previouse blowup. Therefore, the induction with respect to the number of blowups easily shows that Γ_{E} is either as in Fig. 1 or as in Fig. 2 where the dashed lines denote linear chains of vertices. For curves E_{j} such that $\nu_{j}=3$, let us denote the discriminants of the connected components of $E-E_{j}$ in accordance with Figures 1 and 2. Lemma 1 and the minimality of E imply that $q_{j} \geq 2$ for all j. Hence, (2) and (3) imply that Fig. 2 is impossible. Applying (4) and Lemma 2 to Fig. 1 and using the fact that $E S=1$, we obtain

$$
K_{V} \cdot S+1=\sum_{\nu_{i}=3} b_{i 2}-\sum_{\nu_{i}=1} b_{i 2}=\sum_{j=1}^{m} p_{j} q_{j} r_{j}-r_{0}-\sum_{j=1}^{m} p_{j} r_{j}-b_{22}=-b_{22}-1+s
$$

where $r_{j}=q_{j+1} \ldots q_{m}$ and $s=\sum\left(p_{j}-1\right)\left(q_{j}-1\right) r_{j}$. Substituting (2) and (3) into (5), we obtain $s=0$.

Lemma 4. Let q be the restriction of a nondegenerate quadratic form of the signature $(-,+, \ldots,+)$ onto a subspace. If the discriminant of q is positive then q is positively definite.

By (2) and (3), we have $d\left(E-E_{2}\right)=S^{2}=1>0$. Hence, by Lemma 4, the minus intersection form is positively definite on $E-E_{2}$. In particular, all q_{j} and p_{j} are positive, hence, all the summands in the sum s (see (5)) are non-negative. Using the fact that all $q_{j}>1$, the equality $s=0$ implies $p_{1}=\cdots=p_{m}=1$. Hence, by Lemma 1 b , the leftmost linear branch of Γ_{E} can be blown down. As the result, we obtain another graph of the same form which has $m-1$ triple vertices. The discriminant of the leftmost linear branch of the new graph is p_{2}. Contunuing this process, we blow down all the components of E except E_{2}. The Theorem is proved.
4. Remark. It is proved in [1] that the conditions (2) are necessary and sufficient for a chain of blowups to be a composition of so-called triangular chains (see the definition in [1]). Explicitely writing down the blowups in coordinates, it is not difficult to see that triangular chains are those and only those which define triangular (i.e. of the form $(x, y) \mapsto(x+f(y), y))$ transformations of \mathbf{C}^{2} up to linear changes of coordinates. Hence, the arguments from [1] prove more than the above Theorem. They provide also a proof of Jung's theorem which claims that any automorphism of \mathbf{C}^{2} is decomposable into a product of affine and triangular transformations. The author is grateful to A.G. Vitushkin for useful discussions

References

1. A.G. Vitushkin, Criterion for a chain of σ-processes to be a composition of triangular chains, Math. Notes (to appear).
2. A.V. Domrina, S.Yu. Orevkov, On four-sheeted polynomial mappings of \mathbf{C}^{2}. I. The case of an irreducible ramification curve, Math. Notes 64 (1998), ??-??.
3. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 229-246.

Steklov Math.Inst. Russian Acad.Sci.

