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Abstract. We prove the algebraic unrealizability of certain isotopy type of plane
affine real algebraic M-sextic which is pseudoholomorphically realizable. This result

completes the classification up to isotopy of real algebraic affine M-sextics. The proof

of this result given in a previous paper by the first two authors was incorrect.

The main theorem of the paper [4] states that the arrangement B2(1, 4, 5) in
RP

2 (see Figure 1) is unrealizable by a union of a line and a real smooth algebraic
sextic curve. The precise statement is:

Theorem 1. Let C be a real algebraic curve of degree 6 in RP
2 and L a line. Then

there does not exist an ambient isotopy of RP2 which deforms C and L into the
curve and the line in Figure 1.

Figure 1. The arrangement B2(1, 4, 5)

Recently, the first author found a mistake in the final part of the proof of Theorem
1 given in [4] (we discuss this mistake in detail in Section 3 below). However the
result is correct and here we give another proof.

An affine smooth irreducible real algebraic curve A in R
2 of degree d is an affine

M -curve if it has maximal possible number of connected components, which is equal
to g + d where g = (d− 1)(d− 2)/2 is the genus of the complexification of A. This
condition is equivalent to the fact that the projective closure of A is an M -curve
(i.e. it has g + 1 connected components) and all intersections with the infinite line
are real and transverse and sit on the same connected component of the closure
of A. Thus, if Figure 1 were algebraically realizable, it would provide an affine
M -sextic in the affine plane RP

2 \ L.
A classification of affine M -sextics up to isotopy was started in [8, 9] and com-

pleted in [13, Theorem 1.1] assuming that [4] is correct. So, here we fill a gap in the
proof of this classification as well. Note that a pseudo-holomorphic classification of
affine M -sextics was previously obtained in [9], and it differs from the algebraic one.
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Three arrangements are realizable pseudo-holomorphically, but not algebraically;
see [13]. The arrangement B2(1, 4, 5) in Figure 1 is one of them. This is why it is
more difficult to exclude it.

We prove Theorem 1 arguing by contradiction and proceed in three steps:

(i) assuming that a smooth sextic curve C0 arranged with respect to the line L
as shown in Figure 1 exists, we derive that there exists a real elliptic sextic
curve C9 with 9 nodes located with respect to L as shown in Figure 2(a)
(see Lemma 1 in Section 1);

(ii) from the existence of a sextic C9 we derive the existence of an elliptic real
sextic having 7 nodes (five isolated and two non-isolated) and a singularity
A3, and located with respect to L as shown in Figure 2(b) (see Lemma 2 in
Section 1);

(iii) we prohibit the existence of the latter real elliptic sextic using a suitable
version of cubic resolvent (see Section 2).
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Figure 2. (a) See Lemma 1. (b) See Lemma 2. (c) Notation ai, di.

So, the general scheme of the proof of Theorem 1 is almost the same as for the
proof in [13] of algebraic unrealizability of the affine sextic C2(1, 3, 6). However,
there is a difference in the last step. In [13], the cubic resolvent is algebraically
realizable but its mutual position with respect to the axis is pseudo-holomorphically
unrealizable. Here the situation is opposite: the mutual position of the resolvent and
the axis is pseudo-holomorphically realizable, but the resolvent itself is algebraically
unrealizable.

Note also that only the A3 singularity is needed in Step (iii), thus we may undo
all the remaining A1 singularities obtained in Step (ii). However, we do not know
how to attain the A3 singularity (keeping the required position of the curve with
respect to the line L) without passing through a genus 1 nodal curve.

1. Application of Hilbert-Rohn-Gudkov method

The following notation will be used in the proof. Denote the nonempty oval of C0

by One. In what follows, we deform C0 in certain families, and the corresponding
non-empty oval will be denoted by One as well. If One degenerates into a loop with
a singular point, we continue to use the same notation for this loop. The open disk
bounded by One will be denoted by d0. The line L cuts One into six arcs, which
we denote a1, . . . , a6 according to Figure 2(c). We also use the notation d1, d2, d3
for the three of the connected components of RP2 \ (One ∪L) designated in Figure
2(c). By Oe we denote the empty oval in the domain d1 (it will remain oval in all
further deformations).
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Lemma 1. Suppose that there exists a sextic curve C0 shown in Figure 1. Then
there exists a real irreducible sextic curve C9 with 9 nodes located with respect to
the line L as shown in Figure 2(a).

Proof. We construct the curve C9 inductively. Abusing notation we denote a plane
curve and its defining polynomial by the same symbol.

Start with a pencil of sextic curves {C
(t)
0 = C0 + εtK2

0 , ε = ±1, t ≥ 0}, where
K0 is a generic real cubic curve passing through a point p chosen on the arc a6.
Choose ε so that the disk d0 contracts as t grows. Furthermore, the oval One

always intersects L as shown in Figure 1, the disks bounded by the empty ovals
inside d0 grow, while the disks bounded by the empty ovals inside d3 shrink. Note

that t cannot tend to ∞ without degeneration of C
(t)
0 . Indeed, otherwise the curve

C
(t)
0 would approach the double cubic curve K2

0 . This, however, is impossible: we
consider the real line through a fixed point inside the oval Oe and a point embraced
by one of the empty ovals in the domain d2, and then, on any sufficiently close

real line, we will observe a pair of real intersection points with C
(t)
0 that approach

the intersection point with L (see Figure 3, left). This finally would yield that K0

contains a segment of L. A contradiction.
Due to the general choice of K0, the first degeneration is a sextic curve C1 with

one node (see more detailed arguments in the proof of the induction step below).
Note that this node cannot join One with the empty oval in the domain d1, since
they form a positive complex oriented injective pair (see [4, Figure 9]).1

Further, the node cannot join the arc a4 with an empty oval in the domain d2.
Indeed, suppose there exists such a nodal degeneration C∗. Let us consider the
pencil of lines through a point inside Oe. By [4, Lemma 2.2], the lines of this pencil
passing through the exterior ovals do not separate the ovals in d2 from each other
and from the arc a5. Hence (cf. [4, §6.2] and [11, §4.5]) the braid of C∗ with
respect to this pencil coincides with that of a curve C∗∗ obtained from Figure 2(a)
by joining one of the ovals in d2 with a4 through one more node. Thus there exists
such a pseudo-holomorphic curve C∗∗ which contradicts the genus formula. Hence,

(1) either the node joins a pair of empty ovals in the domain d2,
(2) or the node joins an empty oval with the arc a5,
(3) or the node is an isolated point obtained by shrinking one of the empty

ovals in the domain d3.

For the induction step, suppose that Ck, 1 ≤ k ≤ 8, is a real irreducible sextic
curve with k real nodes and such that

(i) there exists a smoothing of Ck into a smooth sextic as shown in Figure 1,
(ii) all nodes are real, each non-isolated node joins either a pair of empty ovals

in the domain d2, or an empty oval in the domain d2 with the arc a5, while
each isolated node is obtained by shrinking an oval in the domain d3.

By [13, Proposition 2.4(b)], we can suppose that all k nodes and the point p are
in general position. Consider a pencil

{C
(t)
k

= Ck + εtK2
k , ε = ±1, t ≥ 0} , (1)

1We refer to [16, §2.1 and §2.4B] for a definition of the complex orientations and of posi-
tive/negative injective pairs of ovals respectively. Also [16] can be used as a general introduction

to the subject.
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where Kk is a generic real cubic passing through the nodes of Ck and the point
p ∈ a6, and ε is chosen so that d0 shrinks as t grows. The argument, used for the
base of induction, ensures that there must be a degeneration at some t ∈ (0,∞).
We claim that the first degeneration C∗ is a (k+1)-nodal curve Ck+1 possessing the
above properties (i) and (ii). We explain this just in the most difficult case of k = 8.
By [5, Theorem 1] (see also [6]) we can suppose that all node of C8 are in general
position. Blowing up the 8 fixed nodes, we obtain curves in the 3-dimensional linear
system |D| = |6L − 2E1 − · · · − 2E8| on a general del Pezzo surface Σ of degree
1. By [7, Lemma 9(1)], the curves that are not immersed form a set of dimension
at most 1 in |D|. Fixing the point p ∈ Σ, we obtain that the pencils spanned
by non-immersed curves and the (unique) double curve passing through p, sweep
a subset of dimension ≤ 2 in |D|, while the (smooth) blown up curve C8 can be
moved to a general position in |D|. Hence, the considered pencil of sextics (1) does
not contain non-immersed curves (except for the double cubic). We then see that
the degenerate curve C∗ cannot have an immersed singularity more complicated
than a node by the genus formula and the Harnack-Klein bound stating that the
number of connected components of the real point set of the normalization of the
curve does not exceed genus plus one. For the same reason, an extra singularity
cannot be a popping up isolated real node, nor two nodes can appear on the arc a5.
Thus a possible position of the new non-isolated node is determined by the rules
(i) and (ii), as we have seen in the base induction step. �

Remark 1. Statements similar to that of Lemma 1 are contained also in [14, Step
(1) in the proof of Lemma 3.3] and [13, Lemma 2.10], where detailed proofs have
been skipped. Moreover, Lemma 1 and the above cited statements follow from [6,
Theorem 10 (proof in §7-11)]. For the reader’s convenience we have provided here
a proof with all necessary details that also complete the proofs in [14, Step (1) in
the proof of Lemma 3.3] and [13, Lemma 2.10].

Lemma 2. Let C9 be a real nodal sextic as in Lemma 1and p, q ∈ C9 be as in
Figure 3, right. Then there exists a real elliptic sextic C(A3) with 7 nodes and a
singularity A3 located with respect to the line L as shown in Figure 2(b).

Proof. We apply the Hilbert-Rohn-Gudkov method in the form developed in [14,
Section 4] and proceed similarly to the lines of the proof of [14, Lemma 5.3].

By [13, Proposition 2.4(b)], we can suppose that

the configuration consisting of any prescribed 7 nodes of C9,
the points p and q, and of the tangent at p is in general position.

(2)

Let us order the non-isolated nodes z1, . . . , z4 of C9 assuming that z4 ∈ One, and
respectively denote by d′1, . . . , d

′

4 the disks inside d0 bounded by the arcs ending at
z1, . . . , z4 (so, z3, z4 ∈ d′4). Pick a point p ∈ a6 and a point q ∈ Oe. Consider the
germ M at C9 of the equisingular family of real elliptic sextics which

(i) have nodal singularities at all the isolated nodes of C9 and at z1 and z2,
(ii) have a node in a neighborhood of zi, i = 3, 4,
(iii) intersect C9 at p with multiplicity 2,
(iv) pass through the point q.

The germ M is smooth and one-dimensional by [15, Theorem in page 31].
By formula (24) in [14, Lemma 4.2] and formulas (15), (16) in [14, Lemma 4.1],

each curve C′ ∈ M\{C9} intersects C9 with multiplicity 4 at each of the seven fixed
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p

L

p

q

Figure 3

nodes, at two real points in a neighborhood of zi, i = 3, 4, and with multiplicity
3 at {p, q}. In total this gives 35, and by the parity argument, one more (real)
intersection point of C′ with C9 lies on the oval Oe. Altogether this yields that,
moving along M in a certain direction, we obtain a deformation of the real point
set such that (see the dashed lines in Figure 3, right):

the disks d′1, d
′

2, d
′

3 grow, the disk d′4 and the domain d0 shrink; (3)

cf. [13, Proposition 2.5 and Figure 3].
Extending the germ M to a global equisingular family subject to conditions (i),

(iii), (iv) above, we see that the element of M moving in the designated direction
cannot return to C9 due to the strongly monotone changes (3), and hence must
undergo a degeneration. The argument used in the proof of Lemma 1 shows that it
is not a double cubic. The general position condition (2) excludes all other splittings
of the degenerate curve into three or more components (counting multiplicities).
Let us show that no splitting into two distinct components is possible. Indeed, it
follows from (3), that the fixed isolated nodes in the domain d3 remain isolated in
the degeneration, and that no component of odd degree can split off. Note also
that, in case of a splitting, no isolated node can be an intersection point of two
components, since otherwise, the components must be complex conjugate, which
is impossible. All this leaves the only possibility of a splitting into a conic and a
quartic, but such a curve cannot have 5 isolated nodes.

Thus, the appearance of an extra node can only be the contraction of the oval
Oe to the point q, otherwise, one would encounter a forbidden reducible curve. In
this case, we simply ignore the degeneration and continue the movement along our
one-dimensional family: the oval Oe pop up again, and the rest of the real part of
the current curve deforms as shown in Figure 3(right). Then at some moment we
have to encounter another degeneration, and the only possibility left is the shrinking
to a point of the disk d′4, thus, giving the required elliptic curve C(A3). Indeed,
the genus formula combined with (3) do not allow any singularity of the form An,
n 6= 3. �

2. Application of cubic resolvents. End of proof of Theorem 1

We denote the standard real Hirzebruch surface of degree n > 0 (the fiberwise
compactification of the line bundle O(n) over P1) by Fn. Let RFn be the set of
real points of Fn. It is diffeomorphic to a torus or a Klein bottle. In Figures 4
and 5 we represent RFn by a rectangle whose opposite sides are identified. The
horizontal sides represent the exceptional section E, E2 = −n, and vertical lines
(in particular, the vertical sides of the rectangle) represent fibers of the projection
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Fn → P1. Let F be one of the fibers. The Picard group of Fn is generated by E
and F . A generic section disjoint from E belongs to the linear system |E + nF |.

When speaking of a fiberwise arrangement of a curve on RFn, we mean its
arrangement up to isotopies which fix E and send each fiber to a fiber. If it is
known that the curve belongs to |dE + ndF |, its almost fiberwise arrangement is
the arrangement up to isotopies fixing E and such that any fiber at any moment
intersects the curve at ≤ d points counting the multiplicities. In particular, the
ovals of trigonal curves (d = 3) cannot pass one over another during such isotopies.

Proof of Theorem 1. Suppose that Figure 1 is realizable. Then, by Lemma 2, there
exists a singular sextic curve with an A3 singularity arranged with respect to L as
in Figure 2(b). It can be perturbed into a curve C′ arranged in one of the two ways
shown in Figure 4 (left) with respect to L and the two dashed lines (by rotating
L around the common point of the arcs a3 and a6 we can achieve that L passes
through A3). The relative position of C′ with respect to the (dashed) line through
Oe follows from [4, Lemma 2.2]. The position of the two nodes with respect to the
tangent line at A3 follows from Bezout theorem for an auxiliary conic tangent to
C′ at A3 and passing through Oe, one empty exterior oval, and one of the nodes.

A3

A1
A1

A3

L

A1

L

A1

A1 A1

A1

L

L

A1

L

A1 A1

Figure 4. C′ ∪ L and its transforms on F1 and on F2

Let us blow up the point A3. We obtain the arrangement in Figure 4 (middle)
on RF1. Then we blow up the point A1 on E and blow down the strict transform
of the fiber passing through it. We obtain a curve in RF2 belonging to |4E + 8F |
arranged (up to isotopy) with respect to E and the indicated fibers as shown in
Figure 4 (right). Its cubic resolvent is a trigonal curve in F4 arranged with respect
to E and the indicated fibers as in Figure 5 (left); see [13, §3].

Using [10], it is an easy exercise to check that the arrangement in Figure 5 (left)
is unrealizable by a trigonal algebraic curve on RF4 (note that it is realizable by a
trigonal pseudoholomorphic curve). To this end one should exclude all its possible
fiberwise arrangements, namely, the one depicted in Figure 5 (left) and those ob-
tained from it by inserting a zigzag or between some two consecutive ovals
(at most one zigzag can be inserted because otherwise we obtain too many vertical
tangents). Note that insertion of a zigzag is really necessary because there are un-
realizable fiberwise arrangements which become realizable after a zigzag insertion,
see [11, Appendix B]; this phenomenon is impossible in pseudoholomorphic context.
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Figure 5. The cubic resolvent on F4; the glued curve on F5

According to [10], to exclude each of these fiberwise arrangements, it is enough
to check that there does not exist a graph in CP

1 satisfying Conditions (1)–(7) at
the end of [10, §4] and having a prescribed behavior near RP

1. Indeed, since the
number of vertices of the graph and their nature is dictated by these conditions,
only a finite number of cases should be considered which can be done by hand in
a reasonable time. This fact can be also derived from Erwan Brugallé’s result. He
checked in [1, Proof of Proposition 5.6] by this method that the almost fiberwise
arrangement in RF5 shown in Figure 5 (right) is algebraically unrealizable. Indeed,
[1, Proposition 3.6] implies that it is enough to consider zigzag insertions of the
form up to symmetry, thus the almost fiberwise unrealizability of Figure 5
(right) is a consequence of [1, Lemmas 5.4 and 5.5].

The unrealizability of Figure 5 (left) follows from that of Figure 5 (right) be-
cause the latter is obtained from the former by gluing it together with an M -cubic
in RP

2 according to Figure 5 (middle). The gluing can be understood either in
the sense of [10] or in the sense of Viro [16]. In the latter case we interpret the
two parts of Figure 5 (middle) as charts in the triangles [(0, 0), (12, 0), (0, 3)] and
[(12, 0), (15, 0), (0, 3)]. �

3. The mistake in [4]

The idea of the prohibition of the sextic in question realized in [4] was to consider
the pencil of real cubics through 8 specific fixed points on the hypothetical sextic,
then, using an information on the location of the fixed points with respect to lines
and conic, to construct the evolution of cubics along the pencil, and then to show
that such a pencil does not satisfy some necessary conditions (does not reveal 8
distinguished cubics, see definition in [4, §4]).

In this section we assume that the reader is familiar with the paper [4] and
we use the notation from there. The mistake is in the last step (“From C4 to
contradiction”) in [4, §5.4]: the assertion that the arcs 6 and 8 of Ct are separated
by C4 ∪ N is erroneous. As a matter of fact, the non-base point of Ct ∩ N may
escape the loop of N as shown in Figure 6.

One could hope to repair the proof in [4] by continuing the construction of the
pencil of cubics and obtaining a contradiction on some further step. Unfortunately,
this is not so. In Figure 7 (see also Figure 8) we complete the pencil of cubics
without any contradiction to Bezout theorem for the auxiliary curves considered in
[4].

In the rest of the section we explain how we construct the pencil, using the tools
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Figure 6. The non-base point of Ct ∩N escapes the loop of N
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Figure 7. Completing the pencil of cubics (cf. [4, Figure 17])

from [2, 3]. The combinatorial configuration of n points in the plane is the data
describing the mutual position of each point with respect to the lines through two
others and the conics through five others. The combinatorial pencil of cubics de-
termined by eight points is given by the arrangement of the nine base points on the
eight successive distinguished cubics (see the definition in [4, §4]). Let us consider
eight points (1, 2, 3, 4, 5, 6, 7, 8) distributed in the ovals (A,D,C,H,G, F,B,E). Us-
ing [4, Lemma 2.2] plus Bezout’s theorem between C6 and some auxiliary rational
cubics (passing through seven of the points, with node at one of them), we deter-
mine the combinatorial configuration C realized by these eight points. It is formed
of five 7-subconfigurations of type (3, 4, 0, 0)2, plus three of type (7, 0, 0, 0) (see [3,
§3.1]). To find this pencil determined by 1, . . . , 8, free the point 7 away from the
oval B and move it till it crosses the line (AE). The new configuration (1, . . .8) lies

in convex position, its combinatorial configuration C is replaced by max(1̂ = 8+)
(see [2, §2.3]). As 7 is close to the line (18), it lies outside of the loops of the cubics

(7̂, 1) and (7̂, 8), hence (see [2, §5.1]) the pencil is the first one in [2, Figure 35].
Move 7 back to its initial position in B, the combinatorial pencil changes when
7 crosses the line (AE), see upper part of Figure 8. Afterwards, the eight points
realize C for all positions of 7 on the path. The only way to change the pencil
would be to let 9 cross another base point k: when 9 = k, the points 1, . . . , 8 lie
on a nodal cubic with node at k (see [2]). But one proves that C is not realizable
by eight points on such a cubic. So, the pencil undergoes no further change. The
complete pencil of cubics is shown in the lower part of this Figure 8. (Note that
with the notation of [4], B1 = 9 and B2 = 7.)

Acknowledgements. We are grateful to the referees for valuable comments
and corrections.
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