
ACYCLIC ALGEBRAIC SURFACESBOUNDED BY SEIFERT SPHERESS.Yu.OrevkovAbstract. Main result: let Y = X � D where X is a smooth projective variety and D acurve. Suppose that Hq(Y ;Q) = 0 for q > 0 and ��(Y ) = 2. If the boundary of a "tubularneighbourhood" of D is a Seifert Q-homology sphere with r multiple �bers then r � 16.Let Y be a complex algebraic surface. We say that it is Z-acyclic (respectively Q-acyclic) if its reduced homology with coe�cients in Z (resp. in Q) vanishes. Topologicallyone can represent Y as a compact 4-manifold with boundary (denote the boundary byS), attached by a collar S � [0; 1). Call S the boundary of Y . If Y is an a�ne surfacein Cm then S is the intersection of Y with a su�ciently large sphere. We say that Y isA-acyclic at in�nity if S is an A-homology 3-sphere. (A = Z;Q). If Y is A-acyclic then itis A-acyclic at in�nity. If Y is Q-acyclic and Z-acyclic at in�nity, then it is Z-acyclic.In the paper [R] Ramanujam proved that the only Z-acyclic surface bounded by ahomotopy 3-sphere is C2, and he also constructed there the �rst example of a non-trivialZ-acyclic (and even contractible) surface. Later on Gurjar and Shastri [GS] proved thatall Z-acyclic surfaces are rational. Tom Dieck and Petri [DP] classi�ed all acyclic surfaceswhich rise out of line con�gurations on P2. Fujita [F] (resp. Miyanishi, Tsunoda [MT]and Gurjar, Miyanishi [GM]) classi�ed acyclic surfaces with �� = 0 (resp. �1 and 1),where �� denotes the log-Kodaira dimension. Zaidenberg [Z1] pointed out the connectionof Z-acyclic surfaces with exotic algebraic and analytic structures on Cn, n � 3. Flennerand Zaidenberg [FZ] studied deformations of acyclic surfaces.A Seifert �bration (see [S], [O]) on a smooth compact 3-manifold M is a mappingonto a 2-manifold � : M ! B, which is a locally trivial �bration with �ber S1 overB � fp1; :::; prg and which looks near pj like D2 � S1 ! D2, (z1; z2) 7! z�j1 =z�j2 , whereD2 = fjzj2 < 1g � C, S1 = @D2 and �j , �j are coprime integers, �j � 2. The ��1(pj ) arecalled multiple �bers; M is called Seifert manifold if it admits a Seifert �bration. Seifert A-homology sphere (A stands for Z orQ) is a Seifert manifoldM withH�(M ;A) = H�(S3;A).In this case the base B is a 2-sphere. The question, when a Seifert homology sphere boundsan acyclic 4-manifold, was studied, for instance, in [FS], [NZ].Our main result is:Theorem 1. Let Y be a smooth algebraic Q-acyclic surface of logarithmic Kodaira di-mension 2, bounded by a Seifert Q-homology sphere with r multiple �bers. Then:(a). Y can not be Z-acyclic. Typeset by AMS-TEX1



2 S.YU.OREVKOV(b). r � 16.Let Y be a Q-acyclic surface. Consider an algebraic compacti�cation X of Y suchthat Y = X � D, where D is a reduced curve with simple normal crossings (an SNC-curve). Then all irreducible components of D are rational, and the dual weighted graphof D (denote it by �D) is a tree (see [Mu]). (The dual graph of a curve is the weightedgraph, whose vertices correspond to the irreducible components, edges correspond to theirintersection points and the weight of a vertex is the self-intersection number.) A tree iscalled r-fork if it has one vertex of valence r and other valences are � 2. Suppose thatD is minimal, i.e. it contains no (�1)-curve intersecting one or two others. A Q-acyclicsurface Y with ��(Y ) = 2 is bounded by a Seifert sphere if and only if �D (with minimalD) is a fork.1 Thus, we can reduce Theorems 1 to:Theorem 10. Let D be a minimal SNC-curve on a smooth projective surface X. Supposethat Y = X �D is Q-acyclic, ��(Y ) = 2 and the dual graph �D is an r-fork. Then:(a). Y can not be Z-acyclic.(b). r � 16.Remark 1. As we mentioned above, acyclic surfaces with �� < 2 are classi�ed [F], [MT],[GM]. Using this classi�cation and the classi�cation of Seifert homology spheres [O], onecan see that if Y is a Z-acyclic surface which is bounded either by a Seifert sphere or bya fork, then Y = C2. If Y is Q-acyclic and ��(Y ) < 2 then all the possible values for r areshown in the following table:��(Y ) �1 0 1@Y is a Seifert sphere with r mult. �bers f0; 1; 2; 3g f3; 4; 5g f4; 5; : : : g�D is an r-fork f0; 1; : : : g f3g ?This fact can be easily deduced from the results in [F], [GM] and [MS]. Note only thatthe cases with �� = 0; 1 and r � 4 correspond to the surfaces X �D with �D of the form��� >����0�����< ��� : Such a surface is bounded by a Seifert sphere because �D becomes afork after a 0-absorption (see [EN], [N]).Remark 2. Zaidenberg asked [Z2; Question 1.6] if there is only a �nite list of possibilitiesfor the topological type of the dual graph at in�nity of an acyclic (resp. contractible)surface with �� = 2. Theorem 10 can be considered as a very �rst step toward the positiveanswer to this question.Remark 3. The proof of the part (b) of Theorem 10 is based on the logarithmic Bogomolov{Miyaoka{Yau (log-BMY) inequality [Mi], strengthened by Kobayashi{Nakamura{Sakai[KNS], and Fujita's computation [F] of the Zariski decomposition of K + D. The part(a) also can be obtained as a direct consequence of the elementary formulas from xx1{3(most of them needed for the part (b)) using the rationality of Z-acyclic surfaces [GS] and1It is so, because when �� = 2, the tree �D satis�es so called Negative Chains Condition: If the valenceof a vertex is � 2 then its weight is � �2. When �� < 2, the both assertions \if" and \only if" are wrong.



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 3the log-BMY inequality2. However, these two results are quite non-trivial, while, as thereferee of the �rst version of the paper has pointed out,\... a very elementary proof is possible. Using Lemma 4.1 in part I of [GS], we canshow:Write KX � a0D0 +Pi�1 aiDi where D0 is the central curve. Then a0 � 0 =) allai � 0 and a0 < 0 =) all ai < 0. But if all ai � 0, then pg(X) > 0. This is not possible.Hence all ai < 0. But then K +D is either trivial or a strictly negative divisor. In thelatter case, ��(Y ) = �1. If K +D � 0, then (K + D) �D0 = �2 + r = 0 =) r = 2.Hence �D is linear. This completes the proof."In fact, only the implication \a0 � 0 =) all ai � 0" is proven in [GS, Lemma 4.1].However, the proof can be easily completed to derive the implication \a0 < 0 =) allai < 0" as well. Indeed, if a0 < 0 then by [GS, (4.1)] all ai � 0. If some of them were= 0 then (due to connectedness of D) would exist two components Di and Dj such thatai = 0, aj 6= 0 and Di � Dj = 1. Then, since D2i + 2 � 0, one would have 0 = g(Di) =KDi +D2i + 2 � KDi = aj +Pk 6=i;j akDkDi � aj < 0.Remark 4. After the old proof of Theorem 10(a) was omitted, the propositions 1.4 { 1.6remained without applications. However, we decided to leave them because they are simplebut maybe they are of some independent interest.Remark 5. The estimate r � 16 in Theorem 10, requires messy calculations (see x8).However, the fact that r is bounded from above, can be obtained without them. Therefore,we presented in x7 a shorter proof of Theorem 10 with a weaker estimate for r.Remark 6. The estimate r � 16 still does not seem to be the best possible. However, astronger estimate needs other techniques, because an attempt to prove it by the methodsof this paper leads to so huge volume of calculations that the result does not worth them.I am grateful to M.G. Zaidenberg for introducing me to the subject and useful discus-sions. I am grateful to the referee for pointing out the elementary proof of Theorem 1(a)and other useful remarks. This work was done during my stay at the University Bordeaux{I (supported by the program \PAST") and partially in G�ottingen Mathematical Institute(supported by SFB-170). I thank these institutions for the hospitality and the �nancialsupport. x1. Weighted trees and their discriminantsWe list in this section some well-known elementary facts about discriminants of weightedtrees. A weighted tree is a �nite tree (�nite graph without cycles) with an integer weightw(v) assigned to each vertex v. Let � be a weighted tree and v1; :::; vn be its vertices. Theincidence matrix of � is A� = (aij ), whereaij = 8><>: w(vi) if i = j;1 if vi is connected to vj by an edge,0 otherwise:2see the preliminary version of this paper in \Mathematica Gottingensis", 38(1995).



4 S.YU.OREVKOVThe discriminant of � is de�ned as d(�) = det(�A�). By convention, d(?) = 1. Clearly,this de�nition is independent of the order of the vertices and that the discriminant of adisjoint union is the product of the discriminants of the connected components.The following lemma can be easily obtained, using the Cramer rule (see, e.g. [EN] fordetails).Lemma 1.1. Let � be a weighted tree with d(�) 6= 0. Let B� = (bij ) = A�1� be theinverse matrix. Then bij = �d(�� [vi; vj ])=d(�);where [vi; vj ] is the minimal connected subgraph of �, which contains vi and vj . �Lemma 1.2. Let � be a weighted tree, v a vertex of � and w(v) the weight of v. Denoteby �1; :::;�r the connected components of � � v, and let �0j = �j � vj , j = 1; :::; r, wherevj is the vertex of �j , connected by an edge to v. Then (remind that d(?) = 1)d(�) = �w(v) rYj=1 d(�j) � rXj=1 �d(�0j)Yk 6=j d(�k)�:Proof. Expand the determinant of A� according to the row, corresponding to v. �The valence of a vertex v of a graph is the number of edges, incident to v. A graph iscalled a linear chain if its vertices v1; :::; vn can be orders so, that vi is connected to vj i�ji� jj = 1.Corollary 1.3. Let T be a linear chain with all weights � �2.a). If v is one of the ends of T then d(T ) > d(T � v) > 0.b). Let u be any vertex of T . Denote by T1 and T2 the connected components of T � u,and let a = d(T ), b = d(T1), c = d(T2). Then a � b+ c.Proof. a). Induction by the number of vertices, using Lemma 1.2.b). For i = 1; 2 let ui be the vertex of Ti, nearest to u, and T 0i = Ti�ui. Put b0 = d(T 01),c0 = d(T 02) (if T 01 = ?, put b0 = 0). Let w be the weight of u. Then by Lemma 1.2 we havea = �wbc� bc0 � b0c = (�w� 2)bc+ b(c� c0) + c(b� b0) � b+ c, because �w� 2 � 0, andby (a), c� c0 � 1, b� b0 � 1. �The following three propositions will not be used in the rest of the paper.Proposition 1.4. Let � be a weighted tree; u and v two its vertices. Let A0; :::; Ak be theconnected components of � � u, and B0; :::; Bm be those of � � v, indexed in such a waythat v 2 A0, u 2 B0. Denote: ai = d(Ai), bi = d(Bi), a = a1:::ak, b = b1:::bm, � = d(�),� = d(A0 \B0), c = d((A0 \B0)� [u; v]). Suppose that a 6= 0, b 6= 0, � 6= 0. Then�� = a0b0 � abc2: (1)Proof. Let M be the minor of A� obtained by deleting the two rows and the two columns,corresponding to u and v. Clearly, M = �ab. On the other hand, by Jacobi formula forthe minor of the inverse matrix, M� = ���� buu buvbvu bvv ���� ;



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 5where, by Lemma 1.1, buu = aa0=�, buv = bvu = abc=�, bvv = bb0=�. �Remarks. 1. If  is a linear chain and d(�) = �1 then (1) is the formula for the \edgedeterminant" due Eisenbud{Neumann.2. In fact, (1) is still true even if any of its ingredients are zeros.A tree � is called r-fork, if it contains a vertex v0 of valence r and the valences of othervertices are � 2.Proposition 1.5. Let � be an r-fork and v0 the vertex of valence r. Suppose that theweights of the other vertices are � �2. Let Q� be the quadratic form, de�ned by A�.Then:(i) if d(�) > 0 then Q� is negatively de�nite;(ii) if d(�) < 0 then Q� has the signature (+;�; :::;�).Proof. Apply the Sylvester criterium, choosing an increasing sequence 1 = M0, M1; :::,Mn = d(�) of principal minors of the matrix �A, where Mn�1 is obtained from Mn bydeleting the row and the column, which correspond to v0. It follows from Corollary 1.3,that Mi > 0 for i < n. �Proposition 1.6. In the hypothesis of Proposition 1.5 if d(�) = �1 then all the entriesbij of B� = A�1� are non-negative.Proof. Denote by T1; :::; Tr the connected components of �� v0, and by vj the end vertexof Tj (the vertex of Tj , whose valence in � is 1). Denote also: �0j = � � vj , T 0j = T � vj ,�0j = d(�0j), aj = d(Tj), a0j = d(T 0j), ej = a0j=aj (j = 1; :::; r), and p = a1:::ar.By Lemma 1.1 it is enough to show that the discriminant of any connected proper (i.e.6= �) subgraph of � is non-negative. First, we prove this for the subgraphs �0j . Indeed,applying 1.4 with u = v0 and v = vj , we obtain a0j � (�1) = �0jaj � p=aj , or, dividing byaj , �0j = p=a2j � ej . But p=a2j > 0 and ej < 1. Hence, �0j > �1, but �0j 2 Z, so, �0j � 0.Let �00 be any proper connected subgraph of �. It is contained in some �0j . Chose anincreasing sequence of principal minors which involves d(�00) as well as d(�0j), and estimatethe signature of Q�, by Sylvester criterium. Clearly, the inequality d(�00) < 0 contradictsProposition 1.5. �x2. Some elementary linear algebra on dual graphsLet X be a smooth projective algebraic surface and D a reduced SNC-curve on X. De-note by VD the subspace of H2(X;Q) generated by the irreducible components D1; :::;Dnof D. We shall call elements of VD by Q-divisors.Denote by AD = (Di �Dj )ij the intersection matrix of D. Let �D be the dual weightedgraph ofD. Clearly that AD is the incidence matrix (see x1) of �D. De�ne the discriminantof D as d(D) = d(�D) := det(�AD).Suppose that d(D) 6= 0 (in particularDi's are linearly independent), and let BD = A�1D .Lemma 2.1. For C1; C2 2 VD one has C1 � C2 =Pi;j bij(C1 �Di) � (C2 �Dj)Proof. Any bilinear form de�nes a homomorphism to the dual space. One can interpretAD as the matrix of that for the intersection form. Then the required equality is justC1 � C2 = hADC1; C2i = hZ1; BDZ2i for Zk = ADCk, k = 1; 2. �



6 S.YU.OREVKOVLet KX be the canonical class of V and let K = KD be its orthogonal projectiononto VD. Actually, for the main purpose of this paper we need only the case, whenVD = PicX 
 Q, and hence KD = KX (it is so if X � D is Q-acyclic). However, thisassumption does not simplify the statements (nor the proofs), in this and next xx, so wedo not restrict ourselves by this case here.For an irreducible component C of D denote by �D(C) its valence in �D, i.e. �D(C) =C � (D � C), and put �i = �D(Di). Let �i be the Euler characteristic of Di.Lemma 2.2. (K +D) �Di = �i � �i.Proof. Apply adjunction formula: Di � (K +D) = Di � (K +Di) + �i = �i � �i. �Corollary 2.3. (cf. [OZ]) (K +D)2 =Pi;j bij(�i � �i)(�j � �j). �Following Fujita [F], de�ne a twig of D as a maximal linear rational branch. It meansthat T is a twig, if T = C1 [ :::[Ck, where each Ci is a rational irreducible component ofD; �D(Ck) = 1; �D(Ci) = 2 and Ci � Ci+1 = 1 for 1 � i < k; and if we denote by C0 thecomponent of D�T , which intersects C1, then either C0 is not rational or �D(C0) 6= 2. Inthis case C0 is called the root of the twig T (it is not contained in T ); Ck is called the tip ofT . The rational number d(T �Ck)=d(T ) is called inductance of T and is denoted by e(T )(we use the convention: d(?) = 1, e(?) = 0). The twig is called admissible if C2i < �1 forall i = 1; :::; k. Clearly, that if a twig T is admissible then d(T ) > 0 and 0 < e(T ) < 1 (seeCorollary 1.3)For a twig T of D with d(T ) 6= 0 we de�ne the bark of T (see [F]) as the uniqueQ-divisorBk(T ) in VT (i.e. Supp(Bk(T )) � T ), such that Bk(T ) � tip(T ) = �1, Bk(T ) � C = 0 for acomponent C of T , which is not the tip. The following lemma is an immediate consequenceof Lemmas 1.1 and 2.1, applied to the matrix BT .Lemma 2.4. (Fujita, [F, (6.16)]). Let T be a twig of D, and d(T ) 6= 0. Then(i). Bk(T )2 = �e(T ).(ii). If C is a vertex of a twig T then the coe�cient of C in Bk(T ) is equal to d(TC)=d(T ),where TC is the connected component of T � C which is between C and the root of T .(iii). In particular, if C is the vertex, nearest to the root, then the coe�cient of C is equalto 1=d(T ). x3. Local Zariski{Fujita decompositionLet, as in x2, D be an SNC-curve on a smooth projective algebraic surface X, K = KDbe the projection of KX onto VD, and suppose that D is not a linear chain of rationalcomponents, and that all the twigs of D are admissible.In this case we de�ne the local Zariski{Fujita decomposition of K+D near D asK+D =H + N , where N = ND is the sum of the barks of all the twigs of D. The Q-divisorsH = HD and ND are called respectively positive and negative parts of KD +D near D.From Lemma 2.2 and the de�nition of bark we obtain immediately the following propertiesof the local Zariski{Fujita decomposition:Lemma 3.1. (Fujita, [F, (6.12)]).(i) K +D = H +N , where H; N 2 VD;



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 7(ii) Supp(N) is contained in the union of all twigs of D;(iii) H is orthogonal to each irreducible component of N .Remark. It is proved in [F] (we do not use this here), that H and N are uniquely de�nedby the conditions (i){(iii) in Lemma 3.1. Fujita has also proved (see [F, (6.20{6.24)]) thatunder certain conditions Zariski decomposition of K +D coincides with the local one (seeTheorem 5.2 below). Even if this is not the case, it is much more convenient to calculateseparatelyH2 andN2 in order to calculate (K+D)2 in terms of discriminants of subgraphs(i.e. via the inverse matrix BD = A�1D ).Denote by br(D) the set of all irreducible components C of D which have either positivegenus or �D(C) > 2, and puthi = � �i � �i �P 1d(T ) for i 2 br(D)0 otherwise:where T runs through all twigs, rooted by DiLemma 3.2. If all the twigs of D are admissible, then HD �Di = hi for any i.Proof. By Lemma 2.2 we have (K+D) �Di = �i��i. By Lemma 2.4(iii) and the de�nitionof bark we have ND �Di = � P 1d(T ) for i 2 br(D)2� �i otherwise:It remains to subtract the latter equality from the former one. �Corollary 3.3. [OZ] If all the twigs of D are admissible, then H2D =Pi;j2br(D) bijhihj .Proof. Apply Lemmas 2.1 and 3.2.x4. The formulas from xx2,3 for the case of a forkLet D be a rational r-fork on a smooth projective algebraic surface X. This meansthat D is an SNC-curve with rational components, and the dual graph of D is an r-fork. Introduce the following notation. Denote by D0; :::;Dn the irreducible componentsof D and by �i = �(Di) their valences. Without loss of generality we may assume that�0 = r (and hence, �i � 2 for i > 0). Let T1; :::; Tr be the twigs of D, i.e. the connectedcomponents of D �D0, and d1; :::; dr their discriminants. For i = 1; :::; n putai = dj ; bi = d(T+j;i); ci = d(T�j;i);where Tj is the twig containing Di and T+j;i (resp., T�j;i) is the connected component ofTj�Di, which does not intersect (resp., does intersect) the \central" curve D0 (see Fig. 1).Extend this notation for i = 0, putting a0 = b0 = 1, c0 = 0.��� >D0����� ciz }| {���������������Di����� biz }| {�����������| {z }aiFig. 1.



8 S.YU.OREVKOVLet VD be the Q-vector space generated by D0; :::;Dn. Denote by Vj , j = 1; :::; r thesubspace of VD generated by the irreducible components of Tj , and let VH be the orthogonalcomplement of Lrj=1 Vj . Denote by pr1; : : : ;prr and prH the orthogonal projections ontoV1; : : : ; Vr and VH respectively. Let K +D = H + N be the local Fujita decompositionof K +D near D. Since VH is one-dimensional, it is generated by H unless H = 0. LetNj = Bk(Tj) (clearly, that prj(N) = Nj , prH(N) = 0 and N =PNj). Denote:p = rYj=1 dj ; � = d(D); h = r � 2� rXj=1 1dj ; " = �ph=�: (2)Lemma 4.1. Let C be a Q-divisor in VD. Put xi = C �Di, i = 0; :::; r and CH = prH(C).Thena): H2 = "h; d): C �D = nXi=0 xi;b): C �H = " nXi=0 xi biai ; e): C �K = nXi=0 xi�ci + "biai � 1�;c): C �N = nXi=0 xi ciai ; f): C2H = (C �H)2"h = "h� nXi=0 xi biai�2:Proof. (a) is an immediate consequences of Corollary 3.3. By Lemma 1.1, the entry b0i ofthe matrix BD is equal to �(bi �(p=ai))=�. Thus, (b) follows from Lemmas 2.1 and 3.2. (c)follows from Lemma 2.4(ii); (d) is trivial; (e) follows from (b,c,d) since K = H +N �D;(f) follows from (b) and (a). �Corollary 4.2. If r � 4 and all twigs of D are admissible then there exists no smoothrational (�1)-curve C on X such that C �D = 1 and C 6� D.Proof. Suppose that such a curve C exists. Then C � K = �1 and C � D = 1 impliesthat for some i we have xi = 1, xk = 0 for k 6= i. Hence, by Lemma 4.1(e) we have�1 = C �K = (ci + "bi)=ai � 1 But if r > 3 then " > 0. Contradiction. �x5. Zariski decomposition and refined log-BMY inequalityLet D be an SNC-curve on a smooth projective surface X, and Y = X �D. Remindthe following de�nition (see e.g. [F], [Ii]). If ��(Y ) � 0, then there exists the Zariskidecomposition K +D = H +N , where H; N are Q{divisors in X such that(i) the intersection form is negatively de�nite on the subspace VN generated by the irre-ducible components of N (in particular, N2 � 0);(ii) HC � 0 for any complete irreducible curve C � X;(iii) H is orthogonal to VN (and hence, (K +D)2 = H2 +N2 ).The main tool, used in the proof of Theorem 10, is the following re�ned version of thelog-BMY inequality.



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 9Theorem 5.1. (Kobayashi{Nakamura{Sakai [KNS]) If ��(Y ) = 2, then H2 � 3e(Y ),where e is the topological Euler characteristic.The following theorem is a partial case of [F, (6.20)].Theorem 5.2. (Fujita) Let Y = X � D be a smooth projective surface with ��(Y ) � 0and D a connected SNC-curve on it. Suppose that all twigs of D are admissible and D isneither a linear rational chain, nor a 3-fork. Then the (global) Zariski decomposition of(K +D) coincides with the local Zariski{Fujita decomposition near D unless there existsa smooth rational (�1)-curve C on X, which is not contained in D and which satis�es oneof the following conditions.(i). D � C = 0, i.e. D \ C = ?.(ii). T � C = 1 for some twig T of D.Corollary 5.3. Let Y = X�D be aQ-acyclic surface with ��(Y ) = 2, andD be a minimalrational r-fork with r � 4. Then Zariski decomposition of K +D coincides with its localZariski{Fujita decomposition near D.Proof. Let C be some smooth rational (�1)-curve on X. Since ��(X) = 2, according to[F, (6.13)], all the twigs are admissible, so, according to the Theorem 5.2 it su�ces tocheck that C does not satis�es (i), (ii) of 5.2. The condition (i) evidently contradicts toH2(Y ) = 0. The condition (ii) contradicts Corollary 4.2. �x6 Beginning of the proof of Theorem 10Let D be a minimal SNC-curve on a smooth projective X, such that �D is an r-forkwith r � 4, Y = X �D is a Q-acyclic surface and ��(Y ) = 2. Introduce the notation as inx4. Since ��(Y ) = 2, it follows from [F, (6.13)], that all twigs are admissible, so, all ai, bi,ci are positive for i > 0.Lemma 6.1. r � 2h+ 4.Proof. By (2), h = r � 2� 1=d1 � :::� 1=dr � r � 2� 1=2� :::� 1=2 = (r=2) � 2. �Due to the re�ned log-BMY inequality (Theorem 5.1) and Corollary 5.3, we have (seeLemma 4.1(a)) "h � 3: (3)Thus, by Lemma 6.1 we must estimate h from above, or, equivalently, " from below.Lemma 6.2. If D20 � 0 then h < (3 +p33)=2 � 4:3722:::Proof. Denote: dj = d(Tj), d0j = d(T 0j), j = 1; :::; r, where T 0j is obtained from the twig Tjby deleting the component, nearest to D0. Then, by Lemma 1.2, if D20 � 0, we have�� = p � �D20 + rXj=1 d0jdj � � p � �0 + rXj=1 dj � 1dj � = p � (h+ 2):Thus, (3) implies 3 � h" = �ph2=� � h2=(h+ 2), hence h2 � 3h� 6 � 0. �



10 S.YU.OREVKOVCorollary 6.3. If r > 12 then X is rational.Proof. If r > 12 then by 6.1 and 6.2 we have D20 > 0. Hence, [Sh; Ch. II, x4, Theorem 2]implies that X is rational. �From now on we suppose that r > 12, hence by 6.3, X is rational, and there exists asmooth rational (�1)-curve C on X. Hence,C2 = �1; C �K = �1 (4)Like in Lemma 4.1, put xi = C�Di, i = 0; :::; n and CH = prH(C). Put also Cj = prj(C),j = 1; :::; r, CN =Prj=1 Cj. By Lemma 6.2, C 6= D0, and from minimality of D we knowthat C 6= Di, i > 0. So, C 6� D, hence, all xi are � 0.Lemma 6.4. �C2N � CN .Proof. Let Ij = fi jDi � Tjg. Then by Lemma 2.1 and Lemma 4.1(c)�C2j =Xi2Ij x2i cibiai + 2 Xi;k2Ij;i<k xixk cibkai �Xi2Ij x2i cibiai �Xi2Ij xi ciai = CNj:Lemma 6.5. If C �D > 2 then h � (9 +p21)=2 � 6:7912:::Proof. By Corollary 1.3(b) we have bi=ai + ci=ai � 1, hence, by Lemma 4.1(b,c,d),(CH)=" +CN � CD. Therefore, by (4),1 = �CK = �CH � CN + CD � �CH + CH" = CH 1� "" :Thus, CH � "=(1 � "), hence, by Lemma 4.1(f), C2H � "=((1 � ")2h), and by (4) andLemma 6.4, 2 = �C2 �CK = (�C2N � CN)� (C2H + CH) + CD � CD � "1, where"1 = "1� "�1 + 1(1 � ")h�:Since CD is integer, CD > 2 implies "1 � 1, hence 2"2 � (3 + 1h )" + 1 � 0, hence" � 14h�3h+ 1�ph2 + 6h+ 1�, and by (3) it implies h2 � 9h+ 15 � 0. �x7. Proof of Theorem 10 with a weaker estimateLet all the notation be like in xx4,6, but in this section we shall suppose, that CD = 2.Let i and k be such indices that CDi+CDk = CD = 2. Thus, if i = k then xi = 2, xl = 0for l 6= i, and if i 6= k then xi = xk = 1, xl = 0 for l 6= i; k. In any case we rewrite the lasttwo formulas of Lemma 4.1 ase0): CK = � ciai + ckak �+ "� biai + bkak �� 2; f 0): C2H = "h� biai + bkak�2: (5)



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 11Denote by Qik \the predicate of belonging Di and Dk to the same twig", i.e. Qik = 1 ifDi[Dk � Tj for some j, and Qik = 0 otherwise. When Qik = 1, without loss of generalitywe can assume that Di is between D0 and Dk. In this notation we have�C2N = biciai + bkckak + 2Qik cibkai : (6)Using (5), (6) and the fact that C2 = C2H +C2N , we rewrite (4) as� ciai + ckak �+ "� biai + bkak � = 1; (7)�biciai + bkckak �+ 2Qik cibkai � "h� biai + bkak�2 = 1: (8)Lemma 7.1. Suppose that one of the following conditions holds:(i) x0 > 0; (ii) x0 = 0 (i.e. i 6= 0 and k 6= 0) and bi � 2, bk � 2.Then there exists a constant A1 such that h < A1.Proof. In the case (i) without loss of generality we suppose that k = 0, and, puttingak = bk = 1, ck = Qik = 0, into (8), and using ci=ai < 1, we see that bi > 1, hence, bi � 2.Thus, in the both cases (i) and (ii) we have (c�=a�) � (b� � 2) � 0 for � = i; k. Hence,subtracting (7) multiplied by 2 from (8), we obtain"hu2 + 2"u� 1 = X�=i;k c�a� � (b� � 2) + 2Qik cibkai � 0; where u = biai + bkak :Since u < 2 and " � 3=h, we see that h can not be arbitrary big. �Lemma 7.2. If x0 = 0 (i.e. i 6= 0 and k 6= 0), bk = 1 and Qik = 1 then h < (3+p21)=2 �3:791:::Proof. Putting bk = Qik = 1, ai = ak = a into (7) and (8), subtracting (7) from (8) andmultiplying the result by a=(bi + 1), we see that ci � " � ("=h) � (1 + bi)=a = 0. Hence,using the estimates ci � 1 and (bi + 1)=a � 1, we get 1� "� ("=h) � 0, and applying (3),we obtain h2 � 3h� 3 < 0. �Lemma 7.3. Let Qik = 0 and bk = 1. Then bi � 2.Proof. If bi = 1, then subtracting (7) from (8) we would obtain " = 0. �Lemma 7.4. If x0 = 0 (i.e. k 6= 0 and i 6= 0), bk = 1 and Qik = 0 then there exists aconstant A2 such that h < A2.Proof. Putting bk = 1, Qik = 0 into (7) and (8), subtracting (7) from (8) and multiplyingthe result by ai, we see thatbici � ci = �bi + aiak �"1; where "1 = " � �1 + 1h� biai + 1ak �� = O(")



12 S.YU.OREVKOVor, equivalently, aiak = bici � ci"1 � bi: (9)On the other hand, applying the estimate ck � ak�1 (see 1.3(a)) to (7), putting bk = 1and multiplying the obtained inequality by ai, we see thatci + "bi � aiak (1� "): (10)Substituting (9) into (10), we obtain (1� ")bici � "1bi + (1 + "1 � ")ci: Replacing bi withb0 + 1, this inequality can be transformed into (b0 � "2)(ci � "3) � "4 where "2, "3 and "4are O("). Since b0 � 1 (by 7.3) and ci � 1, we see that " can not be arbitrary small. �Proposition 7.5. Under the hypothesis of Theorem 1 0 one has r � 30.Proof. Lemmas 6.2 { 7.4 imply h < max(A1; A2). Easy to see that these constants can bechosen to be less than 131=2. Hence, by 6.1, we have r � 2h+ 4 < 31 .x8. More precise estimates for the case C � D = 2In this and the next section we are going to prove Theorem 10 in full volume (with theestimate r � 16). To this end we strengthen here the estimates for h given in x7. Thus, letC be a smooth rational (�1)-curve on X, where X �D is a Q-acyclic surface with �� = 2,and CD = 2. Let the notation be like in xx4,6,7. Denote also h+ (1=ai) + (1=ak) by h+.We shall need the following evident identity:b(x � y)2 = (x2 + y2)b+ xy�(b � 1)2 � b2 � 1� = (y � bx)(by � x) + xy(b � 1)2 : (11)Lemma 8.1. Let k 6= 0, Qik = 0, bk = 1 and h+ � 712 . Then h+ = 8, bi = 5, ci = 1,ck = ak � 1, ai = 5ak � 1 and ak = 2; 3 or 4.Proof. Denote ak � ck by c0k. Putting Qik = 0, bk = 1, ck = ak � c0k into (7), (8) andresolving the obtained simultaneous equations with respect to " and h, we see that" = c0kai � ciakai + biak ; h = (c0kai � ciak)(biak + ai)aiaku ; (12)where u = cibiak � c0kai > 0. Hence,h+ = (bi � 1)(ci + c0k)=u; (13)



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 133 � "h = (c0kai � ciak)2aiaku = bi(c0kai � ciak)2biaiaku by (3), (12)= (ciak � c0kbkai)u+ cic0kaiak(bi � 1)2biaiaku by (11)= cibiai � c0kak + cic0k(bi � 1)2biu (14)> � c0kak + cic0k(bi � 1)2biu omit cibiai (15)> � c0kc0k + 1 + cic0k(bi � 1)2biu ; use ak � c0k + 1 (16)u > cic0k(c0k + 1)(bi � 1)2(4c0k + 3)bi ; by (16) (17)h+ < (ci + c0k)(4c0k + 3)bicic0k(c0k + 1)(bi � 1) : by (13), (17), 7.3 (18)Denote the right hand side of (18) by �+(bi) = �+ci;c0k(bi). Easy to check that �+ isdecreasing with respect to each variable when bi � 2, ci � 1, c0k � 1.In the Table 1 we show the values of ci, c0k, bi, for which �+(bi) � 712 and hence, theinequality h+ < 712 follows from (18).Table 1.: ci = 1 ci = 2 ci � 3 ci � 14c0k = 1 : bi � 15 bi � 4 bi � 3 bi � 2c0k = 2 : bi � 4 bi � 2 bi � 2 bi � 2c0k � 3 : bi � 3 bi � 2 bi � 2 bi � 2 Table 2.: ci = 1 ci = 2 ci � 6c0k = 1 : bi � 4 bi � 3 bi = 2c0k = 2 : bi � 3c0k � 6 : bi = 2To see this, it is enough to verify that�+1;1(15) = 712 ; �+2;1(4) = 7; �+3;1(3) = 7; �+14;1(2) = 712 ;�+1;2(4) = 713 ; �+2;2(2) = 713 ;�+1;3(3) = 712 ;In the Table 2 we show the values of ci, c0k, bi, for which the inequality h+ < 7 12 followsfrom (13), using the evident estimate u � 1.Comparing the two tables (note that bi � 2 by 7.3) shows that the only cases which arenot covered by them, are:7 � ci � 13; c0k = 1; bi = 2; ci = 1; c0k � 7; bi = 2; ci = c0k = 1; 5 � bi � 14:Consider these three cases separately:Case 1. (7 � ci � 13, c0k = 1 and bi = 2). It follows from (17) that u > ci=7 � 1.Hence, u � 2 and (13) implies h+ � (ci + 1)=u � (13 + 1)=2 = 7.



14 S.YU.OREVKOVCase 2. (ci = 1, c0k � 7 and bi = 2).Subcase 2.1. (c0k = 7). Suppose that u = 1. Then by de�nition of u we have2ak � 7ai = 1: (19)We know that ai � bi + 1 = 3. If ai were equal to 3, then by (19) one would haveak = 11, and hence, (14) would imply 3 � "h = 10033 . Therefore, ai > 3, but ai is odd by(19), hence, ai � 5. Thus, by (19) we have ak = (7ai + 1)=2 � 18. Hence, (14) implies3 � 1=2ai � 7=ak + 7=2 > �7=ak + 7=2 � �7=18+ 7=2 > 3.The obtained contradiction shows that u � 2. Hence, (13) implies h+ = 8u � 4.Subcase 2.2. (c0k � 8). It follows from (15) that 3 > �(c0k=ak) + (c0k=2u) > �1 +(c0k=2u). Hence, u > c0k=8 � 1. Subtracting (14) multiplied by 2 from (13), we see thath+ � 6 � 1=u � 1=ai + 2c0k=ak. But 0 < u = 2ak � c0kai implies 2c0k=ak < 4=ai, hence,h+ � 6 < 1=u+ 3=ai � 1=2+ 3=3.Case 3. (ci = 1, c0k = 1 and 5 � bi � 14). By (17) we have u > 27(bi�1)2=bi > 27 (bi�2).Hence, bi < (7u+ 4)=2 and this impliesbi � � (7u+ 2)=2 if u is even(7u+ 3)=2 if u is odd (20)Thus, for u > 1 by (13) we have h+ = 2(bi � 1)=u � 71=3.Suppose that u = 1. Then (20) implies bi = 5. By (15) we obtain 3 > �(1=ak) + 16=5.Since ak � 2, we have only three solutions: ak = 2; 3; 4. For them ai = biak �u = 5ak � 1,and by (13) we have h+ = 2(bi � 1)=u = 8. This is the only case when h+ � 712 . �Lemma 8.2. Let k = 0 and h+ � 8. Then h+ = 8 and (ai; bi; ci) = (13; 2; 7).Proof. The proof is similar to that of Lemma 8.1. The beginning of the proof of 8.1including the formulas (12), (13), (14) and (15) is valid in the case k = 0 without changes.However, the implication (15)) (16) does not work in this case. Since we have ak = bk =c0k = 1, let us denote ai, bi and ci simply by a, b and c till the end of the proof. Thenu = bc� a.First, note that c > 1 because otherwise u would be negative. Eliminating u from (13)and (15), we see that h+ < �+(b; c); where �+ = 4(c+ 1)bc(b� 1) : (21)Case 1. b � 4. Since c � 2, by (21) we have h+ < �+(4; 2) = 8.Case 2. b = 3. If c � 4 then h+ < �+(3; 4) = 712 by (21). If c � 3 then (13) impliesh+ = 2(c + 1)=u � 2(c + 1) � 8, hence h+ < 8 unless c = 3 and u = 1. But in this casea = bc� u = 8 which contradicts (14).Case 3. b = 2. By (14) we have 3 � c2a � 1 + c2u > �1 + c2u . Hence, c < 8u and beinginteger, c � 8u� 1. Putting this estimate into (13), we see that h+ = (c+ 1)=u � 8 andh+ < 8 unless c = 8u� 1. If h+ = 8, then putting c = 8u� 1, a = 2c� u = 15u� 2 into(14), we obtain u = 1. Hence (a; b; c) = (13; 2; 7). �



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 15Corollary 8.3. (a). Under the hypothesis of Lemma 8.1 the graph �D has one of thefollowing forms:ai = 9; ak = 2 : ai = 14; ak = 3 : ai = 19; ak = 4 :�5�����2�Di����:::n =�D0�����2�Dk �5�����3�Di����:::n =�D0�����2�����2�Dk �5�����4�Di����:::n=�D0�����2�����2�����2�Dk(b). Under the hypothesis of Lemma 8.2 the graph �D has the form:��� >�D0����4�����2�����2�Di����2�Lemma 8.4. Let bi � bk � 2. Thenh < � bkak + biai� � � 2bk + 3bkq �; where q = (bk � 1) + (bi � bk) ciai : (22)Proof. Denote (bi=ai) + (bk=ak) by u. Multiplying (7) by bk, subtracting the result from(8) and using the estimate Qikcibk=ai � 0, we obtain the inequality ("=h)u2+bk"u�q � 0,where q denotes the same as in (22). Therefore, we haveu � hbk2 �� 1 +s1 + 4q"hb2k � by (3)� hbk2 �� 1 +s1 + 4q3b2k � = hbk2 �� 1 +p1 + v�;where v = 4q=(3b2k). It remains to apply the evident estimate�1 +p1 + v = �1 + (1 + v)=p1 + v > �1 + (1 + v)=(1 + (v=2)) = v=(2 + v). �Lemma 8.5. Let bi � bk � 10. Then h < 6 4155 � 6:745:::.Proof. Applying the estimates (bk=ak) + (bi=ai) < (bk=(bk + 1)) + 1 and q � bk � 1 to theinequality (22), we see that h < f(bk) wheref(b) = �1 + bb + 1� � �2b + 3bb� 1� = 6 + 2b + 3b� 1 + 2b+ 1 + 3b2 � 1 :f decreases when b > 1. Hence, h < f(bk) � f(10) = 64155 . �Lemma 8.6. Let bi � bk � 2. Suppose also that bk � 9 and ak � 20. Then h � 5 113120 .Proof. Case 1. (3 � bk � 9). Apply to (22) the estimates bi=ai < 1, ak � 20 and q � bk�1.We obtain the inequalityh < f(bk); where f(b) = �1 + b20��2b + 3bb� 1�:



16 S.YU.OREVKOVDirect calculation shows that f(b) � 5113120 for b = 3; 4; :::; 9.Case 2. (bk = 2). Substituting bk = 2 into (22) and applying the estimates ak � 20,ci � 1, we obtain h < f(ai; bi) wheref(a; b) = � 110 + ba��1+ 6aa+ b� 2� and @f@b = 5b2 + 1b + 25a(a+ b � 2)2 ; 1 = 10a� 20;2 = 32a2 � 80a+ 20:If a � 3 then 1; 2 > 0, hence f 0b > 0. Therefore, since bi � ai�1, we have h < f(ai; bi) �f(ai; ai � 1) = g(ai), where g(a) = f(a; a � 1). Easy to calculate that g0(a) < 0 whena > 1. Recall that ai � bi + 1 � bk + 1 = 3. Hence, h < g(ai) � g(3) = 5 1130 . �Lemma 8.7. Let bi � bk � 2. Suppose also that bk � 9 and ai � 40. Then h < 6:8.Proof. From (22) and the estimates ak � bk + 1 and ci � 0, we obtain the inequalityh < fbk(ai; bi); where fm(a; b) = � m1 +m + ba� � � 2m + 3ma(m� 1)a + b�m� :If a � 6, b � 2, m � 2 then fm is monotonically increasing with respect to b. Indeed, onecan check that@fm@b = 2ma + 3mm+ 1 � 1a� 2((m � 1)a+ b �m)2 ; 1 =m2 �m� 1;2 =m2 +m:m � 2 implies 1 > 0, hence, for a > 6 we have 1a � 2 > 61 � 2 = 5m2 � 7m� 6 � 0,thus, @fm@b > 0. Obviously, for b � 2 the denominator is non-zero.We know that bi � ai � 1 and ai � 40. Hence, h < fbk(ai; ai � 1) < gbk(ai), wheregm(a) := fm(a; a � 1) + 2ma = 6 + m+ 2m2 +m + 3(m+ 1)ma �m� 1 :Clearly, gm is monotonically decreasing with respect to a when a � 2. Thus, it su�ces tocheck that gm(40) < 6:8 for m = 2; :::; 9. �Lemma 8.8. Suppose that bi � bk � 2 and ak < 20, ai < 40. Then h � 6:023810:::.Proof. Since b� < a� and c� < a� , it su�ces to check only �nitely many possibilitiesfor the values of Qik, a� , b� and c� (where � = i; k). In each case we can �nd " and hfrom the equations (7), (8) and search the maximum of h under the restrictions " > 0,h > 0, "h � 3. These calculations were performed with a computer. The correspondingC-program is shown on the Fig. 2. �Corollary 8.9. Let bi � bk � 2. Then h < 6:8.Proof. For bk � 10 see 8.5; for bk � 9 see 8.6 { 8.8 �



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 17#include <stdio.h>main(){ int ak,bk,ck, ai,bi,ci, Q; double B,C,BC,h, hmax=0;for( Q=0; Q<=1; Q++ ){for( bk=2; bk<=9; bk++ ){for( ak=bk+1; ak<=21; ak++ ){for( bi=bk; bi<=40; bi++ ){for( ai=bi+1; ai<=41; ai++ ){for( ck=1; ck<=ak-bk; ck++ ){for( ci=1; ci<=ai-bi; ci++ ){B=(double)bi/ai + (double)bk/ak;C=(double)ci/ai + (double)ck/ak;BC=(double)(bi*ci)/ai + (double)(bk*ck)/ak;if( ai==ak ) BC=BC+(double)(2*Q*ci*bk)/ai;if( 1-C <= 0 )continue; /* eps>0 */if( BC-1 <= 0 )continue; /* h>0 */if( (1-C)*(1-C) > 3*(BC-1) )continue; /* BMY */if( (h=(1-C)*B/(BC-1)) > hmax ) hmax=h;}}}}}}}printf( "hmax=%lf", hmax );} Fig. 2.x9. Proof of Theorem 10Let things be like in x6.Lemma 9.1. Suppose that r � 17. Then:(a). h � 6:5.(b). If h < 6:8 then r = 17, and up to a permutation, (d1; :::; d17) is either (4; 2; :::; 2) or(3; 2; :::; 2).Proof. (a). See Lemma 6.1.(b). If h < 6:8 then r = 17 by Lemma 6.1. Without loss of generality we may assumethat d1 � d2 � ::: � d17. If d2 � 3, we would have h = 17 � 2 � 1=d1 � ::: � 1=d17 �15 � 1=3 � 1=3 � 1=2 � ::: � 1=2 = 65=6 > 6:8. Thus d2 = ::: = d17 = 2 and 1=d1 =17� 2� 1=2� :::� 1=2� h > 7� h > 1=5. �Lemma 9.2. Suppose that r � 17 and h � 6:8. Then (up to a permutation) one of thefollowing possibilities holds:(1). (T1; T2) is one of the three pairs listed in 8.3(a) and either(1.1). r = 18 and d3 = ::: = d18 = 2, or(1.2). r = 17 and (d3; :::; d17) is one of (6; 3; 2; :::; 2), (4; 4; 2; :::; 2), (3; 3; 3; 2; :::; 2).(2). r = 17, d2 = ::: = d17 = 2 and T1 is the twig depicted in 8.3(b).Proof. By 6.3, X is rational. Hence, there exists a smooth rational (�1)-curve C. It doesnot coincide with one of D1; :::;Dn by the minimality, and C 6= D0 by Lemma 6.2. Thus,it follows from 6.5 and 4.2 that CD = 2.



18 S.YU.OREVKOVIntroduce the notation like in x7, x8. If the both bi and bk were � 2, then by Corollary8.9 we would have h < 6:8. Thus, one of them, say, bk is equal to 1 and by Lemma 7.2 wehave Qik = 0.Case 1. (Like in 8.1) bk = 1, k 6= 0.Since Di and Dk do not belong to the same twig, without loss of generality we mayassume that Di � T1, Dk � T2 (i.e. d1 = ai, d2 = ak) and that d3 � d4 � ::: . Thenh+ = r � 2� 1=d3 � 1=d4 � :::� 1=dr � r � 2� 1=2� :::� 1=2 = (r � 2)=2: (23)Since r � 17, it follows that h+ � 71=2. Hence, by 8.1 we have h+ = 8.Subcase 1.1. r � 18. Then (23) turns out into 8 = ::: � (r � 2)=2 � 8. Hence, all the"�" can be replaced with "=", and we have r = 18 and d3 = ::: = d18 = 2.Subcase 1.2. r = 17. If d6 � 3, then like in (23) we would have 8 � 15� (1=3� 1=3� 1=3�1=3)� 1=2�::: = 81=6. Thus, d6 = ::: = d17 = 2 and 1=d3+1=d4+1=d5 = 15�h+� 1=2�::: = 1.Case 2. (Like in 8.2) k = 0.Subcase 2.1. Without loss of generality assume that Di 2 T1, i.e. d1 = ai. Then r � 17implies like in (23) that h+ = h+1+1=d1 � r� 1� 1=2� :::� 1=2 = (r � 1)=2 � 8, and by8.2 we have h+ = 8. Hence, all the "�" can be replaced with "=" and we obtain r = 17and d2 = ::: = d17 = 2. �Lemma 9.3. Let X be a smooth rational projective surface. Then K2 + b = 10 whereK = KX is the canonical class and b = b2(X) is the second Betti number.Proof. Since X is rational, it is obtained from P2 by successive blow-ups and -downs.Clearly that K2 + b = 10 for P2 and that K2 + b is invariant under blow-ups. �Corollary 9.4. (See e.g. [FZ; 1.3]) Let notation be like in 9.3. Suppose that D is anSNC-curve such that X �D is Q-acyclic. Then(K +D)2 = 8� s� 3b (24)where s denotes the sum of all the weights of �D.Proof. Let D1; :::;Db be the irreducible components of D. Write (K+D)2 = K2+2KD+D2 and compute each summand in the right hand side:K2 = 10� b by Lemma 9.3;KD =PDi(K +Di) �PD2i = �2b� s by adjunction formula;D2 =PD2i +Pi 6=kDiDk =PD2i + 2(number of edges of �D) = s+ 2(b � 1). �Now let (X;D) be again as in x6. Introduce the following notation. For a twig Tdenote s(T ) = P(w� + 3), where w� are the weights and the summation is over all thevertices. Recall that e(T ) denotes the inductance of a twig T (cf. x2). Let e0(T ) = e(T 0)where T 0 is the twig obtained from a twig T by reversing the order of the vertices. Denotee(T )+ e0(T )� s(T ) by '(T ), and put: ej = e(Tj ), e0j = e0(Tj ), sj = s(Tj ) and 'j = '(Tj).



ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES 19Lemma 9.5. P'j � 2h� 5.Proof. By Lemma 1.2 and (2) we have �� = p �(D20+P e0j). Hence, D20 = ��=p�Pe0j =h=" �P e0j . Further, by 4.1(a) and 2.4(i) we have (K + D)2 = H2 + N2 = "h �P ej .Putting these expressions for D20 and (K +D)2 into (24) (where, in our notation, s+3b =D20 + 3 +P sj), we obtain 5 +P'j = h("+ 1=") � 2h. �Now let us complete the proof of Theorem 10. Suppose that r � 17. Then by 9.1(a) wehave h � 6:5, hence, 9.5 implies P'i � 13 � 5 = 8. However, each 'j depends only onthe twig, and by 9.1 and 9.2 only few types of twigs can appear. The values of '(T ) forthese twigs are as follows:d(T ) T '(T )2 [2] 03 [3] 2/3[2; 2] �2=34 [4] 1.5[2; 2; 2] �1:5
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