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Abstract. An effectively verifiable condition for quasipositivity of links is given. In

particular, it is proven that if a quasipositive link can be represented by an alternating
diagram satisfying the condition that no pair of Seifert circles is connected by a single

crossing, then the diagram is positive and the link is strongly quasipositive.

1. Introduction

An n-braid is called quasipositive if it is a product of conjugates of the stan-
dard generators σ1, . . . , σn−1 of the braid group Bn. A braid is called strongly
quasipositive if it is a product of braids of the form τk,jσjτ

−1

k,j for j ≤ k where
τk,j = σkσk−1 . . . σj . All links in this paper are assumed to be oriented links in
the 3-sphere S3. A link is called (strongly) quasipositive if it is the braid closure
of a (strongly) quasipositive braid. This class of links is impotrant for the study
of plane algebraic curves. As shown in [3], a link is quasipositive if and only if it
is cut on the standard embedded 3-sphere in C2 by a complex algebraic curve. It
is also shown in [3] that a link is quasipositive if it is cut by an algebraic curve on
any smoothly embedded 3-sphere bounding a strictly pseudoconvex domain in C2.
Quasipositivity criterions play important role in the study of plane real algebraic
curves (the first part of the 16th Hilbert problem), see e.g. [11].

A link diagram is called positive if all its crossings are positive. If one resolves
all crossings according the orientations (i.e., replacing or with ), then the
diagram transforms into a disjoint union of simple closed curves. They are called
Seifert circles (see, e.g. [9, 14, 15]).

S. Baader [1, p. 268, Question (4)] asked: Do quasipositive alternating links

have positive diagrams? Note that positive diagrams represent strongly quasiposi-
tive links (see [10], [13]) and alternating strongly quasipositive links have positive
alternating diagrams by [2, Cor. 7.3]. Notice also that positive alternating diagrams
are special (a diagram is called special [9] if its Seifert circles bound disjoint disks).

In this note we give an affirmative answer for a large class of alternating links:
those which have an alternating diagram whose number of Seifert circles is equal
to the braid index of the link. We call such diagrams Diao–Hetyei–Liu or DHL
diagrams (and the corresponding links DHL links) because these authors gave in
[5] the following very nice and simple characterization for them.

Theorem 1. ([5, Thm. 1.1]) An alternating diagram is DHL if and only if there
is no pair of Seifert circles connected by a single crossing.

Our main result is the following.

Typeset by AMS-TEX

1



2 S. YU. OREVKOV

Theorem 2. Let D be a DHL diagram of a quasipositive link. Then D is positive.

The proof is obtained by a combination of results from [6], [7], [9], [14], and
[15] (see Section 2). Theorems 1 and 2 allow to produce a lot of examples of
non-quasipositive links without any computations (see an example in Figure 1).

Figure 1. A link (on the left hand side) which is not quasipositive by
Theorems 1 and 2. Its Seifert circles are shown on the right hand side.

Since any positive diagram represents a strongly quasipositive link (see [10], [13]),
we obtain:

Corollary 1. Let L be a DHL link. Then the following conditions are equivalent:

(i) L is quasipositive;
(ii) L is strongly quasipositive;
(iii) L has a positive alternating diagram.

In Section 3 we generalize Theorem 2 to all alternating links whose braid index
is computed in [4]; see Theorem 4 and Remark 2.

Acknowledgement. I am grateful to Michel Boileau for useful discussions.

2. Proof of the main theorem

LetD be a connected link diagram. The Seifert graph ofD is the graphGD whose
vertices correspond to Seifert circles and the edges correspond to the crossings. The
sign of an edge is the sign of the corresponding crossing. A diagram D is called
reduced if GD does not have any edge whose removal disconnects GD. Let d(D)
denote the sum of signs of all edges of a spanning tree of GD, and let w(D) be the
writhe of D, i.e., the sum of signs of all crossings.

For a link L, let σ(L) and n(L) be its signature and nullity (the latter is the
nullity of a symmetrized Seifert form on a connected Seifert surface).

Theorem 3. (Traczyk [14]) Let D be a connected reduced alternating diagram of
a link L. Then σ(L) = d(D)− w(D) and n(L) = 0.

This formula for σ(L) is given in [14, Thm. 2(1)] (the factor 1/2 is erroneous there).
The fact that n(L) = 0 (equivalently, det(L) 6= 0) is proven in [9, Lem. 5.1] and in
the appendix to [14]. Otherwise it can be easily derived from [14, Thm. 1].

Proof of Theorem 2. Let D be a DHL diagram of a quasipositive link L. Then
each connected component of D is evidently a DHL diagram and it represents a
quasipositive link by [12]. So, it is enough to consider the case when D is connected.
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Let n be the braid index of L. By definition of DHL diagrams, D has n Seifert
circles. Hence, by [15, Thm. 1] (see the discussion of this theorem in the introduction
to [15]), L can be represented by an n-braid β1 with

w(β1) = w(D). (1)

By [7, Thm. 1.2] L can be represented by a quasipositive n-braid β2. Then
Murasugi–Tristram inequality [9] for quasipositive braids can be reformulated as
follows (see [11, Cor. 3.2])

1 + n(L) ≥ |σ(L)|+ n− w(β2). (2)

By Dynnikov–Prasolov Theorem [6] (Generalized Jones Conjecture) we have

w(β1) = w(β2) (3)

Note that any DHL diagram is reduced. Hence, by combining (1) – (3) with Theo-
rem 3, we obtain |d(D)−w(D)| ≤ 1−n+w(D) whence w(D)−d(D) ≤ 1−n+w(D),
i.e., d(D) ≥ n − 1. Recall that d(D) is the sum of signs of all edges of a spanning
tree of GD. Any spanning tree of GD has n− 1 edges, hence all its edges are pos-
itive. Since each edge of GD belongs to some spanning tree, we conclude that all
crossings of D are positive. Theorem 2 is proven. �

3. A generalization of the main theorem

Let D be an alternating diagram of a link L. Let b = b(L) be the braid index of
L and s = s(D) be the number of Seifert circles of D. Define d± = d±(D) as the
number of edges of this sign in a spanning tree of GD, thus d = d(D) = d+ − d−.

Let β be a braid with b strands realizing L. Due to Dynnikov – Prasolov Theorem
[6], w(β) does not depend on the choice of β, which allows us to define the numbers
r± = r±(D) from the system of equations

r+ + r− = s− b, r+ − r− = w(D)− w(β).

Remark 1. The definition of the numbers r± in introduced in [4] is not quite
clear but in all cases when they are computed in [4], they are equal to our r±; cf.
[4, Rem. 3.1–3.3].

If D is a DHL diagram, then r+ = r− = 0 (recall that in this case w(D) = w(β)
by [15, Thm. 1]), thus the following statement is a generalization of Theorem 2.

Theorem 4. Let D be a reduced alternating diagram of a quasipositive link L, and

2r−(D) ≤ d−(D). (4)

Then D is positive (and hence L is strongly quasipositive by [10, 13]).

Proof. Since the arguments are almost the same as for Theorem 2, we just write
down the final computation. So, we have w(D)− d ≤ |σ| ≤ 1− b+ w(β), hence

d+ 1 ≥ w(D)− w(β) + b = (r+ − r−) + s− (r+ + r−) = s− 2r− ≥ s− d−
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whence d+ ≥ s− 1 and the result follows. �

Remark 2. In all cases when the braid index of a reduced alternating diagram is
computed in [4], the inequality (4) holds, in particular it holds for minimal diagrams
of two-bridge links and of alternating Montesinos links.

Question 1. Does (4) hold for any reduced alternating diagram?

Remark 3. Tetsuya Ito [8] generalized Theorem 2 to homogeneous diagrams sat-
isfying the condition that the number of Seifert circles is equal to the braid index
(however there is no known algorithm to check this condition). Some other related
questions are also discussed in [8].
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