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Abstract. The paper gives a topological as well as rigid isotopy
classification of smooth irreducible algebraic curves in the real pro-
jective 3-space for the case when the degree of the curve is at most
six and its genus is at most one.

1. Introduction

The subject of this paper is the problem of topological classification
of smooth algebraic curves in RP3 when their genus and degree are
fixed. The RP2 counterpart of this problem had originated in the cel-
ebrated work [4] of Harnack, was popularized by Hilbert in his famous
list of problems [5] and consequently it was well-studied over the last
century. In the same time the corresponding topological classification
in RP3 remains relatively unstudied. We note that such classification
is straightforward in the case when the degree is 4 or less as all rel-
evant curves are contained either in a plane or in a quadric surface.
The classification in the case of degree 5 and genus 0 was obtained by
Johan Bjorklund [1]. Our paper continues this work by providing the
classification in the case of degree 5 and genus 1 as well as for degree
6 and genus ≤ 1.

2. Planar knots

Let RK ⊂ RP3 be a smooth irreducible real algebraic curve of degree
d and genus g consisting of l connected components. This means that
RK ⊂ RP3 is given by a system of homogeneous real polynomial equa-
tions in four variables so that the locus K ⊂ P3 of complex solutions of
the same system of equations is an irreducible complex curve of genus
g smoothly embedded to P3 and homologous to d[P1] ∈ H2(P3) = Z.
Recall that by the Harnack inequality we have l ≤ g + 1. We assume
that RK is non-empty, i.e. that l ≥ 1.
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Proposition 1. We have g ≤ (d−1)(d−2)
2

. If g = (d−1)(d−2)
2

then there
exists a hyperplane RH ⊂ RP3 such that RK ⊂ RH. If 2d − g +
ι(2d, g) < 9 then there exists a quadric surface RQ ⊂ RP3 such that
RK ⊂ RQ.

Here ι(2d, g) is the maximal possible irregularity (the rank of the first
cohomology group) of a line bundle of degree 2d over a surface of genus
g. In particular, 0 ≤ ι(2d, g) ≤ max{0, 2g − 1− 2d}.

Proof. Note that if RK is contained in a plane then g = (d−1)(d−2)
2

by
the adjunction formula. If RK is not contained in a plane in RP3 then
we may find a linear projection λ : RK → RP2 such that λ(K) ⊂ RP2

is a reduced singular planar curve of degree d. To get such λ we may
use a projection from a point contained in the line tangent to a generic

point of RK ⊂ RP3. Thus g < (d−1)(d−2)
2

.
The vector space of homogeneous quadratic forms in RP3 is 10-

dimensional. The restriction of such form to RK gives a section of the
line bundle of degree d over RK associated to the projective embedding
taken twice. We get a linear map between two vector spaces. By the
Riemann-Roch formula the dimension of the target vector space is not
greater than 1+2d−g+ι(2d, g) so the hypothesis of the lemma ensures
that the kernel is nontrivial. The inequality ι(d, g) ≤ max{0, 2g−1−d}
follows from Serre’s duality as 2g − 2 − d is the degree of the inverse
bundle twisted by the canonical class of the curve. �

Corollary 2. If d ≤ 6 and g > 2d − 9 then there exists a quadric
surface RQ ⊂ RP3 such that RK ⊂ RQ.

Proof. By Lemma 1 it suffices to check that 2d − g < 9 and 2d − g +
2g− 1− 2d < 9. The first inequality follows from our hypothesis while
the second one translates to g < 10. Since d ≤ 6 this inequality holds
unless RK is a planar sextic (of genus 10), but then RK is contained
in a reducible quadric surface. �

Definition 3. We say that RK ⊂ RP3 is a planar link, if it is isotopic
to a smooth (not necessarily algebraic) link L ⊂ RP3 that is contained
in a hyperplane RH ⊂ RP3.

Planar links are trivial from the topological viewpoint. Namely, we
have the following straightforward statement.

Proposition 4. Any two planar links with the same number l of com-
ponents and the same parity of degree d are isotopic.

Suppose now that RK ⊂ RQ for a quadric surface RQ ⊂ RP3. There
are four topological types for a quadric RQ.
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• The case when RQ is reducible (or non-reduced) and thus con-

tains a plane. Then RK is planar, so that g = (d−1)(d−2)
2

.
• The case when RQ is ellipsoid. Then d is necessarily even and
RK is planar.
• The case when RQ is a singular quadric surface. If RK is

disjoint from the singular point of RQ then d is even and RK is
planar while g = (d

2
− 1)2. A component of RK containing the

singular point of RQ must be isotopic to the line in RP3. All
other components must bound disks in the cone RQ, so once
again the link RK must be planar, but d has to be odd.

Recall that RQ can be obtained from the (toric) Hirzebruch
surface F2 by contracting the (−2)-sphere there. If RK ⊂ RQ
passes through the singular point of RQ then d must be odd.
Furthermore, the curve RK is the image of a smooth curve
RK̃ ⊂ RF2 whose Newton polygon is the trapezoid with vertices

(0, 0), (0, d−1
2

), (1, d−1
2

), (d, 0). We have g = ( (d−1)(d−3)
4

) if d is

odd, just as in the case of a curve of bidegree (d+1
2
, d−1

2
) on a

hyperboloid.
• The case when RQ is a hyperboloid. This is the most interesting

case. We consider it in more details in the following section.

3. Hyperboloidal links

Definition 5. We say that RK ⊂ RP3 is a hyperboloidal link, if it is
isotopic to a smooth (not necessarily algebraic) link L ⊂ RP3 that is
contained in the hyperboloid RQ = {(x : y : z : u) ∈ RP3 | x2 + y2 =
z2 + u2} ⊂ RP3.

Such L consists of k components that bound disks in RQ and j
homologically non-trivial components. Note that all non-trivial com-
ponents must be homologous in RQ as otherwise they would intersect.
Recall that the hyperboloid RQ has a distinguished basis (up to a sign
and permutation) in its homology group H1(RQ) = Z⊕Z given by the
ruling RQ = RP1 × RP1.

To any hyperboloidal link L we prescribe three integer numbers:
jp, jq, k. Here (p, q) is the only non-trivial homology class of a compo-
nent of L in H1(RQ) = H1(RP2 × RP2) = Z ⊕ Z (so that p and q are
coprime, j is the number of components in this class and k is the num-
ber of homologically trivial components (ovals) of L in RQ. Choosing
the orientation of the generating lines of RQ = RP1 × RP1 as well as
their order in the basis we may assume that p ≥ q ≥ 0.
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If jp = jq then the non-trivial components of L on RQ bound disjoint
disks in RP3. These disks can be obtained from planar sections of RQ
and thus L is planar in this case.

Consider the case jp = jq+ 1, so that j = 1 and p = q+ 1. The only
non-trivial component of L intersects a curve S ⊂ RQ of homology
class (1,−1) in a single point. In its turn, S can be cut on RQ by a
plane in RP3. We may contract S to a point so that RQ becomes a
quadratic cone and L becomes a link on this cone passing through its
apex. Thus L is planar (of odd degree). We have proved the following
statement.

Proposition 6. If L is a non-planar hyperboloidal link then p > q.
Furthermore, if p = q + 1 then j > 1.

Definition 7. We denote with ha,b t〈k〉, a > b+ 1, k ≥ 0, the isotopy
type of a hyperboloidal link L with j = GCD(a, b) non-trivial compo-
nents on RQ. Here (a

j
, b
j
) ∈ H1(RQ) = H1(RP1 × RP1) = Z⊕ Z is the

homology class of a component of L (with the appropriate orientations
and order of the basis elements) and k is the number of homologically
trivial components (ovals). We use the abbreviated notation ha,b for
ha,b t 〈k〉 when k = 0.

Proposition 8. The hyperboloidal links of type ha,b t 〈k〉, a > b + 1,
are non-isotopic for different values of a, b, k.

Proof. Consider the universal covering π : S3 → RP3. Let πRQ :

RQ̃ → RQ be the restriction of this double covering to RQ. The
covering πRQ is given by the subgroup {(α, β) ∈ H1(RQ) | α + β ≡ 0

(mod 2)} ⊂ H1(RQ) = π1(RQ), thus the total space RQ̃ is a torus.
Furthermore, this torus is a standard torus in S3 (the boundary of a
tubular neighborhood of an unknot) and the classes (1, 1) and (1,−1)
in H1(RQ) are the images of its standard generators (bounding disks
in S3 rRQ̃).

Thus π−1(L) is the union of a (a+ b, a− b)-torus link in S3 with 2k
unknotted unlinked circles. Since by our hypothesis we have a− b > 1,
all such links are non-isotopic. �

Remark 9. We may describe the relation between the hyperboloidal
links and toric links as follows. Let S3 = {|z|2 + |w|2 = 1} be the unit
sphere in C2 and let T be the torus {|z| = |w| = 1} ⊂ S3. As usually, for
p, q ∈ Z, we define the (p, q)-torus link as T (p, q) = {zp = wq}∩S3 ⊂ T.
It is clear that T (p, q) ∼ −T (−p, q) ∼ T (q, p) and it is well known that
T (p, q) is determined by (p, q) up to isotopy under the condition p ≥ |q|.
The number of components of T (p, q) is equal to gcd(p, q).
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In the case when p ≡ q mod 2, the link T (p, q) is invariant under
the antipodal involution −1 : C2 → C2, (z, w) 7→ −(z, w). So, in this
case we define the projective (p, q)-torus link as the quotient T̄ (p, q) =
T (p, q)/(−1). It sits in S3/(−1) which we naturally identify with RP3.
It is clear that the isotopy type of T̄ (p, q) is determined by (p, q) up to
the above relations. Indeed, if two links in RP3 are isotopic, then their
double covers are isotopic as well.

As we have already seen, we have ha,b = T̄ (a+ b, a− b).

To represent toric and projective toric links by diagrams, it is con-
venient to use the language of braids. We define the closure of a braid
in S3 in the usual way and we define the closure in RP3 of a braid as
follows. A braid can be naturally identified with a tangle in a (round)
ball B3 with all endpoints placed symmetrically on a great circle on
∂B3. So, the closure of the braid in RP3 is the image of the tangle
under the identification of antipodal points of ∂B3. In particular, the
diagram of the closure of a braid in RP3 just coincides with the diagram
of the corresponding tangle.

Let p and q be positive of the same parity and ε = ±1. Then
T (p, εq) is the closure in S3 of the p-braid (αβ)q where α = σε1σ

ε
3 . . .

and β = σε2σ
ε
4 . . . . Similarly, T̄ (p, εq) is the closure in RP3 of the braid

represented by the first half of the word (αβ)q, i. e., the braid (αβ)q/2

if p and q are even and (αβ)(q−1)/2α if p and q are odd.
Many of the knots appearing in the classification results of this pa-

per are hyperboloidal (as topological knots) even if the corresponding
spatial algebraic curves are not necessarily contained in a quadric sur-
face. E.g. we have K3 = h4,1 = T̄ (3, 5) in Figure 4, while we have
K5 = h3,1 = T̄ (2, 4), K8 = h5,3 = T̄ (2, 8), K11 = h7,5 = T̄ (2, 12),
K14 = h5,1 = T̄ (4, 6) in Figure 6. Note that among these knots, only
h4,1 and h5,1 are realizable by rational algebraic curves of respective
degree (5 and 6) sitting in a hyperboloid.

4. Viro’s invariant

As it was discovered in [7], to any real algebraic link K ⊂ P3 one can
associate an integer invariant (called in [7] encomplexed writhe) which
we denote with w. We briefly recall its definition.

The projection
πp : K → P2

from a point p ∈ RP3 r RK maps the complexification K ⊂ P3 (i.e.
the set of complex points of RK) into a planar complex curve C ⊂ P2.
If p is chosen generically then C is nodal, i.e. all its singularities are
nodes, i.e. transverse intersections of pairs of local branches of πp(K).
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The nodal curve C is defined over R, but the set RC ⊂ RP2 of its
real points may be different from π(RK) as K is the normalization of
C. Clearly we have πp(RK) ⊂ RC. Each point q ∈ RC r πp(RK)
must be singular and thus is a node. Thus π−1

p (q) consists of a pair
of conjugate points of K r RK. We refer to such a node q ∈ RC as
elliptic, in contrast to the nodes of πp(RK) which are called hyperbolic.

We denote that set of nodes of RC with Σ ⊂ RC. As in the classical
knot theory, the algebraic curve RC may be considered as a knot dia-
gram of RK. The hyperbolic nodes of RC correspond to conventional
self-crossings of classical knot diagrams. But RC may also contain
elliptic nodes, visible in RP2 as solitary points disjoint from the rest
of the real curve. We treat the elliptic nodes from Σ as imaginary
self-crossings points of the diagram RC.

Suppose that a hyperbolic node q ∈ Σ corresponds to an intersection
of two branches from the same component of RK. Then, in full consis-
tency with the knot theory conventions, we define the sign σ(q) = ±1
according to Figure 1 by choosing an affine chart of RP 3 such that p
is at the infinity. One easily checks that the definition of the sign does
not depend on a choice of the affine chart.

−1 +1

Figure 1. Signs of diagram self-crossing points.

The paper [7] has also introduced a similar sign for the elliptic nodes.
Namely, for an elliptic node q ∈ Σ we have π−1

p (q) ∈ K r RK. Note

that p and the two points of π−1
p (q) sit on the same line (defined over

R) which we denote with lq ⊂ P3. Note also that lq r Rlq is the
disjoint union of two open hemispheres of the Riemann sphere lq = P1.
As the two points of π−1

p (q) are conjugate, they belong to different
hemispheres. Choose a component Sl of lqrRlq. The hemisphere Sl is
canonically oriented as an open set of a complex curve. Thus the choice
of Sl defines an orientation of Rlq (through Rlq = ∂Sl), as well as the
point u ∈ π−1

p (q)∩Sl. The orientation of Sl induces a local orientation

of RP2 at q with the help of dπp|u : TuSl → TqRP2. Together with the
orientation of Rlq it defines an orientation of RP3. The sign σ(q) = ±1
is defined by comparison against the standard orientation of RP3. As
before, it does not depend on the auxiliary choice of orientation of Rlq
as this choice enters the definition of σ(q) twice.

For simplicity of notation we define σ(q) = 0 if q ∈ Σ is a hyperbolic
node corresponding to intersections of different components.



REAL ALGEBRAIC KNOTS AND LINKS OF SMALL DEGREE 7

Theorem 1 (Viro [7]). The sign σ at hyperbolic and elliptic nodes of
RC is consistent in the following sense. For any 1-parametric family
RKt ⊂ RP2, 0 ≤ t ≤ 1 of embedded smooth algebraic curves of the
same degree with p /∈ RKt the union of the corresponding sets Σt of real
nodes of πp(Kt) enhanced with the signs σ defines an integer homology
1-chain with the boundary [Σ1] − [Σ0]. In other words, when t varies
only pairs of nodes of opposite signs may annihilate while remaining
nodes keep their sign invariant.

A 1-parametric family of smooth algebraic curves of the same degree
is also called rigid isotopy.

−1 +1

Figure 2. Interchange between elliptic and hyperbolic
nodes of the same sign.

Corollary 10 (Viro [7]). The number

(1) w(K) =
∑
q∈Σ

σ(q)

is invariant under the rigid isotopy of the real algebraic curve RK as
well as the choice of the point p ∈ RP3 rRK determining the diagram
RC ⊂ πp(K).

5. Projection from a double point and the resulting
diagram

Consider the divisor D ⊂ K obtained by intersecting K with a
generic plane in P3. All effective divisors linear equivalent to D form a
linear projective space |D| ≈ Pr. The Riemann-Roch theorem ensures
that r ≥ d− g.

Lemma 11. If r ≥ 4 then there exists a continuous deformation

ft : K ⊂ P3, 0 ≤ t ≤ 1,

in the class of real algebraic curves of degree d (keeping the source K
unchanged as an abstract real curve) with the following properties.

• For 0 ≤ t < 1 the map ft is an embedding, and ft(K) is a
smooth real algebraic curve of degree d.
• f0 = Id.
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• The map f1 : K → P3 is an immersion with a single self-
crossing point p, with D− = f−1

1 (p) consisting of two points.
We have D− = conjD−. The two branches of f1 at p are not
tangent to each other.

Vice versa, if r ≥ 4 then any immersed algebraic curve with a sin-
gle self-crossing point of two (real or imaginary) branches with distinct
tangent directions can be perturbed to an embedded real algebraic knot
obtained by perturbing the two branches in any of the two possible di-
rections, i.e. so that each sign of the resulting crossing point on the
diagram may appear (see Figure 3 for the case when the two branches
are real).

Figure 3. Two resolutions (perturbations) of a self-
crossing point of the curve.

In other words, ft is an isotopy of K to a curve with a single self-
crossing point. Conversely such a point can be resolved in any direction.

Proof. The curve K ⊂ P3 is given by a choice of a 3-dimensional pro-
jective subspace in |D|. Consider K̃ ⊂ RP4 corresponding to enlarging
this subspace to a 4-dimensional linear subspace in |D|, so that we have
K = πq(K̃) for the projection πq from q ∈ RP4 rRK̃.

Consider the subspace Ξ ⊂ P4 formed by all projective chords of
K̃, i.e. lines connecting two points of K̃ (or the tangent line in the
case when the two points coincide). The subspace Ξ is a real algebraic
hypersurface. Note that projections of K̃ from generic points of RΞ are
immersed curves in P3 as the tangent lines to K̃ form a 2-dimensional
stratum in Ξ.

Suppose that πq(K̃) ⊂ P3 has a self-crossing point p ∈ P3 with

tangent branches. Then there exists a plane in P4 tangent to K̃ at
π−1
q (p) . However, for each point of K̃ there might be only a finite

number of other points of K̃ sharing a tangent plane.
Thus, an interval qt, 0 ≤ t ≤ 1, in RP4 connecting q to a generic

point of RΞ (chosen in the boundary of the component of RP4 r RΞ
containing q) produces the requited deformation ft(K) = πqt(K̃).

Conversely, moving a generic point of the hypersurface RΞ to any of
the two sides we get a perturbation of the map with a self-crossing into
an embedding. �
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Consider the curve K ′ = f1(K) corresponding to a generic point
q ∈ RΞ from the proof of Lemma 11. This curve is singular and the
map f1 : K → K ′ can be viewed as the normalization. Consider the
planar curve

C = π̃p(K) ⊂ P2,

where π̃pis the lifting of the projection πp|K′r{p} to K.
Recall that a planar curve is called nodal if all of its singular points

are simple nodes.

Proposition 12. The curve C ⊂ P2 is a nodal curve of (geometric)
genus g and degree d− 2 in P2. Furthermore, π̃p(D

−) is disjoint from
the nodes of C.

Proof. The geometric genus of C coincides with that of its normaliza-
tion K. The degrees of C in p2 and of K ′ in p3 differ by two since the
inverse image of a line in P2 is a plane that intersect K ′ at p with the
local multiplicity 2.

The curve C is obtained by a projection of K̃ ⊂ RP4 from a line
l ⊂ RP4 passing through two points of K̃. The condition that C
is an immersion is equivalent to the condition that no plane in RP4

containing l can be tangent to K̃.
The space of planes tangent to K̃ is parameterized by RK̃ itself

and thus 1-dimensional. Each such plane intersects K̃ in finitely many
points. As the number of pairs of points in K̃ is 2-dimensional, C is
an immersion for a generic choice of q ∈ RΞ.

Moving the chord l of K̃ produces a 2-parametric family of defor-
mations of C. Away from a small neighborhood of p it infinitesimally
corresponds to moving the projection point p ∈ RP3 in the 2-plane
tangent to the branches of RK ′ at p. �

From a real curve C ⊂ P2 normalized by ν : K → C we may
reconstruct a spatial curve K ′ ⊂ P3 such that C = π̃p(K

′), p ∈ K ′

with the help of a (not necessarily effective) divisor D on K in the
equivalence class of a line section of C. Namely, we have the following
straightforward statement. Let D = D+ −D− be a real (i.e. invariant
with respect to conj) divisor on K, where D+ and D− are disjoint
effective divisors.

Proposition 13. There exists a curve K ′ ⊂ P3 normalized by K
(here we denote the normalization K → K ′ with f1 to make nota-
tions consistent with Lemma 11), a point p ∈ K ′ such that π̃p(K) = C,
f−1

1 (p) = D−, and a plane H ⊂ P3, p /∈ H, such that f−1
1 (H ∩K ′), if

and only if D is linearly equivalent to the line section of C.



10 GRIGORY MIKHALKIN AND STEPAN OREVKOV

The curve K ′ ⊂ P3 as well as the point p and the plane H are
uniquely determined up to a projective linear transformation of P3.

It is convenient to introduce homogeneous coordinates z0 : z1 : z2 : z3

to P3 so that H is a horizontal plane {z3 = 0} and p = (1 : 0 : 0 : 0).

Definition 14. Let C ⊂ P2 be a nodal real algebraic curve of degree
d−2, ν : K → C is its normalization, and D = D+−D− (with disjoint
effective divisors D±) be a real divisor on K linearly equivalent to the
pull-back of the hyperplane section of C. We say that the pair (C;D)
is a nodal diagram if degD+ = d, the divisor D− consists of two points
of K with distinct images under ν, and the curve K ′ ⊂ P3 provided by
Proposition 13 has no singular points other than p.

Note that since the only singularities of C = π̃p(K) are its nodes,
the only possible singularities of K ′ r {p} are nodes of C lifted by π̃p.
But if K ′r {p} is nonsingular then for each node s ∈ C the two points
of π̃−1

p are distinguished by the value of the coordinate z3
z0

.

According to Proposition 13 The pair (C,D) determines the curve
K ′ ⊂ P3. Given D− there might be several choices of D+ produc-
ing topologically equivalent curves K ′. We may consider coarser data
consisting only of (C,D−) and topological data of lifting of C to P3 as
follows.

Consider the pair (RC,RD−) consisting of a nodal algebraic curve
RC ⊂ RP2 and the divisor RD− = D− ∩ RK ⊂ K consisting of two
distinct points invariant under conj and disjoint from the set Σe ⊂ Σ
of elliptic nodes of C. Let τ : RK → P3 be a continuous map such that
π̃p ◦ τ = ν and τ |RKrτ−1(p) is an embedding. Let σ : Σe → {±1} be any
function.

Definition 15. An equivalence class of quadruples (RC;RD−, τ, σ)
with respect to isotopies of D− and τ so that D− remains disjoint from
the nodes of C and τ |RKrτ−1(p) remains an embedding (the curve C as
well as the function τ are fixed) is called a virtual nodal diagram of
RK ′.

We depict virtual nodal diagrams in the ame style as coventional
knot diagram. The points of RD− are marked by bold points. If
I ⊂ RC is a small open interval around a point from RD− then a half
of this interval goes very high up under τ (as the point itself goes to
p = (0 : 0 : 0 : 1)) while the other half goes very low down. In our
pictures we indicate the low half with a break (see e.g. Figure 7).

Definition 16. We say that a plane RH ⊂ RP3 is separating for K ′

if for every line l ⊂ RP3 passing through p and two distinct points
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u, v ∈ RK ′r{p} the points p and RH∩l belong to different components
of l r {u, v}.

This means that the vertical coordinate function z3/z0 have differ-
ent signs at u and v. Since any three points are coplanar we get the
following straightforward statement.

Lemma 17. If the number of double points of RC is at most 3 then
we may choose RH ⊂ RP3 so that it is separating for RK ′ ⊂ RP3.

While in general it might be difficult to reconstruct a virtual nodal
diagram from a nodal diagram there is a special case when it is easy.

Definition 18. We say that the divisor D is 3D-explicit if the hyper-
plane RH corresponding to D+ is separating. In such case we also call
the nodal diagram (C,D) 3D-explicit.

Since being 3D-explicit is determined by the sign of the vertical co-
ordinate, there is the following straightforward criterion. Let Z ⊂ RC
be a 1-cycle, i.e. the subspace of RP2 homeomorphic to a circle. At a
nodal point of RC the cycle Z may stay on the same branch of RK
or may change it. We refer to the latter case as the corner of Z. Let
n(Z) be the number of the corners of Z in the case when Z is null-
homologous, and one plus the number of corners in the case when Z is
homologically non-trivial in RP2.

Proposition 19. Suppose that RC is connected. The divisor D is 3D-
explicit if and only if for each 1-cycle Z ⊂ RC the number of points
from Z ∩D (counted with multiplicity) is congruent modulo 2 to n(Z).

Consider a deformation Dt ⊂ C, 0 ≤ t ≤ 1, of the divisor D = D0

within real divisors in the same linear equivalence class (of the line
section of C ⊂ P2). Assume that the degree of the positive part D+

t

(and thus also of the negative part D−) remains constant.

Proposition 20. Let (C,D) be a 3D-explicit nodal diagram, and Dt,
t ∈ [0, 1], is a deformation of D = D0 in the class of real divisors
such that (C,Dt) is a 3D-explicit nodal diagram for t 6= 1

2
while for

every q ∈ Σ the following condition holds: if D±1
2

∩ ν−1(q) = ∅ then

D∓1
2

∩ ν−1(q) = ∅.
Then the curves K ′t provide a rigid isotopy between K ′1 and K ′ = K ′0.

Here by a rigid isotopy we mean a deformation in the class of curves
with a node at {p} such that K ′t r {p} remains embedded.

Proof. If the support of Dt is disjoint from ν−1(Σ) then the plane RH
remains separating. Otherwise the line lq in RP3 connecting p and a



12 GRIGORY MIKHALKIN AND STEPAN OREVKOV

point in the image of ν−1(q) on K ′t, q ∈ Σ, becomes tangent to RK ′t at
p while the intersection (RK ′t r {p}) ∩ lq is contained in RH. In both
cases p is the only singular point of K ′t, and it is a node. �

6. Viro invariant through diagrams

If K ⊂ P3 is a perturbation of the nodal curve K ′ ⊂ P3 as in Lemma
11 then the Viro invariant w(K) can be computed in terms of the
virtual diagram (RC;RD, τ, σ). Define c = 0 if the two branches at
p belong to different components of RK̃. If both branches come from
the same component of RK̃ then we orient RK̃ arbitrarily and define
c as the sign of the double point resulting from p of the knot diagram
of RK (when projected from a point far from p).

Let u ∈ RC be a smooth point. Choose a local orientation of RP2

near u and an orientation of a component M ⊂ RC containing u. Note
that it amounts to a choice of generator in H1(RP2 r {u}).

Let u+, u− /∈ RC be points obtained by small deformations of u to
the positive and negative side of M respectively. We define indM(u±) as
one half of the image of M in H1(RP2r {u±}) = Z and set indM(u) =
indM (u+)+indM (u−)

2
. Clearly, the sign of this number changes if we change

the local orientation of RP2 or the orientation of M . However, in the
case when u ∈ D− the orientation of M defines the orientation of the
tangent line to p so that together with the local orientation of RP2 we
can compare the resulting orientation with the (standard) orientation
of the ambient RP3 ⊃ RK ′. We set iM(u) ∈ 1

2
Z to be indM(u) in these

orientations agree and − indM(u) otherwise.
In the case whenK is a curve of type I (see [6]) we can similarly define

the index indRC(u) ∈ 1
2
H1(RP2 r {u}) of u with respect to the entire

curve RC as well as the corresponding half-integer number iRC(u) ∈ 1
2
Z

using any of the two complex orientations of RC. Also in this case we
define the linking number

λ(RK) =
∑
M,N

lk(M,N),

where the sum is taken over all pairs of different connected components
M,N ⊂ RK and the number lk(M,N) ∈ 1

2
Z is the linking number in

RP3 of the components M and N enhanced with orientations induced
from a complex orientation of RK. As it was noted in [7] for type I
curves K it is also useful to consider the invariant

wλ(K) = w(K) + λ(RK).

In this case we define cλ = ±1 according to the sign of resolution of
p ∈ RK ′ with respect to the complex orientations of RK, so that we
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have cλ = ±1 even if the two branches of RK ′ at p correspond to
different components of RK. Similarly, for a hyperbolic node q ∈ Σ
we define σλ(q) to be the sign of the corresponding crossing point with
respect to the complex orientation of RK.

Proposition 21. We have

w =
∑
q∈Σ

σ(q) + 2
∑
u∈D−

iM(u) + c.

Similarly,

wλ(RK) =
∑
q∈Σ

σλ(q) + 2
∑
u∈D−

iRC(u) + cλ

if RK is of type I.

Proof. After scaling R3 = RP3 r RH by a very large number we may
assume that RK is obtained by a deformation of the union of RC
with the two lines connecting the two points of D− and p. The points
of intersections of these lines with RC get smoothed. The remaining
intersection points contribute 2

∑
u∈D−

iM(u) to w and 2
∑

u∈D−
iRC(u) to

wλ(RK). �

7. Knots and links of degree up to 5

7.1. Links of degree 4 and lower. Let us apply Lemma 1 and Corol-
lary 2 for smooth irreducible algebraic curves RK ⊂ RP3 of small de-
gree d. If d = 1, 2 then g = 0 and RK is (algebraically) planar. If
d = 3 and g = 1 then RK is also planar. If d = 3 and g = 0 then
RK is hyperboloidal of bidegree (2, 1), and thus it is only topologically
planar.

Consider the case of d = 4. By Corollary 2 any such link sits on a
quadric. If g = 3 then it is a planar link. Otherwise RK corresponds to
a bidegree (a, b) curve with a+ b = 4 and (a− 1)(b− 1) = g. Therefore
we never encounter d = 4, g = 2 curves. If g = 1 then (a, b) = (2, 2)
and thus L must be topologically planar by Proposition 6. Finally, if
g = 0 we have (a, b) = (3, 1) and thus RK is of hyperboloidal type h3,1.

7.2. Links of degree 5. By Corollary 2 if d = 5 and g > 1 then
RK is hyperboloidal. If g = 6 it is planar. The bidegree of a smooth
irreducible curve RK ⊂ RQ ⊂ RP3 is either (3, 2) or (4, 1). In the first
case we have g = 2 with a topologically planar link by Proposition 6.
In the second case we have g = 0. Therefore, the cases d = 5 and
g = 3, 4 never appear.
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The following result was obtained by Bjorklund [1]. Recall that the
topological isotopy type of RK is the equivalence class of the pair
(RP3,RK) up to homeomorphism. Note that an orientation-reversing
homeomorphism takes w(K) to −w(K). Recall that we say that that
two real algebraic curves embedded in P3 are rigidly isotopic if one can
be deformed to another in the class of embedded smooth curves.

Theorem 2 (Bjorklund [1]). There are three distinct topological isotopy
types of (RP3,RK) for d = 5, g = 0 shown at Figure 4.

• The trivial knot K1. In this case w = ±2 or w = 0.
• The long trefoil knot K2 (a connected sum of a trefoil and a

projective line). In this case w = ±4.
• The hyperboloidal knot K3 of type h4,1 = T̄ (6, 4). In this case
w = ±6.

Furthermore, any two smooth curves of degree 5 and genus 0 in RP3

are rigidly isotopic if and only if they have the same invariant w.

K2
=4w=−2,0,2w

K1 K3
=6w

Figure 4. Rational quintic knots

Let us pass to the case when RK ⊂ RP3 is a (non-empty) smooth
degree d = 5, genus g = 1 curve. As the number of components of
RK is not greater than g + 1 by Harnack’s inequality [4] we have two
possibilities: either RK is connected, or it contains two connected com-
ponents. In the latter case the quotient K/ conj of K by the involution
conj of complex conjugation is an annulus and thus RK must be of
type I. Thus the invariant wλ is well-defined. In the former case the
quotient K/ conj is a Möbius band, so that CKrRK is connected, i.e.
RK is of type II, so we are restricted to consideration of w.

Theorem 3. There are three distinct topological isotopy types of (RP3,RK)
for d = 5, g = 1, in the case when RK is a two-component link, see
Figure 5.

• The trivial (planar) link L1. In this case w = ±1, wλ = ±1.
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• The link L2 consisting of a line RP1 ⊂ RP3 and an unknotted
circle around this line. In this case w = ±1, wλ = ±3.
(Figure 5 shows a complex orientation in the case w = 1.)
• The link L3 consisting of a hyperboloidal knot of type h3,1 and

a line RP1 ⊂ RP3 disjoint from the hyperboloid containing the
other components. In this case w = ±3, wλ = ±5.

If d = 5, g = 1 and RK is connected then it is isotopic to RP1 ⊂ RP3

(see K1 from Figure 4). In this case we have w = ±1.
Furthermore, all two-component real algebraic links of degree 5 and

genus 1 in RP3 with the same value of wλ are rigidly isotopic. Also all
connected real algebraic knots of degree 5 and genus 1 in RP3 with the
same value of w are rigidly isotopic.

L1
= −1,1w

λ

L2
= 3w

λ

L3
= 5w

λ

Figure 5. Elliptic quintic two-component links.

Proof. The rank r of the linear system defined by the plane section
of K ⊂ P3 is at least d − g = 4 by the Riemann-Roch theorem. By
Lemma 11 we may assume that K is obtained by deformation of a
curve RK ′ with a self crossing point p. By Proposition 12 the curve
C = π̃p(K

′) ⊂ RP2 in the corresponding nodal diagram is cubic of
genus 1. Thus C is smooth.

Suppose that D− ∩ RC = ∅. Note that this determines the equiv-
alence class of D up to real deformations. In this case RK ′ is topo-
logically isotopic to the union of the planar cubic curve isotopic to
RC and a solitary node at p. After a deformation the solitary node p
disappears. By Proposition 21 we have w(K) = c = ±1.

In other cases we have D− ⊂ RC. Then RK ′ is obtained from
RC ⊂ RP2 ⊂ RP3 by attaching the two lines connecting p with the
points of D− and then perturbing the result with the help of D+. Note
that up to equivalence D+ is determined by the parity of the number
of points in each connected component of RC rD−.

Suppose that D− is contained in the homologically non-trivial com-
ponent J of RC ⊂ RP2. SinceD is linearly equivalent to the hyperplane
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section of RC we must have even number of points in RC r J and dif-
ferent parities in the two arcs of J r D−. Thus all such choices of D
are equivalent. Once again, RK ⊂ RP3 is topologically isotopic to a
curve sitting in a plane and isotopic to RC. We have w(K) = c = ±1.

If RK is of type II (i.e. RC is connected) then J = RC and there
are no other possibilities for D. If RC is of type I (i.e. RK is a two-
component link) then wλ(K) in both cases considered above coincides
with w(K).

If RK is a two-component link we also have additional cases. If D−

has points in different components of RK this again determines the
class of equivalence of D. Then RK is topologically isotopic either to
L1 or L2 depending on the resolution at p. We have wλ(K) = ±2 + cλ
in these cases by Proposition 21.

If D− ⊂ RC r J then there are two equivalence classes of D. In one
case we have odd number of points of D+ in all three components of
RCrD−. Then wλ(K) = ±4 + cλ and the topological type is L2 or L3

accordingly. In the other case both arcs of RC r (J ∪D−) have even
number of points from D+. Then wλ(K) = cλ and the topological type
is L1.

To deduce the rigid isotopy classification it remains to prove that in
our construction above the curves with the same wλ that are obtained
from different cases considered above.

If wλ = 3 then there are two options for the distribution of D− be-
tween the components of RC. If D− ⊂ RC r J and c = −1 then p
corresponds to self-crossing of the topologically trivial (even) compo-
nent of RK. If D− ∩ J 6= ∅, D− ∩ (RC r J) = ∅ and c = +1 then p
corresponds to the intersection point between different components of
RK.

If wλ = 1 then there are three options for the distribution of D−

between the components of RC. They correspond to self-intersection
of an even component of RK, the self-intersection of an odd component
of RK and the intersection point of distinct components of RK.

We claim that in the case |wλ| ≤ 3 there exists a real deformation of
K to an immersed curve K ′ with a single crossing point corresponding
to distinct components of K. To see this we consider the projection of
K from a generic point p on the even component of RK. The image
B ⊂ P2 of the projection is a quartic curve with two odd connected
components of the normalization RK. Being odd, these components
must intersect at a point r ∈ RP2. Since the curve B is elliptic, there
is a second nodal point of RB which must be either a self-intersection
point s ∈ RP2 of a component P ⊂ RK or an elliptic double point
s ∈ RP2 (the intersection of two complex conjugate branches of B).
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If s is elliptic then it corresponds to a pair Ps ⊂ CKrRK of complex
conjugate points in RK while r corresponds to a pair Pr ⊂ RK of points
from different components of RB. Choose a plane RH passing through
Ps and a point p1

r ⊂ Pr from the odd component of RK. The divisor
H∩K on K is equivalent to D+ and consists of Ps, p

1
r as well as another

pair Pm of points on K. If Pm is contained in the odd component of
RK then we can deform Pm into CK r RK not changing the linear
equivalence class. If Pm ∩ RK = ∅ then we can further deform Pm to
the even component of RK within the same linear equivalence class.

If Pm is contained in the even component of RK then we can deform
Pm (moving the image pB ∈ RB of the projection point p ∈ RP3 if
needed) so that D+ − {pB} stays in the same linear equivalence class
while the result of deformation of D+ contains Pr. In this case the
spatial curve corresponding to (C,D) by Proposition 13 has a double
point at r.

If s is not elliptic then it corresponds to a self-intersection of one of
the components of RK. We choose a plane RH ⊂ RP3 passing through
a point pr ∈ RK and so that it separates the pair Ps in the sense of
Definition 16. Here we choose pr to be on the component A ⊂ RK
containing the pair Ps.

Recall that we assume that |wλ| ≤ 3. By Proposition 21 this implies
that if A∩D+ consists of more than 4 points then two of them bound
an open interval I ⊂ A disjoint from D+ and pB. Thus a pair of points
of D+ can be pushed to CK r RK and then to the other component
A′ ⊂ RK. Note that π̃p|A′ is an embedding since Ps ⊂ A. Thus we
ensure that D+∩A′ consists at least of two points. As in the case when
s is elliptic we deform these points (along with pB if needed) to ensure
a crossing point between two different components of the spatial curve.

Thus any embedded curve with d = 5, g = 1 and |wλ| ≤ 3 is ob-
tained by perturbing a nodal spatial curve with a node corresponding
to crossing of different components. Therefore wλ determines the rigid
isotopy type of type I d = 5, g = 1 real algebraic links. �

8. Rational knots of degree 6

Theorem 4. There are 14 topological isotopy types (homeomorphism
classes of pairs (RP3,RK)) of rational real algebraic curves RK of
degree 6 embedded in the projective space RP3. Figure 6 lists the knots.

Theorem 5. There are 38 rigid isotopy types of rational real algebraic
curves of degree 6 embedded in the projective space RP3. Namely, each
curve depicted on Figure 6 enhanced with a choice of the listed value
for w gives rise to one rigid isotopy class of RK in the depicted knot



18 GRIGORY MIKHALKIN AND STEPAN OREVKOV

type. Furthermore, simultaneous reflection of RK in RP3 and changing
the sign of w gives a new rigid isotopy type with the exception when the
knot type of RK is amphichiral (the first two knots of Figure 6).

=6w

K8K7
=4w=0,2w

K6K5
=0,2,4w

=−4,−2,0,2,4w

K1 K2
w =0

K3
=2,4w

K4
=6w

=4w

K9
=6w

K10
=8w

K11
=8w

K12

=8w

K13 K14
=10w

Figure 6. Real algebraic knots of degree 6 and genus 0.

8.1. Quartic nodal diagrams and odd arcs. Lemma 11 and Propo-
sition 13 reduce Theorems 4 and 5 to classification of the nodal dia-
grams (C,D) with respect to equivalences corresponding to topological
and rigid isotopies of the resulting spatial curves.

Since d = 6 the curve C is a nodal quartic. Thus it has at most three
real nodes. By Lemma 17 we may assume that D is 3D-explicit. Thus
we may apply Proposition 19.

Given a nodal diagram of RK ′ we may consider parity of the number
of elements of A ∩D+ (counted with multiplicities) for any connected
component A ⊂ RC r (Σ ∪ D−). We refer to such components A as
diagram arc. A diagram arc A is called odd if the parity of A ∩D+ is
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odd, and even otherwise. Clearly, the parity of a diagram arc depends
only on the underlying virtual knot diagram, so that we may speak of
odd arcs of virtual nodal diagrams.

Proposition 22. Suppose that (C;D−, τ, σ) is a virtual nodal dia-
gram such that all nodes of a rational quartic curve RC are hyperbolic.
The diagram (C;D−, τ, σ) is realizable by a 3D-explicit nodal diagram
(C,D) if and only if the number of its odd arcs is at most 6.

Furthermore, in this case the virtual diagram (C;D−, τ, σ) and the
sign c of deformation of K ′ determine the embedded real algebraic curve
K ⊂ P3 up to rigid isotopy.

Proof. If the number of odd diagram arcs is greater than 6 then so
must be the degree of the effective divisor D+. Conversely, if this
number is at most 6 then we may construct D+ by selecting a point
at each odd arc. If needed we add pairs of conjugate points on C to
ensure degD+ = 6. The space of these choices is connected as any
pair of points of D+ on the same arc may be deformed off RC into
CC rRC. �

8.2. Moves of the diagrams. Some nodal diagrams (C,D) with dis-
tinct C and D correspond to the same rigid isotopy class of knots. We
formulate the following straightforward proposition for nodal diagrams
of rational curves of arbitrary degree d.

Proposition 23. Suppose that nodal diagrams (C1, D1) and (C2, D2) of
degree d on rational curves Cj, j = 1, 2, of degree d− 2 are 3D-explicit
and related by means of one of the moves listed below.

Then the embedded real algebraic curves K1, K2 ⊂ P3 obtained from
the corresponding curves K ′1 and K ′2 by resolving their double points in
coherent directions are rigidly isotopic.
• (Moving a pole) Suppose that C1 = C2. Let u ∈ Σ be a hyperbolic
node of RC = RC1 = RC2 and u+, u− ∈ RK be two points correspond-
ing to u under the normalization ν : K → C. Let u±1 be the result of
moving u± a little along RK in one (arbitrarily chosen) direction, and
u±2 be the result of moving u± in the opposite direction. Let D+ be
an arbitrary real effective divisor on K of degree d − 1 disjoint from
ν−1(Σ), and D− be an arbitrary real effective divisor on K disjoint
from ν−1(Σ) and D+. Define D±j = D± ∪ {u±j }, j = 1, 2. (See Figure
7 for the change of the corresponding virtual nodal diagram.)
• (Annihilation of two poles) Suppose that C1 = C2, and D+ is
an arbitrary real effective divisor of degree d disjoint from Σ. Let
x ∈ RK r (ν−1(Σ) ∪ D+) be a point. Define D−1 to consist of two
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Figure 7. Moving a pole.

distinct points in RK close to x and D−2 to be a pair of conjugate
points in CK rRK close to x.

The remaining three moves are algebro-geometric counterparts of the
Reidemeister moves from knot theory. Here C1 6= C2, instead they are
obtained as different real perturbations (within the class of real alge-
braic curves of degree d) of a certain curve C0 ⊂ P2. We denote the
normalization of C0 with ν0 : K0 → C0 and consider a certain divisor
D0 = D+

0 − D−0 on K obtained as the difference of disjoint effective
divisors D±0 , degD+

0 = d, degD−0 = 2, with D±0 disjoint from the nor-
malization of the nodes of C0. In the following moves the divisor Dj,
j = 1, 2, on the normalization Kj → Cj is obtained as an arbitrary
small deformation of the divisor D0 on K0.
• (Reidemeister 1) Here C0 is a curve with a single cusp u and
simple nodes as all other singularities, while D0 is such that D+

0 3 u.
See Figure 2 for the corresponding virtual nodal diagrams.
• (Reidemeister 2) Here C0 has a single tacnode u and simple nodes
as all other singularities, while the divisors D±0 are disjoint from u.
• (Reidemeister 3) Here C0 is a curve with a single ordinary triple
point u and simple nodes as all other singularities, while D+

0 contains
a single point in the set ν−1

0 (u) (of cardinality 3).

Corollary 24. Any embedded real rational curve of degree 6 is rigidly
isotopic to a curve obtained from the curves whose virtual nodal dia-
grams are listed on Figure 8 by resolving them according to c = ±1 as
in Lemma 11.

Each diagram N c
ε , where N is the number of the diagram from Figure

8, c = ± is the sign of deformation of K ′ into K, and ε is the sum
of the signs at all solitary nodes of RC (located in the region specified
by the diagram) uniquely determines the rigid isotopy class of a real
algebraic curve. Here the allowed values for ε are ε = ±1 in the cases
20-22, 28 and 30; ε = 0,−2 in the case 26; ε = ±1,−3 in the case 27;
and ε = ±1,±3 in the case 29.

We omit ε from N c
ε in the case when the diagram N admits only one

value for ε (e.g. if there are no solitary nodes at all).

Proof. Once we ignore the sign of solitary nodes (i.e. the σ-data in vir-
tual diagrams (RC;RD−, τ, σ), Figure 8 lists all triples (RC;RD−, τ)
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on a generically immersed quartics C with not more than 6 odd arcs
up to the equivalence generated by all moves from Proposition 23. We
refer e.g. to [2] for classification of generic real quartics C.

Suppose that C does not have elliptic nodes. In this case any 3D-
explicit divisor defines a nodal diagram unless C has a pair of conjugate
nodes and D is chosen so that the corresponding lift K ′ also have a pair
of conjugate nodes. This means that the real meromorphic function
corresponding to D−H0, where H0 is the divisor cut on C ⊂ P2 by the
infinite axis of P2 has real values at a fixed pair of distinct and non-
conjugate points of CC r RC. It is easy to see that the divisors with
this property form a codimension 2 subspace in the connected real 8-
dimensional space of all 3D-explicit divisors corresponding to the same
virtual diagram.

Our next claim is that if (C,D) is a 3D-explicit nodal diagram such
that C has a pair of conjugate nodes and a hyperbolic node then there
exists a path (Ct, Dt), t ∈ [0, 1], (C0, D0) = (C,D) such that (Ct, Dt)
are 3D-explicit nodal diagrams,C1 has three hyperbolic nodes, C 1

2
has a

tacnode with two hyperbolic branches while the curve in P3 correspond-
ing to (C 1

2
, D 1

2
) by Proposition 13 is smooth outside of the projection

point p. The family (Ct, Dt) determines a rigid isotopy between the
corresponding algebraic knots.

To prove the claim we note that there are two types of (C,D) with
such properties, and each can be obtained by perturbation of two el-
lipses in P2 intersecting transversally at two real points. It is sufficient
to prove the claim for one representative curve in each type. The per-
turbations smooth one of the real transversal intersection points in
two possible ways and keep the remaining one real and two imaginary
points of the intersection of the ellipses. Both perturbations can be
included in a one-parametric family of pairs of ellipses so that when t
increases the ellipses become tangent and then intersect transversely in
4 distinct real points producing a family Ct of rational nodal quadrics.
We define Dt so that (Ct, Dt) is 3D-explicit, and thus the corresponding
curve K ′t r {p} ⊂ P3 is smooth.

Lemma 25 allows us to reduce consideration of nodal diagrams with
elliptic nodes to those without elliptic nodes and thus finishes the proof.
In particular, cases 26 with ε = +2 as well as 27 with ε = +3 can not
appear as the corresponding diagrams with hyperbolic nodes have more
than 6 odd arcs. �

Lemma 25. Any real smooth rational sextic K ⊂ P3 is rigidly isotopic
to a curve obtained from a nodal diagram such that the underlying real
quartic rational curve does not have elliptic nodes.
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Proof. Let q ∈ RC be an elliptic node in the nodal diagram (C,D) of
K. The image of C under the quadratic transformation centered in
the nodes of C is a conic intersecting the coordinate line corresponding
to q in two imaginary points. A deformation of this conic to a conic
intersecting this line in two real points give a deformation Ct, t ∈ [0, 1],
of C = C0 into a rational nodal quartic C1 that changes q into a
hyperbolic node, and leaves the other nodes of C unchanged. This
deformation can be extended to a deformation Dt of D = D0 so that
Dt remains disjoint from the nodes of Ct and neither D+

t nor D−t has
multiple points.

This gives a deformation K ′t ⊂ P3 of sextic curves. If K ′t r {p} is
nonsingular then the smooth curves obtained by coherent deformations
of K ′0 and K ′1 are rigidly isotopic while the number of elliptic points of
C1 is less than that of C0, so that we may proceed inductively. Suppose
that K ′t r {p} is singular for t = ε and nonsingular for t ∈ [0, ε).

Note that the singularity of K ′tr{p} must sit over an elliptic node s
of Ct since D is 3D-explicit. Exchanging the roles of s and p if needed,
we may assume that p was elliptic, i.e. D− ∩ RK = ∅. In such case
RKrν−1(Σ) consists of not more that 6 arcs, and D+ maybe deformed
in a family Dt of divisors in the same curve K so that D−t = D−,
D+
t ∩ D−t = ∅, D+

t ∩ ν−1
1 (Σ) = ∅, t = [0, 1), while D+

1 = ν−1(Σ), so
that K ′1 ⊂ P3 is a quadrinodal sextic curve, i.e. a curve with 4 distinct
nodes. Note that by our construction these 4 nodes are not coplanar
and the curve K ′t is not contained in any plane of P2. If there are nodes
forming a complex conjugate pair then we can proceed as in the proof
of Corollary 24 deforming this pair to a pair of hyperbolic nodes.

If all nodes are real (elliptic or hyperbolic) then we choose the co-
ordinates in P3 so that the intersections of the coordinate hyperplanes
correspond to the nodes of K ′1, the cubic transformation

(2) (x0 : x1 : x2 : x3) 7→ (
1

x0

:
1

x1

:
1

x2

:
1

x3

)

maps K ′t to a conic in P3. Thus all quadrinodal curves corresponding
to the same planar nodal quartic C are isotopic. But all elliptic nodes
of C can be simultaneously deformed to hyperbolic nodes as we can
see through consideration of conics in P2 tangent to coordinate lines.

It remains to prove that we can deform (C,D) = (C0, D0) to (C1, D1)
so that all (Ct, Dt), t ∈ [0, 1) are nodal diagrams while K ′1 ⊂ P3 is
quadrinodal. We start with a deformation of D on the same curve K
as considered above. If there exists ε < 1 with singular K ′ε r {p} then
its singularity must be an elliptic node e. Consider a plane section H
of K ′ε disjoint from {p} and such it passes through e and such that the
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corresponding divisor is 3D-explicit (we can do that since there are not
more than 2 hyperbolic nodes of C). Deforming the plane section from
D+
ε to H gives us a family of intermediate nodal diagrams (Ct, Dt),

t ∈ [ε, εH), ε < εH < 1 while D+
εH

contains ν−1
εH

(e). We continue the
process by deformation of the effective divisor D+

εH
− ν−1

εH
(ΣεH r {e})

until we arrive to D1 = ν−1
1 (Σ1). Finally we perturb the family (Ct, Dt)

slightly to ensure that it consists if nodal diagrams for t < 1.
�

8.3. Quadrinodal spatial rational sextics and isotopy. The quadrin-
odal curves we considered in the previous subsection are also useful for
finding isotopies among the curves listed in Corollary 24. Let J ⊂ P3

be a quadrinodal rational sextic with the nodes in (0 : 0 : 0 : 1),
(0 : 0 : 0 : 1), (0 : 0 : 0 : 1) and p = (0 : 0 : 0 : 1).

Proposition 26. For every choice of signs for some nodes of a real
rational quadrinodal sextic curve J there exists a deformation of RJ in
the class or real rational sextics resolving those nodes according to the
chosen signs and keeping all the other nodes unperturbed.

Proof. The curve J corresponds to a nodal rational planar curve C
and the divisor D+ consisting of 6 points in the normalization K of C
corresponding to 3 nodes of C so that each node corresponds to a pair
of points in D+. Moving one of the points in the pair in an appropriate
direction we get the deformation of RJ with the chosen sign. (In the
case when the pair consists of complex conjugate points we move the
second point in a complex conjugate way.) If our choice of signs keeps
some of the nodes unresolved then without loss of generality we may
assume that we do not resolve p. If our choice resolve all the nodes
then we apply Lemma 11 to resolve p. �

The normalization of RJ is topologically a circle. Hyperbolic nodes
of J may be encoded on this circle by means of the so-called chord
diagram: we draw a chord connecting each pair of points that gets
identified to a node of RJ . Real solitary nodes of J are ignored in
the chord diagram S, their number is equal to 4 minus the number of
chords. As the space of n distinct pairs of complex conjugate points in
CP1 is connected we obtain the following statement.

Proposition 27. The space of real quadrinodal rational sextic curves
in P3 (considered up to projective linear transformations) corresponding
to the same combinatorial diagram of real chords is connected.

Here we consider only quadrinodal curves with all nodes real, i.e.
without complex conjugate pairs of nodes.
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Figure 8. Equivalence classes of the diagrams of RK ′
with respect to the moves of Proposition 23.

8.4. Completing the classification.

Proof of Theorems 4 and 5. By Corollary 24 to deduce the classifica-
tion we need to identify the curves obtained from the diagrams of Fig-
ure 8 that are rigidly isotopic. For this we use eleven real rational
quadrinodal curves given by the chord diagrams A through K depicted
on Figure 10 as well as the 3-nodal curve L from Figure 9.
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L

Figure 9. A trinodal rational sextic curve.

The quadrinodal curves are depicted along with 4 projections from
each of its nodes (numbered 1 through 4). For convenience we indicate
the diagram of the one-nodal curve RK ′ obtained by positive resolu-
tion of all nodes except for the projection point. To identify different
projections of the same quadrinodal curve we indicate the same arc
connecting two of the nodes.

Also we depict the lower and upper half arcs near the points of D−
for the corresponding diagrams. Note that this choice is determined
(up to simultaneous reversal) by the following rule. Let us connect
the two points of D− by an arc in the curve RC ⊂ RP2 and compute
the number of points of D+ contained on this arc. If the arc crosses
the infinite line of the projective plane of the diagram odd number of
times then we add one to this number. If the result is odd then the arc
connects a lower half-arc to an upper half arc. Otherwise it connects
the half-arcs of the same kind.

The tri-nodal curve in Figure 10 (curve “L”) is parameterized by

t 7→ (p1p3p5p6p7p8 : p1p2p3p4p5p7 : p2p4p
3
6p8 : p1p2p4p5p6p8),

where pi = t− ti and t1 < t2 < · · · < t8.
Figure 11 indicates which of the curves obtained from the diagrams of

Figure 10 are rigidly isotopic. Namely, Figure 11 lists bipartite graphs
with two type of vertices: numeric and alphabetic. The number of the
numeric vertices refers to the diagram number from Figure 8 as well
as the sign used for the perturbation of the node. Each such diagram
encodes the equivalence class with respect to the moves of Proposition
23.

The letter of the alphabetic vertices refers to the multinodal curves
from Figure 10. Each edge is labeled by the number of the node of the
corresponding multinodal curve that becomes the projection point in
the diagram for the adjacent numeric vertex. The signs of the resolution
used in the graph are determined by the signs at the adjacent numerical
vertices.
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Figure 10. Eleven quadrinodal sextic curves.

We see that each pair consisting of a curve from Figure 6 and the
non-negative value of its Viro invariant w corresponds to a connected
subgraph and that each resolution of a curve from Figure 8 is contained
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in one of the subgraphs. Different knots from Figure 6 are topologi-
cally different as knots in RP3, see [3]. Figure 12 provides topological
identification of the boxed resolved diagram in Figure 11 and the cor-
responding knot type from Figure 6.

A reflection (an orientation-reversing automorphism) in RP3 reverses
the knot together with its Viro invariant. Thus each curve with positive
w corresponds to two distinct rigid isotopy types under reflection while
a curves with w = 0 may correspond to one or two types. We have four
types of knots with w = 0: K1, K2, K5 and K6. The knots K5 and
K6 are chiral: they are not topologically isotopic to their reflection in
RP3 as the two components of their inverse images under the universal
covering S3 → RP3 have non-zero linking number. In the same type the
knot typesK1 andK2 are amphichiral. Furthermore, the corresponding
real algebraic sextics are rigidly isotopic as their reflections appear in
the same components of the graphs from Figure 11. Altogether we
get 38 rigid isotopy types in Theorem 5. We get 14 topological types
of Theorem 4 by taking out the Viro invariant information from the
data. �

9. Elliptic knots and links of degree 6

Theorem 6. There are 16 topological isotopy types (homeomorphism
classes of pairs (RP3,RK)) of elliptic (genus 1) smooth real algebraic
curves K of degree 6 in the projective space RP3 in the case when RK
is a two-component link. Namely, Figure 13 lists the two-component
links realizable by elliptic curves of degree 6.

There are 4 topological isotopy types in the case when RK is con-
nected. Namely, the types K1, K3, K5, K6 from Figure 6 are realizable
by smooth elliptic sextic curves in P3.

Theorem 7. There are 40 rigid isotopy types of rational real algebraic
curves of degree 6 embedded in the projective space RP3 in the case
when RK is a two-component link. Namely, each curve depicted on
Figure 13 enhanced with a choice of the listed value for wλ gives rise to
one rigid isotopy class of RK in the depicted link type. Furthermore,
simultaneous reflection of RK in RP3 and changing the sign of wλ gives
a new rigid isotopy type with the exception of when RK is a topologically
trivial link (the first case in Figure 13).

In the list of links in [3], there are two repetitions (626 = 6̄19, while 625 is the
long figure-eight knot) and two omissions (the knot (2, 3/5) and the alternating link

��−−��© are missing).
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There are 12 such types in the case when RK is connected. Namely,
we may have w = ±3,±1 for the types K1; w = 3 for K3; w = 1, 3 for
K5; and w = 1 for K6 (see Figure 6).

9.1. Binodal planar elliptic quartics. To prove Theorems 6 and
7 we use a technique similar to that developed in the previous section
with some modifications. Lemma 11 and Propositions 12 and 13 reduce
the proof to studying of nodal diagrams (C,D), where C is a nodal
elliptic curve of degree 4 while D = D+ −D− is linearly equivalent to
a hyperplane section of C. Namely, the nodal diagram (C,D) defines
a spatial curve K ′ ⊂ P3 with the node p = (0 : 0 : 0 : 1) ∈ P3 that can
be resolved in two ways to a smooth spatial elliptic sextic. Once again,
we can distinguish between positive and negative resolution of p. If p
is the self-intersection of the same component of RK then we may use
any of its orientations to determine the sign. If p is the intersection of
different components then K is necessarily of type I and we may use a
complex orientation of RK to determine the sign.

The singular set Σ ⊂ C consists of two nodes. Thus the four points of
ν−1(Σ) ⊂ K give a hyperplane section of C through the normalization
map ν : K → C.

Let E be an abstract elliptic curve (not embedded to any projective
space) enhanced with an antiholomorphic involution conj with non-
empty fixed locus RE. Let chj ⊂ E, j = 1, 2, be two disjoint pairs of
points with conj(chj) = chj.

Lemma 28. If the divisors formed by ch1 and ch2 are not linearly
equivalent in E then there exists a planar nodal quartic curve C ⊂ P2

with two nodes qj ∈ C, j = 1, 2, with (K; ν−1(q1), ν−1(q2)) is isomor-
phic to (E; ch1, ch2).

Vice versa, for any nodal irreducible quartic curve C with two nodes
qj ∈ C, j = 1, 2, the divisors ν−1(q1) and ν−1(q2) are not linearly
equivalent.

Proof. Consider the projective linear system | ch1 + ch2 | and a point
r ∈ E r (ch1 ∪ ch2). As dim | ch1 + ch2 | = 3 there exist a unique point
rj, j = 1, 2, such that rj + r + chj is equivalent to ch1 + ch2. Since
| ch1 | 6= | ch2 | we have r1 6= r2, and ch1 + ch2, r1 + r + ch1, r2 + r + ch2

generate a 2-dimensional subsystem in | ch1 + ch2 | and a map of E
to P2. Note that the image of E has two nodes corresponding to chj.
Thus this subsystem contains sj+s+chj for with some sj for every s ∈
E r (ch1 ∪ ch2). Therefore, the resulting linear system is independent
of the choice of r.
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For the converse it suffices to take a generic point in a nodal ellip-
tic quartic curve C ⊂ P2 and connect it with the nodes qj of C by
lines. The lines will intersect C at distinct fourth points. Distinct sin-
gle points are not linear equivalent since our normalization K is not
rational. �

This allows us to work with planar nodal elliptic quartics almost as
freely as with planar nodal rational quartics.

Corollary 29. There are 10 distinct rigid isotopy classes of real elliptic
quartic curves in P2 in the case when the normalization of the real locus
consists of two components: 5 with both nodes hyperbolic, 2 with one
hyperbolic and one elliptic node, 1 with two elliptic nodes and 2 with a
pair of complex conjugate nodes. There are 5 distinct classes in the case
when the normalization is connected: 2 with both nodes hyperbolic, 1
with with one hyperbolic and one elliptic node, 1 with two elliptic nodes
and 1 with a pair of complex conjugate nodes.

Here by rigid isotopy we mean a deformation in the class of (irre-
ducible) real elliptic binodal quartics in P2.

Proof. It is convenient to think of chj as a chord connecting two points
of the real locus RE. We have three deformation classes if each chord
connects two points from the same component of RE, and a single
class if one or both chords connect different components of RE. Each
class is unique to automorphism and deformation of (E; ch1, ch2) in
the class of triples with | ch1 | 6= | ch2 |. If RE is disconnected then
complex conjugate nodes may correspond to intersections of the same
or different components, this gives us two classes. �

9.2. Nodal diagrams in the elliptic case. Propositions 22 has the
following counterpart for the case of genus 1.

Proposition 30. Suppose that (RC;RD−, τ, σ) is a virtual nodal di-
agram such that all nodes of a nodal elliptic quartic curve RC are
hyperbolic. The diagram (RC;RD−, τ, σ) is not realizable by a 3D-
explicit nodal diagram (C,D) if the six-point set D− ∪ ν−1(Σ) is con-
tained in a connected component of RK. It is also not realizable if
D− ∪ ν−1(Σ) ⊂ RK and RC has a node corresponding to intersection
of distinct components of RK.

In all other cases (RC;RD−, τ, σ) is realizable by a 3D-explicit nodal
diagram (C,D). Furthermore, the virtual diagram (RC;RD−, τ, σ) to-
gether with the sign c of deformation of K ′ determine the embedded
real algebraic curve K ⊂ P3 up to rigid isotopy.
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Proof. Suppose (C,D) is a 3D-explicit nodal diagram. The number of
arc-components of RK r (ν−1(Σ)∪D−) is 6 if D− ⊂ RK, otherwise it
is 4. Suppose that we have 6 odd arcs. Then all 6 points of D+ are real,
and each point sits on its own arc of RK r (ν−1(Σ)∪D−). If all these
6 points belong to the same component of RK we have a contradiction
to the Abel theorem as |D+| = |D− + ν−1(Σ)|, but a divisor cannot
be principal if it can be presented as the boundary of a collection of
disjoint coherently oriented intervals contained in the same component
of RK.

If the images of different components of RK under ν intersect then
by Corollary 29 there are just two possibilities for RC up to rigid
isotopy. In this case K is of type I. Note that if f : K → P1 is a
real meromorphic function with f−1(RP1) = RK then f has no real
critical values, and a complex orientation of RK can be obtained as
the pullback of an orientation of RP1. Applying this remark to the
function defined by D+ − (D− + ν−1(Σ)) for these two possibilities we
get a contradiction, see Figure 14. In the remaining cases existence
and uniqueness of a nodal diagram (C,D) up to deformation follows
from Lemma 28. �

Lemma 31. Any real smooth rational sextic K ⊂ P3 is rigidly isotopic
to a curve obtained from a nodal diagram such that the underlying real
quartic rational curve does not have elliptic nodes.

Proof. Suppose that (C,D) is a 3D-explicit nodal diagram, and C has
an elliptic node. Use Lemma 28 to deform the corresponding chord to
a tangent line, and then further to real chord. Then the elliptic node
gets deformed to a cusp, and further to a hyperbolic node. Deform D
in its linear equivalence class to extend the deformation of C to a 3D-
explicit deformation (Ct, Dt) of (C,D). We can do that since we may
assume that deg(D+ ∩ RK) ≤ 4 since RK r (ν−1(Σ) ∪ D−) contains
at most of four arcs.

If during the deformation the curve K ′t r {p} ⊂ P3 has a singular
point then it must be an elliptic node. Thus exchanging the roles of p
and this node we may assume that p is elliptic, i.e. D− ∩ RK = ∅. In
this case we may assume that deg(D+ ∩RK) ≤ 2 and keep two of the
points of D+

t at the inverse image of the elliptic node of Ct under ν. If
Ct has two elliptic nodes then D+

t can be chosen without real points
and we may keep four points of D+

t at ν−1(Σ) thus ensuring (after a
perturbation) that K ′t r {p} is smooth. �

Corollary 32. Any real elliptic curve K of degree 6 in P3 is rigidly
isotopic to a curve obtained from one of the curves whose virtual nodal
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diagrams are listed on Figure 15 by resolving them according to c = ±1
as in Lemma 11 if K is of type I.

Each diagram N c
ε , where N is the number of the diagram from Figure

15, c = ± is the sign of deformation of K ′ into K, and ε is the sum
of the signs at all solitary nodes of RC (located in the region specified
by the diagram) uniquely determines the rigid isotopy class of a real
algebraic curve. Here the allowed values for ε are ε = ±1 in the cases
17 and 18; ε = 0,−2 in the cases 22 and 23; and ε = 0,±2 in the cases
24 and 25.

If K is of type II then it is rigidly isotopic to a curve obtained from
one of the curves whose virtual nodal diagrams are listed on Figure 8,
cases 20, 21, 22 (without further elliptic nodes), 26 with ε = −1, 27
with ε = 0,−2, or 29 with ε = ±2, 0, by resolving them according to
c = ±1.

Proof. The proof is similar to that of Corollary 24. Note that if the
number of odd arcs is not more than 4 then we have the moves of
Proposition 23 also for the genus 1 case. �

9.3. Trinodal spatial elliptic sextics and proof of Theorems 6
and 7. Additional isotopies among the curves corresponding to pos-
itive and negative resolution of nodal diagrams from Figure 15 are
obtained with the help of bi- and trinodal spatial elliptic sextics. As
in the case of quadrinodal rational sextics we may resolve the nodes of
such curves independently according to our choice of signs.

Lemma 33. Let J ⊂ P3 be a rational real quadrinodal sextic and p ∈ J
be one of its real nodes (can be elliptic or hyperbolic). We may choose
to smooth J at p to a real elliptic sextic I of a type I or to a type II
keeping three other nodes of J .

Proof. We have seen that J is given by 4 chords on a conic Q ⊂ P2. We
can view the chords as lines in P2. Perturbing the diagram if needed
we may assume that no three chords intersect in a point. The plane p2

can be linearly embedded to P3 so that the four chords are cut by the
coordinate planes. Then J is the image of Q under (2).

Let the line Lp ⊂ P2 be the chord corresponding to p. Let R ⊂ P2

be the cubic curve obtained by perturbation of J ∪Lp with the help of
the three other chords (either to a type I or type II real curve). The
image of R under (2) is I. �

Proof of Theorems 6 and 7. Suppose that K is of type II. We use the
same quadrinodal curves as in Figure 10 and apply to them Lemma 33
to complete the classification in this case.
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If K is of type I we use trivalent curves from Figure 16 to relate the
curves from Corollary 32 with graphs depicted at Figure 17. All the
nodal curves in Figure 15 except for J can be obtained from rational
nodal curves of Figures 9 and 10 with the help of Lemma 33 (see Table
below). It is easy to construct J explicitly.

Rational multinodal curve A B C H J H I J K L L
Perturbed node 1 2 2 2 3 1 4 1 1 3 1

Elliptic multinodal curve A B C D E F G H I K L

�
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Figure 11. Graphs of rigid isotopy equivalence.
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Figure 14. Six odd arcs and the Abel theorem.
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Figure 17. Graphs of rigid isotopy equivalence.


