
ARRANGEMENTS OF A PLANE

M-SEXTIC WITH RESPECT TO A LINE

S. Yu. Orevkov

Abstract. The mutual arrangements of a real algebraic or real pseudoholomorphic
plane projective M-sextic and a line up to isotopy are studied. A complete list

of the pseudoholomorphic arrangements is obtained. Four of them are proven to

be algebraically unrealizable. All the others with two exceptions are algebraically
realized.

By a real algebraic curve in RP
2 we mean a complex algebraic curve in CP

2

invariant under the complex conjugation. Given such a curve C, we denote the set
of its real points by RC. In this paper we study mutual arrangements in RP

2 of
RC6 and RC1 where C6 is a real algebraic M -curve of degree 6 (it has 11 ovals) and
C1 is a real line transverse to C6. We consider such arrangements up to isotopy in
RP

2. We study also the same problem for real pseudoholomorphic curves (see [9]
and references therein).

In the case when C6 ∩ C1 is contained in a single oval of RC6, the number of
connected components of RC6 \ C1 is maximal, so, we say in this case that the
pair (C6, C1) realizes a maximal arrangement and C6 \C1 is an affine M -sextic. A
complete classification of the maximal arrangements is already done (see [11], [1]):
there are exactly 38 pseudoholomorphically realizable arrangements and only 35 of
them are algebraically realizable.

An algebraic classification (with a single exception) in the non-maximal case was
announced by E. I. Shustin in [12]. However the proofs are not given there (only the
method is described) and, moreover, the proofs of the algebraic unrealizability of
at least four arrangements are certainly erroneous because these arrangements are
pseudoholomorphically realizable whereas the techniques used in the proofs cannot
distinguish between the algebraic and pseudoholomorphic realizability.

In the present paper we give a complete list of the pseudoholomorphically re-
alizable non-maximal arrangements. We prove that four of them are algebraically
unrealizable; the algebraic realizability of two more of them is open, and all the
others are realizable by real algebraic curves.

For plane projective M -sextics, the algebraic and pseudoholomorphic isotopy
classifications coincide. There are three isotopy types: 9 ⊔ 1〈1〉, 5 ⊔ 1〈5〉, and
1⊔1〈9〉 in Viro’s notation [13]. Any pseudoholomorphically realizable non-maximal
arrangement of anM -sextic and a line belongs to one of the series shown in Figure 1
where the numbers a, b, and c are the numbers of unnested ovals in the correspond-
ing regions. This fact easily follows from Bézout Theorem applied to C6 and an
auxiliary line through some two ovals (and an auxiliary conic for the series E). The
notation for the series in Figure 1 is similar to that in [4], [12]. Arrangements in
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Figure 1 (providing one of the three isotopy types of M -sextics after removal of the
line) will be called admissible arrangements.
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Figure 1. Admissible arrangements.

Theorem 1.1. The following arrangements are realizable as RC6 ∪RC1 where C6

is a real algebraic sextic curve and C1 a real line in P2:

Ã2(a, b, c), (a, b, c) = (2, 7, 0), (8, 1, 0), (0, 5, 4), (2, 3, 4), (4, 1, 4), (5, 0, 4),

(0, 1, 8), (1, 0, 8),

Ã3(a, b, c), (a, b, c) = (0, 5, 4), (0, 1, 8),

C̃2(a, b, c), (a, b, c) = (1, 5, 3), (1, 6, 2), (1, 7, 1), (1, 8, 0), (5, 1, 3), (5, 2, 2),

(5, 3, 1), (5, 4, 0),

D̃(a, b, c), (a, b, c) = (1, 7, 1), (8, 0, 1), (0, 4, 5), (1, 3, 5), (4, 0, 5), (0, 0, 9),

C−2
3 (a, b, c), (a, b, c) = (1, 5, 4), (1, 6, 3), (1, 7, 2), (1, 8, 1), (1, 9, 0), (5, 1, 4),

(5, 2, 3), (5, 3, 2), (5, 4, 1), (5, 5, 0), (9, 1, 0),

and all the admissible arrangements of the other series, i.e., of the series

Ã1, B̃, C̃1, E, F,G,A−2
1 , A−2

2 , B−2, C−2
1 , C−2

2 , A−4, A−6.
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Theorem 1.2. Let J be a tame conj-anti-invariant almost complex structure on
CP

2 and let C6 and C1 be smooth real J-holomorphic curves of degree 6 and 1
respectively. Suppose that C6 is an M -sextic (i.e., RC6 has 11 ovals), RC1 is
transverse to RC6, and the arrangement (C6, C1) is not maximal, i.e., C6 ∩ C1 is
not contained in a single oval of RC6.

Then the arrangement of RC6 with respect to RC1 is either as in Theorem 1.1
or one of

Ã3(1, 8, 0), Ã3(1, 4, 4), (1)

C̃2(1, 3, 5), C̃2(1, 4, 4), C
−2
3 (1, 3, 6), C−2

3 (1, 4, 5). (2)

All these arrangements are pseudoholomorphically realizable.

Theorem 1.3. The arrangements (2) are algebraically unrealizable.

The algebraic realizability of (1) is open. In Table 1 we present the distribution
of realizable arrangements among the series.

Table 1.

Ã B̃ C̃ D̃ E F G A−2 B−2 C−2 A−4 A−6 total

Admissible 29 15 18 15 4 9 6 11 9 36 12 3 167
Pseudohol. 14 15 13 6 4 9 6 11 9 31 12 3 133
Algebraic 12? 15 11 6 4 9 6 11 9 29 12 3 127?

Remark 1.4. It is stated in [12] that all the arrangements listed in Theorem 1.1

and also Ã3(1, 4, 4) were constructed by A .B. Korchagin, G. M. Polotovskii, and
E. I. Shustin, and the constructions are similar to those in [4], but they are not
presented in [12]. I indeed found constructions as in [4] for the arrangements of

Theorem 1.1 (see §2) but not for Ã3(1, 4, 4). I doubt that the latter arrangement
is algebraically realizable.

Remark 1.5. The algebraic realizability of the affineM -sextic A2(8, 1, 1) (see Fig-
ure 8 below) is stated in [4, Thm. 2] but its construction is forgotten to be included
to that paper. In fact, the construction (that I learned from G. M. Polotovskii) is
very simple and I present it in §3.3.

In §§2–4 we prove Theorems 1.1 and 1.2 using the same methods as in [4 – 8],
[13]. In §5 we prove Theorem 1.3. The general strategy of the proof is more
or less the same as in [11]: by Hilbert –Rohn –Gudkov method we reduce the
problem to the algebraic unrealizability of a certain quadrigonal curve (which is
pseudoholomorphically realizable) and then we exclude it using cubic resolvents.
However, we evoke some new arguments in the cubic resolvent step (see §5.1).

Remark 1.6. Given an affine M -sextic of the isotopy type C2(1, 3, 6) (see Figure 8
in §3), by moving the line one obtains the arrangements (2). Thus Theorem 1.3 gives
a new proof of the algebraic unrealizability of C2(1, 3, 6) whose Hilbert –Rohn –
Gudkov stage is considerably simplified.

We use the approach from [6 – 8] for the pseudoholomorphic classification. The
paper [7] can be used as a general introduction. For the reader’s convenience, let
us recall some terminology, notation, and main ideas. Given a fibration π : E → B,
a fiberwise arrangement of X ⊂ E is the equivalence class of X with respect to
isotopies {Ht} of E such that π ◦ Ht = ht ◦ π for some isotopy {ht} of B. Given
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a point p ∈ RP
2 and a subset X of RP2 \ {p}, the Lp-scheme of X is a fiberwise

arrangement for the linear projection RP
2 → RP

1. When X = RC for a real
algebraic or real pseudoholomorphic nodal curve C in general position, we encode
the Lp-scheme by a word in letters ⊂k, ⊃k, ×k which correspond to consecutive
non-generic fibers. The subscript k indicates the height of the point with vertical
tangent (for ⊂k or ⊃k) or the double point (for ×k) similarly to the braid notation.
A subword ⊂k⊃k is abbreviated to ok (an oval). For example, the upper Lp scheme
in Figure 3(a) is encoded by [⊃2o

3
2⊂2⊃1o2⊂1]. An Lp-scheme determines a braid

(or a family of braids). An Lp-scheme is pseudoholomorphically realizable if and
only if the braid (at least one braid of the family) is quasipositive, i.e., is a product
of conjugates of the standard generators of the braid group (see details in [6, 7]).

2. Construction of algebraic curves

In this section we prove Theorem 1.1. The cases A−4 and A−6 are evident, and
below we present constructions for all the other series of arrangements.

2.1. The series Ã1, Ã3, E, A−2
1 . There exist arrangements of a quintic curve C5

with respect to a line C1 shown in Figure 2(left); see [3] for a = 1 and [2; §7.6] for

a = 5. By perturbing C5 ∪C1 in different ways, one obtains Ã3(0, 5, 4), Ã3(0, 1, 8),

and all the eight admissible arrangements of the series Ã1, E1, E2, and A−2
1 (see

Figure 2).

a ab

ab b a

ab

b

a+ b = 6, a = 1, 5

Figure 2. Construction of Ã3(0, 5, 4), Ã3(0, 1, 8), Ã1(a, b), Ek(a, b).

2.2. The series F , G, A−2
2 , B−2. Let C6 be an M -sextic and p be a point in

one of its exterior empty ovals. Then, choosing a line C1 passing through p, one
obtains all the admissible arrangements of the series F and A−2

2 .
By Lemma 4.1(a), the interior ovals of C6 lie in a convex position (if one chooses

a point on each oval, the chosen points are the vertices of a convex polygon in some
affine chart). Therefore, by different choices of a line C1 passing through any given
point p in an interior oval, one obtains all the admissible arrangements of the series
G and B−2.

2.3. The series Ã2, B̃, C−2
2 . By [13, §4.2] there exists polynomials Fk(x, y), k =

1, 2, with Newton polygon [(0, 0), (0, 3), (6, 0)] which define affine curves arranged
with respect to the vertical lines as in Figure 3(a). To these curves and their
symmetric images we apply the procedure shown in Figure 3(b). Namely, we choose
two translates of the same sufficiently narrow parabola and then we apply the
transformation (x, y) 7→ (x, y + λx2) where λ is chosen so that the parabolas are
transformed to lines. The projective closures of the obtained curves have a point
of simple tangency of three smooth local branches. By perturbing this singularity
(see again [13, §4.2]) we can obtain the arrangements of an M -sextic with respect
to a pencil of lines as in Figure 3(c) (for example, the leftmost arrangement in
Figure 3(c) corresponds the the case shown in Figure 3(b)). By choosing different
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lines from this pencil, we obtain all the arrangements of the series Ã2, B̃, C−2
2 listed

in Theorem 1.1.

3 1

α
β 2

α
β 2

1
β
α 3 α

β
2 2

3 1 3 1

(a)

(c)

(b)

Figure 3. Construction of Ã2, B̃, C−2
2 ; (α, β) ∈ {(0, 4), (4, 0)}.

2.4. The series C̃1, D̃(a, 0, c), C−2
1 . A construction similar to that in §2.3 yields

the required arrangements (in Figure 3(b) we choose a narrow parabola passing
through one of the ovals).

2.5. The series C̃2 and C−2
3 . The curve (y2−xz)(y2−2xz)(y2−3xz)+x5z = 0

in projective coordinates (x : y : z) is arranged with respect to the coordinate axes
as in Figure 4. It has the singularity E8 at (0 : 0 : 1) and a tangency point of
three local branches at (0 : 1 : 0). We choose a line L and a point p as in Figure 4.
Then, by perturbing the singularities (see [13, §4]) and by rotating L around p (see

Figure 4), we obtain all the arrangements C̃2 and C−2
3 listed in Theorem 1.1.

8E

x = 0

pL

y 
= 

0

z = 0

pL

α
β

Figure 4. Construction of C̃2, C
−2
3 ; (α, β) ∈ {(1, 5), (5, 1)}.

2.6. The arrangements D̃(a, b, c) with b 6= 0.

A construction of D̃(1, 7, 1) and D̃(1, 3, 5) is presented in Figure 5. Namely,
using the Viro’s patchwork shown on the left picture, we obtain the arrangement of
a singular quintic curve with respect to coordinate axes shown in the middle picture
(the signs of the vertices are represented by colors (black or white) and the tiling
is assumed to be subdivided up to a primitive triangulation). By a perturbation
of the singular point we obtain the required arrangements. The existence of such
perturbations is proven e.g. in [4] or in [13, §4.4].

A construction of D̃(0, 4, 5) is shown in Figure 6. We start with a cuspidal cubic
C3 and three lines in Figure 6(a). Then we perturb L2 to a line L cutting C3 at three
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α
β

Figure 5. Construction of D̃(1, 7, 1), D̃(1, 3, 5); (α, β) ∈ {(1, 5), (5, 1)}.

real point, and define a conic C2 as L2
0+ εL1L, |ε| ≪ 1. The resulting arrangement

is shown in Figure 6(b). By perturbing the cusp we obtain Figure 6(c). Next we
choose the coordinates (x : y : z) as in Figure 6(c) and apply the hyperbolism (see
[13, §4.5]) h : (x : y : z) 7→ (x̂ : ŷ : ẑ) = (xy : x2 : yz). Then C3 and C2 are
transformed into a quintic curve and a line respectively which are arranges with
respect to the axis ŷ = 0 as in Figure 6(d). By perturbing the singularities as in

Figure 6(e), we obtain D̃(0, 4, 5).

L

L0

L1

L2
L

(b) (c) (d) (e)(a)

x=0

y=0
y=

0

(0:1:0)

(0:0:1)

(0:1:0)

4

Figure 6. Construction of D̃(0, 4, 5).

In Figure 7, for the reader’s convenience, we show how the hyperbolism trans-
forming Figure 6(c) into Figure 6(d) decomposes into three blowups and three
blowdowns. In Figure 7(a) we depict the arrangement of Figure 6(c) where RP

2 is
represented by a disk with opposite boundary points identified, and the boundary
of this disk represents the line L. Figure 7(b) is obtained by blowing up q and
its infinitely near point on L followed by blowing down the strict transform of L.
The resulting surface is the Hirzebruch surface of the second order whose real locus
is a torus represented by a rectangle with the opposite sides identified; the hori-
zontal sides corresponding to the (−2)-curve and the vertical sides to a fiber. In
Figure 7(c) we show the same as in Figure 7(b) but the surface is cut along another
fiber. Finally, to obtain Figure 7(d), we blow up p and then blow down the two
curves represented by the sides of the rectangle (this is the transformation inverse
to the one which transforms Figure 7(a) to Figure 7(b)).

3. Construction of pseudoholomorphic curves

In this section we prove the construction part of Theorem 1.2, namely, we pseu-
doholomorphically realize the six arrangements (1) and (2).
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p

q

p p

(d)(c)(a) (b)

Figure 7. The hyperbolism transforming Fig. 6(c) to Fig. 6(d).

3.1. Construction of (2). The affine M -sextic C2(1, 3, 6) (see Figure 8) is pseu-
doholomorphically realized in [6, §7.2]. By rotating the line around the point shown
in Figure 8 we obtain all the four arrangements in (2). Indeed, when this line is
rotated clockwise, it cannot meet the interior oval while c > 0 (this follows from
Bézout Theorem for an auxiliary line).

b

a

c

A2(a, b, c)

a
c

b

C2(a, b, c)

Figure 8. Affine M -sextics of the series A2 and C2.

3.2. Construction of (1). In [6; §7.2], we show that the braids bk, k = 1, 2,

corresponding to the Lp-schemes [×3×4×4×3×2⊃3o
4
3e

(k)
8 ×2o3⊂3] (in the notation

from [6; §3.5]) with e
(1)
8 = o33⊂3⊃4o3 and e

(2)
8 = o4⊂3⊃4o

3
4 are quasipositive (note

also that b1 = b2 and that these Lp-schemes represent the arrangements B2(1, 8, 1)
and B2(5, 4, 1) respectively, the former one being algebraically realizable [5] but not

the latter one [1]). The Lp-schemes [×3×4×4×3×2⊃4⊂4⊃3o
4
3e

(k)
8 ×2⊂3], k = 1, 2,

represent the arrangements Ã3(1, 8, 0) and Ã3(5, 4, 0). It is easy to see that the
corresponding braids b′k are conjugate to bk, namely, b′k = σ−1

4 bkσ4. Hence, b′k are
also quasipositive whence the pseudoholomorphic realizability of the corresponding
arrangements.

3.3. A more geometric construction of (1). In Figure 9, an algebraic realiza-
tion of A2(8, 1, 1) (see Figure 8) is shown (G. M. Polotovskii, a private communi-
cation; see Remark 1.5).

Figure 9. Algebraic realization of A2(8, 1, 1).
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A slight modification of this construction yields a pseudoholomorphic realization

of Ã3(1, 8, 0), see Figure 10(a). Similarly one obtains a real pseudoholomorphic
cubic arranged with respect to a conic and two lines as in Figure 10(b). Here the
cubic and the conic are tangent to one of the lines at the same point. By perturbing

this arrangement one can obtain both Ã3(1, 8, 0) and Ã3(1, 4, 4).

(a) (b) (c)

Figure 10. Pseudoholomorphic realization of Ã3(1, 8, 0) and Ã3(1, 4, 4).

Notice that the arrangement in Figure 10(b) is algebraically unrealizable because
if it were, it could be algebraically perturbed into a quintic curve arranged with
respect to two lines as in Figure 10(c) which is impossible according to [8, §4.1].
However, for the arrangements (1) and the one in Figure 10(a), it is still unknown
whether they are algebraically realizable.

Notice also that using computations similar to those in §4 or in §5.2, Step 2, one
can check that any nodal degeneration of the arrangements (1) can be obtained
as a perturbation of Figure 10(b). This fact gives a hope to prove the algebraic
unrealizability of (1) by some variation of the Hilbert-Rohn-Gudkov method.

4. Prohibitions of pseudoholomorphic curves

In this section we prove the prohibition part of Theorem 1.2. The following fact
is well-known and it immediately follows from the Bézout Theorem applied to an
auxiliary conic.

Lemma 4.1. An M -sextic cannot contain ovals arranged with respect to some lines
as in Figure 11 (a), (b), or (c).

(a) (b) (c)

Figure 11. Impossible subsets of M -sextics.

4.1. The series Ã2. Suppose that (C6, C1) is a pseudoholomorphic realization

of Ã2(a, b, c). Let v be the oval of C6 which meets C1 at two points, and let p

be a point on C1 inside v. All admissible arrangements Ã2(a, b, c) with c > 0
and ab = 0 are realized in §2, therefore we shall assume that c = 0 or ab 6= 0.
This condition combined with Lemma 4.1(b) implies that the Lp-scheme of C6 is
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[⊃3o
a
3⊃2o

c
2⊂2o

b
3⊂2]. Hence the formula of complex orientations implies that a is

even and b is odd. This observation excludes all the arrangements in question

except Ã2(a, 9− a, 0) with a = 0, 4, 6.
According to [6, 7], the Lp-scheme [⊃2o

a
3⊃2⊂2o

9−a
3 ⊂2] is pseudoholomorphically

realizable if and only if there exists e ∈ Z such that the braid

βa(e) = σ−a−1
3 σ−1

2 σ−1
4 σ−1

3 σ1+e
4 σ1−e

2 σa−9
3 σ−1

2 σ3∆

is quasipositive. By Murasugi-Tristram inequality, a necessary condition for this is
the vanishing of det βa(e). Using the program ssmW (see Appendix in [7]) we find
that ± det βa(e) = 16(a− 2)(a− 8) (for some mysterious reason it does not depend

on e). Hence Ã2(a, 9− a, 0) is unrealizable unless a ∈ {2, 8}.

4.2. The series Ã3. We have to prohibit Ã3(2, 3, 4) and the four arrangements

Ã3(a, 9 − a, 0), a = 0, 2, 3, 4. Suppose that (C6, C1) is a pseudoholomorphic real-

ization of Ã3(a, b, c). Let v be the oval of C6 which meets C1 at four points. We
choose a point p on a segment of RC1 which is exterior to v, has its endpoints on
v, and does not have other intersections with C6.

Then the Lp-scheme of C6 is [⊃1o
a
2⊃1o

c
1⊂1o

b
2⊂1]. A priori an Lp-scheme realizing

Ã(a, b, c) could contain some o1 or o3 occurring between the ovals of the group
oa2 or ob2. However, this is impossible by Lemma 4.1(b). By Bézout Theorem
for an auxiliary line, it is also impossible that some part of oc1 were replaced by
⊂1o2 . . . o3⊃2 or by ⊂2o3 . . . o2⊃1 though this replacement does not change the
isotopy type.

Thus Ã3(a, 9−a, 0) is pseudoholomorphically realizable if and only if there exists
e ∈ Z such that the braid

βa(e) = σ−1
1 σ−1

2 σ1σ
−a
2 σ−1

1 σ−1
3 σ−1

2 σ1+e
3 σ1−e

1 σa−9
2 σ−1

1 σ2∆

is quasipositive. By Murasugi-Tristram inequality, a necessary condition for this is
the vanishing of det βa(e). As in §4.1, using the program ssmW, we find that

± det βa(e) = 4(36− 36a+ 4a2 − 9e+ 2ae− 2e2).

One easily checks that this polynomial in e does not have integer roots when a =
0, 2, 3, or 4.

Similarly, Ã3(2, 3, 4) is pseudoholomorphically realizable if and only if there exists
e = (e1, . . . , e5) ∈ Z

5 such that the braid

γ(e) = σ−1
1 σ−1

2 σ1σ
−a
2 σ−1

1 σ−1
3

( 5∏

j=1

σ−1
2 σ

ej
3 σ

−ej
1

)
σ1σ3σ

a−9
2 σ−1

1 σ2∆

is quasipositive. A computation with the help of ssmW shows that | det γ(e)| is
a polynomial of degree 2 which is positive on R5 (the quadratic form is positive
definite and the value at the minimum is positive).

4.3. The series C̃2 and C−2
3 . We need to prove the pseudoholomorphic unreal-

izability of

C̃2(1, 2, 6), C
−2
3 (1, 2, 7), C̃2(1, 1, 7), C

−2
3 (1, 1, 8), C̃2(1, 0, 8), C

−2
3 (1, 0, 9), (3)
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C̃2(5, 0, 4), C
−2
3 (5, 0, 5), (4)

C̃2(9, 0, 0), C
−2
3 (9, 0, 1). (5)

Notice that if any of (3) (resp. (4), (5)) is realizable, then C̃2(1, 2, 6) (resp.

C̃2(5, 0, 4), C̃2(9, 0, 0)) is obtained from it by moving the line. Thus it is enough to

prohibit only C̃2(1, 2, 6), C̃2(5, 0, 4) and C̃2(9, 0, 0).
To this end we shall use the approach from [7, §3.3]. Suppose that (C6, C1) is a

pseudoholomorphic realization of C̃2(a, b, c). Let us choose a point p on the line C1

inside that oval which meets C1 at two points. Then the Lp-scheme of our curve is
[⊃2oi1 . . . oi9⊂2] where a = #{j | ij = 3}, b = #{j | ij = 2}, and c = #{j | ij = 4}.
By Lemma 4.1(b) the a ovals “o3” are consecutive, i.e., ij = · · · = ij+a−1 = 3 for
some j. Moreover, by the formula of complex orientations, j is even (it follows

already that C̃(9, 0, 0) is unrealizable). By symmetry we may also assume that

j = 2 for C̃2(5, 0, 4) and that j = 2 or 4 for C̃2(1, 2, 6).

So we have to consider only one case [⊃2o4o
5
3o

3
4⊂2] for C̃2(5, 0, 4) and 2×

( 8

2

)
= 56

cases for C̃2(1, 2, 6). In each case we compute the Alexander polynomial of the
corresponding braid and obtain a contradiction with the generalized Fox-Milnor
theorem (see [7, §3.3] for details).

4.4. The series D̃. Suppose that (C6, C1) is a pseudoholomorphic realization of

D̃(a, b, c). Let v be the oval of C6 which meets C1 at four points. We choose a
point p on a segment of RC1 which is exterior to v, has its endpoints on v, and does
not have other intersections with C6. Then the Lp-scheme of C6 is [⊃1oi1 . . . oi9⊂1]
where a = #{j | ij = 1}, b = #{j | ij = 3}, and c = #{j | ij = 2}. By
Lemma 4.1(a), the sequence (i1 . . . i9) cannot contain 1 . . .3 . . .1 or 3 . . .1 . . .3. By
Lemma 4.1(c), it cannot contain j . . . 2 . . . k . . . 2 or 2 . . . j . . .2 . . . k with j, k 6= 2.
Thus, up to symmetry, the Lp-scheme is one of

(i) [⊃1o
a1

1 ob13 oc2o
a2

1 ob23 ⊂1] with a1 + a2 = a, b1 + b2 = b, and b1a2 = 0;
(ii) [⊃1o

c1
2 oa1o

b
3o

c2
2 ⊂1] with c1 + c2 = c.

By the generalized Fox–Milnor Theorem [7, §3.3], the determinant det β of the
associated braid is (up to sign) a square of an integer number. Using the program
ssmW (see Appendix in [7]) we find that ± det β = 4c(1 + a+ 5b − 4ab) in Case (i)
and ± det β = 4c(1 + a+ 5b− 4ab)− 16(a+ b)c1c2 in Case (ii). Hence | detβ| may
be a square only in the cases listed in Theorem 1.1.

5. Prohibitions of algebraic curves

In this section we prove Theorem 1.3. As in §4.3, it is enough to prove the

algebraic unrealizability of C̃2(1, 4, 4) because this arrangement can be obtained
from any of (2) by moving the line. The rest of this section is devoted to the proof

that C̃2(1, 4, 4) is algebraically unrealizable.

5.1. Self-linking number of a 4-valued function. In this section we refine the
observations from [11, Lemma 3.7] and [8, §4.1] concerning the cubic resolvent of
a real polynomial of degree 4 in y whose coefficients depend on x. In fact, in [11,
Lemma 3.7] we used only one coefficient of the polynomial in y. Therefore, we do
not speak here of the cubic resolvent but only of this coefficient.
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Lemma 5.1. Let y1, y2, y3, y4 be the roots of a polynomial P (y) = y4 + a2y
2 +

a1y + a0 with complex coefficients. Then a1 = 0 if and only if y1, y2, y3, y4 are at
the vertices of a parallelogram (maybe degenerated), i.e., y1 + y2 = y3 + y4 = 0 up
to permutation of y1, y2, y3, y4. This condition is also equivalent to the fact that 0
is root of the cubic resolvent of P .

Proof. Since the coefficient of y3 is zero, we have y4 = −y1 − y2− y3. Plugging this
into a1 = −(y1y2y3 + . . . ) we obtain a1 = (y1 + y2)(y1 + y3)(y2 + y3). �

Lemma 5.2. Let y1, y2, y3, y4 be the roots of a polynomial y4 + a2y
2 + a1y + a0

with real coefficients. Then the sign of a1 depends on the mutual position of the
roots as shown in Figure 12. More precisely:

a). If y1, . . . , y4 are real and y1 ≤ y2 ≤ y3 ≤ y4, then

signa1 = sign
(
(y2 + y3)− (y1 + y4)

)
.

b). If y1 and y2 are real, and y3 = ȳ4, then

sign a1 = sign
(
(y3 + y4)− (y1 + y2)

)
= sign

(
(2Re y3)− (y1 + y2)

)
.

c). If y1 = ȳ2, y3 = ȳ4, Im y1 ≥ 0, and Im y3 ≥ 0, then

sign a1 = sign
(
Re(y3 − y1) · Im(y3 − y1)

)
.

a1 > 0:

a1 < 0:

Figure 12. Dependence of signa1 on the roots.

Proof. In [8, Lemma 4.2] we gave a proof of (a) based on some elementary compu-
tations. Of course, (b) and (c) can be proven similarly, but we shall give another
proof for all the statements (a)–(c) which does not require any computation.

By Lemma 5.1, in each case (a), (b), (c), the right hand side of the equality
vanishes if and only if a1 = 0. Let us consider then the case when the right hand
sides are positive. Let A (resp. B, C) be the set of polynomials such that the right
hand side of the equality (a) (resp. (b), (c)) is positive. It is easy to check that
these sets are connected and the intersections A ∩ B and B ∩ C are non-empty.
Indeed, the polynomial with roots (−2, 0, 1, 1) belongs to A∩B and the polynomial
with roots (−1,−1, 1± i) belongs to B ∩C. Since a1 does not vanish on A∪B ∪C,
its sign is constant on this set. So, it is enough to look at the sign of a1 for any
element of A, for example, for (x− 1)2x(x+ 2) = x4 − 3x2 + 2x. �

Corollary 5.3. In the setting of Lemma 5.2(a), if y1 < y2 ≤ y3 = y4, then a1 > 0,
and if y1 = y2 ≤ y3 < y4, then a1 < 0. �
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Definition 5.4. (Cf. [11, Def. 3.6].) Let y = f(x) be a real 4-valued algebraic
function which has no poles on a segment [x1, x2]. Suppose that

(1) At each of the points x1 and x2, two of the analytic branches of f have a
simple branching and the other two branches are non-singular;

(2) the values of f are distinct and non-real at any x ∈ ]x1, x2[.

Let x0 = (x1+x2)/2 and let f sing
j and f reg

j , j = 1, 2, be the branches of f on [xj , x0]

whose imaginary parts are positive and such that f sing
j is branched at xj but f reg

j

is not. Let V = R × C = {(x, y) | Imx = 0 } and let S+ ⊂ V be the union of the

graphs of f sing
j and f reg

j , j = 1, 2, with the four segments

[ (x′

j, 0), (xj, f
reg
j (xj) ], [ (xj, 0), (xj, f

sing
j (xj) ], j = 1, 2,

where x′

1 < x1 < x2 < x′

2. Let S = S+ ∪ r(S+) where r is the rotation of V by
180◦ around the axis y = 0. We endow S+ with the orientation induced by the
projection onto the segment [x′

1, x
′

2], and we extend this orientation to the whole S.
Then S is the union of two disjoint oriented closed curves. Their linking number is
called the self-linking number of f on [x1, x2].

Lemma 5.5. (cf. [11, Lemma 3.7]). Let f(x) be a 4-valued algebraic function im-
plicitly defined by the equation y4 + a2(x)y

2 + a1(x)y + a0(x) = 0 where a0, a1, a2
are polynomials with real coefficients. Suppose that [x1, x2] satisfies the conditions
(1)–(2) of Definition 5.4 and let k be the self-linking number of f on [x1, x2]. Sup-
pose that k 6= 0. Let x′

1 < x1 < x2 < x′

2 and a1(x
′

j) 6= 0, j = 1, 2. Then a1 has at
least |2k + (ε1 − ε2)/2| real roots on the segment [x′

1, x
′

2] where εj = signa1(x
′

j).

Proof. We consider only the case when k > 0 and the image of S+ under the plane
projection π : R × C → R2, (x, y) 7→ (x, Im y), has exactly k self-crossings. Other
cases can be easily reduced to this one.

By Lemma 5.2(c), in this case we have k roots of a1(x) at the x-coordinates of
the self-crossings of π(S+) and k − 1 roots between each pair of the consecutive
self-crossings.

Let x′′

1 (resp. x′′

2) be the x-coordinate of the first (resp. the last) self-crossing.
Then, for 0 < δ ≪ 1, we have a1(x

′′

1 − δ) < 0 and a1(x
′′

2 + δ) > 0 (see Lemma 5.2(c)
and Figure 13). Therefore we have at least (1 + ε1)/2 roots of a1 on [x′

1, x
′′

1 − δ]
and at least (1− ε2)/2 roots of a1 on [x′′

2 + δ, x′

2], thus at least

k + (k − 1) + (1 + ε1)/2 + (1− ε2)/2 = 2k + (ε1 − ε2)/2

roots on [x′

1, x
′

2]. �

5.2. Algebraic unrealizability of C̃2(1, 4, 4). The proof is similar to the proofs
of the algebraic unrealizability of the maximal arrangements (affine M -sextics)
A4(1, 5, 4) and C2(1, 3, 6) in [10,11].

Step 1. Arrangements of the pseudo-holomorphic curves with respect to an aux-
iliary pencil of lines. Suppose that C6 is a pseudo-holomorphic M -sextic and C1

a line which have the mutual arrangement C̃2(1, 4, 4). Let us choose p as in §4.3.
Computing, also like in §4.3, the Alexander polynomials for all a priori possible
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x

y

y

Im

Re

x = x′′

1

Figure 13. a1(x
′′

1) < 0 for k > 0.

sequences (i1, . . . , i9) (there are 140 of them), we obtain that only two Lp-schemes
do not contradict the generalized Fox-Milnor theorem:

[⊃2o
3
2o3o

4
4o2⊂2] (6)

[⊃2o2o3o
4
4o

3
2⊂2] (7)

The Lp-scheme (6) is realized by the pseudo-holomorphic curves constructed in
§3.1. I do not know whether (7) is pseudoholomorphically realizable.

Step 2. Essential nodal degenerations of Lp-schemes (6) and (7). Let us say that
a nodal degeneration of an Lp-scheme is essential if it changes the corresponding
braid, i.e. it is not a degeneration of the form ⊃i⊂i → ×i or a contraction of
an empty oval to a solitary node but a symbol ×i is inserted somewhere into the
encoding word.

Suppose that C′

6 is a pseudo-holomorphic curve whose Lp-scheme is obtained
from (6) or (7) by an essential nodal degeneration. By Murasugi-Tristram inequal-
ity, the Alexander polynomial of the corresponding braid must identically vanish.
The only essential nodal degenerations which satisfy this condition, are

[⊃2o
3
2o3o

4
4o2⊂2] → [⊃2o

3
2o3o

3
4⊂4×5⊃4o2⊂2] or [⊃2o

3
2o3o

5
4⊂2×1⊃2⊂2]

for (6). In particular, (7) does not admit any essential nodal degeneration.
In fact, in all the cases except four (two cases for each of (6) and (7)) it is not

necessary to compute the Alexander polynomial because already the determinant
of the braid does not vanish.

Step 3. Application of Hilbert-Rohn-Gudkov method. Now, let us suppose that
C6 and C1 are real algebraic. Let us choose an equation f6 = 0 of C6 so that f6 < 0
in the non-orientable component of RP2 \ RC6.

Let us deform C6 in the pencil f6 + tg23 = 0 for a generic cubic polynomial
g3. Then (see details in [10]) C6 must degenerate into a nodal curve. Choosing
another pencil of this form but with a generic g3 vanishing at the node, we further
degenerate the sextic and obtain one more node. Continuing this process, we obtain
a sextic C′

6 with 10 nodes. By the result of Step 2, the arrangement of C′

6 and C1

is the one depicted in Figures 14. By the genus formula, C′

6 is rational.



14 S. YU. OREVKOV

Figure 14

Now, let us consider the equisingular deformation of C′

6 such that all the nodes
are fixed except those that are adjacent to the shadowed digon. One can compute
that this is a one-parameter family which is smooth at C′

6. Moving in this family
in the direction such that the shadowed digon shrinks, we degenerate C′

6 into a
curve C′′

6 which has a singular point q of the type A3 (a point of tangency of two
smooth branches) instead of the shadowed digon. Rotating C1 around one of the
two middle intersection points p, we obtain a line C′′

1 through q such that the right
four intersection points of C′′

1 and C′′

6 are still arranged as in Figure 14.

Step 4. Reduction to a 4-valued function. Let T be the tangent to C′′

6 at q. In
the same way as in [11; Lemmas 3.11 and 3.13(b)], we can prove that C′′

6 is arranged
with respect to T and C′′

1 as in Figure 15 up to isotopy (the rectangular pattern
may be replaced as it is shown).

F2F1 F1

E

ET

C1

Figure 15 Figure 16

Let us blow up twice the point q and then blow down the proper transform of
T . Let us denote the exceptional curves of the blowups by E1 and E2 (E2 is the
transform of the intersection point of E1 with the proper transform of C′′

6 ).
We obtain a curve C4 of bidegree (4, 8) on the Hirzebruch surface F2 (the qua-

dratic cone blown up at the vertex). Let us denote the proper transforms on
F2 of the curves C′′

1 , E1, and E2 by F1, E, and F2 respectively. Then F1 and
F2 are fibers and E is the exceptional section of the fibration π : F2 → P1.
In a standard coordinate system of F2, the curve C4 is defined by an equation
y4 + a3(x)y

3 + a2(x)y
2 + a1(x)y + a0(x) where am is a polynomial in x and

deg am(x) ≤ 2(4−m), m = 0, 1, 2, 3. (8)

By the standard trick, we may kill the coefficient a3(x).
The fact that C′′

6 ∪ C′′

1 is as in Figure 14, implies that the arrangement of C4

with respect to F1, F2, and E is as in Figure 16 where RF2 is depicted as a
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rectangle whose opposite sides are identified (note that RF2 is a torus). Hence, the
arrangement of C4 with respect to the fibers of π is [w1⊂1o2⊂3×3w2⊂3×

4
3] where

w2 is one of [×1⊃2] or [×2⊃1], and possible values of w1 are listed in Table 2.

Step 5. Application of the cubic resolvent or counting the roots of a1(x). For
each w1 we compute the self-linking number k (see Definition 5.4) as it is done in
[11, Lemma 3.13(a)]. The results are given in Table 2. The column d contains the
lower bound for deg a1(x) provided by Lemma 5.5 and Corollary 5.3. We see that
in all the cases, this bound contradicts (8).

Table 2.

no. w1 k d no. w1 k d
1 ×3×3⊃2⊃1 −4 10 5 ×1×3⊃2⊃1 −3 10
2 ×3×2⊃3⊃1 −4 10 6 ×1×2⊃3⊃1 −3 10
3 ×3×2⊃1⊃1 −3 10 7 ×1×2⊃1⊃1 −2 8
4 ×3×1⊃2⊃1 −3 10 8 ×1×1⊃2⊃1 −2 8

We shall show in details how the bound deg a1(x) ≥ 8 is obtained for the last line
of Table 2. The other cases are similar. Let us choose the points x′

1, x1, x2, x
′

2, x3, x4

on RP
1 as in Figures 17.1 (for w2 = ×1⊃2) or in Figure 17.2 (for w2 = ×2⊃1). In

the both cases we have a1(x
′

1) < 0, a1(x
′

2) > 0, a1(x3) < 0, and a1(x4) > 0 by
Corollary 5.3. Hence a1 has at least one root on each of the intervals [x′

2, x3],
[x3, x4], [x4, x

′

1], and by Lemma 5.5, it has at least |2 · (−2)+ (−1− 1)/2| = 5 roots
on [x′

1, x
′

2]. Thus, deg a1 ≥ 1 + 1 + 1 + 5 = 8.

x1 x1 x2 x2 3x x1 x1 x2 x2 x3x4 x4

Figure 17.1 Figure 17.2
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