A LA RECHERCHE DE LA TOPOLOGIE PROJECTIVE. DU CÔTÉ DE CHEZ ARNOLD

S.YU. OREVKOV

Say that a hypersurface H in \mathbb{RP}^n is (k, l)-convex or quasiconvex if the second fundamental form has the constant signature (k, l), k + l = n - 1. Arnold [1] discovered that the quasiconvexity imposes very strong restrictions on the topology of H. He conjectured the following properties of such H (proven in [1] for k = 0):

- $1\,$ (Standardness). The set of all $(k,l)\text{-}\mathrm{convex}$ hyperserfaces is connected.
- 2 (Covering). $H = S^k \times S^l/_{(x,y) \sim (-x,-y)}$, i.e., H is diffeomorphic to a quadric.
- 3 (Quasistarlikeness). (i). H separates suitable planes $L^+ = \mathbb{RP}^k$ and $L^- = \mathbb{RP}^l$ and (ii) any straight line segment [a, b], $a \in L^+$, $b \in L^-$, transversally meets H at a single point.
- 4 (Divisors). For any hyperplane section D of H, the pair (H, D) is diffeomorphic to (\bar{H}, \bar{D}) for a quadric \bar{H} and its suitable hyperplane section \bar{D} .

Hypersurfaces with 3(i) are called *weakly quasistarlike*. The first aim of my talk is to show that none of these conjectures is true for all (k, l). The second aim is to formulate a similar conjecture which is plausible for any (k, l).

It is amasing that the simplest counter-example (constructed by E. Cartan in 1938) is closely related to the title of [1]. Namely, let $f : \mathbb{CP}^2 \to S^4$ be the double covering constructed in [1] and let $p : S^4 \to \mathbb{RP}^4$ be the standard projection. Let H be a tube of constant raduis over $p(f(\mathbb{RP}^2))$. Then H is (1,2)-convex, but it is not homeomorphic to any quadric. It is not weakly quasistarlike neither.

The Cartan's hypersurface H is *isoparametric*, i.e., its principal curvatures are constant. Any isoparametric hypersurface in \mathbb{RP}^n is quasiconvex. Isoparametric hypersurfaces in S^n (hence in \mathbb{RP}^n also) are rather well studied and their classification is almost completed. For $l = k \ge 2$ and for l = 2k, k = 1, 2, 4, 8, there exist isoparametric (k, l)-convex hypersurfaces in \mathbb{RP}^n which are not homeomorphic to quadrics (which are not weakly quasistarlike neither). For other values of (k, l), any (k, l)-convex hypersurface in \mathbb{RP}^n is a quadric.

It seams plausible that any (1, 1)-convex surface $H \subset \mathbb{RP}^3$ has properties 1, 2, 3(i), and 4. However, it is easy to construct an example where 3(ii) does not hold. Indeed, let $S^3 \to \mathbb{RP}^3 \xrightarrow{h} \mathbb{CP}^1$ be the Hopf fibration. Set $H = h^{-1}(\gamma)$ where γ is a simple closed path which contains a sufficiently long segment of a spiral.

Conjecture. (Self-Duality). $((\mathbb{RP}^n)^*, H^*)$ is diffeomorphic to (\mathbb{RP}^n, H) where H^* is the projectively dual hypersurface of an embedded quasiconvex $H \subset \mathbb{RP}^n$.

References

 V.I. Arnold, Ramified covering CP² → S⁴, hyperbolicity, and projective topology, Siberian Math. J. 29:5 (1988), 36-47.

Typeset by \mathcal{AMS} -T_EX