A LA RECHERCHE DE LA TOPOLOGIE PROJECTIVE. DU CÔTÉ DE CHEZ ARNOLD

S.Yu. Orevkov

Say that a hypersurface H in $\mathbb{R P}^{n}$ is (k, l)-convex or quasiconvex if the second fundamental form has the constant signature $(k, l), k+l=n-1$. Arnold [1] discovered that the quasiconvexity imposes very strong restrictions on the topology of H. He conjectured the following properties of such H (proven in [1] for $k=0$):

1 (Standardness). The set of all (k, l)-convex hyperserfaces is connected.
2 (Covering). $H=S^{k} \times S^{l} /{ }_{(x, y) \sim(-x,-y)}$, i.e., H is diffeomorphic to a quadric.
3 (Quasistarlikeness). (i). H separates suitable planes $L^{+}=\mathbb{R} \mathbb{P}^{k}$ and $L^{-}=$ $\mathbb{R P}^{l}$ and (ii) any straight line segment $[a, b], a \in L^{+}, b \in L^{-}$, transversally meets H at a single point.
4 (Divisors). For any hyperplane section D of H, the pair (H, D) is diffeomorphic to (\bar{H}, \bar{D}) for a quadric \bar{H} and its suitable hyperplane section \bar{D}.
Hypersurfaces with $3(i)$ are called weakly quasistarlike. The first aim of my talk is to show that none of these conjectures is true for all (k, l). The second aim is to formulate a similar conjecture which is plausible for any (k, l).

It is amasing that the simplest counter-example (constructed by E. Cartan in 1938) is closely related to the title of [1]. Namely, let $f: \mathbb{C P}^{2} \rightarrow S^{4}$ be the double covering constructed in [1] and let $p: S^{4} \rightarrow \mathbb{R} \mathbb{P}^{4}$ be the standard projection. Let H be a tube of constant raduis over $p\left(f\left(\mathbb{R P}^{2}\right)\right)$. Then H is $(1,2)$-convex, but it is not homeomorphic to any quadric. It is not weakly quasistarlike neither.

The Cartan's hypersurface H is isoparametric, i.e., its principal curvatures are constant. Any isoparametric hypersurface in $\mathbb{R} \mathbb{P}^{n}$ is quasiconvex. Isoparametric hypersurfaces in S^{n} (hence in $\mathbb{R} \mathbb{P}^{n}$ also) are rather well studied and their classification is almost completed. For $l=k \geq 2$ and for $l=2 k, k=1,2,4,8$, there exist isoparametric (k, l)-convex hypersurfaces in $\mathbb{R P}^{n}$ which are not homeomorphic to quadrics (which are not weakly quasistarlike neither). For other values of (k, l), any (k, l)-convex hypersurface in $\mathbb{R} \mathbb{P}^{n}$ is a quadric.

It seams plausible that any $(1,1)$-convex surface $H \subset \mathbb{R P}^{3}$ has properties 1,2 , $3(i)$, and 4 . However, it is easy to construct an example where $3(i i)$ does not hold. Indeed, let $S^{3} \rightarrow \mathbb{R} \mathbb{P}^{3} \xrightarrow{h} \mathbb{C P}^{1}$ be the Hopf fibration. Set $H=h^{-1}(\gamma)$ where γ is a simple closed path which contains a sufficiently long segment of a spiral.

Conjecture. (Self-Duality). $\left(\left(\mathbb{R}^{n}\right)^{*}, H^{*}\right)$ is diffeomorphic to $\left(\mathbb{R} \mathbb{P}^{n}, H\right)$ where H^{*} is the projectively dual hypersurface of an embedded quasiconvex $H \subset \mathbb{R P}^{n}$.

References

1. V.I. Arnold, Ramified covering $C P^{2} \rightarrow S^{4}$, hyperbolicity, and projective topology, Siberian Math. J. 29:5 (1988), 36-47.
