A NEW AFFINE M-SEXTIC

S.Yu.Orevkov

We shall call an affine M-curve an affine real algebraic curve C which has the maximal possible number of connected components $\left(m^{2}-m+2\right) / 2$ where m is the degree of C. This is equivalent to the fact that the projective closure \bar{C} of C is a projective M-curve, i.e. it has the maximal possible number of connected components $1+(m-1)(m-2) / 2$ and it cuts the infinite line L transversally at m distinct real points which all lie on the same connected component of \bar{C}. This definition differs from that, given in $[1,3]$ but it seems to be more natural.

Fig. 1.

Fig. 2.

33 isotopy types of affine M-curves of degree 6 are constructed in [1]. Other constructions (exposed with more details) of these 33 curves are presented in [2]. It is announced also in $[1,3]$ that all the other isotopy types but 9 are not realizable, however, the proofs of at least three of these prohibitions are wrong, because the corresponding isotopy types are realizable by smooth surfaces in $C P^{2}$ possessing all the properties of algebraic curves used in the proofs. Recently, the author [4] managed to prohibit all the isotopy types except the 33 ones constructed in [1, 2], and except $A_{3}(0,5,5)^{*}, A_{4}(1,4,5)^{*}, B_{2}(1,8,1), B_{2}(1,4,5)$, $C_{2}(1,3,6)^{*}$ in the notation of $[1,2]$ (the above cases whose prohibition proofs fail in [1, 3], are marked by ${ }^{*}$).

The present note is devoted to a construction of a curve realizing $B_{2}(1,8,1)$ (see Fig. 1). We construct it by a perturbation of a suitable singular rational curve using Shustin's lemma [5] on independent smoothing of singularities.

Construction of the line and the sextic shown on Fig. 1. First, we construct an irreducible real sextic C which has singularities A_{1}, A_{2}, A_{16} (recall that A_{n} is the singularity of the form $y^{2} \pm x^{n+1}=0$). The genus formula implies that such a curve is rational and it has no other singular points. Chose coordinates $(x: y: z)$ on $\mathbf{R P}{ }^{2}$ so that A_{16} and A_{2} be at ($0: 0: 1$) and (0:1:0), with tangents $y=0$ and $z=0$. A parametrization $\mathbf{C P}^{1} \rightarrow C$, $0 \mapsto(0: 0: 1), \infty \mapsto(0: 1: 0)$ has form

$$
\begin{equation*}
x(t)=a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}, \quad y(t)=b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}, \quad z(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3} . \tag{1}
\end{equation*}
$$

By diagonal changes of coordinates in $\mathbf{C P}{ }^{1}$ and $\mathbf{C P}^{2}$ one can make

$$
\begin{equation*}
a_{2}=a_{3}=b_{4}=c_{0}=1 . \tag{2}
\end{equation*}
$$

The condition that one has the singularity A_{16} at ($0: 0: 1$), is equivalent to existing of numbers $\gamma_{2}, \ldots, \gamma_{7}$ such that

$$
\begin{equation*}
\operatorname{ord}_{t=0}\left(y(t) z(t)^{6}-\sum_{k=2}^{7} \gamma_{k} x(t)^{k} z(t)^{7-k}\right)=16 \tag{3}
\end{equation*}
$$

To see this, it is enough to blow up 7 times the singular point. (3) yields a system of simultaneous equations and inequalities for the indeterminates $a_{4}, b_{5}, b_{6}, c_{1}, c_{2}, c_{3}, \gamma_{2}, \ldots, \gamma_{7}$. Resolving linear (with respect to the corresponding indeterminates) equations, we find successively $\gamma_{2}, c_{1}, \gamma_{3}, c_{2}, \gamma_{4}, c_{3}, \gamma_{5}, \gamma_{6}, \gamma_{7}$ and obtain 3 non-linear equations for a_{4}, b_{5}, b_{6}. Using resultants we eliminate a_{4}, b_{6} and obtain that b_{5} (denote it by β) satisfies the equation

$$
\begin{equation*}
311 \beta^{3}-293 \beta^{2}+85 \beta-7=0 . \tag{4}
\end{equation*}
$$

The other coefficients in (1) are expressed in terms of β as

$$
\begin{gathered}
a_{4}=\left(-317 \beta^{2}+221 \beta-24\right) / 56, \quad b_{6}=\left(13 \beta^{2}-5 \beta\right) / 8, \quad c_{1}=2-\beta, \\
c_{2}=\left(-398431 \beta^{2}+312615 \beta-58304\right) / 3624, \quad c_{3}=256\left(-58843 \beta^{2}+46797 \beta-9236\right) / 140883 .
\end{gathered}
$$

The equation (4) has a single real root $\beta=0.1395037384 \ldots$ Thus, there exists a unique up to a projective change of coordinates real curve C with the required set of singularities. Let $F(X, Y)=0$ be its equation in the affine coordinates $X=x / z, Y=y / z$. Using the formula $F(X, Y)=\operatorname{Res}_{t}(x(t)-z(t) X, y(t)-z(t) Y)$, we express the coefficients of F via β and then compute the polynomial $R(X)=\operatorname{Discr}_{Y}(F)$. Its factorization over $\mathbf{Q}(\beta)$ has the form $X^{17}\left(X-X_{1}\right)^{2} R_{0}(X)$ where

$$
X_{1}=\left(1438630331 \beta^{2}-801094822 \beta+83747003\right) / 72828 \approx-0.15259
$$

and R_{0} is an irreducible over $\mathbf{Q}(\beta)$ polynomial of degree 5 which has 3 real roots $X_{01} \approx$ $-0.15409, X_{02} \approx-0.15085, X_{03} \approx-0.13551$. The fact that $\operatorname{ord}_{X=0} R(X)=17$ provides another way to verify that the type of the singularity at $(0: 0: 1)$ is A_{16}. Computing the multiple root $Y=Y_{1}$ of $F\left(X_{1}, Y\right)$, we find the ordinate of the singular point of the type A_{1} :

$$
Y_{1}=\left(160515886061 \beta^{2}-86960685268 \beta+9007482215\right) / 23409 \approx-0.50314
$$

Computing the Hessian at this point

$$
\begin{aligned}
F_{X X}^{\prime \prime} F_{Y Y}^{\prime \prime}-\left(F_{X Y}^{\prime \prime}\right)^{2}= & -91624392116506602935878110871552 \beta^{2} \\
& +50238947254921921240844068192256 \beta \\
& -5225391810967551089756908355584) / 7162977429658927721337 \\
\approx & 1.6694 \ldots \cdot 10^{-9}>0
\end{aligned}
$$

we see that $\left(X_{1}, Y_{1}\right)$ is an isolated double point.
For each real root of R we substitute its approximate value to F and find all the real roots of the obtained polynomial in Y. The results of these calculations are presented in the following table

$$
\begin{array}{ccccc}
X=X_{01} & X=X_{1} & X=X_{02} & X=X_{03} & X=0 \\
-1.85807 & -1.48933 & -0.791026^{*} & 0.691718^{*} & -4832.11 \\
-0.35177 & -0.50314^{*} & - & - & 0.00000^{*} \\
-0.30441^{*} & -0.43017 & - & - & 27.7307
\end{array}
$$

where multiple roots are marked by *.
Finding the number of real roots of polynomials $F(X, \cdot)$ for intermediate values of X and calculating the signs of coefficients responsible for the behavior of the curve at $t \rightarrow \infty$ ($a_{4}=0.011 \ldots>0, b_{6}=-0.055 \ldots<0, c_{3}=-7.001 \ldots<0$), we see that the curve C looks as it is shown on Fig. 2 (the arrows point to the direction of the increasing of Y). Chose a line L close to the axis $x=0$ (see Fig. 2). ¿From the result due to Shustin [5, Lemma] we derive that the curve C can be perturbed so that A_{16} gives 8 ovals and each of A_{1}, A_{2} gives one.
Remarks. 1. Easy to check that $\beta=\left(97-12 \alpha-14 \alpha^{2}\right) / 311$ where $\alpha^{3}-\alpha^{2}+\alpha=3$. However, the formulas for γ_{j}, F and R are rather messy independently of either one use α or β. It seems that the coordinate system fixed by means of (2) is chosen not in the best way.
2. Approximate computations were performed with the accuracy 10^{-1000}.

References

1. A.B. Korchagin, E.I. Shustin, Affine curves of degree 6 and smoothing of non-degenerate six-fold singular points, Math. USSR-Izv. V. 52, no. 3, 1989, 501-520.
2. A.B. Korchagin, Smoothing of 6 -fold singular points and constructions of 9 th degree M-curves, Amer. Math. Soc. Transl. (2), V. 173, 1996, 141-155.
3. E.I. Shustin, To isotopic classification of affine M-curves of degree 6 , Methods of qualitative theory and the theory of bifurcations Gorky, Gorky State Univ., 1988 (in Russian), 97-105.
4. S.Yu. Orevkov, Link theory and oval arrangements of real algebraic curves, Preprint, 1997.
5. E.I. Shustin, A new M-curve of 8 -th degree, Mat. Zametki, V. 42, $\mathrm{N}^{\circ} 2,1987,180-186$ (in Russian).
