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Introduction

0.1. Statement of main results.
Connected components of the set of real points of a plane projective real curve

are called branches. A branch is called even (or an oval), if it is zero-homologous
in RP

2. Otherwise it is called odd (or a pseudoline).

Theorem 1. a). Let J be a tame almost complex structure in CP
2 which is in-

variant under the complex conjugation, and let C5 and C2 be nonsingular real J -
holomorphic M -curves in RP

2 of degrees 5 and 2 respectively. Let J5 be the odd
branch of C5. Suppose that J5 intersects C2 at ten distinct real points. Then the
arrangement of C5 ∪C2 in RP

2 is one of those listed in Sect. 0.5 up to isotopy. All
these arrangements are realizable.

b). All the arrangements except the six of them labeled by ”∃/∗ alg.” or ”∃/ alg.”
are realizable by real algebraic curves of degrees 5 and 2.

c). The two arrangements labeled by ”∃/ alg.” are unrealizable by real algebraic
curves of degrees 5 and 2.

Theorem 2. a). Let J be a tame almost complex structure in CP
2 which is in-

variant under the complex conjugation, and let C5, L1, and L2 be nonsingular real
J -holomorphic M -curves in RP

2 of degrees 5, 1, and 1 respectively. Suppose that
the odd branch J5 of C5 intersects each of the lines L1 and L2 at five distinct real
points. Then either the arrangement of C5 ∪ L1 ∪ L2 in RP

2 is one of those listed
in Sections 0.6, 0.7, and in Figures 16.1–16.22, or C5 ∪L1 ∪L2 realizes one of the
sixteen arrangements such that L1 = {x = 0}, L2 = {x + εy = 0} where L1 is a
line intersecting J5 at five points and 0 < ε≪ 1.

All these arrangements are realizable.

b). Among them, algebraically realizable are:

— The arrangements listed in Sections 0.6 and 0.8;
— The arrangements listed in Sect. 0.7 except the five ones labeled by ”∃/∗ alg.”

or ”∃/ alg.”;
— The arrangements in Figures 16.1 – 16.11 and 16.13 – 16.22.
c). The three arrangements in Sect. 0.7 labeled by ”∃/ alg.” and the one in

Fig. 16.12 are unrealizable by real algebraic curves.

Theorems 1 and 2 are proved in §§ 2–7. A general scheme of the proof is given
in Sections 0.2 and 0.4.
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Remark 1. I know a proof of the algebraic unrealizability of the four arrangements
in Sect. 0.5 and of the two ones in Sect. 0.7, which are labeled by ”∃/∗ alg.”, but this
paper is so long that I decided not to include it. Maybe, I shall write it somewhere
else.

Remark 2. A big part of the classification described by Theorem 2 was obtained
earlier in [9, 10] (see in more detail at the end of Sect. 0.4). However, it happens
that the most part of unrealizability statements (restrictions) proven there, can be
obtained ”for free” as corollaries of other results of the present paper (see Sect. 7.1).
So, for the reader’s convenience, I added Sect. 7.2 (only half a page long) where I
give another proof of the remaining restrictions from [9, 10], making the restriction
part of Theorems 1 and 2 self-contained. In contrary, I give here proofs of the
realizability (constructions) only when they are not given in [9, 10].

A particular case of Theorem 1 admits the following generalization for an arbi-
trary degree. This statement is used essentially in the proof of Theorems 1 and
2 (see Sect. 6.5). Let O be an oval in RP

2. It divides RP
2 into a disk D and a

Möbius band M . Let us say that n pairwise disjoint smoothly embedded segments
I1, . . . , In with the endpoints on O form a nest of depth n inside O (respectively,
outside O), if there exist embedded disks D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ RP

2 such that
Ij = D ∩ (∂Dj) (respectively, Ij = M ∩ (∂Dj)).

Theorem 3. Let C2 and Cn be real pseudoholomorphic (for example, real alge-
braic) nonsingular M -curves in RP

2 of degrees 2 and n respectively. Suppose that
C2 intersects a branch Bn of Cn at 2n distinct real points and that all other branches
of Cn are contained in the exterior of C2. Suppose that Bn has the parity of n (i.e.,
either n is even, or n is odd and then Bn is the odd branch of Cn). Then there
exists a nest of depth n inside C2 formed by arcs of Bn.

This result is proven in §1. The proof is based on the complex orientations
formula for curves on a 2-sphere and on a generalization for quadrics of Fiedler’s
theorem [3] on symmetric M -curves. It is independent of the rest of the introduc-
tion.

Remark 3. The following question suggests itself from comparing Theorem 3 with
the classification of arrangements of an M -quintic with respect to a conic which
maximally intersects one of its ovals [14]:

Suppose that Bn and n have different parities (i.e., n is odd and Bn is an oval of

Cn) but all the other conditions of Theorem 3 are satisfied. Does it imply that

there exists a nest of depth n− 1 inside C2 formed by arcs of Bn?

The proof of Theorem 3 given below does not extend to this case by the following
reason. The lift of the odd branch of Cn onto the double covering branched along C2

is not connected, hence the lift of Cn is an (M −1)- rather than an M -curve on the
hyperboloid, and the rest of the proof fails. On the other hand, this is an additional
informal argument for the plausibility of the affirmative answer, because many
properties of (M−1)-curves ”differ by one” (whatever it means) from corresponding
properties of M -curves.

I am grateful to G.M. Polotovskii for useful discussions and the informing me
about main results of the paper [10] before finishing its writing.
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0.2. Arrangements which are pseudoholomorphically realizable, but al-
gebraically unrealizable.

As is seen in the statements of Theorems 1 and 2, some arrangements (those
labeled by ”∃/ alg.” in Sections 0.5, 0.7 and the one in Fig. 16.12) contribute to
the collection of known examples of isotopy types which are realizable by real
pseudoholomorphic curves but unrealizable by real algebraic curves.

The algebraic unrealizability of two of them (in Figures 21.1 and 16.12) is proven
in Sections 4.1 and 4.4 respectively. The remaining cases are reduced to these two.
Namely, the unrealizability of Fig. 21.2 and Fig. 21.3 is reduced to that of Fig. 16.12
and of Fig. 21.1 in Sect. 4.2 and in Sect. 4.3 respectively. The unrealizability of
the two arrangements of a quintic and a conic labeled by ”∃/ alg.” is reduced to the
corresponding arrangements of a quintic and a pair of lines by Corollary 5.2.

The proof of the algebraic unrealizability of Fig. 21.1 repeats almost word-by-
word the end of the proof of non-existence of a real algebraic affine sextic of the type
C2(1, 3, 6) in [22; §3.4]. However, the proof for Fig. 16.12 in Sect. 4.4 involves a new
approach, more precisely, a new combination of two old ones: 1) consideration of the
cubic resolvent R of a curve of bidegree (4, n) on a ruled surface and its arrangement
with respect to the core L (this idea was already used by the author in [18; §6] and
in [22; §3]); and 2) application of Burau representation of the groupoid of colored
braids to the braid corresponding to R ∪L (this idea was used in [15]). In Remark
4.7, a more detailed (with respect to [15]) description of the Burau representation
of the groupoid of colored braids is given. In my opinion, it is more convenient for
practical computations.

In Appendix A, this approach is applied to obtain a new ”and a more reliable”
(see the discussion after Proposition A.1) proof of one of main results of [21].

In Appendix C, we apply the method of cubic resolvents to prove the algebraic
unrealizability of some (non-fiberwise!) isotopy types on ruled surface F4. More-
over, these isotopy types are pseudoholomorphically realizable in a tame almost
complex structure with the exceptional curve.

0.3. Zigzag removal.

All the pseudoholomorphic unrealizability statements not provided by Theorem
3, are proven in this paper by using the method proposed in [13, 16], i.e., by reducing
the question of the realizability of a curve to the question of the quasipositivity of
some braids (but the collection of quasipositivity criterions is enriched here by a
result of Florens [5], see Theorem 6.6).

The braids are determined by the arrangements of the curve with respect to
a pencil of lines (fiberwise arrangements). To exclude a given isotopy type, one
should consider all corresponding fiberwise arrangements. The number of cases can
be considerably reduced using the fact that the unrealizability of some fiberwise
arrangements follows from the unrealizability of the arrangements obtained from
them by certain elementary moves (for example, by rectifying S-like zigzags).

In all previous papers where this method was used by myself or by other authors,
the reduction of this sort of all fiberwise arrangements to some restricted subset
of them was supposed evident, and the details (consisting in routine case-by-case
considerations) were omitted. Usually, it was really evident, but in the case of a
quintic and a conic (as well as of a quartic and a cubic) the number of cases to be
considered becomes too large.

One very particular arrangement of a quintic and a conic was excluded in [13;
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Theorem 1.2A] as an example of application of the method of braids. However,
this statement is wrong and the mistake appeared because I missed one possibility
for the fiberwise arrangement, the one which is realizable (this mistake is discussed
in [9]). Some other similar restrictions are formulated in [7], but most of them
are erroneous by the same reason. To avoid repeating of this kind of errors, some
rigorous statements about reduction of fiberwise arrangements to each others are
formulated and proven in Sections 6.3 and 6.4.

Note, that the statement on removing of S-like zigzags holds only for pseudo-
holomorphic curves. An example given in Appendix B shows that it in general it
is wrong for algebraic curves.

0.4. Types and series. General scheme of proofs of Theorems 1 and 2.
Following Polotovskii, let us divide all arrangements mentioned in Theorems 1

and 2 into eight types (8 = 3 + 5) as follows.
Let C5, J5, and C2 be as in Theorem 1. Let Γ∞ be a pseudoline (i.e., an

embedded circle which is not contractible in RP
2) disjoint from C2 and intersecting

J5 at the minimal possible number of points n. Then the intersection points are
called passages through infinity and n is called the type of the arrangement of C5

with respect to C2. It is clear that n can take only the values 1, 3, or 5.
Let C5, J5, L1, and L2 be as in Theorem 2. The lines L1 and L2 divide RP

2 into
two domains. Let us denote them by D1 and D2. The lines cut J5 into ten arcs.
Let dj , j = 1, 2, be the number of the arcs lying in Dj and connecting one line to
the other one. The unordered pair (d1, d2) is called the type of the arrangement
of C5 with respect to L1 and L2. It is clear that each of d1, d2 can take only the
values 1, 3, and 5, the type (5,5) being impossible. Thus, all the arrangements are
naturally divided into five types: (1,1), (1,3), (3,3), (1,5), and (3,5).

We shall subdivide each type into series according to the isotopy types of the
arrangements of J5 with respect to C2 or L1 ∪ L2. In the lists in Sections 0.5 –
0.7 and throughout the paper, the series are referred by numbers typed in the bold
face.

It is clear that the objects described by Theorems 1 and 2 are very close to each
other. Indeed, when a pair of lines is perturbed into a nonsingular conic, a curve
C5 ∪ L1 ∪ L2 satisfying the hypothesis of Theorem 2 is transformed into a curve
C5 ∪C2 satisfying the hypothesis of Theorem 1. Vice versa, in many cases (see §5)
a curve C5 ∪ C2 satisfying the hypothesis of Theorem 1 can be degenerated into a
curve satisfying the hypothesis of Theorem 2. By this reason, many cases of the
classification of curves of the form C5 ∪ C2 may be reduced to the classification of
C5∪L1∪L2 and vise versa. This concerns equally algebraic and pseudoholomorphic
curves.

In constructions we use only perturbations L1 ∪ L2 → C2. However, in restric-
tions we use such reductions in the both directions. Therefore, to eliminate any
possible reader’s suspecting in a vicious circle, let us present the main steps of
the proof of the restrictions in the pseudoholomorphic case (the algebraic case was
discussed in Sect. 0.2).

Step 1. In the following cases, both algebraic and pseudoholomorphic classifi-
cations are reduced to the classification of arrangements of C5 ∪ C1 — maximally
intersecting quintic and single line:

(1.1) arrangements of C5 ∪ L1 ∪ L2 of the types (1,5) and (3,5);
(1.2) arrangements of C5 ∪ C2 with five passages through infinity;
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(1.3) arrangements of C5 ∪C2 with one or three passages through infinity which
have five nested arcs inside C2 (see the definition in Sect 0.1 before the
formulation of Theorem 3).

The classification of C5 ∪ C1 was originally obtained by Polotovskii [23] using
methods working only for algebraic curves. However, it can also be derived from
Kharlamov-Viro congruence [8] (which has been found partially due to this classi-
fication). This congruence holds for pseudoholomorphic curves as well.

Step 2. (§3). Complete classification of the arrangements of C5 ∪L1 ∪L2 of the
type (3,3).

Step 3. (§6). Restrictions for the arrangements of C5 ∪ C2 with one passage
through infinity of the series listed in Sect 6.1.

Step 4. (Sect. 7.1). Restrictions for the arrangements of C5 ∪ L1 ∪ L2 of the
types (1,1) and (1,3) which are reduced to the restrictions for C5 ∪ C2 proven in
Steps 1.2, 1.3, and 3.

Step 5. (Sect. 7.2 or a reference to [9, 10]). Restrictions for the arrangements of
C5 ∪ L1 ∪ L2 of the types (1,1) and (1,3) which were not proven in Step 4. This
completes the proof of Theorem 2.

Step 6. By Corollary 5.2, all the remaining restrictions for the arrangements
of C5 ∪ C2 (i.e., for the series with one passage through infinity which were not
considered in Step 3 and for all arrangements with three passages through infinity)
are reduced to Theorem 2.

In the following table, we present the distribution of the realizable arrangements
over the types (according to Remark 1 in Sect. 0.1, the last two lines may be
summed up).

C5 ∪ C2 C5 ∪ L1 ∪ L2

Type of arrangement 1 3 5 (1,1) (1,3) (3,3) (1,5) (3,5)

number of series 33 15 2 8 19 7 3 1
number of ps-hol. arr. 124 48 4 20 56 22 12 4
number of ”∃/ alg.” – 2 – – 3 1 – –
number of ”∃/∗ alg.” 3 1 – – 2 – – –

A complete classification of the arrangements of C5 ∪ L1 ∪ L2 for the type (1,1)
and an almost complete (except about 15 cases) for the type (1,3) is obtained in [9,
10]. Almost all the proofs of restrictions in [9, 10] extend automatically to the case
of pseudoholomorphic curves (taking into account the remark in Step 1 about the
classification of C5 ∪C1). The only exception is the arrangement denoted in [9] by
D4. Its unrealizability is derived in [9] from the algebraic unrealizability of affine
sextics of the isotopy type B2(1, 4, 5) proven in [4]. This argument cannot work in
the pseudoholomorphic case by the simple reason that such an affine pseudoholo-
morphic sextic is constructed in [13] (see also [4]). All proofs in [9] become valid in
for pseudoholomorphic curves after adding the following line into [9; Table 2]:

D4 —”— X2X3X4⊃3 ζ3ε4X3X2X2X2X2X2ε3⊂4 X5X5 6 2; 4



6 S.YU. OREVKOV

0.5. The list of all pseudoholomorphic arrangements of an M-quintic and
a nonsingular conic maximally intersecting the odd branch.

0.5.1. Encoding of the series. The list is organized by the same rules as the
list in [18, §5]. To identify a series (isotopy type of a mutual arrangement of the
intersecting branches), we shall use the encoding proposed by Polotovskii. Namely,
let us number the points of J5∩C2 by 0, 1, . . . , 9 in their order along C2, so that the
point 0 is the endpoint of a component of J5 \C2 crossing Γ∞ and the point 1 is not
(Γ∞ means the same as in the beginning of Sect. 0.4). The isotopy type of J5 ∪C2

will be encoded by a word i0i1 . . . i9 composed of the digits 0, . . . , 9 appearing in the
same order as the corresponding points appear on J5. Moreover, the arc (i9, i0) of
the quintic must pass through infinity (i.e., it must intersect Γ∞). Among all words
encoding the same isotopy type (if there are no symmetries, the number of them
is twice the number of the passages through infinity), we shall always choose the
minimal one with respect to the lexicographical order. For the reader’s convenience,
we shall denote the passages through infinity by the slash ”/”.

First, we list the arrangements with one passage through infinity, then those
with three passages, and then those with five passages. Series of the same type
are ordered lexicographically (ignoring the symbol ”/”). Arrangements of the same
series are placed in a random order. The points 0, . . . , 9 are not labeled in the
pictures, but they are supposed to be placed on C2 clockwise, the point ”0” being
always the uppermost. The numbers written in the pictures denote the quantities
of the ovals of the quintic in the corresponding regions.

0.5.2. Encoding of the constructions. Under each arrangement, a reference to
its construction(s) is given. This is either the number of a figure with a singular
curve to be perturbed (an expression of the form 16.2,7 being an abbreviation for
16.2, 16.7), or one of the following notation.

5 + 1. Means that C2 = {c2
1 = εf} where {c1 = 0} is a line intersecting J5 at

five distinct points and 0 < ε≪ 1.
mn. Means that C2 is a perturbation of L1 ∪ L2 in the n-th arrangement of

C5 ∪ L1 ∪ L2 from the m-th series of the type (1,3) in Sect. 0.7.
A1, B5, etc. mean that C2 is a perturbation of L1 ∪ L2 in an arrangement of

C5 ∪ L1 ∪ L2 of the type (1,1) constructed in [9] (see also Sect. 0.6).

0.5.3. Arrangements of C5 ∪ C2 with one passage through infinity.
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2

 
  

 
 
 

4

92, 7.1

31. 0147832965
 

6

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

 

5 + 1

4
2

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

 

5 + 1
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32. 0167854329
2

 

 

 
  

 

 

 
 

 
 
4

 
  

 
 
 

 

5.1, 7.1

2
 

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

4

7.1

33. 0187654329
1

 

 

 
  

 

 

 
 

 
 
5

 
  

 
 
 

 

5.1, 7.1

1
 

 

 
  

 

 

 
 

 
 
1

 
  

 
 
 

4

7.1

0.5.4. Arrangements of C5 ∪ C2 with three passages through infinity.

34. 012345/89/67

 
 

 

 
  

 

 

 
 

 
 
 

 
  

1
 
 

5

52

 
 

 

 
  

 

 

 
 

 
 
 

 
  

5
 
 

1

51

35. 012349/65/87

 
 

 

 
  

 

 

 
 

 
 
 

 
  

 
6
 

 

16.19

 
 

 

 
  

 

 

 
 

 
 
 

 
4 

 
2
 

 

16.20

 
 

 

 
  

 

 

 
 

 
 
 

 
4 

 
 
 

2

16.21

 
 

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

6

16.22

36. 0123/67/4985

 
 

 

 
3 

 

 

 
 

 
 
 

 
12

 
 
 

 

16.12, 83 (∃/ alg.)

 
 

 

5
  

 

 

 
 

 
 
 

 
  

 
 
 

1

81, 16.13

 
 

 

1
4 

 

 

 
 

 
 
 

 
  

 
 
 

1

82, 16.14

37. 0123/6789/45

 
 

 

1
1 

 

 

 
 

 
 
 

 
  

 
 
 

4

61,184

 
 

 

4
  

 

 

 
 

1
 
 

 
  

 
 
 

1

62,6,181

 
 

 

4
  

 

 

 
 

 
 
1

 
  

 
 
 

1

63,5,182

1
 

 

1
  

 

 

 
 

 
 
 

 
  

 
 
 

4

64,183

 
 

 

 
4 

 

 

 
 

 
 
 

 
1 

 
 
 

1

185 (∃/∗ alg.)

38. 0123/6987/45

 
 

 

1
2 

 

 

 
 

 
 
 

 
  

 
 
 

3

31,113

 
 

 

 
5 

 

 

 
 

 
 
 

 
1 

 
 
 

 

32,111 (∃/ alg.)

3
 

 

 
  

 

 

 
 

 
 
 

 
  

2
 
 

1

33

 
 

 

3
  

 

 

 
 

 
 
 

 
  

2
 
 

1

112

39. 0123/8769/45

 
 

 

1
  

 

 

 
 

 
 
 

 
  

1
 
 

4

152, 16.1,6

 
 

 

1
  

 

 

 
 

 
 
 

 
  

5
 
 

 

153, 16.2,7

2
 

 

 
1 

 

 

 
 

 
 
 

 
  

 
 
 

3

134,151, 16.3,5

5
 

 

 
  

 

 

 
 

 
 
1

 
  

 
 
 

 

22,133,156, 16.4

2
 

 

1
  

 

 

 
 

 
 
 

 
  

 
 
 

3

21,132,154

 
 

 

3
  

 

 

 
 

 
 
 

 
  

2
 
 

1

23,131,155

40. 012543/89/67

 
 

 

1
  

 

 

 
 

 
 
 

 
  

 
 
5

 

44, 16.15
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1
  

 

 

 
 

 
 
 

 
  

 
 
1

4

41, 16.16

 
 

2

 
  

1

 

 
 

 
 
 

 
  

 
 
 

3

42, 16.17

5
 

 

 
  

 

 

 
 

 
 
1

 
  

 
 
 

 

43, 16.18

41. 012569/43/87

 
 

 

 
2 

 

 

 
 

 
 
2

 
  

 
 
 

2

71, 16.9,10

2
 

 

 
  

 

 

 
 

 
 
4

 
  

 
 
 

 

72, 16.8,11

42. 012763/89/45

4
 

 

1
  

 

 

 
 

 
 
 

1
  

 
 
 

 

16.1,16

 
 

 

5
  

 

 

 
 

 
 
 

1
  

 
 
 

 

16.2,15

3
 

 

 
  

 

 

 
 

 
 
1

 
  

 
 
 

2

11, 16.3,17

 
 

 

 
1 

 

 

 
 

 
 
 

 
  

 
 
 

5

12, 16.4,18

43. 012789/43/65

 
 

 

2
2 

 

 

 
 

 
 
2

 
  

 
 
 

 

191, 16.10

 
 

 

 
4 

 

 

 
 

 
 
 

 
  

 
 
 

2

192, 16.11

44. 0129/43/8567

2
 

 

 
  

2

 

 
 

 
 
2

 
  

 
 
 

 

141,161

45. 0129/4563/87

 
 

 

 
4 

 

 

 
 

 
 
 

 
  

 
 
 

2

121

2
 

 

 
2 

 

 

 
 

 
 
2

 
  

 
 
 

 

122

46. 0129/4783/65

 
 

 

 
6 

 

 

 
 

 
 
 

 
  

 
 
 

 

16.19

 
 

 

4
2 

 

 

 
 

 
 
 

 
  

 
 
 

 

16.20

2
 

 

4
  

 

 

 
 

 
 
 

 
  

 
 
 

 

92, 16.21

6
 

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

 

91, 16.22

47. 012983/67/45

 
 

 

1
2 

 

 

 
 

 
 
 

3
  

 
 
 

 

16.5,12

1
 

 

 
  

 

 

 
 

 
 
1

4
  

 
 
 

 

16.6,14

1
 

 

 
  

 

 

 
 

 
 
5

 
  

 
 
 

 

16.7,13

48. 01/45/298763

 
 

 

 
  

 

 

 
 

 
 
2

 
  

 
 
 

4

101

 
 

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

6

102

0.5.5. Arrangements of C5 ∪ C2 with five passages through infinity.

49. 01/63/87/29/45

 
 

 

 
  

 

 

 
 

 
 
 

 
  

 
 
 

6

5 + 1

 
 

 

 
  

 

 

 
 

 
 
4

 
  

 
 
 

2

5 + 1

50. 01/67/23/89/45

 
 

 

 
  

 

 

 
 

1
 
 

 
  

 
 
 

5

5 + 1

 
 

 

 
  

 

 

 
 

5
 
 

 
  

 
 
 

1

5 + 1
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0.6. Pseudoholomorphically realizable arrangements of an M-quintic and
two lines of the type (1,1). Here we reproduce from [9] the list of realizable
arrangements of C5 ∪ L1 ∪ L2 of the type (1,1). The list is organized more or less
as in Sect. 0.5. The encoding of arrangements of the intersecting branches is as
follows (as in Sect. 0.5, it was introduced by Polotovskii).

Let us denote the points of L1 ∩ J5 by 0,1,2,3,4, and the points of L2 ∩ J5 by
5,6,7,8,9, placed in the order in which they appear on L1 \ {p} and on L2 \ {p}
respectively (here {p} = L1 ∩ L2). Let D2 be that connected component of RP

2 \
(L1 ∪L2) on whose boundary the points 0, 1, . . . , 9 appear in this order, and let D1

be the other component. A series is encoded by a word i0 . . . i9, composed of the
digits 0, . . . , 9, ordered in the same way as the corresponding points lye on J5, and so
that the points i0 and i9 are on different lines and the arc (i0, i9) of J5 is contained
in D1. As in Sect. 0.5, among all words we choose the lexicographically minimal
one. The lines L1 and L2 are depicted horizontally (p being at the infinity), and the

points 0 . . . 9 are placed in the order 0 1 2 3 4

9 8 7 6 5
(this implies that D2 is represented

in the pictures by a horizontal band). A notation from [9] is written under each
arrangement.

1. 0123456789

      
      
     4
      
1     1

A10

      
   1   
1      
      
4      

A11

      
      
1      
 1     
     4

A12

      
      
1     1
      
     4

A13

      
      
4      
      
    1 1

A14

      
      
4      
      
1     1

A15

2. 0123456987

      
   2   
1      
      
3      

D3

      
      
      
 1     
     5

D7

      
      
3      
      
    1 2

D11

      
      
3      
      
1     2

D13

      
      
     1
      
     5

D14

3. 0123458769

    2  
      
3      
      
1      

B1

      
 2     
1      
      
3      

B2

4. 0123476589

      
      
1     2
      
3      

C2

      
      
     5
      
1      

C5

5. 0143256987

      
      
     2
      
 4     

F2

6. 0143276589

      
      
     6
      
      

H5

7. 0143278965

      
      
2     2
      
     2

G5

8. 0143296785

 2     
      
     4
      
      

E2

      
    2  
     2
      
     2

E4
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0.7. Pseudoholomorphic arrangements of C5∪L1∪L2 of the type (1,3). The
list is organized as in Sect. 0.6, but we assume in the encoding that d1 = 1, d2 = 3
(d1 and d2 are as in Sect. 0.4). Under some arrangements we refer to its construction
(singular curve to perturb). The others are constructed in [10].

1. 0127634589

      
      
3      
      
1   2   

      
      
   1   
      
   5   

2. 0127896345

      
      
2   1   
      
   3   

      
      
5      
      
  1    

   2   
      
   3   
      
   1   

3. 0129678345

      
      
    2  
   1   
   3   

      
      
    5  
      
    1  

∃/ alg.

 2     
      
      
   3   
   1   

4. 0129834567

      
      
    1  
      
   4 1  

13.1

      
      
2      
   1   
   3   

      
      
5      
      
1      

      
      
    1  
      
    5  

13.1

5. 0129834765

      
      
      
      
   1 5  

13.1

      
      
      
      
   5 1  

13.1

6. 0129876345

      
      
   1 1  
      
   4   

   1   
      
   4   
      
   1   

 1     
      
   4   
      
   1   

      
      
1   1   
      
   4   

      
      
4      
      
  1 1   

      
      
4      
      
1   1   

      
      
    4  
      
   1 1  

∃/∗ alg.

7. 0145632987

      
      
2      
      
2 2     

      
      
   2   
      
4      

8. 0145678329

      
 5     
      
      
1      

      
 1     
4      
      
1      

12.1

      
      
3      
      
 1 2    

∃/ alg.

9. 0145876329

      
      
   6   
      
      

      
      
4   2   
      
      

12.1

10. 0147832965

      
      
      
      
 4 2    

14.3

      
      
      
      
  6    

14.3
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11. 0789612345

      
      
5      
      
1      

∃/ alg.

   2   
      
      
 3     
 1     

      
      
2      
 1     
 3     

12. 0789632145

   2   
      
   4   
      
      

      
      
      
2 2     
 2     

13. 0967812345

 2     
      
 3     
      
 1     

      
      
 1   2  
      
 3     

      
      
    5  
      
  1    

      
      
    2 1
      
 3     

14. 0967832145

      
      
 2   2  
      
 2     

15. 0981234567

      
      
 1 2    
      
 3     

      
      
1      
      
1 4     

15.1 – 15.4

      
      
1      
      
5      

      
      
  2   1
      
 3     

      
      
     3
      
2 1     

      
      
  5    
      
    1  

16. 0981432567

      
      
  2   2
      
 2     

17. 0983214567

      
      
    4  
      
    2  

      
      
 2   2  
      
 2     

18. 0987612345

 1     
      
 4     
      
 1     

   1   
      
 4     
      
 1     

      
      
 1   1  
      
 4     

      
      
1 1     
      
 4     

      
      
4      
      
1 1     

∃/∗ alg.

19. 2109834567

      
      
2 2     
      
   2   

      
      
     4
      
2      
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§1. Curves on quadrics: formula of complex
orientations, a generalization of Fiedler’s theorem
on symmetric M -curves, and the proof of Theorem 3

1.1. Rohlin’s formula of complex orientations and a characterization of
hyperbolic curves on RP

2.
Let A be a nonsingular real algebraic curve on RP

2 (the set of its complex points)
and let RA be the set of its real points. Suppose that the curve A is dividing, i.e.,
A \ RA has two connected components whose closures we denote by A+ and A−.
A complex orientation of RA is the boundary orientation coming from one of the
halves A+ or A−.

Let Π+ (respectively, Π−) be the number of pairs of ovals (O, o) of RA such that
o is inside O and [o] = −[O] (respectively, [O] = [o]) in the first homology group

of the annulus bounded in RP
2 by these ovals. Let l be the number of ovals of

RA. Suppose that the degree of A is even and is equal to 2k. Then the following
Rohlin’s formula of complex orientations holds

2(Π+ −Π−) = l − k2. (1)

Now, let us suppose that the degree of A is odd and is equal to 2k + 1. Let J be
the odd branch of A. Let Λ+ (respectively, Λ−) be the number of ovals O such that
[O] = −2[J ] (respectively, [O] = 2[J ]) in the first homology group of the exterior of
O. Then the following Rohlin-Mishachev’s formula of complex orientations holds

(Λ+ − Λ−) + 2(Π+ −Π−) = l − k2 − k. (2)

One of corollaries of (1) and (2) is the following fact, also discovered by Rohlin.
Let us recall that a real algebraic curve on RP

2 is called hyperbolic, if there exists a
point p ∈ RP

2 such that any real line through p intersects A at d real points where
d is the degree of A. This condition is equivalent to the fact that RA consists of
[d/2] nested ovals, and also of the odd branch when d is odd.

Proposition 1.1. Let A be a dividing real algebraic curve on RP
2 of degree 2k or

2k + 1 which has l ovals. Then l ≥ k and if l = k, then A is hyperbolic.

Proof. We give a proof for the case of even degree. When the degree is odd, the
proof is similar. It is clear that (l2 − l)/2 = (the number of pairs of ovals) ≥ (the
number of nested pairs of ovals) = Π− + Π+ ≥ Π− −Π+ and the latter expression
is equal to (k2 − l)/2 by (1). This implies l2 ≥ k2 and hence, l ≥ k. Moreover, if
l = k, then we have the equality sign in all the inequalities, hence each pair of ovals
is nested. �

1.2. Zvonilov’s formula of complex orientations and a characterization
of hyperbolic curves on an ellipsoid.

Here we present Zvonilov’s [25] formula of complex orientations for curves on an
ellipsoid and rewrite it in a more invariant form, i.e. so that its ingredients do not
depend on a choice of an auxiliary point. In the same way as for curves on RP

2,
we derive from it a characterization of hyperbolic curves on an ellipsoid as dividing
curves which have the minimal possible number of ovals.

Let X be a complex quadric given in CP
3 by x2

1 + x2
2 + x2

3 = x2
0, and let RX be

the set of its real points, i.e., the ellipsoid given in RP
3 by the same equation. Let
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A be a nonsingular dividing real algebraic curve on X of degree 2k (in other words,
of bidegree (k, k)). Let us fix a complex orientation on RA.

Let us choose any point p ∈ RX \ RA. Let O1, . . . , Ol be the ovals of A. Each
Oi divides RX into two disks. Let Di be that of them which does not contain p.
Let us endow these disks by the orientation induced from RX . Let us set εi = 1
and call an oval Oi positive, if its complex orientation coincides with the boundary
orientation induced from Di. Otherwise we say that Oi is negative and set εi = −1
(these definitions depend on a choice of p).

Let Λp
+ and Λp

− be the number of positive and negative ovals respectively. Let
Πp

± be the number of pairs (i, j) such that i < j, Di ∩ Dj 6= ∅, and εiεj = ∓1.
Then the following formula of complex orientations holds [25] (see also [2]):

2l− (Λp
− − Λp

+)2 + 4(Πp
− −Πp

+) = k2. (3)

Now, let us express the left hand side of (3) in terms of quantities independent
of a choice of p. Any pair of disjoint embedded circles divides a 2-sphere into three
parts, two of whom are homeomorphic to a disk and the third one is homeomorphic
to an annulus. Let us call a pair of ovals of RA negative, if they realize the same
first homology class of the annulus bounded by them, and positive otherwise. Let
Π+ and Π− be the number of positive and negative pairs of ovals of RA.

Proposition 1.2. The formula (1) holds for any dividing curve of bidegree (k, k)
on an ellipsoid, which has l ovals.

Proof. Let Π̃p
± be the number of pairs (i, j) such that i < j, Di ∩ Dj = ∅, and

εiεj = ±1. It is clear that Λp
+ − Λp

− = ε1 + · · ·+ εl. Hence

(Λp
− − Λp

+)2 =
( l∑

i=1

ε2
i

)
+ 2

( ∑

Di∩Dj 6=∅

εiεj

)
+ 2

( ∑

Di∩Dj=∅

εiεj

)

= l + 2
(
Πp

− −Πp
+

)
− 2

(
Π̃p

− − Π̃p
+

)
.

Substituting Π̃p
± = Π± −Πp

± and adding (3), we obtain (1). �

Let us say that pairwise disjoint smoothly embedded circles O1, . . . , Or form a
nest if there exist disks D1, . . . , Dr such that ∂Di = Oi and D1 ⊂ D2 ⊂ · · · ⊂ Dr.
In this case r is called the depth of the nest. For example, two ovals always form
a nest, but three ovals not always. A curve of bidegree (k, k) on an ellipsoid is
called hyperbolic, if it contains a nest of depth k (and hence, by Bezout’s theorem
it cannot contain other ovals).

Proposition 1.3. Let A be a dividing real algebraic curve of bidegree (k, k) on an
ellipsoid, which has l ovals. Then l ≥ k and if l = k, then the curve A is hyperbolic.

Proof. As in the proof of Proposition 1.1, formula (1) implies that l ≥ k and Π+ = 0
for l = k. It remains to apply the following two evident facts:

1). If, among three ovals, any two of them form a negative pair, then all the
three ovals form a nest.

2). If, among k ovals, any three of them form a nest, then all the k ovals also
form a nest. �
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1.3. Fiedler’s theorem on symmetric curves in RP
2.

Let (x0 : x1 : x2) be homogeneous coordinates on RP
2 ⊂ CP

2. Let s : CP
2 →

CP
2 be the holomorphic involution (x0 : x1 : x2) 7→ (−x0 : x1 : x2) = (x0 : −x1 :

−x2). Let F be the set of fixed points of this involution. It is the union of the line
F1 = {x0 = 0} and the point F0 = (1 : 0 : 0). Let c : CP

2 → CP
2 be the involution

of the complex conjugation. We have s ◦ c = c ◦ s (let us denote this involution by
c̃). Any real (i.e., commuting with c) holomorphic involution of CP

2 can be written

in this form in suitable coordinates. Let R̃P
2

be the set of fixed points of c̃.
Let A be a real algebraic curve on RP

2 which is symmetric with respect to s.

Set RA = A∩RP
2 and R̃A = A∩ R̃P

2
. Let us call R̃A the complementary curve of

RA.
In coordinates, the symmetricity of A means that it is defined by an equation

f(x2
0, x1, x2) = 0. After the coordinate change x̃0 = ix0, x̃1 = x1, x̃2 = x2,

we have R̃P
2

= {(x̃0 : x̃1 : x̃2) | x̃0, x̃1, x̃2 ∈ R } and R̃A = {(x̃0 : x̃1 : x̃2) ∈
R̃P

2
| f(−x̃2

0, x̃1, x̃2) = 0 }.
Theorem 1.4. (Fiedler [3]). Suppose that RA is an M -curve of degree d on RP

2.
Then:

a). If RA ∩ F 6= ∅, then R̃A is a hyperbolic curve on R̃P
2
.

b). If d 6∈ {2, 4}, then RA ∩ F 6= ∅ (and hence, part (a) implies that R̃A is a

hyperbolic curve on R̃P
2
).

Remark. A perturbation of the union of the conics x2
0 = x2

1 + 2x2
2 and x2

0 = 2x2
1 +

x2
2 (respectively, any of them) provides an example which shows that Part (b) of

Theorem 1.4 does not hold for d = 4 (respectively, for d = 2).

In the following subsection, we shall reproduce the proof of this theorem from
[3], extracting intermediate statements which hold for abstract (i.e., nowhere em-
bedded) symmetric real curves, those which hold for curves on arbitrary surfaces,
and those which hold for curves on RP

2. As a result, we shall obtain an analogue
of Theorem 1.4 for symmetric curves on a real quadric.

1.4. Proof and generalization of Fiedler’s theorem on symmetric curves.

1.4.1. Abstract (nowhere embedded) curves.
Let A be a smooth Riemann surface of genus g supplied with an antiholomorphic

involution c : A → A and a holomorphic involution s : A → A which commutes
with c. Set

c̃ = s ◦ c = c ◦ s, RA = Fix(c), R̃A = Fix(c̃), F = Fix(s).

Lemma 1.5. If a curve RA is dividing and F ∩RA 6= ∅, then F = RA ∩ R̃A.

Proof. (see [3]). In a neighbourhood of any point of F ∩RA, the involution s looks
like z 7→ −z. Hence, s exchanges the halves of A \ RA. �

Lemma 1.6. Suppose that RA is an M -curve (i.e., the number of its connected
components is g + 1). Then:

a). If F ∩RA 6= ∅, then the curve R̃A is dividing and the number of its connected
components is one half of the cardinality of F .

b). If F ∩ RA = ∅, then CardF = 0, 2, or 4.
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Proof. (see [3]). Let us fill the holes of one of the halves of A \RA by disks, extend
c̃ to the obtained sphere, and apply Lemma 1.5. �

Remark. Lemma 1.6, of course, is an immediate corollary of the topological clas-
sification of pairs of commuting antiholomorphic involutions of Riemann surfaces
obtained in [12].

1.4.2. Curves on arbitrary surfaces.
Now let A be a nonsingular connected curve on a smooth surface X and let

s, c, c̃ : (X, A) → (X, A) be a holomorphic and two antiholomorphic involutions
such that c̃ = c◦ s = s◦ c. Set F = Fix(s) = F0⊔F1 where dimF0 = 0, dimF1 = 1,
and

RZ = Fix(c|Z), R̃Z = Fix(c̃|Z) for Z = X, A, F, Fk.

It is clear that RFk = R̃F k, k = 0, 1.

Lemma 1.7. If RA is an M -curve and RA ∩ F 6= ∅, then R̃A is a dividing curve

whose number of components b0(R̃A) satisfies the inequalities

0 ≤ 2 b0(R̃A)− (A · F1) ≤ Card(RF0).

Proof. Immediately follows from Lemma 1.6. �

1.4.3. Curves on RP
2 and on a real quadric.

Proof of Theorem 1.4. It follows from Lemma 1.6(b) that RA ∩ F 6= ∅. Hence, it

follows from 1.7 that the curve R̃A is dividing and 2 b0(R̃A) ≤ deg A+1. It remains
to apply Proposition 1.1. �

Now let us proceed to the case when RX is a hyperboloid defined in RP
3 by the

equation x2
0 +x2

3 = x2
1 +x2

2, X is its complexification, and s : X → X the involution
(x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2 : −x3). Let us introduce all the other notation as
in Sect. 1.4.2. Let us set x̃3 = ix3 and x̃j = xj for j ≤ 2. Then

R̃X = {(x̃0 : · · · : x̃3) ∈ X | x̃j ∈ R } = {(x̃0 : · · · : x̃3) ∈ R̃P
3
| x̃2

0 = x̃2
1 + x̃2

2 + x̃2
3 }

is an ellipsoid. It is clear that F0 = ∅ and F1 is a curve of bidegree (1,1).

Theorem 1.8. Let RA be a nonsingular real M -curve of bidegree (k, k) on the
hyperboloid RX, symmetric with respect to s. Then:

a). If RA ∩ F 6= ∅, then the complementary curve R̃A is a hyperbolic curve on

the ellipsoid R̃X.

b). If k > 2, then RA ∩ F 6= ∅ (and hence, Part (a) implies that R̃A is a

hyperbolic curve on R̃X).

Proof. Use Proposition 1.3 rather than Proposition 1.1 in the proof of 1.4. �

1.5. Proof of Theorem 3.
Let us introduce coordinates (y0 : y1 : y2) on RP

2 so that the conic C2 is given
by y2

0 = y2
1 + y2

2 . Let X , c, s mean the same as in Sect. 1.4.3. Let ξ : X → CP
2

be the double covering (x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2) branched along C2.
Then ξ = ξ ◦ s, hence c and c̃ are two lifts onto X of the involution of the complex
conjugation of CP

2.
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Let us denote the connected components of RP
2\RC2 by D (disk) and M (Möbius

band). It is easy to check that RX is a hyperboloid (topologically, a torus) and ξ
maps it onto M with a fold along RF1. Moreover, RF1 is mapped diffeomorphically
onto RC2 and the restriction of ξ to RX \RF1 (which is homeomorphic to an open

annulus) is a connected double covering of M . Further, R̃X is a 2-sphere and ξ

maps it onto D with a fold along RF1. Moreover, R̃X \ RF1 is a disjoint union of
two disks each of which is mapped homeomorphically onto D.

Let us set A = ξ−1(Cn). It is a curve of bidegree (n, n) on X . Hence, its genus
is g(A) = (n − 1)2 (the number of integer points inside the square n× n). Let us
show that RA is an M -curve on the hyperboloid RX . Indeed, each oval of Cn lying
outside of RC2 (the number of them is g(Cn)), being zero homologous in H1(M),
provides two ovals of RA on RX , and each exterior arc of Bn provides one oval on
RX . Thus, we have 2 g(Cn) + n = (n2 − 3n + 2) + n = g(A) + 1 ovals, i.e., RA is
an M -curve.

Therefore, Theorem 1.8 implies that R̃A is a hyperbolic curve on the ellipsoid

R̃X and Theorem 3 follows.

§2. Constructions

2.1. Definitions and notation.
Recall that a curve has a singularity of the type An (respectively, of the type

E8) at a point p, if it can be defined by y2 = ±xn+1 (respectively, by y3 = x5) in
suitable local analytic coordinates centered at p.

Definition 2.1. Suppose that one curve is nonsingular at a point p and another
curve has a singularity of the type An at p. Let us say that these curves have a
maximal (respectively, almost maximal) intersection at p if the local intersection
multiplicity is equal to n + 1 (respectively, to n).

Note, that if one curve is nonsingular at a point p and another curve has a
singularity of the type A2k at p, then the intersection is maximal if and only if one
of the curve is situated on the both sides from the other one.

Notation 2.2. Let C be a curve in RP
2 and p be a nonsingular point of C which

is not a flex point. Choose coordinates (x : y : z) so that the line z = 0 is tangent to
C at p. Choose a real parameter a so that the intersection multiplicity of the conic
yz = ax2 with C is ≥ 3 at p. Let fC,p be the birational quadratic transformation
(x : y : z) 7→ (xz : yz − ax2 : z2), i.e., (X, Y ) 7→ (X, Y − aX2) in the affine
coordinates X = x/z, Y = y/z.

Notation 2.3. Let p and q be two points in RP
2 and let L be a line passing through

q but not passing through p. Choose coordinates (x : y : z) so that p = (0 : 1 : 0),
q = (0 : 0 : 1), L = {y = 0}. Let hp,q,L be the birational quadratic transformation
(x : y : z) 7→ (x2 : xy : yz). In the literature on the topology of real algebraic
curves, this transformation is usually called a hyperbolism (Viro introduced this
term referring to Newton).
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2.2. Construction of some mutual arrangements of a singular quintic
and a nonsingular conic.

Lemma 2.4. There exist arrangements of an M -quartic C4 with respect to three
lines L, L′, and (pq) depicted in Figures 1.1 – 1.2.

LL

q

L

pp

q

L A

A4

2

A4

A2

Fig. 1.1 Fig. 1.2 Fig. 2.1 Fig. 2.2

Proof. Fig. 1.1 can be easily constructed starting from an M -quartic which is ob-
tained as a perturbation of the union of two conics. A construction of the arrange-
ment of Fig. 1.2 is shown in Figures 3.1-3.3. �

q

p

L

L

Fig. 3.1 Fig. 3.2 Fig. 3.3

Lemma 2.5. There exist mutual arrangements depicted in Figures 2.1 – 2.2 of a
singular four-component quintic C5 with singularities A2 and A4 and a nonsingular
conic C2, which have maximal intersection at the singular points.

Proof. Apply hp,q,L to the curves in Lemma 2.4. Then C4 → C5, L′ → C2. �

Lemma 2.6. Let C be a nonsingular M -quartic and let O be one of its ovals. Let
L1 be a line, tangent to O at points p and q. Let L2 be a line through q which
intersects O at four distinct real points. Then C, L1, and L2 are arranged on RP

2

as in one of Figures 4.1 – 4.3. All these arrangements are realizable.

Proof. Easily follows from the classification of maximal mutual arrangements of an
M -quartic and two lines. Moreover, Fig. 4.1 and Fig. 4.2 can be obtained from
Fig. 1.1 and Fig. 1.2 respectively by forgetting one of the lines and changing the
notation. �

Lemma 2.7. Let C2 be a nonsingular conic and let C5 be a singular four-component
quintic whose odd branch J5 has a singularity of the type A6. Suppose that J5 and
C2 have a maximal intersection at A6 and three transversal intersections. Then C2

and C5 are arranged on RP
2 as in one of Figures 5.1 – 5.3. All these arrangements

are realizable.
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q

p
L

L

1

2

6A

L

L

1

2q

p

q

p
L

L

1

2

6A 6A

Fig. 4.1 Fig. 4.2 Fig. 4.3 Fig. 5.1 Fig. 5.2 Fig. 5.3

Proof. Apply fC,p to the arrangements from Lemma 2.6. Then C → C5, L2 → C2,
q 7→ A6. �

Lemma 2.8. There exist mutual arrangements of a cuspidal cubic C3, a nonsin-
gular conic C′

2, and two lines L and (pq) depicted in Fig. 6.1 – 6.2.

Proof. It is clear that if one forgets the conic C′
2 then the required arrangement

exists (it is the same in the both cases). Let ℓ, ℓ′, ℓ′′, and ℓ0 be linear functions
defining the lines L, L′, (pq), and L0 respectively (see Fig. 6.3). Let us set C′

2 =
{ℓ′ℓ′′ = εℓℓ0}, |ε| ≪ 1. Then we obtain Fig. 6.1 or Fig. 6.2 depending on the sign
of ε. �

p

q
A2 A2

p

q

L

p
A2

L q

L0

E8

A4
E8

A4

Fig. 6.1 Fig. 6.2 Fig. 6.3 Fig. 7.1 Fig. 7.2

Lemma 2.9. There exist mutual arrangements depicted in Fig. 7.1 – 7.2 of a
rational quintic C5 with singularities A4 and E8 and a nonsingular conic C2 which
have a maximal intersection at A4.

Proof. Apply hp,q,L to the curves from Lemma 2.8. Then C3 → C5, C′
2 → C2. �

Definition 2.10. Let Fn denote a rational ruled surface (Hirzebruch surface) of
degree n, i.e., a fiberwise compactification of the line bundle O(n) over P1. The
surface Fn can be covered by affine coordinate charts (x1, y1), . . . , (x4, y4) with the
transition functions

x2 = x−1
1

y2 = y1x
−n
1

x4 = x−1
3

y4 = y3x
n
3

x3 = x1

y3 = y−1
1

x4 = x2

y4 = y−1
2

these are the toric coordinates corresponding to the fan spanned on the vectors
(1, 0), (0,±1), (−1, n). In this case, the coordinates (x1, y1) are called standard.
We shall consider only that real structure on Fn where the standard coordinates
are real.

In standard coordinates, the fibration Fn → P1 is the projection onto the x1-
axis. The exceptional section is defined by y3 = 0 or y4 = 0. We shall depict RFn

as a rectangle whose opposite sides are identified. The horizontal sides correspond
to the exceptional section, the vertical sides correspond to some fiber.

The bidegree of a curve C on Fn is the pair (k, m), where k and m are the
intersection numbers of C with x1 = 0 and with y1 = 0 respectively.
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Lemma 2.11. Let C, G, and F be real curves of bidegrees (2, 8), (1, 4), and (0, 1)
respectively on F4 (G is a section and F is a fiber of F4 → P1). Suppose that C is
an M -curve (i.e., it has four ovals) which intersects G at eight real points. Suppose
that all the intersection points lye on the same oval of C and that F is tangent to
C at one of them.

Then C, G, and F are arranges on RF4 as in one of Figures 8.1 – 8.4. All these
arrangements are realizable.

Moreover, any free (i.e., non-intersecting with G) oval can be replaced by a soli-
tary simple double point.

Fig. 8.1 Fig. 8.2 Fig. 8.3 Fig. 8.4

Proof. One can construct the curves in Figures 8.1 – 8.4, for example, by Viro T -
construction (patchwork) as it is done in [20; §2.2]. They can also be constructed
by applying a general method of construction of trigonal curves on rules surfaces
[17].

The nonexistence of other arrangements easily follows, for example from the
general algorithm of realizability recognition for real pseudoholomorphic trigonal
curves [19].

The fact that any oval of a trigonal curve can be replaced by a solitary double
point without changes of fiberwise arrangement of the rest of the curve, is proven
in [17; Lemma 2]. �

8E
8E

8E
8E 8E 8E

8E
8E

Fig. 9.1 Fig. 9.2 Fig. 9.3 Fig. 9.4 Fig. 9.5 Fig. 9.6 Fig. 9.7 Fig. 9.8

Lemma 2.12. Let C2 be a nonsingular conic and C5 a three-component quintic
whose odd branch J5 has a singularity of the type E8. Suppose that C2 passes
through E8 and it also intersects J5 at seven other points. Then C2 and C5 are
arranged on RP

2 as in one of Figures 9.1 – 9.8 (we do not depict the ovals of C5

lying in the component of RP
2 \ (C2 ∪ J5) whose closure is non-orientable). All

these arrangements are realizable.

A2

A2

Fig. 10.1 Fig. 10.2 Fig. 10.3
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Remark. The dashed line in Figures 9.1 – 9.8 is the tangent line to C5 at E8. The
local arrangement of C5 at E8 with respect to the tangent line is important for
perturbations.

Proof. Let us choose one of the arrangements from Lemma 2.11 and contract one
of its ovals into a double point. Let us blow up this point and then, blow down the
proper transform of the fiber passing through it. This transforms C, G, and F into
the curves C′, G′, and F ′ on F3 of bidegrees (2, 7), (1, 4), and (0, 1) respectively.
Their arrangement on F3 is depicted in Fig. 10.1 for the choice of the leftmost oval
in Fig. 8.1. Now let us perform such transformation twice at the intersection point
of F ′ and G′. Then the curves C′ and G′ are transformed into curves C′′ and G′′

on F1 of bidegrees (2, 5) and (1, 2) respectively, which are arranged as in Fig. 10.3
(the result of the intermediate transformation is depicted in Fig. 10.2). The curve
C′′ has a cusp (a singularity A2) where C′′ has a maximal intersection with the
exceptional section. Finally, we blow down the exceptional section and obtain the
required arrangement on RP

2. Applying this construction to every arrangement
from Lemma 2.11 and to every choice of the free oval, we obtain Figures 9.1 – 9.8.
The correspondence between the pictures is the following (here nk means the choice
of the k-th oval from the left in Fig. 8.n):

11 → 9.1, 12 → 9.2, 13 → 9.3, 21 → 9.4,
(22, 23)→ 9.5, (31, 32, 33)→ 9.6, (41, 42)→ 9.7, 43 → 9.8.

�

Lemma 2.13. There exists a mutual arrangement depicted in Fig. 11.4 of a sin-
gular six-component quintic C5 with a singularity A2 and a nonsingular conic C2

which have a maximal intersection at the singular point.

A2

Fig. 11.1 Fig. 11.2 Fig. 11.3 Fig. 11.4

Proof. See Fig. 11.1 – 11.4. �

2.3. Construction of some mutual arrangements of a singular quintic
and two lines.

Lemma 2.14. There exists a quintic with singularities A1 and A3 arranged with
respect to lines L1, L2 as in Fig. 12.1

p
p

2

1

L

Fig. 12.1 Fig. 12.2 Fig. 12.3 Fig. 12.4
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Proof. Consider a quartic arranged with respect two lines as in Fig. 12.2 and apply
the hyperbolism hp1,p2,L to it. As the result, we obtain the arrangement in Fig. 12.3.
By a small shift of the upper line, it can be transformed into Fig. 12.1. �

The second arrangement of the series 9 in the list in Sect. 0.7 is constructed by
applying the perturbation shown in Fig. 12.4 to Figure 12.1.

Lemma 2.15. There exists a quintic with singularities A2 and E8 arranged with
respect to lines L1, L2 as in Fig. 13.1.

A2

8E

8E

A2

8E

A2

Fig. 13.1 Fig. 13.2 Fig. 13.3

Proof. It is easy construct a curve as in Fig. 13.2 using Viro patchworking (see the
corresponding subdivision into charts in Fig. 13.3). This means just that the curve
in Fig. 13.2 is given in homogeneous coordinates (x:y:z) by the equation

z5 + axz4 + x2z3 + x3y2 − bx2yz2 = 0 for 1≪ a≪ b.

Let us choose the axis y = 0 as the line L1 and let L2 be a line obtained from
it by a small rotation clockwise around A2 (this is the point (1:0:0)) followed by a
yet smaller sift up. �

8E

A2

8E
A2

8E

Fig. 14.1 Fig. 14.2 Fig. 14.3

Fig. 14.1 can be obtained from Fig. 13.2 by the rotation of the axis y = 0
clockwise around A2 till the first tangency with the quintic. Fig. 14.2 can be ob-
tained from Fig. 14.1 by replacing the depicted tangent line with two close tangents.
Fig. 14.3 is a perturbation of Fig. 14.2.

Construction of the second arrangement of the series 15.
Let us consider an M -quartic obtained by a small perturbation of the union of

two conics. Let V be one of its ovals and let q be a flex point on V . Let ℓ be a
line through q intersecting V at four points. Let p1 be that intersection point for
which the segment [qp1] lies inside V . Choose a point p0 on the concave part of V .
Consider the tangent to V at p0 and denote its intersection points with V by p2 and
p3 so that p2 is closer to q than p3 in the sense that ℓ meets the arc qp2 of V only at
q. It is clear that each of the lines p1p0 and p1p2 tends to ℓ as p0 → q. Therefore,
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P2

P3

IVI

Q

III
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I

Fig. 15.1 Fig. 15.2 Fig. 15.3 Fig. 15.4

if the point p0 is chosen sufficiently close to q, then we obtain an arrangement of
an M -quartic with respect to four lines as in Fig. 15.1.

Applying the birational quadratic transformation centered at p1, p2, p3, we ob-
tain a singular quintic with singularities A1, A1, and A2, arranged with respect
to the lines P1, P2, P3, Q (being the transforms of the points p1, p2, p3 and the line
p1p0 respectively), as in Fig. 15.2, where the Roman literals I, . . . ,IV indicate the
correspondence between the quarters.

Let L1 and L2 be two lines through A2 which are close to Q and placed on
different sides of it. Perturbing simple double points, we obtain Fig. 15.3. Finally,
let us perturb A2 as shown in Fig. 15.4.

§3. Classification of pseudoholomorphic arrangements
of a quintic and two lines of the type (3,3)

Proposition 3.1. a). Let C5 be a real pseudoholomorphic (for example, algebraic)
M -quintic in RP

2, and let L1, L2 be two lines each of which intersects the odd branch
J5 of C5 at five distinct points. Let L be the pencil of lines which contains L1 and L2.
Suppose that the mutual arrangement of the curves C5, L1, L2 is of the type (3, 3).
(types of arrangements are defined in §0.4). Then C5, L1, and L2 are arranged as
in Figures 16.1–16.22 up to isotopy. Moreover, the fiberwise arrangement of C5

with respect to L is as indicated in the capture to the corresponding figure up to
insertion of zigzags of the form ⊂j ⊃j±1 (see Remark 3.2).

b). All the arrangements in Figures 16.1–16.22 are realizable by real pseudo-
holomorphic curves. All of them except Fig. 16.12 are realizable by real algebraic
curves.

c). The arrangement in Fig. 16.12 is algebraically unrealizable.

1 1

4

1

4
1

1
4

1 1 5

1
1

5 5

Fig. 16.1. [⊃1 o3⊂1⊃2 o3o2o2o2o2⊂2]. Fig. 16.2. [⊃1 o3⊂1⊃2 o3o3o3o3o3⊂2].

Remark 3.2. In Figures 16.1–16.22, we present each arrangement in three forms. In
two of them, RP

2 is cut along one of the lines. The third form is somewhat similar
to the singular curve whose perturbation provides the given arrangement.
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1

Fig. 16.3. [⊃1 o1o1o2⊂1⊃2 o2o2o2⊂2]. Fig. 16.4. [⊃1 o1o1o1o1o1⊂1⊃2 o1⊂2].
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1

2

1
3

3
2

1

Fig. 16.5. [⊃1 o1o1o1⊂1⊃3 o3o3o2⊂1].

4
1

1 4

1
1 1

1

4 1

5

1
15

5

Fig. 16.6. [⊃1 o2o1o1o1o1⊂1⊃3 o1⊂1]. Fig. 16.7. [⊃1 o2o2o2o2o2⊂1⊃3 o1⊂1].
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2

22

2 2 2

2

2

Fig. 16.8. [⊃1 o1o1o1o1⊂2⊃1 o1o1⊂2]. Fig. 16.9. [⊃1 o1o1o2o2⊂2⊃1 o2o2⊂2].
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2 2 2 2
2 4

24 2

4

2

Fig. 16.10. [⊃1 o3o3o2o2⊂2⊃3 o2o2⊂2]. Fig. 16.11. [⊃1 o3o3o3o3⊂2⊃3 o3o3⊂2].
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(Algebraically unrealizable.)
Fig. 16.12. [⊃1 o3o3o3⊂3⊃1 o1o1o2⊂3].
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Fig. 16.13. [⊃1 o2o2o2o2o2⊂3⊃1 o3⊂3]. Fig. 16.14. [⊃1 o2o3o3o3o3⊂3⊃1 o3⊂3].
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Fig. 16.15. [⊃1 o1⊂3⊃2 o1o1o1o1o1⊂2]. Fig. 16.16. [⊃1 o1⊂3⊃2 o1o2o2o2o2⊂2].
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Fig. 16.17. [⊃1 o3o3o2⊂3⊃2 o2o2o2⊂2]. Fig. 16.18. [⊃1 o3o3o3o3o3⊂3⊃2 o3⊂2].
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2

42
4 4

2

Fig. 16.19. [⊃1⊂4⊃2 o1o1o1o1o1o1⊂3]. Fig. 16.20. [⊃1⊂4⊃2 o2o2o2o2o1o1⊂3].
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4
4

2 2

4

66 6

Fig. 16.21. [⊃1⊂4⊃2 o2o2o2o2o3o3⊂3]. Fig. 16.22. [⊃1⊂4⊃2 o3o3o3o3o3o3⊂3].

In the captures, we give the fiberwise arrangement of C5 with respect to L
encoded as described in [16; §2] (see also Sect. 6.2 below) assuming that one of the
lines L1, L2 is chosen as the infinite line. All the encoding words have the form

[⊃a oi1 . . . oik
⊂b⊃c oik+1

. . . oj6 ⊂d]. (4)

Depending on the choice of the infinite line and the orientations on it and on
the pencil, 8 encoding words are possible. We choose always the one providing
that the vector [a, b, c, d] is minimal possible with respect to the lexicographic or-
der. Figures 16.1 – 16.22 are numbered in the ascending order of the vectors
[a, b, c, d, k, i1, . . . , i6].

Restrictions.

Proof of Part (a) of Proposition 3.1. The vector [a, b, c, d] discussed in Remark 3.2
encodes the mutual arrangement of J5, L1, and L2. It is clear that it must satisfy
the conditions

1 ≤ a, b, c, d ≤ 4, b 6= c, d 6= 5− a, a + b + c + d ≡ 0 mod 2. (5)

The dihedral group of order 8 acts on the set of such vectors. It is generated by
the mappings

[a, b, c, d] 7→ [c, d, 5− a, 5− b], and [a, b, c, d] 7→ [d, c, b, a]. (6)
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Vectors from the same orbit define the same mutual arrangement of J5, L1, and L2

up to swapping of the lines and the orientations changes.
Taking into account the restrictions (5) and the symmetries (6), we have 8 vectors

to consider:

[1, 1, 2, 2], [1, 1, 3, 1], [1, 2, 1, 2], [1, 2, 3, 2], [1, 3, 1, 3], [1, 3, 2, 2], [1, 4, 2, 3], (7)

and [1, 2, 4, 1]. However, the last one does not provide any connected curve J5.
The formula of complex orientations (2) implies that an M -quintic has three

positive ovals and three negative ones. It is easy to deduce that the word (4) must
satisfy the condition

k ≡ a + b mod 2. (8)

Finally, it follows from Bezout’s theorem for auxiliary lines that

|ij − il| ≤ 1 for 1 ≤ j < l ≤ k or k < j < l ≤ 6,
|ij − a| ≤ 2, |ij − b| ≤ 2 for 1 ≤ j ≤ k,
|ij − c| ≤ 2, |ij − d| ≤ 2 for k < j ≤ 6.

(9)

For each word of the form (4) where the vector [a, b, c, d] is one of (7) and integers
k; i1, . . . , i6 satisfy (8), (9), and 1 ≤ ij ≤ 4, we have performed the following
computations:

(1) Find the braid. All the links which are the closures of the obtained braids
have three components.

(2) Check if all pairwise linking numbers of the link components are zero.
(3) If yes, then using the program from [16; Appendix], check if the Murasugi-

Tristram inequality holds.

As the result, we have obtained only those words of the form (4) which occur in
the captures to Figures 16.1–16.22.

Constructions.

Proof of Part (b) of Proposition 3.1.

8E

A2

Fig. 17

Fig. 18.1 Fig. 18.2 Fig. 18.3 Fig. 18.4

Fig. 18.5 Fig. 18.6 Fig. 18.7 Fig. 18.8
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Fig. 19.1 Fig. 19.2 Fig. 19.3 Fig. 19.4

By a small rotation of the horizontal axis around the point A2 in Fig. 13.2, one
obtains Fig. 17. Perturbing the singular point A2 as shown in Figures 18.1–18.5
and Fig. 18.8 and perturbing each time E8 in two possible ways, we obtain the
arrangements in Fig. 16.n for n = 1, 2, 6, 7, 13, 14, 15, 16, 19, 20, 21, 22.

18.1→
{

16.15
16.16

18.2→
{

16.1
16.2

18.3→
{

16.6
16.7

18.4→
{

16.13
16.14

18.5→
{

16.19
16.20

18.8→
{

16.21
16.22

Forgetting the vertical line in Fig. 13.1, perturbing A2 as shown in Fig. 18.6 and
18.7, and perturbing E8 as shown in Fig. 19.1 – 19.4, we obtain the arrangements
in Fig. 16.n for n = 3, 4, 8, 9, 10, 11, 17, 18

18.6→ (16.10, 16.11, 16.17, 16.18), 18.7→ (16.3, 16.4, 16.8, 16.9).

Fig. 20.1 Fig. 20.2 Fig. 20.3

An algebraic realization of Fig. 16.5 is shown in Fig. 20.1 – 20.3.

§4. Pseudoholomorphic arrangements of a quintic
and two lines which are algebraically unrealizable

In this section we prove that the arrangements in Figures 21.1 – 21.3 and in
Fig. 16.12 are realizable by real pseudoholomorphic curves (see Sect. 4.5), but they
are unrealizable by real algebraic curves (see Sections 4.1 – 4.4). Moreover, in
Sect. 4.5 we give a pseudoholomorphic realization of the two arrangements which
are labeled by ”∃/∗ alg.” in the list in Sect. 0.7.

      
      
    5  
      
    1  

      
      
3      
      
 1 2    

      
      
5      
      
1      

Fig. 21.1. (3-2). Fig. 21.2. (8-3). Fig. 21.3. (11-1).
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4.1. Algebraic realizability of the arrangement in Fig. 21.1.

Rotating L1 around q as shown in Fig. 22.1 till the first tangency with the
quintic, we obtain an arrangement as in Fig. 22.2. Rotating L2 around q′ as shown
in Fig. 22.2, we obtain Fig. 22.3 where RP

2 is depicted as a disk with opposite
boundary points identified. The boundary of the disk represents L1. Blowing up
p, we obtain Fig. 22.4 where the exceptional divisor is denoted by P . Blowing up
p′ and then blowing down L1, we obtain a curve C of bidegree (4, 8) on F2 (see
Definition 2.10) depicted in Fig. 22.5. This curve has a singular point of the type D4

(a simple triple point) on the line P ′. In Fig. 22.5, fibers of RF2 → RP
1 correspond

to vertical lines.
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L
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2

1
L

L
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Fig. 22.1 Fig. 22.2 Fig. 22.3
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Fig. 22.4 Fig. 22.5

The end of the proof of the algebraic unrealizability of Fig. 21.1 is similar to
that in [22, §3]. Let k be the self-linking number of C on the interval of the pencil
of vertical lines corresponding to the gray rectangle in Fig. 22.5. Then the braid
associated to the curve C respectively to the pencil of vertical lines has the form

b = σ−1
1 σ−1

2 σ1σ
−1
2 σ−1

1 σ−1
3 σ−1

2 σ1+k
3 σ1−k

1 σ−6
1 δ−1 ∆2,

where δ = σ3σ2σ3 is the part of the braid word corresponding to the singularity D4

and ∆ = δ σ1σ2σ3 is the Garside element of the group of braids with 4 strings.

Lemma 4.1. If Fig. 21.1 is pseudoholomorphically realizable, then k = −3.

Proof. The algebraic length of b is zero. Hence, its quasipositivity is equivalent to
its triviality. Let us show that b is non-trivial for k 6= −3. Indeed, if k is even,
then b defines a non-trivial permutation. If k is odd, then the linking number of
the second and the third strings is equal to k + 3. �
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Lemma 4.2. Suppose that a polynomial P (y) = y4 + a2y
2 + a3y + a4 has four real

roots y1, . . . , y4 such that y1 ≤ · · · ≤ y4. If y1 + y4 < y2 + y3, then a3 > 0. If
y1 + y4 > y2 + y3, then a3 < 0.

Proof. We shall consider only the case when y1 + y4 < y2 + y3. The opposite case
is similar. Let us denote (y2 + y3)/2 by b. Since the coefficient of y3 is zero, we
have y1 + · · · + y4 = 0, and hence, (y1 + y4)/2 = −b. Since y1 + y4 < y2 + y3, we
have b > 0. Let us set c = (y3 − y2)/2 and d = (y4 − y1)/2. Then

y1 = −b− d, y2 = b− c, y3 = b + c, y4 = −b + d.

Therefore,

a3 = −y1y2y3 − y1y2y4 − y1y3y4 − y2y3y4 = 2b(d2 − c2).

It remains to note that d− c = y4 − y3 + 2b ≥ 2b > 0, and c > 0. �

Let (x, y) be standard coordinates on F2 (see Definition 2.10). The equation of
C in the coordinates (x, y) has the form

y4 + a2(x)y2 + a3(x)y + a4(x) = 0, degx am(x) = 2m

(as usually, we kill the coefficient of y3 by the variable change y → y − a1(x)/4).
Let x = x0, . . . , x = x4 be the equations of the lines P ′, Q1, Q2, Q3, Q4 respectively
(see Fig. 22.5). As shown in [22; Lemma 3.7], a3(x) has at least 2|k| − 1 roots in
the segment [x2, x3]. We have k = −3 by Lemma 4.1. It follows from Lemma 4.2
that a3(x0) > 0, a3(x1) < 0, and a3(x4) > 0, hence a3(x) has at least one root at
each of the segments [x0, x1] and [x4, x0]. Thus, a3(x) has ≥ 5 + 2 = 7 roots. This
contradicts to degx a3(x) = 6 (see Remark 4.4 in Sect. 4.4).

4.2. Algebraic unrealizability of the arrangement in Fig. 21.2.

Starting from Fig. 21.2 and rotating the line around p, as shown in Fig. 24,
we obtain successively Fig. 16.12 and Fig. 16.5. The algebraic unrealizability of
Fig. 16.12 is proven in Sect. 4.4 (note that the arrangement in Fig. 16.5 is alge-
braically realized at the end of §3).

L2

L1

5
1

q

2

1

p

3

Fig. 23 Fig. 24

4.3. Algebraic unrealizability of the arrangement in Fig. 21.3.

Rotating L1 around q as shown in Fig.23, we transform Fig. 21.3 into Fig. 21.1
whose algebraic unrealizability is proven in Sect. 4.1.
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4.4. Algebraic unrealizability of the arrangement in Fig. 16.12.

After preliminary manipulations depicted in Figures 25.1 – 25.5 and similar to
those performed in the beginning of Sect. 4.1, we obtain an algebraic curve C of
bidegree (4, 8) on the Hirzebruch surface F2, depicted in Fig. 25.5. This curve
has a singularity of the type D4 (simple triple point). The three rightmost ovals
appear in this order with respect to the fibers of RF2 → RP

1 (in Fig. 25.5, fibers
correspond to vertical lines), because otherwise it were too many real intersections
of C with an auxiliary line (i.e., with a curve of bidegree (1, 2)) passing through
the triple point and two of these ovals.

Let R and L be the cubic resolvent and the core of the curve C. These are
curves of bidegrees (3, 12) and (1, 4) respectively on F4. Their definitions and main
properties see in [22; §3]. Let us just recall that all the intersections of R and L
are tangencies, and their x-coordinates (i.e., the projections on P1) are the roots of
a3(x) where, as above, y4 + a2(x)y2 + a3(x)y + a4(x) is the defining polynomial of
C in some standard coordinates on F2.

It follows from [22; Lemma 3.3] that R is arranged with respect to the fibers as in
Fig. 25.6, and that it lies beneath the core L (in the sense of non-strict inequalities).
Moreover, Lemma 4.2 (see Sect. 4.1) implies that each interval corresponding to a
gray rectangle bounded by dashed lines in Fig. 25.5, contains an odd number of
roots of a3(x). Hence, each gray rectangle in Fig. 25.6 contains an odd number of
tangency points of the curves R and L. By the reason explained in Remark 4.5,
it is sufficient to consider only the case when each gray rectangle contains a single
tangency point and there are no other tangencies, i.e., when R is arranged with
respect to L as in Fig. 25.6.

Thus, the algebraic unrealizability of Fig. 16.12 follows from the following state-
ment (taking into account Remark 4.5).

Proposition 4.3. Suppose that R and L are real algebraic curves on RF4 of bide-
grees (3, 12) and (1, 4) respectively, such that all (including non-real) the intersection
points of R and L are tangency points and the curve R has a singular point of the
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type D4. Then the mutual arrangement of R and L cannot be as in Fig. 25.6.

Proof. The genus of R is equal to 7 (the number if interior integral points in the
triangle (0,0)-(9,0)-(0,3)). It follows that the curve R is dividing, in particular, it
has complex orientations.

t2

t

t

t
2

0

1

∆ ∆2 2

. . .

Fig. 26.

Let b be the braid associated to the reducible curve A = R ∪ L. We have

b = (σ−1
1 σ−1

2 σ−1
1 )︸ ︷︷ ︸

D4

(σ−2
3 )︸ ︷︷ ︸
A3

σ−4
1 (σ−2

3 )︸ ︷︷ ︸
A3

σ−3
1 τ2,1 (σ−2

3 )︸ ︷︷ ︸
A3

σ−1
1 τ1,2 (σ−2

3 )︸ ︷︷ ︸
A3

∆4, (10)

where τ2,1 = σ−1
1 σ2 = τ−1

1,2 and ∆ = σ1σ2σ3σ1σ2σ1 (see Fig. 26).

Let us denote the standard projection by π : CF4 → CP
1. Let H◦ be one

of the halves of CP
1 \ RP

1, namely, that which induces the orientation of RP
1

corresponding to the direction from the left to the right according to Fig. 25.6. Let
H ⊂ H◦ be a disk, sufficiently close to H◦. Let N = π−1(H) ∩ CA. Then the

closure b̂ of b is the boundary of N . Let NR = N ∩ CR and N0 = N ∩ CL.
Counting the Euler characteristics of the components of N and the linking num-

bers of the braid components, one can conclude that NR has two connected compo-
nents, one of which (let us denote it by N1) is mapped bijectively onto H and the
other one (let us denote it by N2) is a double covering of H branched at a single
point. Moreover, N1 is disjoint from N0 and N2 has a simple tangency with N0 at
a single point. Let us set Lj = ∂Nj , j = 0, 1, 2.

It follows that b must have the form

b = (a1σ1a
−1
1 )(a2σ

4
1a−1

2 ). (11)

Moreover, the following refinement of (11) takes place. Let B̂1,1,2 = B̂1,1,2(t0, t1, t2)
be the groupoid of colored braids introduced in [15]. Let us color the strings of b

in the colors t0, t1, t2 according to the decomposition b̂ = L0 ⊔ L1 ⊔ L2. Then
b ∈ G = Aut(t2, t1, t2, t0) and the above description of the mutual arrangement of
the surfaces N0, N1, N2 means that b has the form b = b1b4 where the colored braid
b1 is a conjugate of

σ1 : (t2, t2, t0, t1)→ (t2, t2, t0, t1),

(i.e., σ1 whose first two strings are colored in the color t2), and b4 is a conjugate

σ4
1 : (t0, t1, t2, t2)→ (t0, t1, t2, t2).

Let us show that this is impossible for the braid (10). Let ρ be the Burau

representation of B̂1,1,2 described in [15] with the values of the parameters t0 =

t2 = −τ , t1 = τ2, where τ = (−1 + i
√

3)/2 = exp(2πi/3). Then the eigenvalues of
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ρ(b4) are (1, 1, t20t
2
1) = (1, 1, τ6) = (1, 1, 1). Moreover, it is easy to check that ρ(b4)

is the identity matrix. Thus, b = b1b4 implies ρ(b) = ρ(b1). The latter equality is
impossible because the eigenvalues of ρ(b1) must be (1, 1,−t0) = (1, 1, τ) whereas
it is easy to compute that the eigenvalues of ρ(b) are (α, τα, τ2α), where α3 = τ .
To compute ρ(b) (especially, by hands), it is convenient to use the fact that ρ(∆2)
is a scalar matrix for any choice of parameters (see also Remark 4.7 below). �

Remark 4.4. In terms of cubic resolvents, the proof of algebraic unrealizability of
Fig. 21.1 given in Sect. 4.1 means the following. Topological properties of the curve
in Fig. 22.5 impose that R and L have at least (2|k| − 1) + 2 = 7 real tangency
points. This contradicts to the fact that the intersection number of these divisors
on F4 is equal to 12.

Remark 4.5. Lemma 4.2 allows us to find only the parity of the number of roots of
a3(x) on every interval bounded by vertical tangents to C. However, when writing
the braid word, we choose each time the minimal possible values of these numbers
which are equal to 0 or 1. What happens if we increase some value by 2? It is
clear that in this case, two successive tangency points appear on the corresponding
interval. This means that the subword σ−4

3 is inserted somewhere into the braid
word of b. Thus, this does not affect the subsequent arguments.

Remark 4.7. One can use the formulas given in [15] for the Burau matrices of
colored braids. However, the computation becomes easier if one changes the base
(see Remark 4.8) as explained below. For example, 3 × 3-matrices are needed in
this case rather than 4× 4. Let

b = σε1

j1
. . . σεn

jn
, εν ∈ {−1, +1},

be a braid with m strings colored in the colors ti1 , . . . , tim
along the left hand side,

and hence, in the colors tiπ(1)
, . . . , tiπ(m)

along the right hand side, where π is is the
permutation defined by b. Then we have

ρ(b) = Sj1(tk1)
ε1 . . . Sjn

(tkn
)εn

where tkν
is the color of the lower string (in the sense of over-/underpasses) at the

ν-th crossing, i.e.,

kν =

{
π−1

ν−1(jν) = π−1
ν (jν + 1), εν = +1,

π−1
ν−1(jν + 1) = π−1

ν (jν), εν = −1,

(here πν denotes the permutation defined by σε1

j1
. . . σεν

jν
), and Sj(t) is the (m−1)×

(m − 1)-matrix obtained by deleting the first and the last rows and columns from
the (m + 1)× (m + 1)-matrix

Ij−1 ⊕




1 0 0
t −t 1
0 0 1


⊕ Im−j−1,

here Ip is the identity p× p-matrix and A⊕B is the block-diagonal matrix
(

A 0

0 B

)
.
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For example, to check the proof of Proposition 4.1, one needs to do the following
matrix computation. Let us set Sj = Sj(t0) = Sj(t2) = Sj(−τ) and Tj = Sj(t1) =
Sj(τ

2), i.e.,

S1 =




τ 1 0
0 1 0
0 0 1


 , S2 =




1 0 0
−τ τ 1
0 0 1


 , S3 =




1 0 0
0 1 0
0 −τ τ


 ,

T1 =



−τ2 1 0
0 1 0
0 0 1


 , T2 =




1 0 0
τ2 −τ2 1
0 0 1


 , T3 =




1 0 0
0 1 0
0 τ2 −τ2


 .

Then (see Fig. 26)

ρ(b) = T−1
1 S−1

2 S−1
1 S−2

3 (S−1
2 T−1

2 )2 S−2
3 (S−1

2 T−1
2 S−1

2 )S−1
1 S2T

−1
1 S−2

3 S−1
2 T1S

−2
3 ×

×
(
S1S2S3T1T2T3(S1S2S3)

2
)2

=



−1 τ 1
τ −τ2 −2τ
−τ2 0 −τ


 ,

ρ(b1) ∼ S1, and ρ(b4) ∼ S1T1S1T1 = I.

To compute faster ρ(b), one can use the following identities (recall that τ3 = 1
and τ2 = −τ − 1): (S−1

2 T−1
2 )2 = I (hence, also S−1

2 T−1
2 S−1

2 = T2) and ρ(∆2) =
S1S2S3T1T2T3(S1S2S3)

2 = −τ2I.

Remark 4.8. When speaking in the previous remark about the change of the base in
the Burau representation described in [15], we were not quite rigorous. Recall that a
groupoid is a category all whose morphisms are invertible and its representation is a
functor to the category of modules over some ring. Burau representation is defined
in [15] as a functor which associates the same free module V to every object of the
groupoid of colored braids (i.e., to every permutation of the colors). The matrices
given in [15] are the matrices of the images of morphisms with respect to a fixed
base of V . Actually, there does not exist any base of V such that the matrices of
the images of braids take the form described in Remark 4.7. However, it is possible
to associate different copies of V to different object, and to find suitable bases at
each copy so that the matrices become as in Remark 4.7.
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4.5. Construction of pseudoholomorphic arrangements.

Proposition 4.9. The arrangements in Figures 21.1 – 21.3, in Fig. 16.12, and in
Fig. 27.1 – 27.2 are realizable by a real pseudoholomorphic quintic and two lines.

      
      
    4  
      
   1 1  

      
      
4      
      
1 1     

Fig. 27.1. (6-7). Fig. 27.2. (18-5).

Proof. It is easy to check that the braid b defined in Sect. 4.1 is trivial for k = −3.
Indeed,

b−1 = ∆−2δ σ2
1σ2

3σ2σ3σ1σ2σ
−1
1 σ2σ1 = ∆−2δ σ1σ3 (σ1σ3σ2σ3σ1σ2︸ ︷︷ ︸

∆

)σ2σ1σ
−1
2

= (∆−2σ2) (σ3σ2σ1σ3 ∆)σ2σ1σ
−1
2 = (σ2 ∆−2) (∆ σ1σ2σ3σ1)σ2σ1︸ ︷︷ ︸

∆

σ−1
2 = 1.

It follows that Fig. 21.1 is pseudoholomorphically realizable. The pseudoholomor-
phic realizability of Fig. 21.3 is equivalent to that of Fig. 21.1 because the braid
associated to the pencil of lines centered at q (see Fig. 23) is the same in the both
cases.

p

A2

p

Fig. 28.1 Fig. 28.2 Fig. 28.3 Fig. 28.4

To prove that Fig. 21.2 is pseudoholomorphically realizable, I could just write
down a quasipositive decomposition of the corresponding braid, leaving to the
reader to check the identity in the braid group. Instead, I give here a geomet-
ric proof which does not require any computation. It is depicted in Figures 28.1 –
28.4. By a small perturbation of a double conic, it easy to construct an algebraic
cuspidal quartic arranged as in Fig. 28.1 with respect to three lines. Then, by suc-
cessive perturbations, one can obtain Fig. 28.2 and Fig. 28.3 (still remaining in the
class of algebraic curves). Further, a pseudoholomorphic realizability of Fig. 28.3
implies that of Fig. 28.4, because they define the same braid with respect to the
pencil of lines centered at p. Finally, a perturbation of double points of the quintic
in Fig. 28.4 yields Fig. 21.2.

Pseudoholomorphic realizations of Fig. 16.5 and 16.12 can be obtained from
Fig. 21.2 by a rotation of one of the lines as shown in Fig. 24 (see Sect. 4.2).
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Finally, to realize pseudoholomorphically Fig. 27.1 – 27.2, note that the above
braid b corresponds not only to the curve depicted in Fig. 22.5, but also to the curve
obtained from it by removing of one of the five ovals situated between Q3 and Q4,
and by replacing of the three lower intersection points on Q3 with a singularity
of the type A2 tangent to Q3. Perturbing this singularity, we obtain Fig. 27.1.
Fig. 27.2 can be obtained from it.

§5. Degeneration of a conic into a pair of lines

Let O be a simple closed curve dividing RP
2 into a disk D and a Möbius band

M . Let C be a smooth real curve on RP
2, a and b two points on O not lying on C,

and let γ be one of the two arcs into which a and b divide O. Let us say that γ is
minimal with respect to C inside O (respectively, outside O), if any path γ′ from a
to b contained in D (respectively, contained in M , and homotopic in M to γ), has
at least as many intersections with C as γ.

Proposition 5.1. Let C2 and Cn be nonsingular real algebraic curves on RP
2 of

degrees 2 and n respectively, which have 2n real intersections. Suppose that the
following condition holds.

(*) There exist points a, b, c, d lying on C2 in this cyclic order, such that the
arcs ab and cd are minimal with respect to Cn inside C2, and the arcs bc
and da are minimal with respect to Cn outside C2.

Then the mutual arrangement of C2 and C5 is isotopic to a mutual arrangement of
C′

2 and C5 where C′
2 is a smooth perturbation of a union of two lines each of which

has n real intersection points with the curve Cn.

The same statement takes place for real pseudoholomorphic curves.

Proof. Consider the pencil of conics through a, b, c, d. �

Let C2 and C5 be a conic and an M -quintic which have 10 real intersection points
all of them lying on the odd branch J5 of C5. Recall that the notion of passage
through infinity is defined in Sect. 0.4, and a nest of arcs inside (outside) an oval is
defined in Sect. 0.1 before the formulation of Theorem 3.

Corollary 5.2. Suppose that one of the following conditions holds:

(1) there are at least three passages through infinity;
(2) there is a nest of depth 5 inside C2 formed by arcs of C5,
(3) there are two disjoint nests outside C2 formed by arcs of C5,
(4) J5 and C2 are arranged as in one of Fig. 29.1 – 29.2 (series 16, 18 in

Sect. 0.5).

Then the condition (*) holds, and hence, C5 ∪C2 can be degenerated into a quintic
and two lines.
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Fig. 29.1. Fig. 29.2.
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Proof. In each of the cases (1) – (4), let us describe a choice of a, b, c, d providing
(*). Let D and M be the interior and the exterior components of RP

2 \ C2.

(1). There are five arcs of C5 outside C2 with the ends on C2. If all of them
pass through infinity (i.e., non-trivial in H1(M, C2)), then (*) holds for any choice
of a, b, c, d such that the arcs ab and cd do not meet C5. Otherwise, there exist two
arcs α1, α2 of C5 which are trivial in H1(M, C2). Let Dj be the disk which is cut
from M by αj , and let βj = C2 ∩ (∂Dj). Choose a, b ∈ β1 and c, d ∈ β2.

(2). Let D1 ⊂ · · · ⊂ D5 be the disks involved in the definition of nest, i.e., such
that D ∩ (∂Dj) ⊂ C5, j = 1, . . . , 5. Choose b, c ∈ C2 ∩D1 and a, d ∈ C2 \D5.

(3). Let α1, . . . , α4 be the exterior arcs of C5 forming the nests, and let Dj be
the disk, which is cut from M by αj . Let us set βj = C2 ∩ (∂Dj). Let D1 ⊂ D2

and D3 ⊂ D4. It follows from Bezout’s theorem for an auxiliary line that a nest of
depth three is impossible, hence, D2 ∩D4 = ∅. Choose a, b ∈ β1 and c, d ∈ β3.

(4). Choose a, b, c, d as shown in Fig. 29.1 – 29.2. �

Thus, if one of conditions (1) – (4) of Corollary 5.2 holds, then those and only
those arrangements are realizable by real pseudoholomorphic (respectively, alge-
braic) curves which can be obtained as a perturbation of the union of a quintic and
two lines.

§6. Classification of arrangements of C5 ∪ C2

of series not covered by Corollary 5.2

6.1. Enumeration of arrangements of J5 ∪ C2 to consider.
Now we shall consider those arrangements of C2 ∪J5 which do not satisfy condi-

tions (1) – (4) of Corollary 5.2, because it is natural to postpone the classification
of the others untill the classification of C5 ∪ L1 ∪ L2 is finished. Moreover it is
not necessary to consider arrangements which contradict to Bezout’s theorem for
auxiliary lines, for instance those which have a nest of exterior arcs of J5 deeper
than two. Up to symmetry, there are 24 of such arrangements. These are the series
1–15, 17, 19, 22–25, 29, 32, 33 in the list in Sect. 0.5.

It is not difficult to check it directly, but also it can be seen from the list [7] of all
arrangements of J5 ∪C2 with one passage through infinity which do not contradict
to Bezout’s theorem. For the reader’s convenience, in the following table we give
the correspondence between the numbers of series in Sect. 0.5 (1, 2,...) and in [7]
(M1, M2, . . . ):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 M30 12 M21 23 M2
2 M33 13 M3 24 M20
3 M18 14 M6 25 M10
4 M28 15 M26 26 M14
5 M32 16 M27 27 M16
6 M24 17 M4 28 M5
7 M31 18 M9 29 M17
8 M29 19 M25 30 M15
9 M1 20 M12 31 M11
10 M7 21 M13 32 M22
11 M19 22 M8 33 M23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M1 9 M12 20 M23 33
M2 23 M13 21 M24 6
M3 13 M14 26 M25 19
M4 17 M15 30 M26 15
M5 28 M16 27 M27 16
M6 14 M17 29 M28 4
M7 10 M18 3 M29 8
M8 22 M19 11 M30 1
M9 18 M20 24 M31 7
M10 25 M21 12 M32 5
M11 31 M22 32 M33 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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6.2. Arrangements with nested exterior arcs.
Let C2 and C5 be a conic and an M -quintic, such that the odd branch of J5 cuts

C2 at ten distinct points. Let D (disk) and M (Möbius band) be the components
of RP

2 \C. Suppose that there is a nest outside C2 formed by arcs of J5, i.e., there
exist arcs α1 and α2 which cut from M disks D1 and D2, such that D1 ⊂ D2.
Choose p ∈ D1 ∩ C2 and denote the pencil of lines through p by Lp. Let L∞ ∈ Lp

be the tangent to C2 at p. Choose affine coordinates (x, y) such that L∞ is the
infinite line, Lp is the pencil of vertical lines x = const, and C2 is the parabola
y = x2.

We shall use the encoding of the arrangement of C = C5∪C2 with respect to Lp

(fiberwise arrangements) proposed in [13] (and used in [14, 16, 20, 9] and in §3).
Namely, we shall encode such an arrangement by a word composed of the symbols
⊂k, ⊃k, ×k which denote respectively a point of minimum and maximum of the
x-coordinate and a double point on C. In all the three cases, k is the height of the
point, i.e., the vertical line through this point has k − 1 transversal intersections
with C, with a smaller y-coordinate. We abbreviate a subword ⊂k ⊃k up to ok.

The braid corresponding to a fiberwise arrangement of C has the form b = bRb∞
where bR is computed from the encoding word by the rules formulated in [13] for
the case p 6∈ C, but b∞ = ∆σ1σ2 . . . σ6 (rather that b∞ = ∆ as it is for p 6∈ C).

By the above assumption, we need to consider only the series listed in the first
two columns of Table 1. Then, up to zigzag removing (deleting subwords of the
form ⊂j⊃j±1) the arrangement of C with respect to Lp is encoded by the word
from the third column of Table 1 where the variables u1, u2, u3 should be replaced
by sequences of the form oi1oi2 . . . of the total length 6.

If we drop C2, it remains a quintic whose fiberwise encoding with respect to
Lp either has the form [⊃3oi1 . . . oi6⊂4], or [⊃3oi1 . . . oik

⊂3⊃4oik+1
. . . oi6⊂4], where

the indices i1, . . . , ik are computed starting from the encoding word for C using
evident rules.

Among all words of this form, only the following can encode a fiberwise arrange-
ment of an M -quintic

[⊃3o
6
2⊂4], [⊃3o

4
3o

2
2⊂4], [⊃3o

4
3o

2
4⊂4], [⊃3o

6
4⊂4]

and

[⊃3o
4
3o2⊂3⊃4o2⊂4], [⊃3o

5
2⊂3⊃4o2⊂4], [⊃3o

3
3⊂3⊃4o3o

2
4⊂4], [⊃3o4⊂3⊃4o

5
4⊂4].

In the former case, this easily follows from the classification of affine quintics and
from Bezout’s theorem for auxiliary lines. In the latter case, this is proven in §3.

Hence, it is sufficient to consider only those values of the parameters in the
words in Table 1 which provide one of these eight words after dropping the conic.
Moreover, since ×3 commutes with oj for j 6= 4, in the words containing subwords
of the form uν−1×α

3 uν , it is sufficient to consider only the cases when uν begins
with o4.

For all such words, we checked with a computer if Murasugi-Tristram inequal-
ity for the usual signature holds (see details in [13, 16]). All the cases when it
does, are listed in the last column of Table 1 where an expression of the form
[i1 . . . ik][ik+1 . . . im] . . . means that u1 = oi1 . . . oik

, u2 = oik+1
. . . oim

, . . . ; more-
over, if parameters α and β = 5 − α, 3 − α, or 2 − α occur in the encoding word,
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Table 1.

3. M18 [×5×6
4⊃3u1×3u2⊂4×2

5] [434422][], [433355][], [555][455]

4. M28 [×5×2
4⊃3u1⊂3×5

4⊃5u2⊂4×2
5] [334][355], [5][45555]

5. M32 [×5×2
4⊃3u1×α

3 u2×5−α
3 u3⊂4×2

5]
[344422][][], [333]4[455]1[], [343355][][],

[]1[455555]4[], [55][][4555]

6. M24 [×5×4×5
3⊃4u1×3u2⊂4×2

5] [344422][], [343355][], [][455555]

9. M1 [×5×4
4⊃3u1⊂3×3

4⊃5u2⊂4×2
5] [444][355], [5][44455]

10. M7 [×5×4
4⊃3u1×α

3 u2×3−α
3 u3⊂4×2

5] [444433][][], [443355][][], [55][][4455]

11. M19 [×5×4
4⊃3u1×3u2⊂4×5×2

4×5] [433322][], [4333][44], [555][444]

12. M21 [×5×4
4⊃3u1×3u2⊂4×4

5] [4333][45], [555][445]

13. M3 [×5×4×2
3×4⊃3u1⊂3×3

4⊃5u2⊂4×2
5] [344][355]

14. M6 [×5×2
4⊃3u1×α

3 u2×3−α
3 u3×4×4

5] [4433][45], [55][4445]

15. M26 [×5×2
4⊃3u1×α

3 u2×3−α
3 u3⊂4×5×2

4×5] [4433][][44], [55][][4444]

17. M4 [×5×2
4⊃3u1⊂3×3

4⊃5u2⊂4×4
5] [444][345], [5][44445]

19. M25 [×5×4×3
3⊃4u1×3u2⊂4×4

5] [3333][45], [][444445]

22. M8 [×5×2
4⊃3u1×α

3 u2×2−α
3 ⊂3×3

4⊃5u3⊂4×2
5] [5][][44555]

23. M2 [×5×2
4⊃3u1⊂3×4×2

3×2
4⊃5u2⊂4×5] [333][355]

24. M20 [×5×3
4×2

3×4⊃3u1×3u2⊂4×2
5] [334422][], [333355][], [][444455]

29. M17 [×5×2
4⊃3u1×3u2⊂4×5×4

4×5] [444322][], [44445][4], [55555][4]

32. M22 [×3
5×2

4⊃3u1×3u2⊂4×5×2
4×5] [4444][44], [5555][44]

33. M23 [×5×2
4⊃3u1×3u2⊂4×6

5] [4444][45], [5555][45]

then their values, if they are needed, are indicated as lower indices between the
brackets.

It remains to check that the parameter values listed in the last column provide
only those arrangements which are listed in Sect. 0.5.

6.3. Zigzag removal and fiberwise models.
Let (x, y) be an affine coordinate system on RP

2, and let p be the infinite point
on the y-axis. Let Lp be the pencil of lines centered at p, i.e., the pencil of vertical
lines x = const. Let A be a nodal real pseudoholomorphic curve of degree m, not
passing through p, and let RA be the set of its real points. After an arbitrarily
small shift of p, we may assume that A is in general position with respect to Lp,
i.e., any line from Lp neither is tangent to RA at a flex point or at a double point,
nor passes through two critical points (we call critical point either a double point
or a point with the vertical tangent).

We call fiberwise isotopy with respect to the pencil of lines Lp (or just fiberwise

isotopy if it clear what pencil is meant) an isotopy of RP
2 such that the image of

any line from Lp at any moment is a line (maybe, another) from the same pencil.
We call a fiberwise arrangement of a curve with respect to Lp (or just fiberwise
arrangement) the equivalence class of a curve under fiberwise isotopies. As above,
we shall encode fiberwise arrangements by symbols ⊂k, ⊃k, ×k, ok.

We say that a real nodal curve is in almost general position with respect to
Lp, if all the above genericity conditions hold with the only exception: one of the
branches at a double point may have a vertical tangent, but this branch may not
have a flex at the double point. To encode such points, we shall use the symbols
⊂−−k and ⊃−−k (a perturbation of ⊂−−k yields ⊂k×k+1 or ⊂k+1×k).

A smooth family {Bt}t∈[0,1] of immersed curves not passing through p will be
called an admissible isotopy with respect to Lp, if there exists a finite set T =
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T ′ ∪ Tflex ⊂]0, 1[, such that:

(i) if t 6∈ T ∪{0, 1}, then the curve Bt is in general position with respect to Lp;
(ii) if t = 0 or 1, then the curve Bt is in almost general position with respect to
Lp;

(iii) if t ∈ T , then the genericity conditions hold with the following two ex-
ceptions: 1) for t ∈ T ′, there exists a unique vertical line passing through
exactly two critical points at least one of whom is a double point; 2) for
t ∈ Tflex, there exists a unique flex point with vertical tangent, and the
number of critical points decreases when t passes through such a value.

A passage through t ∈ Tflex will be called a zigzag removal. It is easy to see that
during an admissible isotopy the minimal number of intersections with vertical lines
is constant, and the maximal number does not increase.

We define a fiberwise model of a curve A, as a set B such that there exists an
admissible isotopy {Bt} with B0 = RA and B1 = B.

Let us say that a union of immersed circles B satisfies the k-condition with respect
to p, if any line from Lp meets B at least at k points. We say that B satisfies the

strong k-condition if the image of B under any diffeomorphism of the pair (RP
2, p)

onto itself satisfies the k-condition. If a curve B satisfies the (m− 2)-condition and
any line of Lp meets it at ≤ m points, then this curve uniquely defines an m-braid
(which we denote by br(B)) such that B = RA for some real pseudoholomorphic
curve A if and only if the braid br(B) is quasipositive, i.e., can be written in the
form

∏
j ajσij

a−1
j (see details in [13, 16]).

Using this terminology, one can reformulate the statement on zigzag removal [16;
Proposition 2.2] (more precisely, one of its corollaries) as follows.

Proposition 6.1. Let A be a nodal real pseudoholomorphic curve in RP
2 of degree

m, in general position with respect to p ∈ RP
2, such that RA satisfies the (m− 2)-

condition. Then for any fiberwise model B of A, the braid br(B) is quasipositive.

The following statement or its analogs for other contexts I used implicitly in
all my previous papers on application of quasipositive braids in problems of real
geometry (including the previous section of this paper).

Proposition 6.2. Let A be a nodal real pseudoholomorphic curve in RP
2 of degree

m, in general position with respect to p ∈ RP
2, such that RA satisfies the strong

(m − 2)-condition. Suppose that RA is a union of embedded pairwise transversal
circles. Then there exists a fiberwise model of RA, which can be encoded by a word
containing only symbols ×k, ⊂−−k, ⊃−−k, and ok (i.e., not containing ⊂k and ⊃k).

Proof. Suppose that the encoding word contains ⊂k (the case of ⊃k is similar) and
let us prove that there exists an admissible isotopy such that the number of ”⊂”
decreases and the number of ”⊃” does not increase. Choosing, if necessary, another
line from Lp as the infinite line (this corresponds to a cyclic permutation of the
encoding word followed by an evident change of the indices), we may assume that
there exists a subword of the form ⊂k×i1 . . .×in

u where u is either ⊃l, or ⊃−−l. If
n > 0 and i1 6∈ {k − 1, k, k + 1}, then replacing ⊂k×i1 with ×i1⊂k for i1 < k or
with ×i1−2⊂k for i1 > k one can reduce the length of the subword ×i1 . . .×in

(it
is clear that such a replacement corresponds to an admissible isotopy). Therefore,
we may assume that either n = 0, or k − 1 ≤ i1 ≤ k + 1.

Case 1. n = 0 and u = ⊃k. Replace ⊂k⊃k with ok.
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Case 2. n = 0 and u = ⊃k±1. Remove ⊂k⊃k±1 (zigzag removal).

Case 3. n = 0 and u = ⊃−−k or ⊃−−k−1. Self-intersection (i.e., this contradicts to
the condition that RA is a union of embedded circles).

Case 4. n = 0 and u = ⊃−−k+1 (the case of u = ⊃−−k−2 is similar). Replace
⊂k⊃−−k+1 → ⊂k×k+2⊃k+1 → ×k⊂k⊃k+1 → ×k.

Case 5. n = 0, but u is none of the above symbols. Then there exists an isotopy
(certainly, non-admissible!), exchanging ⊂k and u. This contradicts to the strong
(m− 2)-condition.

Case 6. n > 0, i1 = k ± 1. Replace ⊂k×k±1 with ⊂−−k or ⊂−−k−1.

Case 7. n > 0, i1 = k. Self-intersection. �

6.4. Clusters of double points.

Let B be a union of embedded circles in RP
2, and let p ∈ RP

2 \B. A subset D
of RP

2 \ {p} is called a digon of B with respect to p, if

(1) D is homeomorphic to an open disk,
(2) there exists a connected component B′ of B, such that D is a connected

component of RP
2 \ (B′ ∪ {p}),

(3) q1 and q2 are the only double points of B lying on ∂D.

In this case we say that the points q1 and q2 are connected by the digon D. A digon
D of B is called empty, if D ∩B = ∅.

Let ΓB be the graph whose vertices are the double point of B and whose edges
correspond to digons connecting them to each other. We define a cluster of double
points of B as the set of vertices of a connected component of ΓB. A cluster is called
degenerate, if it contains two points connected by two digons which have a common
side. It is clear that the graph of any non-degenerate cluster c is homeomorphic to
a circle, a segment, or a point. In these cases we shall call the cluster cyclic, linear,
or trivial respectively.

The following Lemma is evident.

Lemma 6.3. Let B be a union of embedded circles in RP 2\{p} which are transver-
sal to each other, and let c be a non-degenerate non-trivial cluster of B with respect
to p. Suppose that the fiberwise arrangement of B is encoded by a word which con-
tains only ”⊂−−”, ”⊃−−”, ”×” and ”o”. Let πp : RP

2 \ {p} → RP
1 be the projection

from p. Then there exist two smooth mappings γ1, γ2 : [0, 1]→ B such that

(1) πp ◦ γ1 = πp ◦ γ2 (denote this mapping by f),
(2) f ′(t) 6= 0 for 0 < t < 1,
(3) c = γ1([0, 1]) ∩ γ2([0, 1]).

�

Lemma 6.4. Let A be a real pseudoholomorphic curve in RP
2 of degree m such

that RA is a union of pairwise transversal embedded circles satisfying the strong
(m − 2)-condition with respect to some point p. Let c be a non-degenerate cluster
of B with respect to p, and let Γ be a subgraph of Γc homeomorphic to a segment,
whose edges correspond to empty digons. Then there exists a fiberwise model of B
encoded by a word which contains only ”o”, ”×”, ”⊂−−”, ”⊃−−”, such that the set of the
vertices of Γ corresponds to a subword of the form u×l

kv where u ∈ {×k,⊂−−k,⊂−−k−1}
and v ∈ {×k,⊃−−k,⊃−−k−1}.
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Moreover, an admissible isotopy transforming RA into B can be chosen so that
it is constant on the complement to an arbitrarily small neighbourhood of the union
of the digons corresponding to the edges of Γ.

Proof. By Proposition 6.2, there exists a fiberwise model B of RA encoded by
a word in ”o”, ”×”, ”⊂−−”, ”⊃−−”. Let γ1 and γ2 be as in Lemma 6.3. Let T =
{t1, . . . , tn} be a finite subset of [0, 1], such that γ1(T ) = γ2(T ) = (the set of the
vertices of Γ) and t1 < · · · < ts. Let us set N(B) = Card

(
[t1, tn]∩γ−1

1 (S)
)

where S
is the union of those lines of Lp which pass through the critical points of B. Lemma
6.4 can be proved using the induction by N(B), similarly to Lemma 6.3. �

Lemma 6.5. Let A be a real pseudoholomorphic curve in RP
2 of degree 7. Suppose

that RA is a union of pairwise transversal embedded circles. Let O be an oval of
A, i.e., a smooth even branch not passing through double points. Suppose that
RA does not contain degenerate clusters and satisfies the strong 5-condition with
respect to some point p lying inside O. Then there exists a fiberwise model of RA
encoded by a word which contains only ”o”, ”×”, ”⊂−−”, ”⊃−−”, such that each non-
trivial cluster of double points ci corresponds to a subword of the form uiwivi where
ui ∈ {×ki

,⊂−−ki
,⊂−−ki−1}, vi ∈ {×ki

,⊃−−ki
,⊃−−ki−1} for all i = 1, . . . , n, wi = ×li

ki
for

i > 1, and w1 = ×l0
k1

oj1 . . . ojs
×l1

k1
.

Proof. Since there are no degenerate clusters, the curve RA does not contain any
two digons with a common side. Hence, Bezout’s theorem for an auxiliary line
implies that RA has at most one non-empty digon. If all digons are empty, our
statement follows from Lemma 6.4. Suppose that there is a non-empty digon D.
We may assume that its vertices belong to c1.

Let πp : RP
2 \ {p} → RP

1 be the projection from p. Lemma 6.4 implies that
there exists a fiberwise model B of RA encoded by a word in ”o”, ”×”, ”⊂−−”, ”⊃−−”,
such that for any empty digon D′, the open band π−1

p (πp(D
′)) does not contain

any critical point. The end of the proof is the same as for Lemma 6.4, and we omit
it also. �

6.5. Arrangements of C2 ∪ C5 without nested arc.
It remains to consider the arrangements of J5 ∪ C2 of the series 1, 2, 7, 8, 25.
By Theorem 3, we can always choose the center of the pencil of lines inside an

oval of the quintic which lies in its turn inside the conic.
So, for each of the domains into which J5 divides the interior of the conic, we

shall check the hypothesis that this domain contains an oval of the quintic (let us
denote it by O5). In each case, we shall consider all possible fiberwise arrangements
of C = C2 ∪C5 with respect to Lp where p is chosen inside O5.

It is clear that if the center of the pencil of lines is inside C2 and inside O5, then
the arrangement satisfies the strong (m − 2)-condition (see Sect. 6.3). Therefore,
we may consider only fiberwise models of C = C2 ∪C5 whose existence is proven in
Lemma 6.5. It is easy to check that in this case the fiberwise model of C2 ∪J5 ∪O5

is uniquely determined by the fiberwise arrangement of the clusters of double points
on C2. Hence, it suffices to try one by one all possible fiberwise arrangements of n
points on a conic C2 where n is the number of clusters, constructing each time the
fiberwise model of C2 ∪ J5 ∪O5, and then, to consider all possible positions for the
ovals of the quintic.

Let us number the intersection points of C2 and J5 by 0, . . . , 9 as in Sect. 0.5. For
each choice of p, we shall denote the clusters by c1, c2, . . . clockwise along C2 (i.e.,
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in the same order as for the intersection points) starting with the cluster containing
the point ”0”. Domains, i.e., the connected components of RP

2 \ (J5 ∪ C2), will
be denoted by Di1i2... where i1, i2, . . . are the intersection points belonging to the
boundary of the domain.

In Table 2, we present the results of the primary analysis of all possible choices
of the domain containing O5 and for all choices of the fiberwise arrangement of the
clusters. We do not consider the cases when a choice of a domain containing O5

contradicts Bezout’s theorem for auxiliary lines. For example, this is the reason
why no line of Table 2 corresponds to the choice of D01 for the series 7. Indeed,
suppose that p ∈ D01 and consider a line passing through p and a point on the arc
(67) of the conic. It cuts O5 at two points and it cuts also the arcs (01), (49), (58),
and (67) of J5, so it has too many intersections with C5.

Let p be any point in the interior of C2 and let q1, . . . , qn be points on C2,
pairwise non-collinear with p. Under these conditions, there exist 2n−1 fiberwise
arrangements of C2, q1, . . . , qn with respect to p. Indeed, let us choose an affine chart
such that Lp is the pencil of vertical lines, and C2 is the hyperbola y2 − x2 = 1.
Let qi = (xi, yi). Let (i1, . . . , in) be the permutation providing xi1 < · · · < xin

.
We may assume that i1 = 1 and y1 > 0. Then the fiberwise arrangement of
qi’s is uniquely determined by the sequence (sign yi2 , . . . , sign yin

). In Table 2, we
denote the corresponding fiberwise arrangement of the clusters c1, . . . , cn by a 2×n-
matrix whose lines correspond to the branches of the hyperbola. For example, 1

4
23

corresponds to the case when x1 < x4 < x2 < x3 and sign y1 = sign y2 = sign y3 =
1 = − sign y4.

By Proposition 6.2, it is sufficient to consider only fiberwise arrangements of
C2 ∪J5, such that all the maxima of the restriction of the x-coordinate onto J5 are
situated on C2. Such arrangements are uniquely determined by fiberwise arrange-
ments of clusters. Let us illustrate it in the following example. Let us consider the
first line of Table 2 (Series 25, p ∈ D78) and the fiberwise arrangement 1

4
23 of the

clusters. To simplify pictures, we shall present the hyperbola C2 as two horizontal
lines. Let us place the points 0, . . . , 9 on C2 according to the given cluster arrange-
ment (see Fig.30.1) and let us draw the arcs of J5 one by one starting, for example,
with (01). The x-coordinate is monotone on each arc. Therefore, there are two
choices for the arc (01): Fig. 30.2 and Fig. 30.3. Since p ∈ D78, this arc must cut
the segment which is contained inside C2 and which relates p to some point q of the
arc (01) of the conic (for our choice of the affine coordinates, this is the vertical ray
from q disjoint from the other branch of the hyperbola). By this reason, we have
to choose Fig. 30.2 rather than Fig. 30.3. Similarly, we construct all other arcs,
and we obtain the fiberwise arrangement of J5 ∪ C2 depicted in Fig. 30.4. This
arrangement contradicts Bezout’s theorem for an auxiliary line through the point
”4”. In such cases, we write ”B.” in the corresponding square of Table 2.

0 1 2

8 9

3 4 5 6 7

Fig. 30.1 Fig. 30.2 Fig. 30.3 Fig. 30.4

When drawing by hand a fiberwise arrangement of J5 ∪ C2, it is convenient to
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start with the exterior arc of J5 passing through infinity and the arcs of J5 bounding
the domain containing O5. After this, all other arcs will be uniquely determined
by the condition that they do not cross the previously constructed arcs.

Table 2.

C2 ∪ J5 p clusters fiberwise arrangements of clusters

1234 123
4

12
4
3 12

34
1
4
23 1

3
2
4

1
34

2 1
234

25. (M10) D78 012, 345, 67, 89 B. O.K. B. B. B. B. B. B.

123 12
3

1
3
2 1

23

2. (M33) D01 0, 123456, 789 B. B. ← c1 O.K.
D23 012, 3456, 789 B. B. B. O.K.
D45 01234, 56, 789 B. B. B. O.K.
D78 0123456, 7, 89 B. O.K. c3 → B.

7. (M31) D012349 01234, 567, 89 O.K. B. ← c3 B.
D4589 01234, 567, 89 c3 → ← c3 O.K. O.K.
D5678 01234, 567, 89 B. O.K. c3 → B.

8. (M29) D01 0, 1234, 56789 B. B. c2 → O.K.
D23 012, 34, 56789 B. B. B. O.K.

25. (M10) D236789 012, 345, 6789 c3 → ← c3 O.K. O.K.
D0129 012, 345, 6789 O.K. B. B. ← c3

12 1
2

1. (M30) D01 0, 123456789 c2 → O.K.
D23 012, 3456789 O.K. O.K.
D45 01234, 56789 O.K. O.K.

2. (M33) D01234569 0123456, 789 O.K. c1 →
D6789 0123456, 789 c2 → O.K.

8. (M29) D012349 01234, 56789 O.K. c1 →

1. (M30) D01...89 0123456789 O.K.

An expression of the form ”ci →” (respectively, ”← ci”) in Table 2 means that
the given fiberwise arrangement can be reduced to another one by means of an
admissible isotopy (see the definition in Sect. 6.3) such that ci moves to the right
(respectively, to the left) and other clusters are fixed. Consider, for example, the
fiberwise cluster arrangement 1

3
2 in the second line of Table 2. It corresponds to

the arrangement of J5, O5, and C2 depicted in Fig. 31. By Bezout’s theorem for
vertical lines, the remaining five ovals of C5 must be contained in the band bounded
by the vertical lines through the points 9 and 1. Moreover, they are contained in
a smaller band which we depict in Fig. 31 as a gray rectangle. Then there exists
an admissible isotopy shown by arrows in Fig. 31 which moves c1 (consisting of a
single point ”0”) to the left. As a result, we obtain the fiberwise arrangement 31

2

which can be transformed into 1
23 changing the infinite line.

Finally, we write ”O.K.” in Table 2 if the corresponding fiberwise arrangement of
C2, J5, and O5 should be further studied. Every such an arrangement corresponds
to a line of Table 3.
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J5

C2

J5

O5

J5
O5

C2

0

3 4 5 621

987

Fig. 31

Table 3.

1. D01 9 [⊃−−3u1×3u2⊂−−2×7
3] [22323][], [43333][], [4][4444] 7,2,2

D23 0 [×2
4⊃−−4u

′
1⊂−−4×6

4] [44443], [44454] 3,8

–”– 9 [⊃−−3u1⊂−−3×4⊃−−4u2⊂−−2×5
3] [422][44], [444][33] 10,9

D45 0 [×4
4⊃−−4u

′
1⊂−−4×4

4] [45554] 5

–”– 9 [⊃−−3u1⊂−−3×3
4⊃−−4u2⊂−−2×3

3] [334][33], [433][44] 4,4

D01...9 0 [u′
1×α

3 u′
2×10−α

3 ]

[]1[43333]9, [3333]1[4]9, [32223][]∗, [32322][],

[32325][], [32355][], [34555][], []2[43222]
∗

8 ,

[]3[43322]7, []3[43325]7, []3[43355]7, [33]3[444]7,

[3333]3[4]7, []4[43222]6, [322]4[45]6, [323]4[44]
∗

6 ,

[325]4[45]6, [355]4[45]6, [33]5[433]5

2,2,1∗,1,

1,1,1,11∗,

9,9,9,10,

3,6,6,12∗,

6,6,4

2. D01 9 [⊃−−3u1×3u2⊂−−2×5
3×2

4] [33333][], [3][4444], [][44443] 5,5,5

D23 9 [⊃−−3u1⊂−−3×3⊃−−4u2⊂−−2×3
3×2

4] [322][44], [344][33] 9,8

D45 9 [⊃−−3u1⊂−−3×3
3⊃−−4u2⊂−−2×3×2

4] [333][44] 3

D78 0 [×6
3⊃−−3u1×3u2⊂−−2×3] [][43333], [][44444] 7,7

D0...569 9 [⊃−−2u1×α
3 u2×7−α

3 u3⊂−−3x4]
[3322]4[4]3[], [33232][][], [333][][42],

[3]3[4332]4[], []4[42222]3[],

[4][][4444], [444][][44]

1,2,6,

8,10,

12,4

D6789 1 [×5
4⊃−−4u1×α

2 u2×3−α
2 u3⊂−−3]

[3322][][3], [][][34442],

[43322][][], [444][][33]

12,4,

11,6

7. D012349 9 [⊃−−2u1×α
3 u2×5−α

3 u3⊂−−3×2
3×4]

[3333]4[4]1[], [43333][][],

[]4[44444]1[], [44444][][]

3,2,

6,2

D4589 0 [×4
4⊃−−4u

′
1×2u

′
2×2u

′
3⊂−−4×2

4] [33444][][], [45544][][] 4,1

–”– 1 [×3
4⊃−−4u1⊂−−2×3⊃−−3u2×2u3×2u4⊂−−3] [4233][2][][] 1

D5678 0 [×4
3⊃−−3u1×3u2×2

3u3⊂−−2×3] [2222][][4], [24333][][] 5,4

8. D01 9 [⊃−−3u1×3u2⊂−−2×3
3×4

4] [][42223], [34333][] 8,5

D23 9 [⊃−−3u1⊂−−3×4⊃−−4u2⊂−−2×3×4
4] [222][44], [244][33] 6,7

D012349 9 [⊃−−2u1×α
3 u2×5−α

3 u3⊂−−3×3
4]

[3222]4[4]1[], [32232][][], [333][][43],

[3]1[4333]4[], []2[42223]3[],

[4333][][4], []3[44332]2[]

3,4,1,

5,2,

1,7

25. D78 0 [×2
3⊃−−3u1⊂−−3×2

3×4⊃−−4u2⊂−−2×3] −−− −

D236789 0 [×2
4⊃−−4u1×α

2 u2×4−α
2 u3⊂−−4×2

4]
[]1[32224]3[], [4222]3[3]1,

[43444][][], [444][][34]

3,3,

2,2

–”– 1 [×4⊃−−4u
′
1⊂−−2×3⊃−−3u

′
2×α

2 u′
3×4−α

2 u′
4⊂−−3] [4433][2][][] 1

D0129 9 [⊃−−2u1×2
3u2×3u3⊂−−3×2

3×3
4] [3222][4][], [333][][43], [42223][][] 4,2,5
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Table 3 is organized similarly to Table 1 above. In the fourth column, we write
the encoding words for fiberwise arrangements of C = C5 ∪ C2. The variables
u1, u2, . . . or u′

1, u
′
2, . . . (the meaning of the primes is explained below) stand for

subwords (including the empty one) of the total length 5 and of the form oi1oi2 . . .
where 2 ≤ i1, i2, · · · ≤ 5.

It follows from the commuting properties of symbols ”×” and ”o”, that if a word

contains a subword of the form u
(′)
i−1×m

k u
(′)
i , then it is enough to consider only the

cases when u
(′)
i starts with ok′ for k′ 6= k + 1. By the same reason, in the case (1,

p ∈ D0...9), we may assume that either the word u′
1 is empty, or it starts with o3,

or u′
1 = o5

2 and u′
2 = ∅.

The encoding word depends on the choice of the infinite line. Always when it is
possible (i.e., in all cases except the last line for Series 1), we choose it so that it
meets J5 at three points, and so that the fiberwise arrangement of clusters on the
affine chart is as similar as possible to that given in Table 2. In the third column
of Table 3, we write the number of the leftmost point.

Now let us explain the difference between uk and u′
k in the encoding words.

Suppose that we study the case when the leftmost point has the number i and O5

is contained in Dα. If this domain contains more than one ovals, then any of them
can be chosen as O5. Let us consider the tangent to C2 at the i-th point and let
us rotate it (in one direction or another) up to the first tangency with an oval of
C5 contained in Dα, and let us choose this oval to be O5. The obtained line (let us
denote it by L) divides the interior of C2 into two components but only one of them
can contain other ovals from Dα. This means that either o2 or o5 does not occur
in the encoding word (depending on the direction of the rotation). The absence of
prime of a variable uk means that it may be replaced only by words without o5.

In the cases when two different fiberwise models correspond to the same line
of Table 2, we apply this trick only to one of them for not to bother about the
compatibility of the choices of O5. The fact that this precaution is not in vain, can
be illustrated by the arrangement 1 with p ∈ D45. Analyzing the last column of
Table 3 (whose meaning is explained below), we see that if we consider only words
without o5, then we would ”prove” the unrealizability of the fifth arrangement of
Series 1.

Also, this argument cannot be applied to (1. p ∈ D0...9), because it is possible
in this case that the line L cuts J5 ∪ O2 at three real points only. Hence, ovals of
C5 may pass through L during an admissible isotopy which transforms o5 into o2

and vice versa.
For each fiberwise arrangement listed in Table 3 and satisfying the above re-

strictions, we have checked on a computer if the corresponding braid b satisfies
Murasugi-Tristram inequality (see details in [16]), and if the Alexander polynomial
∆b(t) satisfies the Fox-Milnor condition

∃f ∈ Z[t] : ∆b(t)
.
= f(t)f(t−1)

for e(b) = 6 (i.e., in the case 1. p ∈ D0...9), or the condition ∆b(t) = 0 for
e(b) ≤ 5 (i.e., in the remaining cases). Here e(b) denotes the exponent sum of b,

i.e., e(b) =
∑

kj for b =
∏

σ
kj

ij
, and

.
= means the equality up to multiplication by

units of the ring Z[t, t−1].
All fiberwise arrangements satisfying these conditions are listed in the fifth col-

umn of Table 3 (the data format is the same as in the last column of Table 1). For



48 S.YU. OREVKOV

each of them, in the last column we give the reference to the corresponding (non-
fiberwise) arrangement in Sect. 0.5, namely, we write the order number (according
to the order in Sect. 0.5) of the corresponding arrangement among all arrange-
ments of the same series. The cases excluded below are marked by the asterisk.
The numbers 11 and 12 of Series 1 refer to Fig. 32.1 and Fig. 32.2.

1
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1-11 (unrealizable) 1-12 (unrealizable) 1-7 1-2
Fig. 32.1 Fig. 32.2 Fig. 33.1 Fig. 33.2

For example, the first line of Table 3 means that we have considered all fiberwise
arrangements encoded by

[⊃−−3 oi1 . . . oik
×3 oik+1

. . . oi5 ⊂−−2×7
3],

where 0 ≤ k ≤ 5, 2 ≤ ij ≤ 4 for all j, and if k < 5, then ik+1 = 4. Those among
them, which satisfy Murasugi-Tristram inequality and the condition ∆b(t) = 0 are
only

[⊃−−3 o2
2o3o2o3×3 ⊂−−2×7

3], [⊃−−3 o4o
4
3×3 ⊂−−2×7

3] and [⊃−−3 o4×3 o4
4×3 ⊂−−2×7

3],

moreover, the former case corresponds to the 7th arrangement of Series 1 (i.e.,
Fig. 33.1), and the two latter cases both correspond to the second arrangement of
the same series (Fig. 33.2).

It remains to prove the unrealizability of the arrangements in Fig. 32.1 and
Fig. 32.2. We shall apply the following generalization of Fox-Milnor theorem.

Theorem 6.6. (Florens [5]). Let F = F1 ∪ · · · ∪ Fµ be a smooth compact surface
embedded into the 4-ball B4 such that L = ∂F ⊂ S3 = ∂B4. Let us set Li = ∂Fi.
Let ∆L(t1, . . . , tµ) be the multi-variable Alexander polynomial corresponding to the
partition L = L1 ∪ · · · ∪ Lµ.

Suppose that the Euler characteristic χ(F ) is equal to one. Then there exists a
polynomial f(t1, . . . , tµ) with integer coefficients such that

∆L(t1, . . . , tµ)

µ∏

i=1

(ti − 1)−χ(Fi) .
= f(t1, . . . , tµ) f(t−1

1 , . . . , t−1
µ ), (12)

where
.
= means the equality up to multiplication by units of the ring Z[t±1

1 , . . . , t±1
µ ].

Let b be the braid associated to one of the fiberwise arrangements listed in the
last line of Series 1 in Table 3. As explained in [13], if this fiberwise arrangement is
a fiberwise model of a real pseudoholomorphic curve C = C2 ∪C5, then the closure
L of b is isotopic to the boundary of a surface F , which is the intersection of the
complexification of C with some 4-ball embedded into CP

2. Let L = L2 ∪ L5 and
F = F2 ∪ F5 be the partitions corresponding to the partition C = C2 ∪ C5. By
Riemann-Hurwitz formula, we have χ(F ) = deg C − e(b) = 7 − 6 = 1. Hence,
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the multi-variable Alexander polynomial ∆L(t2, t5) associated to the partition L =
L2 ∪ L5 must have the form (12). An explicit computation shows that this is not
so in the cases marked by the asterisk in Table 3.

Remark 6.7. The arrangement in Fig. 32.1 (respectively, in Fig. 32.2) can be also
excluded without Theorem 6.6. One can check that if the center of the pencil of
lines is chosen inside an oval contained in the digon (12) (respectively, (34)), then all
fiberwise models contradict Murasugi-Tristram inequality. As above, it is sufficient
to consider only models corresponding to all possible fiberwise arrangements of the
clusters c1 = (01) and c2 = (2 . . . 9) (respectively, c1 = (0123) and c2 = (456789))
on the conic C2, which can be represented in this case by an ellipse in the affine
plane. By Proposition 6.2, it is enough to consider only the cases when the extrema
of x-coordinate on C2 are the leftmost or rightmost points of the clusters.

Remark 6.8. The arrangements in Figures 32.1 – 32.2 are pseudoholomorphically
unrealizable, but the corresponding Alexander polynomials in one variable do not
contradict to Fox-Milnor theorem. Perhaps, this is just a coincidence. But its
probability is rather small (in contrary to a situation when, say, Murasugi-Tristram
inequality occasionally holds). So, the following question rises naturally: is this an
indication that these arrangements are realizable as the sets of real points of some
objects (for instance, flexible curves in the sense of Viro?) which generalize real
algebraic curves but in a weaker sense than real pseudoholomorphic curves?

§7. Completing of the classification

7.1. Restriction for C5∪L1∪L2, deduced from already proven restriction
for C5 ∪ C2.

It follows from Bezout’s theorem for auxiliary lines that if an M -quintic C5

and two lines L1, L2 realize an arrangement of the type (1,1) (respectively, (1,3)),
then the odd branch J5 of C5 is arranged with respect to L1 ∪ L2 in one of the
8 (respectively, 19) ways corresponding to the series in Sect. 0.6 (respectively, in
Sect. 0.7). The question is how the ovals of the quintic are distributed between the
components of the complement to J5 ∪ L1 ∪ L2.

For the most of the series, in particular, for all the series of the type (1,1), the
answer to this question follows from the partial classification of arrangements of
C5∪C2 with one passage through infinity which is already obtained in §6, combined
with the classification of the arrangements of C5 ∪ C2 with five passages through
infinity or with five nested interior arcs which evidently reduces to Polotivskii’s
classification of arrangements of an M -quintic and a line.

Example 7.1. Series 8 of the type (1,1), i.e., Series E according to [9]. Let us
denote the components of the complement to J5 ∪ L1 ∪ L2 according to Fig. 34.1
(as usually, each of the letters a, b, . . . denotes simultaneously the domain and the
number of ovals of the quintic contained in it). Bezout’s theorem for auxiliary lines
implies that there are no ovals in other domains. Let us perturb L1 ∪ L2 into a
nonsingular conic as shown in Fig. 34.2. We obtain the arrangement of J5 ∪ C2 of
Series 28. The classification for this series is not completed yet (in contrary, in §5
we decided to reduce this case to the classification of C5∪L1∪L2). Let us try then
to redraw this arrangement as shown in Fig. 35.3 and to perturb it as in Fig. 35.4.
This time, we obtain an arrangement of J5 ∪ C2 of Series 24, whose classification
is completed in Sect. 6.2. It follows from this classification that only two cases are
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possible: (1) a = d = 0, b = 4, c = 2 or (2) c = 0, a = b = d = 2. Both of them can
be found in the list of realized arrangements in Sect. 0.6.

 d     
    c  
     b
      
     a

 d     
    c  
     b
      
     a

      
      
a      
 d     
    c b

      
      
a      
 d     
    c b

Fig. 34.1 Fig. 34.2 Fig. 34.3 Fig. 34.4

Example 7.2. Series 16 of the type (1,3). Denote the domains as in Fig. 35.1.
Since one of two possible perturbations of two lines into a conic provides an ar-
rangement with three passages through infinity, whose classification we did not
even started yet (it will be obtained in Sect. 7.3), we shall consider only the other
perturbation, the one depicted in Fig. 35.2. This is Series 13 where, according to
Sect. 6.2, only one arrangement is realizable and we have a + b = c = d = 2 for it.
It remains to show that a = 0 and b = 2. This follows from the fact that after for-
getting one of the lines, only these values of a and b provide an arrangement which
does not contradicts to Polotovskii’s classification of arrangements of a quintic and
a line.

      
      
  c   d
      
a     b

      
      
  c   d
      
a     b

      
      
      
      
1     5

      
      
      
      
5     1

Fig. 35.1 Fig. 35.2 Fig. 36.1 Fig. 36.2

Proceeding as in these examples, it is not difficult to exclude all arrangements
absent in Sections 0.6 – 0.7, except the series 1, 2, 3, 9, 10, 12, 14 of the type
(1,3) and except two more arrangements of Series 5 of the type (1,3) which are
depicted in Fig. 36.1 – 36.2.

7.2. End of proof of Theorem 2.
In all the remaining cases, we apply Murasugi-Tristram inequality. For the

arrangements in Fig. 36.1 – 36.2, the choice of the center of the pencil of lines
in the solitary oval provides unique fiberwise models [⊃−−4o

5
3×3⊂−−4×2

4×2
3×2

4×2
3] and

[⊃4o
4
4×2×3

3×2
2×2

3×3
2⊂3] respectively.

In other cases, we choose the center of the pencil of lines on one of the lines
L1, L2 (let it be L1) inside the nest formed by arcs of the quintic. We choose L1

as the infinite line. The results of computations are presented in Table 4 which
is organized similarly to Tables 1 and 3 in Sections 6.2 and 6.4. As in Sect. 6.2,
the variables ui stand only for those subwords of the form oi1oi2 . . . which provide
realizable fiberwise arrangements of C5 after dropping L2. If ui follows ×k, then
either it is empty, or it starts with ok+1.

7.3. End of proof of Theorem 1.
By Corollary 5.2, the classification of the series not considered in §6 follows from

Theorem 2.
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Table 4.

1. [⊃2u1⊂−−2×2⊃−−1u2⊂−−1×2] [222][322], [1][22222] 1,2

2. [×3⊃−−2u1×α
1 u2×3−α

1 u3⊂1] [322244][][], [323311][][], []1[211111]2[] 3,1,2

3. [⊃1u1×1u2×1u3⊂−−2×2
3] [44][][2223], [1133][][23], [11111][2][] 3,1,2

9. [⊃1u1⊃−−2×2×2
1×2] [112222], [111111] 2,1

10. [⊃2u1×1u2⊂−−1×2×2
3] [444444][], [333344][], [3333][22], [][222222] 1,2,2,1

12. [⊃1u1⊂−−2×2⊃−−1u2×1u3⊂−−3] [1111][22], [1122][33] 1,2

14. [⊃1u1×1u2⊂−−1×2⊃−−2u3⊂−−2] [113][][223] 1

Appendix A. A new proof of the algebraic
unrealizability of a certain pseudoholomorphic
M -curve of bidegree (4, 8) on the quadratic cone

Proposition A.1. There does not exists a real algebraic curve of bidegree (4, 8) on
the Hirzebruch surface RF2 (i.e., on the blown up quadratic cone) which is arranged
with respect to the exceptional divisor E and one of fibers F as depicted in Fig. 37
where RF2 is represented by a rectangle whose opposite sides are identified. The
horizontal sides represent E and the vertical sides represent F .

Fig. 37. Fig. 38.

This result is proven in [21] using Hilbert-Rohn method. Note that Fig. 37 is
realizable by a real pseudoholomorphic curve in an almost complex structure where
the self-intersection number of E is equal to −2. In this appendix, I give a new
proof of Proposition A.1, similar to the proof of the algebraic unrealizability of
Fig. 16.12 given in Sect. 4.4, but here I use also Agnihotri-Woodward inequalities.
In my opinion, the new proof is simpler and ”more reliable” than the old one
(unfortunately, proofs based on Hilbert-Rohn method sometimes have mistakes
because some cases of possible degenerations are missed; the first version of §4 of
this text nearly contributed to the list of such erroneous proofs).

On the other hand, the result stated in Proposition A.1 is obtained in [21] as a
corollary of a stronger result stating that the (M − 1)-curve obtained from Fig. 37
by removing the central oval is algebraically unrealizable. At the present time, I do
not know any proof of this stronger result, other than the proof given in [21] and
based on Hilbert-Rohn method.

In this context, it is natural to ask the following question. Is algebraically real-
izable the arrangement of an (M − 1)-quintic and two lines on RP

2 obtained from
Fig. 16.12 by deleting the solitary empty oval (i.e., by erasing the digit ”1” on the
picture)?

Proof of Proposition A.1. If Fig. 37 were algebraically realizable, then the cubic
resolvent R should be arranged with respect to the core L as in Fig. 38 (see Remark
4.5). The braid associated to the curve A = R ∪ L has the form

b = σ−2
3 σ−5

2 σ−1
1 σ2σ

−1
1 σ−2

3 σ−1
2 σ1σ

−4
2 ∆4.
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The curve R is maximal and its complex orientation must be as shown in Fig. 38,
because otherwise the linking number of positive and negative strings would not be
equal to zero. Let us introduce the notation H , N , NR, and N0 as in §4.

It follows from counting of the Euler characteristics and liking numbers (as in
§4) that N consists of two connected components N1, N2 which cover H once and
twice respectively. The projection N2 → H has two branching points and each of
N1 and N2 once touches N0.

Hence, coloring the strings of b into the colors (t2, t1, t2, t0), we conclude that it

must have the form b = b
(1)
1 b

(2)
1 b

(1)
4 b

(2)
4 where the colored braid b

(j)
1 , j = 1, 2 is a

conjugate of σ1 : (t2, t2, t0, t1)→ (t2, t2, t0, t1), and the colored braids b
(j)
4 , j = 1, 2,

are conjugates of σ4
1 : (t0, tj , t3−j , t2)→ (t0, tj , t3−j , t2).

The images of b
(j)
1 and b

(j)
4 have the spectra (−t2, 1, 1) and (t20t

2
j , 1, 1) respectively.

A computation similar to that in [15] leads to a contradiction with one of
Agnihotri-Woodward inequalities for the values of the parameters t0 = t2 = i =√
−1, t1 = −τ̄ = (1 + i

√
3)/2.

Appendix B. Example of an unremovable
zigzag on a real algebraic curve

Proposition B.1. a). There exists a nonsingular real algebraic curve of bidegree
(3, 6) on F2 (see Definition 2.10) whose fiberwise arrangement is encoded by w =
[⊃1o1⊂1⊃2o2⊂2⊃1⊂2⊃1⊂2].

b). There does not exist any nonsingular real algebraic curve of bidegree (3, 6)
on F2 whose fiberwise arrangement is encoded by w′ = [⊃1o1o2⊂2⊃1⊂2⊃1⊂2].

Proof. a). Such a curve can be easily constructed by Viro’s method subdividing the
triangle (0,0)-(6,0)-(0,3) by the segment (3,0)-(0,3). The chart gluing corresponds to
the subdivision of the word w as w = u1vu2 where u1 = ⊃1o1⊂1, v = ⊃2o2⊂2⊃1⊂2,
u2 = ⊃1⊂2. Here v represents the chart in (0,0)-(3,0)-(0,3), and u1u2 represents
the chart in (3,0)-(6,0)-(0,3).

b). Follows from [18; Lemma 6.6] which states that the encoding word of a curve
of bidegree (3, 3n) on Fn cannot contain more than n subwords of the form ⊃1⊂2

or ⊃2⊂1. �

The word w′ is obtained from w by deleting the subword ⊂1⊃2, i.e., by a zigzag
removal.

Remark. A generalization of [18; Lemma 6.6] (which was used in the proof of Part
(b) of Proposition B.1) for any degree was recently obtained by Brugallé [1].

Appendix C. Smooth pseudoholomorphic curves
of bidegree (4, 16) on F4 whose (non-fiberwise)

isotopy type is algebraically unrealizable

Recall that we denote the n-th Hirzebruch surface by Fn (see Definition 2.10
about the choice of a real structure on Fn). When speaking about real pseudoholo-
morphic curves on Fn, we consider tame conj-invariant almost complex structures,
such that there exists a pseudoholomorphic curve E whose self-intersection number
is −n (the exceptional curve). Such a curve is necessarily real.

Welschinger [24] constructed real pseudoholomorphic curves A on Fn, n ≥ 2,
for generic conj-invariant almost complex structures such that the isotopy type of
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RA is algebraically unrealizable. The reason of the algebraic unrealizability of the
examples from [24] is that otherwise the number of real intersections of RA with
RE would be greater than the intersection number A.E. In particular, this implies
that the examples from [24] are unrealizable for almost complex structures with an
exceptional curve.

In the case when the exceptional curve exists, restrictions based on intersection
numbers with auxiliary rational curves cannot work. However, it is possible to
apply Hilbert-Rohn method as well as the cubic resolvent techniques. Using these
methods, algebraic unrealizability of some pseudoholomorphically realizable fiber-
wise arrangements is proven in [21, 22] (see also Appendix A above). However, the
curves in these examples are isotopic (non-fiberwise) to algebraic ones.

In this appendix, using cubic resolvents, algebraic unrealizability of some (non-
fiberwise) isotopy types by curves of bidegree (4, 16) on F4 is proven. Moreover,
these isotopy types are realizable by pseudoholomorphic curves in a tame conj-
invariant almost complex structure with an exceptional curve. I obtained this
result when I was preparing the paper [16], but I did not include it there because
I was going to write another paper devoted to cubic resolvent method. Now, when
it is already exposed in [18, 22] and in the present paper, a separate paper on this
subject is not needed. So, I decided to write this appendix.

A circle smoothly embedded into RFn, is called an oval if it bounds a disk (since
RFn is a torus or a Klein bottle, this condition is equivalent to the fact that the
circle is zero-homologous). If a curve has only ovals, we shall use Viro’s notation
for its isotopy class (usage of this notation means that we suppose that the curves
have only ovals).

Proposition .1. Isotopy types 1 ⊔ 1〈1〉 ⊔ 1〈18〉 and 1 ⊔ 1〈7〉 ⊔ 1〈12〉 are

a). unrealizable by real algebraic curves of bidegree (4, 16) on RF4;

b). realizable by real J -holomorphic curves of bidegree (4, 16) on RF4 where J is
a tame conj-invariant almost complex structure with an exceptional J -holomorphic
curve.

Proof. a). If one of these isotopy types is realizable by a real pseudoholomorphic
curve A, then (up to symmetry and zigzag removals) the fiberwise isotopy type of
RA is either A(α1, α2, α3) = [⊃1⊂1o

α1
2 o3o

α2
2 ⊃1⊂2o

α3
2 ], α1 + α2 + α3 = 19, α3 ∈

{1, 7, 12, 18}, α1 ≥ α2, or B(α1, α2) = [⊃1⊂1o
α1
2 ⊃1o1⊂1o

α2
2 ], α1 + α2 = 19, α3 ∈

{1, 7}. Passing to cubic resolvents, we obtain M -curves of bidegree (3, 24) on F8

of fiberwise isotopy types A′(α1, α2, α3) = [o2o
α1
1 o2o

α2
1 o2o

α3
1 ] and B′(α1, α2) =

[o2o
α1
1 o2

2o
α2
1 ] respectively.

The algebraic length of the corresponding braids is equal to two. It can be easily
derived from the quasipositivity criterium [19], that A′ algebraically realizable only
for (α1, α2, α3) ∈ {(17, 1, 1), (11, 7, 1), (11, 1, 7), (7, 5, 7)}. and B′ is unrealizable
for all (α1, α2).

Let us denote the braid corresponding to A(α1, α2, α3) by b = b(α1, α2, α3; e1, e2).
It depends on two unknown integers e1, e2 and it has the form

b = a σ1+e1
3 σ1−e1

1 σ−α1
2 τ2,3σ

−1
3 τ3,2σ

−α2
2 a σ1+e2

3 σ1−e2
1 σ−α3

2 ∆4,

where a = σ−1
1 σ−1

3 σ−1
2 , τ2,3 = τ−1

3,2 = σ−1
3 σ2, and ∆ = σ1σ2σ3σ1σ2σ1.

If e1 6≡ e2 mod 2, then the image of b in the permutation group S4 is (13)(24),
hence, the closure L of b consists of two components. Their linking number is equal
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to −3 which is impossible. Therefore, we shall assume that e1 ≡ e2 mod 2. The
image of b in S4 is trivial in this case. The computation of the Euler characteristic
yields that L bounds a three-component surface in the 4-ball. Computing linking
numbers between the link components, one can see that two cases are a priori
possible:

(i) e1 ≡ e2 ≡ 0 mod 2 and e2 − e1 = 10;
(ii) e1 ≡ e2 ≡ 1 mod 2 and e2 − e1 = 11− α3.

It follows from [22; 3.7], that (2|e1| − 1) + (2|e2| − 1) ≤ 12, i.e., |e1|+ |e2| ≤ 7 (see
the end of §4.1). This excludes Case (i) for all α3 ∈ {1, 7}, and also Case (ii) for
α3 = 1.

It remains to consider Case (ii) for α3 = 7. Murasugi-Tristram inequality implies
in this case that the determinant d of L must vanish. Expressing e2 via e1 and
computing d using the computer program from [16; Appendix] (or computing it by
hands using Göritz matrices as in [21]), we obtain d = 24(347− 876e1− 223e2

1) for
α1 = 7 and d = 24(31e1 + 137)(3− e1) for α1 = 11. In the former case, there are
no integral solutions of the equation d(e1) = 0. In the latter case, there is a unique
solution e1 = 3, which yields e2 = e1 + 11−α3 = 3 + 11− 7 = 7, which contradicts
the inequality |e1| + |e2| ≤ 7 (this solution corresponds to the pseudoholomorphic
curve constructed in [16; §5.2]).

b). The isotopy type 1 ⊔ 1〈7〉 ⊔ 1〈12〉 is realized in [16; §5.2].
To realize 1 ⊔ 1〈1〉 ⊔ 1〈18〉, note that the above braid b(17, 1, 1; e1, 10− e1) does

not depend on e1 and that it is quasipositive. Moreover, if e2 = 10− e1, then even
the braid

a σ1+e1
3 σ1−e1

1 σ−1
2 σ−1

1 σ−16
2 τ2,3σ

−1
3 τ3,2σ

−1
2 a σ1+e2

3 σ1−e2
1 σ−1

2 ∆4

(corresponding to [⊃1⊂1o2⊂2×1⊃2o
15
2 o3o2⊃1⊂2o2]) is quasipositive. Since, the al-

gebraic length of the latter braid is equal to one, its quasipositivity is equivalent to
the fact that the braid is conjugate to a standard generator.
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