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Abstract

In [2] II.5, Connes gives a proof of the Atiyah-Singer index theorem for closed manifolds by using deformation
groupoids and appropiate actions of these on R

N . Following these ideas, we prove an index theorem for manifolds
with boundary.

Résumé

Un théorème d’indice pour des variétés à bord. Dans [2] II.5, Connes donne une preuve du théorème
de l’indice d’Atiyah-Singer pour des variétés fermées en utilisant des groupöıdes de déformation et des actions
appropriées de ceux-ci dans R

N . Nous suivons ces idées pour montrer un théorème d’indice pour des variétés à
bord.

Version française abrégée

Dans [2], II.5, Alain Connes donna une preuve du théorème d’Atiyah-Singer pour une variété fermée
entièrement fondée sur l’utilisation de groupöıdes, grâce à une action du groupöıde tangent de la variété
sur R

N . L’idée centrale est de remplacer des groupöıdes qui ne sont pas (Morita) équivalents à des espaces,
par des groupöıdes obtenus par produit croisé et qui possèdent cette propriété, ce qui permet ensuite de
donner une formule.

Si X est une variété à bord ∂X , nous construisons le groupöıde TbX := (adG∂X ×R)
⋃

∂ TX en recollant
adG∂X × R avec TX le long de leur bord commun T∂X × R (ici adG∂X = T∂X ∪ ∂X × ∂X × (0, 1) est
le groupöıde adiabatique). Nous le recollons alors avec le groupöıde tangent de l’intérieur de X , TG ◦

X
=

T
◦

X ∪
◦

X ×
◦

X × (0, 1] : TGX := TbX
⋃

0
TG ◦

X
.
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Il existe un homomorphisme TGX
h

−→ R
N induit par un plongement de X dans R

N−1×R+, tel que ∂X

se plonge dans R
N−1 ×R+ ×{0} et

◦

X se plonge dans R
N−1 ×R

∗

+. Le produit croisé de TGX par h (noté
T(GX)h) est un groupöıde propre dont les groupes d’isotropie sont triviaux, il est donc Morita-équivalent
à son espace d’orbites.

Soit V (
◦

X) le fibré normal de
◦

X dans R
N , et V (∂X) le fibré normal de ∂X dans R

N−1 ; soit enfin

V (X) = V (
◦

X)
⋃

V (∂X). En notant D∂ = V (∂X)×{0}
⊔

R
N−1×(0, 1) et D◦ = V (

◦

X)×{0}
⊔

R
N ×(0, 1]

les déformations au cône normal, on construit les espaces B∂ := V (X)
⋃

∂ D∂ et B := B∂

⋃

◦
D◦.

Proposition 0.1 Le groupöıde (TGX)h est Morita équivalent à l’espace B.
Soit

indX
f = (e1)∗ ◦ (e0)

−1
∗

: K0(TbX) −→ K0(
◦

X ×
◦

X) ≈ Z.

Définition 0.1 (Indice topologique pour une variété à bord) Soit X une variété à bord. L’indice topolo-
gique de X est le morphisme

indX
t : K0(TbX) −→ Z

défini comme la composition des trois morphismes suivants

(i) L’isomorphisme de Connes-Thom CT0 suivi de l’équivalence de Morita M0 :

K0(TbX)
CT0−→ K0((TbX)h0

)
M0−→ K0(B∂),

où (TbX)h0
est le produit croisé de TbX par h0 (l’homomorphisme h en t = 0).

(ii) Le morphisme indice de l’espace de déformation B : K0(B∂) K0(B)
(e0)∗
≈

oo
(e1)∗ // K0(RN )

(iii) Le morphisme de périodicité de Bott : K0(RN )
Bott
−→ Z.

Theorem 0.2 Pour toute variété à bord, on a l’égalité

indX
f = indX

t .

1. Actions of R
N

All the groupoids considered here will be continuous family groupoids [5,11]. Hence we can consider
their convolution and C∗-algebras without any problem. If G is such a groupoid, we will denote by K0(G)
the K-theory group of its C∗-algebra (unless explicetely written otherwise). This is consistent with the
usual notation when G is a space (a groupoid made only of units). In the sequel, given a smooth manifold
N , we will denote by adGN : TN ×{0}

⊔

N ×N ×R
∗

⇉ N ×R, the deformation to normal cone of N in
N ×N(for complete details about this deformation functor see [1]). At each time, we will need to restrict
it to some interval, e.g. [0, 1] gives the tangent groupoid, and [0, 1) gives the adiabatic groupoid.

Let G ⇉ M be a groupoid, as classically, the notation says G is the space of arrows (or morphisms)
and M is the space of units (or objects). Let h : G → R

N be a (smooth or continuous) homomorphism of
groupoids, (RN as an additive group). Connes defined the semi-direct product groupoid Gh = G×R

N
⇉

M × R
N ([2], II.5) with structure maps t(γ, X) = (t(γ), X), s(γ, X) = (s(γ), X + h(γ)) and product

(γ, X) ◦ (η, X + h(γ)) = (γ ◦ η, X) for composable arrows.
At the level of C∗-algebras, C∗(Gh) can be seen as the crossed product algebra C∗(G) ⋊ R

N where
R

N acts on C∗(G) by automorphisms by the formula: αX(f)(γ) = ei·(X·h(γ))f(γ), ∀f ∈ Cc(G), (see [2],
propostion II.5.7 for details). In particular, in the case N is even, we have a Connes-Thom isomorphism

in K-theory K0(G)
≈

→ K0(Gh) ([2], II.C).
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Using this groupoid, Connes gives a conceptual, simple proof of the Atiyah-Singer Index theorem for
closed smooth manifolds. Let M be a smooth manifold, GM = M × M its groupoid, and consider the
tangent groupoid TGM . It is well known that the index morphism provided by this deformation groupoid
is precisely the analytic index of Atiyah-Singer, [2,9]. In other words, the analytic index of M is the
morphism

K0(TM)
(e0)−1

∗ // K0(TGM )
(e1)∗ // K0(M × M) = K0(K (L2(M))) ≈ Z, (1)

where et are the obvious evaluation algebra morphisms at t. As discussed by Connes, if the groupoids
appearing in this interpretation of the index were equivalent to spaces then we would immediately have
a geometric interpretation of the index. Now, M ×M is equivalent to a point (hence to a space), but the
other fundamental groupoid playing a role is not, that is, TM is a groupoid whose fibers are the groups
TxM , which are not equivalent (as groupoids) to a space. The idea of Connes is to use an appropriate
action of the tangent groupoid in some R

N in order to translate the index (via a Thom isomorphism) in
an index associated to a deformation groupoid which will be equivalent to some space.

2. Groupoids and Manifolds with boundary

Let X be a manifold with boundary ∂X . We denote, as usual,
◦

X the interior which is a smooth manifold.
Let X∂ be the smooth manifold obtained by glueing X with ∂X × [0, 1) along their common boundary,
∂X ∼ ∂X × {0}. Set TX := TX∂|X , and consider the smooth manifold TbX := (adG∂X × R)

⋃

∂ TX
obtained by glueing adG∂X ×R and TX along their common boundary T∂X ×R (adG∂X = T∂X ∪∂X ×
∂X × (0, 1) ⇉ ∂X × [0, 1) is the adiabatic groupoid). Now, we have a continuous family groupoid over
X∂ : TbX ⇉ X∂ . As a groupoid it is the union of the groupoids adG∂X ×R ⇉ ∂X × [0, 1) (where R ⇉ {0}
as additive group) and TX ⇉ X . For the topology, it is very easy to see that all the groupoid structures
are compatible with the glueings we considered.

We are going to consider a deformation groupoid TGX ([10]). This will be a natural generalisation
of the Connes tangent groupoid of a smooth manifold, to the case with boundary. The space of arrows
TGX := TbX

⋃

◦

TG ◦

X
is obtained by glueing at T

◦

X (T
◦

X × {0} ⊂ TG ◦

X
is closed). The space of units

Xg0
:= X∂

⋃

◦

◦

X × [0, 1] is obtained by glueing
◦

X ∼
◦

X × {0} (
◦

X × {0} ⊂
◦

X × [0, 1] is closed). Using

the groupoid structures of TbX ⇉ X∂ and of TG ◦

X
⇉

◦

X × [0, 1], we have a continuous family groupoid

TGX ⇉ Xg0
. Again, all the groupoid structures are compatible with the considered glueings.

To define a homomorphism TGX
h

−→ R
N we will need as in the nonboundary case an appropiate

embedding. It is possible to find an embedding i : X →֒ R
N−1 × R+ such that its restrictions to the

interior and to the boundary are (smooth embeddings) of the following form i◦ :
◦

X →֒ R
N−1 × R

∗

+ and
i∂ : ∂X →֒ R

N−1 × {0}. We define the homomorphism h : TGX → R
N as follows.

h :























h(x, X, 0) = dxi◦(X) and h(x, y, ǫ) =
i◦(x) − i◦(y)

ǫ
on TG ◦

X

h(x, ξ, 0, λ) = (dxi∂(ξ), λ) and h(x, y, ǫ, λ) = (
i∂(x) − i∂(y)

ǫ
, λ) on TG∂X × R

h(x, X) = dxi◦(X) on T
◦

X

(2)

Since all these morphisms are compatible with the glueings, one has:
Proposition 2.1 With the formulas defined above, h : TGX → R

N defines a homomorphism of contin-
uous family groupoids.
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The action of TGX on R
N defined by h is free because i is an immersion. It is not necessarily proper

(in the case of Connes [2] II.5 it is since M was supposed closed), however we can prove the following:
Proposition 2.2 The groupoid (TGX)h is a proper groupoid with trivial isotropy groups.

Notice that the groupoid Gh is not the transformation groupoid of a group action (if not, the proper-
ness of the action would be equivalent to the properness of the groupoid). It can be seen however as a
transformation groupoid of a groupoid action. It is very important that the units of the groupoid Gh be
the units of G times R

N .
As an immediate consequence of the propositions above, the groupoid (TGX)h is Morita equivalent to

its space of orbits (see [7] example 5.33). Let us specify this space.

Let V (
◦

X) be the total space of the normal bundle of
◦

X in R
N . Similarly, let V (∂X) be the total space

of the normal bundle of ∂X in R
N−1. Observe that they have the same fiber vector dimension. In fact,

their union V (X) = V (
◦

X)
⋃

V (∂X), is a vector bundle over X , the normal bundle of X in R
N .

Take D∂ = V (∂X)×{0}
⊔

R
N−1×(0, 1) the deformation to the normal cone associated to the embedding

∂X
i∂

→֒ R
N−1. We consider the space B∂ := V (X)

⋃

∂ D∂ glued over their common boundary V (∂X) ∼

V (∂X) × {0}. On the other hand, take D◦ = V (
◦

X) × {0}
⊔

R
N × (0, 1] the deformation to the normal

cone associated to the embedding
◦

X
i◦
→֒ R

N . We consider the space B := B∂

⋃

◦
D◦ glued over V (

◦

X) by
the identity map.
Proposition 2.3 The space of orbits of the groupoid (TGX)h is B.

We can give the explicit homeomorphism. The orbit space of (TGX)h is a quotient of Xg0
× R

N . To
define a map Ψ : Xg0

× R
N → B it is enough to define it for each component of Xg0

. Let

Ψ :







∂X × (0, 1) × R
N−1 × R → R

N−1 × (0, 1)

Ψ(a, t, ξ, λ) := (
i∂(a)

t
+ ξ, t)

{

∂X × {0} × R
N−1 × R → V (∂X)

Ψ(a, 0, ξ, λ) := (i∂(a), ξ)
(3)







◦

X × (0, 1] × R
N → R

N × (0, 1]

Ψ(x, t, X) := (
i◦(x)

t
+ X, t)

{

◦

X × {0} × R
N → V (

◦

X)

Ψ(x, 0, X) := (i◦(x), X)

where ξ denotes the class in Va(∂X) := R
N−1/Ti∂(a)∂X (resp. X denotes the class in Vx(

◦

X) := R
N/Ti◦(x)

◦

X).

This gives a continuous map Ψ : Xg0
× R

N → B that passes to the quotient into a homeomorphism Ψ :
(Xg0

× R
N )/ ∼→ B, where (Xg0

× R
N )/ ∼ is the orbit space of the groupoid (TGX)h.

There is an alternative interpretation for B (we thank the referee for this suggestion): take the em-
bedding i : X →֒ R

N−1 × R+ and an appropriate tubular neighborhood U in R
N−1 × R+; then B is

diffeomorphic to U
⋃

R
N−1 × R

∗

+.

3. The index theorem for manifolds with boundary

Deformation groupoids induce index morphisms. The groupoid TGX is naturally parametrized by the
closed interval [0, 1]. Its algebra comes equipped with evaluations to the algebra of TbX (at t=0) and to

the algebra of
◦

X ×
◦

X (for t 6= 0). We have a short exact sequence of C∗-algebras

0 //
C∗(

◦

X ×
◦

X × (0, 1])
// C∗(TGX)

e0 // C∗(TbM) // 0 (4)

where the algebra C∗(
◦

X×
◦

X×(0, 1]) is contractible. Hence applying the K-theory functor to this sequence
we obtain an index morphism
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indX
f = (e1)∗ ◦ (e0)

−1
∗

: K0(TbX) −→ K0(
◦

X ×
◦

X) ≈ Z.

The morphism h : TGX → R
N is by definition also parametrized by [0, 1], i.e., we have morphisms

h0 : TbX → R
N and ht :

◦

X ×
◦

X → R
N , for t 6= 0. We can consider the associated groupoids, which satisfy

the same properties as in proposition 2.2 (in fact, for proving such proposition it is better to do it for
each t, and to check all the compatibilities).
Définition 3.1 [Topological index morphism for a manifold with boundary] Let X be a manifold with
boundary. The topological index morphism of X is the morphism

indX
t : K0(TbX) −→ Z

defined (using an embedding as above) as the composition of the following three morphisms
(i) The Connes-Thom isomorphism CT0 followed by the Morita equivalence M0:

K0(TbX)
CT0−→ K0((TbX)h0

)
M0−→ K0(B∂)

(ii) The index morphism of the deformation space B: K0(B∂) K0(B)
(e0)∗
≈

oo
(e1)∗ // K0(RN )

(iii) The usual Bott periodicity morphism: K0(RN )
Bott
−→ Z.

Remark 1 The topological index defined above is a natural generalisation of the topological index theorem
defined by Atiyah-Singer. Indeed, in the boundaryless case, they coincide. The index of the deformation
space B is quite easy to understand because we are dealing now with spaces (as groupoids the product is
trivial), then the group K0(B) is the K-theory of the algebra of continuous functions vanishing at infinity
C0(B) and the evaluation maps are completely explicit. In particular, if we identify B∂ with an open
subset of R

N (in the natural way), then the morphism (ii) above correspond to the canonical extension of
functions of C0(B∂) to C0(R

N ).
The following diagram, in which the morphisms CT and M are the Connes-Thom and Morita isomor-

phisms respectively, is trivially commutative:

K0(TbX)

≈CT

��

K0(TGX)

≈CT

��

e0

≈

oo e1 //
K0(

◦

X ×

◦

X)

≈CT

��

K0((TbX)h0
)

≈M

��

K0((TGX)h)

≈M

��

e0

≈

oo e1 //
K0((

◦

X ×

◦

X))h1
)

≈M

��

K0(B∂) K0(B)
e0

≈

oo e1 // K0(RN ),

(5)

The left vertical line gives the first part of the topological index map. The bottom line is the morphism
induced by the deformation space B. And the right vertical line is precisely the inverse of the Bott

isomorphism Z = K0({pt}) ≈ K0(
◦

X ×
◦

X) → K0(RN ). Since the top line gives indX
f , we obtain the

following result:
Theorem 3.1 For any manifold with boundary X, we have the equality of morphisms

indX
f = indX

t .

The last result is intimately related with the main result of [4]. In fact, if we consider the consider
the conic pseudomanifold naturally associated to X , the noncommutative spaces considered here are the
same as the ones considered in ref.cit., which by the way appeared also in [3], for instance, TbX is the
”Poincaré dual” to the Conic pseudomanifold in ref.cit. In particular the analytic index of [4] coincide
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with our indf , and the main results are basically the same. The novelty in these notes is the use of
Connes crossed products and the Connes-Thom morphisms instead of the Thom morphisms associated
to deformation groupoids, and hence there is in principle a difference between the topological indices.
As in the case of smooth manifolds, there should be a very closed relation between these two (Thom)
approaches which we think is worth to analyse.

4. Perspectives

As discussed in [3,4,5], the index map indX
f computes the Fredholm index of a fully elliptic operator

in the b-calculus of Melrose. The result proven here might be used to give a formula in relation to that of
Atiyah-Patodi-Singer ([6]).

We would like to thank Jean-Marie Lescure for very useful comments and discussions. We thank also
the referee for his suggestions to improve these notes.
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Boston, Inc., Boston, MA, (1999). xvi+274 pp.

6


